Recent Research Results from the Sandia Advanced Fuels Laboratory

Charles J. Mueller Sandia National Laboratories Livermore, California

Research Supported by

US DOE Office of FreedomCAR and Vehicle Technologies Program Manager: Kevin Stork

> Doshisha University Kyoto, Japan July 22, 2007

Presentation Outline

Overview of Sandia programs and facilities

Sandia Advanced Fuels Laboratory

Recent results

- ? Dilute clean diesel combustion
- ? Biodiesel NO_x increase

Conclusions

Additional recent results and references

What is Sandia?

A national laboratory funded by the US Dept. of Energy

? Operated by Lockheed-Martin Corp.

Technical programs include

- ? Engineering Sciences
- ? Computational and Information Sciences
- **? Materials and Process Science**
- ? Pulsed Power Sciences
- ? Microelectronics and Photonics Sciences

Sandia has ~ 7500 employees

- ? 2100 Masters
- ? 1400 Ph.D.
- ? Majority are engineers
- ? 900 in CA

Sandia Has Facilities in Numerous Locations

Kauai Test Facility, Hawaii

Engine-Related Research at the CRF

Engine Combustion Department has 7 laboratories (one principal investigator in each lab, dept. manager is Dennis Siebers)

Constant-Volume Vessel Lyle Pickett (PI) Tim Williams (PD)

Fuel Effects Chuck Mueller (PI) Glen Martin (PD) Krishna Lakshminarasimhan (PD)

HCCI Fundamentals John Dec (PI) Magnus Sjoberg (LTE) Wontae Hwang (PD)

HCCI, Light-Duty Richard Steeper (PI) Russ Fitzgerald (PD)

HECC, Heavy-Duty Diesel Mark Musculus (PI)

HECC, Light-Duty Diesel Paul Miles (PI) Will Colban (PD) Isaac Ekoto (PD)

HECC, Hydrogen Sebastian Kaiser (PI)

Sandia Fuels Project Vision

High-efficiency, clean combustion (HECC) using advanced and/or non-petroleum fuels:

- Robust operation
- Acceptable heat release
- High power density

HECC = High-Efficiency, Clean Combustion

- Efficiency similar to conventional diesel
- US 2010 heavy-duty regulations achieved with oxidation catalyst
- LTC = Low-Temperature Combustion
 - No constraints on efficiency
 - Peak T low enough to minimize NO_x

HCCI = Homogeneous Charge Compression Ignition

New Fuels Can Be Very Different from **Conventional Fuels, and Burn Differently**

from Farrell et al., SAE 2007-01-0201

Optical Engine Specifications and Schematic

		A MAN
Research engine	1-cyl. Cat 3176	
Cycle	4-stroke CIDI	
Valves per cylinder	4	
Bore	125 mm	
Stroke	140 mm	
Conn. rod length	225 mm	
Conn. rod offset	None	
Piston bowl diameter	90 mm	
Piston bowl depth	16.4 mm	
Squish height	1.5 mm	
Swirl ratio	0.59	
Displacement per cyl.	1.72 liters	
Compression ratio	11.3:1	
Simulated compr. ratio	16.0:1	

Quartz windows in piston and upper periphery of cylinder liner enable optical access

Dilute Clean Diesel Combustion (DCDC) Using Oxygenated and Emerging Fuels

DCDC Simultaneously Achieves Low Emissions and High Efficiency

Operating conditions

- ? Diethylene glycol diethyl ether (DGE) fuel
- ? 1200 rpm, 7-bar IMEP
- ? Steady-state operation
- ? -9 ° C, 1.4 bar intake
- ? EGR simulated by N₂ dilution

High-load operation also demonstrated in optical engine

- ? 18-bar IMEP (2/3 load)
- ? 0.09 g/ihp-hr NO_x
- ? 0.26 FSN smoke
- ? Load and efficiency limited by peak cylinder pressure capability of optical engine

Natural Luminosity Imaging of Undiluted and Highly Dilute Combustion (DGE Fuel)

More-Conventional Fuels and Operating Conditions

Fuels

- ? B100 = neat soy biodiesel (Peter Cremer Nexsol BD-0100)
- ? CN80 = 80-cetane PRF blend, 76.5 vol% *n*-hexadecane + balance heptamethylnonane
- ? D2 = Phillips #2 diesel reference fuel

Operating conditions

- ? 1200 rpm, steady-state
- ? 6.7 bar IMEP load
- ? Peak injection pressure = 1420 bar, 6 x 0.163 mm x 140 $^{\circ}$ nozzle
- ? Start of injection £ 4 ° BTDC
- $?\,$ Start of combustion between 0 $^{\circ}\,$ (TDC) and +0.5 $^{\circ}\,$ ATDC
- ? Simulated intake conditions: 53 ° C, 1.8 bar (abs.)
- ? 960 K, 31 kg/m³ @ TDC (motored)
- ? EGR simulated using nitrogen dilution

To What Extent Is DCDC Possible with Conventional and Emerging Fuels?^[1,2]

Answer: With near-term fuels, smoke emissions become ~50X too large at required EGR levels

- ? Efficiency drops before compliant smoke emissions obtained
- ? Highly oxygenated fuel can remove this barrier

Very high levels of cooled EGR required for NO_x compliance

? Is there a better way to introduce diluent?

Are Fuel-Water Mixtures a Viable Alternative to EGR for NO_x Control?^[3]

Answer: Yes, potentially

- ? Studied blends of tri-propylene glycol methyl ether with 25 to 50 vol% water
- ? Stable blends pass corrosivity tests for ferrous metals and copper
- ? Ignition delay » 40-50 cetane #2 diesel
- ? Can lower NO_x by ~10x without using EGR (relative to #2 diesel)
- ? HC and CO compliance 10¹⁰ possible with 10¹⁰ oxidation catalyst \$\vec{10}{2}\$ 10¹⁰
- ? Exceedingly low in-cyl. soot and engine-out smoke

Are There Limitations to the Benefits of Fuel-Water Mixtures?^[3]

Answer: Yes.

- ? Incomplete combustion when > 40 vol% water
- ? Even 10x lower NO_x isn't enough for 2010 compliance need EGR or NO_x aftertreatment
- ? NO_x doesn't decrease as rapidly as expected with simulated EGR

- ? Equilibrium calc's corroborate that NO_x doesn't decrease quickly with EGR @ high water content
- ? Even so, fuel-water mixtures could be part of a successful strategy

Biodiesel NO_x^[4]

NO_x emissions increase by ~1% for every 10 vol% biodiesel blended into diesel fuel. *Why?*

Possible Reasons for Biodiesel NO_x Increase

Increased residence time at higher in-cylinder temperatures higher NO_x

- 1. Higher bulk modulus earlier injection earlier combustion
- 2. Shorter ignition delay earlier combustion
- 3. Larger premixed-burn heat release
- 4. Higher adiabatic flame temperature
- 5. Less in-cylinder soot less radiative heat transfer higher actual flame temperatures
- 6. Mixture-stoichiometry effects (thermal, chemical-kinetic)
- 7. Others...?

Experiment Design

Assess mechanisms 1-4 by comparing biodiesel results to those using a hydrocarbon reference fuel with same:

- 1. Injection timing to remove bulk-modulus effect
- 2. Start of combustion to remove combustion-phasing effect
- 3. Ignition delay to remove premixed-burn magnitude effect
- 4. Adiabatic flame temperature

If above matching is accomplished

and differences in one (or more) of these is primary cause of biodiesel NO_x increase

then biodiesel NO_x increase should vanish.

Fuels and Operating Conditions

Fuels

- ? B100 = neat soy biodiesel (Peter Cremer Nexsol BD-0100)
- ? CN50 = 50-cetane blend of diesel primary reference fuels (PRFs),
 41.2 vol% *n*-hexadecane + balance 2,2,4,4,6,8,8-heptamethylnonane
- ? CN80 = 80-cetane PRF blend, 76.5 vol% *n*-hexadecane + balance heptamethylnonane
- ? CN100 = 100-cetane PRF (*i.e.*, neat *n*-hexadecane)

Operating conditions

- ? Selected to maximize NO_x differences between B100 and PRFs
- ? 800 rpm, steady-state, 0% EGR, conventional injection timing, start of combustion between 0 ° (TDC) and +0.5 ° ATDC
- ? Loads from 10 to 16 bar gross IMEP in 1-bar increments
- ? Peak injection pressure = 1420 bar, 6 x 0.163 mm x 140 ° nozzle
- ? Simulated intake conditions 69 ° C, 1.43 bar for 16:1 CR engine
- ? ³ 4 repeats at each operating condition

Similar AHRR Curves for B100 and CN80

Start of injection, start of combustion, and premixed-burn magnitude well matched across load range

Mixing-controlled heat release also well matched

? 15% lower LHV of B100 is mostly offset by 12% higher density injection duration approx. same as for CN80

Adiabatic Flame Temperature (T_{ad}) Effects

Methyl oleate (C18:1) used as surrogate for B100

EQUIL module of CHEMKIN software used to compute T_{ad}

? Initial conditions:
 950 K, 23 kg/m³

No differences in T_{ad} observed at $f_w = 1.0$

? B100 LHV is lower but (F/O)_{st} is larger effects exactly compensate for one another

T_{ad} differences do not appear to be cause of increased biodiesel NO_x

NO_x Is 10.5% Higher for B100 Than CN80

Factors other than ignition delay, start of combustion d premixed-burn magnitude contribute to increased biodiesel NO_x

Conclusions

Dramatic fuel changes can enable mixing-controlled HECC, avoiding common problems of more-premixed LTC strategies

? No problems with ignition-timing control, light-load misfire, or high-load knock and NO_x

Nevertheless, significant technical advancements are required to enable *practical* mixing-controlled HECC

- ? Mixture preparation and fuel must be optimized togethe to avoid:
 - + Excessive EGR requirements for NO_x control
 - + High smoke emissions with current and emerging fuels

Current hypotheses are inadequate to explain the NO_x increase when fueling with biodiesel (relative to a diesel PRF blend)

- ? Changes in start of injection, start of combustion, premixed-burn magnitude, and adiabatic flame temperature are not con rolling factors over a range of load conditions
- ? Differences in radiant heat transfer and/or mixture stoichiometry could play roles (investigation underway)

Acknowledgments

Dr. Glen C. Martin – post-doc Caterpillar Inc. – *hdwe. support, guidance* Dr. Ansis Upatnieks – *former post-doc* Prof. A.S. (Ed) Cheng – *collaborator* Dr. Randy L. Vander Wal – *collaborator* Advanced Engine Combustion, **Diesel Surrogates – working groups**

Questions

What Compounds Should Be Used to Create a Diesel Surrogate for Kinetics Studies?^[5]

Answer: Diesel Surrogates Working Group has selected...

- ? Compounds can be blended to match characteristics of r diesel: ignition delay, molecular structures, C/H ratio, volat ity, ...
- ? Compounds readily obtainable for experimental research forts
- ? Detailed kinetic mechanisms already exist or can be developed

How to Quantify Mixture Stoichiometry Once Reactions Have Begun?^[6]

Answer: The oxygen equivalence ratio, $f_{\rm W}$

 $f_{\Omega} \equiv \frac{2n_{c} + \frac{1}{2}n_{H}}{n_{o}}$, neglecting atoms bound in CO₂ and H₂O

Important for tracking reaction progress in (*f*,T) space

Important when oxygenated fuels are used (*e.g.*, biodiesel, ethanol, DME, ...)

Same as traditional *f* definition before reactions have begun

- ? As long as fuel not oxygenated
- ? General relationship between f and f_{w} provided

How to Quantify Degree of Achievement of Many Simultaneous Operational Targets?^[2]

Could Fuel Effects on Soot Nanostructure Affect Emissions?^[7]

Answer: Yes.

- ? Soot with less-ordered nanostructure oxidizes up to 5X faster
- ? Soot produced by different fuels has different nanostructure (similar operating conditions)
 - + Hydrocarbon ref. fuel highly ordered soot
 - + Neat biodiesel less order in nanostructure
 - + DGE greatest disorder in nanostructure
- ? DGE soot has shortest fringe lengths and largest tortuosity enhanced oxidation rate

References

- Upatnieks, A., Mueller, C.J., and Martin, G.C., "The Influence of Charge-Gas Dilution and Temperature on DI Diesel Combustion Processes Using a Short-Ignition-Delay, Oxygenated Fuel," SAE Technical Paper 2005-01-2088.
- 2. Cheng, A.S., Upatnieks, A., and Mueller, C.J., "Investigation of Fuel Effects on Dilute, Mixing-Controlled Combustion in an Optical Direct-Injection Diesel Engine," *Energy and Fuels*, in press 2007.
- 3. Mueller, C.J. and Upatnieks, A., "Operational Characteristics of Oxygenate-Water Fuel Blends Studied in an Optical DI Diesel Engine with Simulated Exhaust Gas Recirculation," SAE Technical Paper 2007-01-2017.
- Cheng, A.S., Upatnieks, A., and Mueller, C.J., "Investigation of the Impact of Biodiesel Fueling on NO_x Emissions Using an Optical Direct-Injection Diesel Engine," Int. J. Engine Res. 7:297:318, 2006.
- 5. Farrell, J.T., Cernansky, N.P., Dryer, F.L., Friend, D.G., Hergart, C.A., Law, C.K., McDavid, R.M., Mueller, C.J., Patel, A.K., and Pitsch, H., "Development of an Experimental Database and Kinetic Models for Surrogate Diesel Fuels," SAE Technical Paper 2007-01-0201.
- 6. Mueller, C.J., "The Quantification of Mixture Stoichiometry When Fuel Molecules Contain Oxidizer Elements or Oxidizer Molecules Contain Fuel Elements," SAE Technical Paper 2005-01-3705.
- Vander Wal, R.L. and Mueller, C.J., "Initial Investigation of Effects of Fuel Oxygenation on Nanostructure of Soot from a Direct-Injection Diesel Engine," *Energy and Fuels* 20:2364-2369, 2006.