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What is Sandia?

e A national laboratory funded by the US Dept. of Energy

?

e Technical programs include

?
?

? Materials and Process Science
? Pulsed Power Sciences
? Microelectronics and Photonics

e Sandia has ~ 7500
employees

?
?
?

?

Operated by Lockheed-Martin Corp.
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Sandia Has Facilities in Numerous Locations

Tonopah Test Range,

Nevada )
WIPP, New Mexico

Combustion
Research
Facility (CRF)

- =

Yucca Mountain,
Nevada

— Livermore,California
Kauai Test Facility, Hawaii



Engine-Related Research at the CRF

e Engine Combustion Department has 7 laboratories (one principal
Investigator in each lab, dept. manager is Dennis Siebers)
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Sandia Fuels Project Vision

High-efficiency, clean
combustion (HECC)
using advanced and/or
non-petroleum fuels:

— Robust operation
— Acceptable heat release
— High power density

HECC = High-Efficiency, Clean Combustion

* Efficiency similar to conventional
diesel

* US 2010 heavy-duty regulations
achieved with oxidation catalyst
LTC = Low-Temperature Combustion
* No constraints on efficiency
* Peak T low enough to minimize NO,
HCCI = Homogeneous Charge Compression Ignition




New Fuels Can Be Very Different from

Conventional Fuels,

and Burn Differently
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Optical Engine Specifications and Schematic

Research engine 1-cyl. Cat 3176 1 u:[,f\\ \"-I-""-‘_.' _ 2
Cycle 4-stroke CIDI NONWTT oS
Valves per cylinder 4
Bore 125 mm
Stroke 140 mm
Conn. rod length 225 mm
Conn. rod offset None
Piston bowl diameter 90 mm
Piston bowl depth 16.4 mm
Squish height 1.5 mm
Swirl ratio 0.59
Displacement per cyl. 1.72 liters
Compression ratio 11.3:1
Simulated compr. ratio 16.0:1

Quartz windows in piston and
upper periphery of cylinder liner
enable optical access




Dilute Clean Diesel Combustion
(DCDC) Using Oxygenated and
Emerging Fuels

from Akihama et. al, SAE 2001-01-0655
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DCDC Simultaneously Achieves Low
Emissions and High Efficiency

e Operating conditions 46|

? Diethylene glycol diethyl
ether (DGE) fuel

? 1200 rpm, 7-bar IMEP

5
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Natural Luminosity Imaging of Undiluted and
Highly Dilute Combustion (DGE Fuel)
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More-Conventional Fuels and Operating
Conditions

e Fuels
? B100 = neat soy biodiesel (Peter Cremer Nexsol BD-0100)

? CN8O0 = 80-cetane PRF blend, 76.5 vol% n-hexadecane + balance
heptamethylnonane

? D2 = Phillips #2 diesel reference fuel

e Operating conditions
? 1200 rpm, steady-state
? 6.7 bar IMEP load
? Peak injection pressure = 1420 bar, 6 x 0.163 mm x 140° nozzle
? Start of injection £ 4° BTDC
? Start of combustion between 0° (TDC) and +0.5° ATDC
? Simulated intake conditions: 53° C, 1.8 bar (abs.)
? 960 K, 31 kg/m3 @ TDC (motored)
? EGR simulated using nitrogen dilution



To What Extent Is DCDC Possible with
Conventional and Emerging Fuels? [1.2]

e Answer: With near-term fuels, 2
smoke emissions become ~50X §
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Are Fuel-Water Mixtures a Viable Alternative

to EGR for NO, Control? []

e Answer: Yes, potentially

? Studied blends of tri-propylene glycol
methyl ether with 25 to 50 vol% water

? Stable blends pass corrosivity tests
for ferrous metals and copper

? Ignition delay » 40-50 cetane #2 diesel

? Can lower NO, by ~10x without using
EGR (relative to #2 diesel)

? HC and CO
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Are There Limitations to the Benefits of
Fuel-Water Mixtures? 3]

e Answer: Yes.

? Incomplete combustion when

?

> 40 vol% water

Even 10x lower NO, isn’t enough
for 2010 compliance - need EGR

or NO, aftertreatment

NO, doesn’t decrease as rapidly
as expected with simulated EGR

INTAKE-O, MOLE FRACTION [%]

0 20 40 60
WATER CONTENT [vol%]

0.2}

ISNO, [g/(hp-hr)]

0.1
0.05}

0.02}

8 10 12 14 16 18 20
INTAKE-O, MOLE FRACTION [%]

? Equilibrium calc’s corroborate that
NO, doesn’t decrease quickly with
EGR @ high water content

? Even so, fuel-water mixtures could
be part of a successful strategy



Biodiesel NO, ]

NO, emissions increase by ~1% for every
10 vol% biodiesel blended into diesel fuel.

Why?



Possible Reasons for Biodiesel NO, Increase

e Increased residence time at higher in-cylinder temperatures -
higher NO,,

1. Higher bulk modulus - earlier injection - earlier combustion
Shorter ignition delay - earlier combustion

Larger premixed-burn heat release

Higher adiabatic flame temperature

Less in-cylinder soot - less radiative heat transfer — higher actual
flame temperatures

Mixture-stoichiometry effects (thermal, chemical-kinetic)
7. Others...?

A

o



Experiment Design

e Assess mechanisms 1-4 by comparing biodiesel results to
those using a hydrocarbon reference fuel with same:

1. Injection timing to remove bulk-modulus effect
2. Start of combustion to remove combustion-phasing effect
3. Ignition delay to remove premixed-burn magnitude effect

4. Adiabatic flame temperature

|f above matching is accomplished

and differences in one (or more) of these Is
primary cause of biodiesel NO, increase

then biodiesel NO, increase should vanish.



Fuels and Operating Conditions

e Fuels
? B100 = neat soy biodiesel (Peter Cremer Nexsol BD-0100)

? CN50 =50-cetane blend of diesel primary reference fuels (PRFs),
41.2 vol% n-hexadecane + balance 2,2,4,4,6,8,8-heptamethylnonane

? CN8O0 = 80-cetane PRF blend, 76.5 vol% n-hexadecane + balance
heptamethylnonane

? CN100 = 100-cetane PRF (i.e., neat n-hexadecane)

e Operating conditions
? Selected to maximize NO, differences between B100 and PRFs

? 800 rpm, steady-state, 0% EGR, conventional injection timing, start
of combustion between 0° (TDC) and +0.5° ATDC

? Loads from 10 to 16 bar gross IMEP in 1-bar increments

? Peak injection pressure = 1420 bar, 6 x 0.163 mm x 140° nozzle
? Simulated intake conditions 69° C, 1.43 bar for 16:1 CR engine
? 3 4 repeats at each operating condition



Similar AHRR Curves for B100 and CN8O
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e Start of injection, start of combustion, and premixed-burn
magnitude well matched across load range

e Mixing-controlled heat release also well matched

? 15% lower LHV of B100 is mostly offset by 12% higher density -
injection duration approx. same as for CN80



Adiabatic Flame Temperature (T,4) Effects

e Methyl oleate (C18:1) used as surrogate for B100
e EQUIL module of CHEMKIN software used to compute T,

? Initial conditions: 2750

950 K, 23 kg/m3

. . 2500
e No differences in T,

observed atf,,= 1.0 2250}

? B100 LHV is lower but
(F/O)4 Is larger — effects
exactly compensate for
one another
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NO, Is 10.5% Higher for B100 Than CN80
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Factors other than ignition delay, start of combustion d
premixed-burn magnitude contribute to increased biodiesel NO,,



Conclusions

e Dramatic fuel changes can enable mixing-controlled HECC,
avoiding common problems of more-premixed LTC strategies

? No problems with ignition-timing control, light-load misfire, or
high-load knock and NO,,

e Nevertheless, significant technical advancements are required to
enable practical mixing-controlled HECC

? Mixture preparation and fuel must be optimized togethe to avoid:
U Excessive EGR requirements for NO, control
U High smoke emissions with current and emerging fuels

e Current hypotheses are inadequate to explain the NO, increase
when fueling with biodiesel (relative to a diesel PRF blend)

? Changes in start of injection, start of combustion, premixed-burn
magnitude, and adiabatic flame temperature are not con rolling
factors over a range of load conditions

? Differences in radiant heat transfer and/or mixture stoichiometry
could play roles (investigation underway)
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Questions




What Compounds Should Be Used to Create
a Diesel Surrogate for Kinetics Studies? 2]

e Answer: Diesel Surrogates Working Group has selected...

Near-Term Longer-Term
n-decane n-hexadecane
NN NN NN
(C1oH22) (C46H34)
iso-octane heptamethylnonane W\X
(CgH1s) (C4eH34)
‘ rr'nethyl Q n-decylbenzene
cyclonexane (C46H26)
(C7H14)
toluene 1-methylnaphthalene ©©
(C7Hs) (C11H40)

? Compounds can be blended to match characteristics of r  diesel:
ignition delay, molecular structures, C/H ratio, volat ity, ...

? Compounds readily obtainable for experimental research forts
? Detailed kinetic mechanisms already exist or can be developed



How to Quantify Mixture Stoichiometry Once
Reactions Have Begun? [°]

e Answer: The oxygen equivalence ratio, f,

1
2n. +—n,
fi° 2 , heglecting atoms bound in CO, and H,O
no 6 Akihama et. al, SAE 2001-01-0655
e |Important for tracking reaction |
progress in (f, T) space o5
e Important when oxygenated IS 4
fuels are used (e.qg., biodiesel, 5
ethanol, DME, ...) 33
©
e Same as traditional f definition 32
before reactions have begun 0
? As long as fuel not oxygenated 1
? General relationship between

0 S [ ¥
f and f,, provided 1000 1400 1800 220
" Temperature [K]



How to Quantify Degree of Achievement of
Many Simultaneous Operational Targets? [“]

e Answer: Overlimit function - succinct 50
evaluation of constrained systems

d . C

FO é_ maxgo, X,[ - 15 where
. X. .
17

=
(=)

30
I

20

X, © ith constrained output parameter
X, © constraint on it parameter
| © index over constrained parameters

50 . ‘

OVERLIMIT FUNCTION [-]

B
o

| | DGE

L]
(=]

N
(=

Note: HC and CO
emissions data
not available

OVERLIMIT FUNCTION [-]

=%
o

8 10 12 14 18 18 20 8 10 12 14 16 18 20 8 10 12 14 16 18 20
INTAKE OXYGEN MOLE FRACTION [%] INTAKE OXYGEN MOLE FRACTION [%] INTAKE OXYGEN MOLE FRACTION [%]

0



Could Fuel Effects on Soot Nanostructure

Affect Emissions? 7]

e Answer: Yes.

? Soot with less-ordered nanostructure oxidizes
up to 5X faster

? Soot produced by different fuels has different
nanostructure (similar operating conditions)

U Hydrocarbon ref. fuel - highly ordered soot
U Neat biodiesel - less order in nanostructure

U DGE - greatest disorder in nanostructure

? DGE soot has shortest fringe lengths and
largest tortuosity — enhanced oxidation rate
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