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The Japanese Stock Rate of Return
and Volatility :

A Comparison of Methods to Estimate Volatilities*®

Mikiyo Kii Niizeki’

abstract

This paper investigates the correlation between the volatility and the
stock returns using daily data for Japan. In order to investigate this
relationship, a nonparametric method is used to estimate the conditional
variance (or volatility) of the stock returns and its partial derivatives with
respect to the level of the stock returns.

Two important features are found. First, the conditional variance of the
Japanese stock returns is found to depend negatively on the past level of the
stock returns. Second, there may be a positive relationship between the
expected stock returns and the volatility. Third, the volatility funcrion is
found to be a nonlinear function of the stock returns.
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1 INTRODUCTION

Explaining the movement of an asset’s volatility, which induces a changing
risk premium of the asset, is one of the most important problems of modern
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financial theories. A natural hypothesis in an efficient market is that markets
movements reflect in risk premium changes induced by their movements in their
volatilities (see Pindyck [1984]). On the U.S. stock market crash of October
1987, the standard deviation of the daily returns increased from about 1% to
almost 7%. As well as the U.S. market, the standard deviation of the Nikke:
225 daily returns increased from about 1% to almost 5% in the few days around
the large drop of February 1990 in the Japanese stock market. Changes in risk
premia of this magnitude may have important effects on stock returns and thus
the levels of stock prices.

One striking characteristic of the stock markets is the correlation of volatility
with the level of stock returns. Volatility is typically higher after the stock
market falls than after it rises, so stock returns are negatively correlated with
future volatility (see Black [1976]). There are two popular explanations for this
relationship between stock return volatility and stock returns. First, the
‘leverage effect’ posits that an increase in leverage caused by a decline of the
firm’s market value induces an increase in the stock return volatility (see Black
[1976] and Christie [1982]). Second, the ‘volatility feedback effect’ argued by
Pindyck [1984] and French, Schwert and Stambaugh [1987] suggests that a
forecasted upward changes in stock return volatilities raise expected future
stock returns and cause a decline of contemporaneous stock returns. The
positive contemporaneous correlation between stock returns and stock return
volatility at the firm level stands in contrast to the negative correlation between
aggregate stock returns and aggregate stock return volatility (see Duffee [1995]).

In the U.S. stock market, a number of authors have examined the correlation
of volatility with the level of stock returns. Christie [1982] found a negative
relation between contemporaneous stock returns and changes in volatility,

whose magnitude was too large to be attributed solely to the leverage effect.
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Poterba and Summers [1986] argued that the volatility feedback could not be
important because shocks to stock market volatility do not persist for long
periods. However, French, Schwert and Stambaugh [1987] also found a
significant positive relation between the expected risk premia and volatility,
which they attribute to the volatility feedback. Campbell and Hentschel {1992]
built a direct model of the volatility feedback and concluded that it could be
important during periods of high volatility.

This paper examines the correlation of volatility with the level of the stock
returns in the Japanese stock market, using three statistical approaches
including a new method not used in the earlier works. In the first, an implied
volatility regression (IVR) model is used to investigate this relationship (see
Poterba and Summers [1986]). In this model, the implied volatility (IV) is
obtained by equating the observed option prices to their theoretical values, given
the observed option prices and values for several parameters in the option
pricing model (see Latane and Rendleman [1976]). This approach is not a
time-series one and depends on the particular functional form of the specific
pricing system adopted, for example, the Black-Scholes model. Second, a
time-series model such as a model from the autoregressive conditional
heteroskedasticity (ARCH) class is used to estimate the volatility and to
investigate the predicted relationship (see French, Schwert and Stambaugh
[1987] and Campbell and Hentschel [1992]). The ARCH class of models is now
used widely as models of conditional heteroskedasticity in explaining the time
series behavior of finance data (see Engle [1982] and Bollerslev [1986]).
However, this approach assumes a particular parametric function, which is
really just an approximation of the true model and, in addition, assumes a linear
symmetric form for the relationship between volatility and the conditioning

variables. In this paper, in addition to these two procedures, a nonparametric
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regression model (a normal kernel regression (KERNEL) model) is employed to
estimate the volatility. A nonparametric method has been developed recently
to estimate a regression curve without making strong assumptions about the
shape of the true regression function (see Silverman [1986]). Moreover, a
nonparametric derivative method is used to examine the relationship between
the volatility and the level of the stock return.

The analysis in this paper uses daily data on the Japanese Nikkei 225 from
November 1989 to November 1992 which includes a period when the stock
market is in a slump. During the whole sample period, there appears to be
negative relationships both between the volatility and the past stock return and
between the expected stock return and the past stock return, which are
interpreted as indirect evidence of a positive relationship between the expected
stock return and the volatility. It is also found that the conditional variance
exhibits heteroskedasticity, depending on the level of the stock return
nonlinearly.

The paper is organized as follows. Section 2 provides details of the three
approaches which are used to estimate the volatility of the stock return, and
which are extended to examine the relationship between the conditional
variance and the level of the stock return. A description of the data and details
of the empirical results are presented in section 3. Finally, section 4 contains a

brief conclusion.
2 ESTIMATION METHODS

In this section, three econometric methods, an implied volatility regression
(IVR) method using the Black Scholes (B-S) model, a parametric estimation
method using a GARCH-M model, and a nonparametric estimation method with

a KERNEL model, are used to estimate the volatility of stock returns. In
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addition, the nonparametric methods, which are also used to estimate the partial

derivatives, are detailed.

2.1 The IVR Model

The volatility of the stock return can be implied from a particular financial
pricing model such as the B-S model. Black and Scholes [1973] derived an
option pricing model (the B-S model) which was extremely useful in catalyzing

a lot of research on option-like financial instruments. The pricing formulas for
the B-S model are

c=SN (d,)—Ke "N (d2), (1)

p=Ke ""N(—dz)— SN (—dy) (2)
where ¢ is the current call option price, p is the current put option price, S is the
current price of the underlying stock, # is the risk-free interest rate, K is the
exercise price, 7 is the time to maturity of the option, and N () is the standard
normal cumulative density function. The variables d; and d» are defined as

_ In(S/K) +re " v/t
- Ve /T 2

dz=d1—‘ Vl/zﬁ

d

where V12 is the standard deviation of the stock’s rate of return (volatility). In
this model, the volatility is the only unknown parameter. The implied volatility
(IV) is estimated using data from several options on the same stock.

In this study, the estimates of IV are computed by applying implied volatility
regression. This is a nonlinear least square procedure applied to option prices

in the following model (see Latane and Rendleman [1976]),
cu=Torr (V% S, K, 7, ©) +en, (3)
ptk:wptk(V}vﬁ;S;Kyry T) =+ Nk (4)
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where @ () (or ¥pn (+)) is the price given in the right handside of (1) (or
(2)), N (or Npu) is a random disturbance, and VY7 (or V4/2) represents the IV
for call (¢) (or put (p)) options of the kth monthly maturity at time £ respectively.
Estimates of Vi and Vji# are obtained by solving the following minimization

problem (see Whaley [1981]):

Nt .
n%i/?G”k: § (Cite— Wi (+))?, ( 5 )
A Noek
minGyu= % Gite— Cipn(+))? (6)
Vitk i=1

where Newx (or Nyu) represents the number of call (or put) options, ¢ (or i)
shows call (or put) options of k£ months maturity and ith (or jth) exercise price at
time f, respectively. The solution to (5) or (6) minimizes the sum of the
squared deviations between the observed and calculated option prices.

A cross-sectional estimate of IV is obtained for each option maturity using
two methods.  First, the initial value of Vi (V44?) can be estimated using the
golden section method (GSS) (see Iwata [1989]), then IV is calculated at the
same time using a Gauss search method”. Both methods are employed to solve
(5) (or (6)), in which the partial derivative of G (or Gyy) with respect to
VIE (or V&2 is set close to zero.

In recent option studies, the IVR model has been the most popular in order to
investigate not only the implied volatility of stock returns but also implied stock
prices (see Manaster and Rendleman [1982] and Kii [1994]). However, this
approach depends on the particular functional form of the specific pricing system
adopted, that is, the B-S model.  If the B-S model is mis-specified, the volatility
estimates may be biased. Indeed, the B-S model makes the strong and quite

unrealistic assumptions that the volatilities are nonstochastic and constant

1) The tolerance criterion of the method is 1.0X 107 and 1.0X 107, respectively.
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among each option, each position of option premia, and each maturity.

2.2 The GARCH-M Model

In examining many financial questions, models in the ARCH or GARCH
classes have been used successfully to explain the time series properties of some
economic variables and are used widely to estimate the parameters of
discrete-time models (for example, Nelson [1991] and Chan et a/. [1992]). These
models permit a time varying conditional variance even though the uncondition-
al variance is time invariant, and are used to estimate the volatility
parametrically. In this paper, the well known GARCH-M model which is a
development of Engle, Lilien and Robins’ [1987] ARCH-in-Mean, or ARCH-M
model, in which the conditional mean is an explicit function of the conditional
variance is used to estimate the stock return volatility.

The discrete-time specification used to estimate the volatility (V**) of the

stock return is the following GARCH-M (1,1) process :

5
Ri=3duri+a Vi 4-¢, (7)
i=1
&/P:~N (0,V)),
Vi=Bo+Bigi-1+Be Vi (8)

where R, is the stock return, d;; denotes a day of the week dummy variable
taking value 1 when £is the ith day of the week and 0 otherwise, and @; denotes
the conditioning variable. In this investigation, &-; is chosen as the
conditioning variable. In this model, R, is adjusted to be free from possible day
of the week effects and, therefore, the influence of the number of days that have
elapsed since the last trading date on changes in the stock prices.

This specification allows the conditional mean to depend on volatility, V;*’%,

and if @;=0, this model reduces to the basic ARCH or GARCH model. The
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/2 explains the asymmetric

dependence of the conditional mean function on V;
effects of shocks to R; and captures the volatility feedback effect (see French,
Schwert and Stambaugh [1987]), which the ARCH or GARCH model cannot
capture because of their constant conditional mean.

In the GARCH-M framework, however, the conditional variance function
exhibits a symmetric property with respect to the conditioning variable, &_,,
whereas the true data generating process may not exhibit this property (see
Kogure and Takeuchi[1993]). As well as the ARCH and GARCH models, the
GARCH-M model has a restriction that there is a quadratic mapping between V;
and &,-1, and the predictive feature of V;induced by the leverage effect cannot be
captured using the GARCH-M model.

Although the exponential GARCH (EGARCH) and the quadratic GARCH
(QGARCH) model of Engle [1990] and Sentana [1995], respectively take account
of this problem and allow V; to be an asymmetric function of the past data, the
linear relationship between the volatility and the stock return is still assumed
(see Campbell and Hentschel {1992]). Each of these parametric models is only
an approximation of the true model and is known not to capture a complex
nonlinearity?. If the GARCH-M model is mis-specified so that the true data
generating process is too nonlinear to be captured by a parametric model such as
a QGARCH model, the estimates of volatility may be biased and the results of a
parameter significance test used to examine the correlation of the volatility with

the stock return may not be appropriate.

2) The ARCH class of model may neglect nonlinearities in the conditional mean (see Diebold and
Nason [1990]). Pagan and Schwert [1990] compare several statistical models, including the ARCH
class of models, for the volatility of stock returns and discover an important nonlinearity in the
stock returns which cannot be captured by an ARCH type model.
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2.3 The KERNEL Method

In estimating the volatility of stock returns, a nonparametric method, which
does not need to specify the model parametrically, is also used. This approach
will be useful, especially for estimating volatility if the parametric model such as
a GARCH-M model is mis-specified and does not adequately explain either an
asymmetric feature or a complex nonlinearity in conditional variance. In this
investigation, to avoid making strong assumptions about the shape of the true
regression function, the normal kernel (KERNEL) model developed by
Rosenblatt [1956] is the nonparametric regression model used to estimate the
conditional mean, the conditional variance of the stock returns, and their
derivatives with respect to the conditioning variables.

Now, in order to avoid a day of the week effect, the stock returns (X)) is

defined as
5
R,= aditTi‘l'Xt ( 9 )

where R;and dy; are givenby (7). Then, the conditional mean and variance of
the stock returns (X;) given a point (z) can be defined as
Mt($)=E[Y1t|Xt—1=l'], (10)
Vi(@) =E[Ya| Xi-1=1] — M, (x)* 11)
where Y1,=X;, Yo=X?, and M;(x) and V,(x) denote the conditional mean
function of z and the conditional variance function of =z, respectively.
Comparing the GARCH-M framework, this formula permits the conditional
mean not to depend on the volatility because the past stock return is assumed to
be the only conditioning variable in this framework.
Given X; is assumed to be strictly stationary and strong mixing to obtain the

appropriate asymptotic properties, (10) and (11) can be estimated using
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07 S YK (wy)
M(x)==""—"—"""" (12)
‘ SEK (wy) >
iV YK (wy) S YK (wh) \?
Vi(x)= - (13)
‘ SEK (w) < LK (w) )
K (-) represents the normal kernel function given as
2

K(wt):T;_;eXpP%), (14)
we=(X,—x)/h (15)

where % denotes the band-width. The band-width is chosen to be proportional
to N~##5 where N denotes the sample size and p is the number of the regressors,
so that the mean squared error is minimized (see Silverman [1986]). It is
important to note that these kernel estimators will be consistent and
asymptotically normal. Hence, an advantage of the nonparametric regression is
that the statistical properties of the estimator can be derived with standard
techniques.

As the regression function at each x is easily defined as an expectation and
density function involving weighted sums in the KERNEL method, the
nonparametric regression formula is available for estimating not only the
conditional variance but also the partial derivatives of the regression function
with respect to the regressors. In particular, the first order derivative is just
similar to estimating the regression coefficient and the second order derivative
specifies the nonlinear form.

In this paper, a nonparametric derivative procedure with the KERNEL model
is applied to estimate the first order derivative of M;(x) with respect to X;-; and
oVi(z)/0X,-1, in order to investigate two correlations: the negative one,
indicating that the conditional variance negatively depends on the past stock

returns and the positive one, indicating the conditional mean positively depends
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on the conditional variance. The first correlation can be directly investigated to
estimate 0V,(x)/0X;—;, on the other hand, the second correlation can be
indirectly investigated with 0M,(x)/0V; (), using estimates of both
OM;(x)/0X,-; and 0V.(x)/0X,... Moreover, two estimates of the second order
derivative of M;(x) with respect to X,_; and 8*V,(x)/8X%; are used to test for a
nonlinearity in the conditional mean and variance of the stock returns.
Using the KERNEL model, the first order derivative of M;(x) with respect to
X;_1 and the first order derivative of V;(x) with respect to X;-; can be estimated,

respectively. For 0M,(x)/0X;-;, the estimator @) can be obtained by

~ T
Bt (x) = ZIA Y,
t=

(tht K (we) — 3w K () \K(M) (16)

h(ZELK (w))?
where w; is again given by (15). For oV,(x)/0X,_,, the estimator (,[/3;) is
P T
Bi(x)=>(1—2C)AYy,
=1

_ K@)
S K (wy)

where A is given by (16).

(17)

The second order derivatives of M,(x) and V:(x) can also be obtained using
the KERNEL model (see McMillan, Ullah and Vinod [1989]). That is, for
0:M,(x)/0X% ., the estimator (E,Zn\t) can be obtained by

o~ T
Bi(x) = ZiBYu, (18)
t=
and for 02V:(z)/0X%., the estimator (,é,,?,) is

Bi(z) =3 (B—2C—24% Yy,
=1
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B= ( wiS K (w) — 2w, 2w K (wy) — 2 wiK (wy)
W (ZEK (w)?

2R 1w K (w))*
Saat= e VEEL VK (w 19
P (STaK 0))? )@ 19
where A is again given by (16) and C is given by (17).
In addition, the average derivatives can be calculated as
~ T/\
Bi= L 3P, (20)
=1
i1 &a
0= 2Bi@), 21
P 1 T~
>_ L e
m— Ttéjl mt(x)y (22)
~ T
Bi= 3 2B, (23)

which are consistent and asymptotically normal, which means that these values
can be used in the same way as the estimated coefficients of the parametric

regression model (see Rilstone [1991]).
3 EMPIRICAL TESTS

In this section, some empirical results are presented. First, the volatilities of
stock returns are estimated using the three methods in the section 2 and are
compared with each other. Next, the relationship between the estimated
volatility and the level of stock returns is examined by the three econometric
tests, corresponding to the three estimation methods, respectively. Third, the
possibility that the true conditional mean or variance function of the stock return

is nonlinear is investigated.
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3.1 Data

The Japanese Nikke: 225 index is used to define the one-period natural log
return on a stock as R,=InS; —InS;_;, where S; is the daily stock price measured
at the end of period, . In estimating the IV, measures of the kth monthly
maturity and ith exercise price of Nikke: 225 index options (cix, Pin), and the
yield of CD gensaki (r;) are used. All of the data are daily closing values and
are taken from the Nihon Keizai Shinbun. The data run from 21 November
1989 to 30 November 1992.

The period being investigated includes a dramatic decline of the Nikkei 225
stock index when the stock prices have been skewed negatively and the daily
standard deviations have changed very rapidly. Table 1 presents some
summary statistics for both the stock price and the stock return in this sample

period.

3.2 Comparisons of the Volatilities Estimates

Table 2 contains the summary statistics for the estimated volatilities of daily
stock returns obtained by the three different models : the IVR model for both
call and put options in (3) and (4), the GARCH-M model having the
parametric form such as (7) and (8), and the KERNEL model which is a
standard nonparametric estimation method applied to (12) and (13). This
table also includes two graphs plotting the estimates of volatility obtained from
both in the GARCH-M and the KERNEL models against the conditioning
variable, the past stock return, observed at each point.

Mainly, three results are found in these estimates. First, some interesting
features are found in the daily predictions of the volatilities. The standard
deviation of the daily volatility estimated by the KERNEL method is the

smallest among all the volatility estimates over the whole sample period. In
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contrast, the mean value for the KERNEL method is greater than that of the
GARCH-M estimate and lies between the put IV estimate and the call IV
estimate, which is inconsistent with the results in Engle, Kane and Noh [1993].
Moreover, the KERNEL prediction of the daily volatility is more highly
correlated with the GARCH-M prediction than the prediction of the IV for call
or put options. The movement of the call IV is not similar to the other volatility
movements because only the call IV has a negative correlation with the other
predictions.

Second, the IVR method provides quite different volatility estimates for call
and put options prices, which violates the assumption of the B-S model used in
the method. This suggests the possibility of biased estimates.

Third, the figures show that the estimated volatility using the GARCH-M
model is symmetric in the stock’s rate of return whereas the volatility estimated
by the KERNEL method decreases as the past stock return increases. This
result is most important and interesting. It suggests that the GARCH-M model
may be mis-specified and cannot capture the asymmetric properties of the stock
return volatility discussed in the previous sections and that the daily volatility

may be negatively correlated with the daily stock return.

3.3 Tests of the Relationship between Returns and Volatilities
Two main approaches, one is the parametric method that is applied to the
regressions of the IV or to the GARCH-M model and the other is the
nonparametric procedure to estimate and test the nonparametric derivatives
with the KERNEL model, are used in the empirical tests that follow.
3.3.1 Regressions with the IV
The volatility feedback effect suggests the higher stock returns volatilities are,

the higher expected equilibrium returns are, which shows a positive relationship.
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In addition, considering the leverage effect in a Modigliani and Miller (MM)
world, conditional variances or volatilities functions may negatively depend on
observed past stock returns. In order to investigate these relations between the
volatility and the level of stock returns, some simple empirical tests are helpful
for the estimated volatilities (the call IV and the put IV) in the IVR medel.

In this study, the following simple regression models which are all linear
parametric models and are developed to take account of the day of the week are

estimated (see Christie [1982] and French, Schwert and Stambaugh [1987)).

5 .
Ri=2duan+ b0V + ¢y, (24)
i1
V:=dz+b2Xt—1+fzn (25)
InV,=as+bs InSi—1+€x (26)

where S; represents the stock prices, 7% denotes the call IV (or the put IV), X is
defined as in (9), both R; and d;; are given by (7), and €, (k=1,2,3) is a
disturbance. In each equation, if by is zero for each k(k=1, 2, 3), then there is
no relationship between the volatilities and the stock returns.  If b, in (24) hasa
positive value, the expected return is proportional to the volatility, implied by the
volatility feedback effect, for example. If b, (or b3) in (25) (or (26)) is negative,
the volatility is correlated with the past stock returns (or prices), negatively,
which is explained by an effect such as the leverage effect.

Ordinary least squares (OLS) estimates of by and the absolute values of the
appropriate f statistics for all equations (k=1, 2, 3) are presented in Table 3.
The null hypothesis that ;=0 cannot be rejected at the 10 percent level in both
(24) and (25) for both the call and put IV, which means that there is not a
specific relation between the IV for both call and put options and the stock
returns in the sample period. Although the f statistics for by (k=1, 2) do not

reject the null hypothesis of by, the values of b; in (24) are positive, whereas all
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values of b, in (25) are negative for both call and put IV, which is consistent
with the results predicted by the volatility feedback effect and the leverage
effect (see Christie [1982], French, Schwert and Stambaugh [1987], and Duffee
[1995]). In (26) the estimates of b; are negative and their ¢ statistics suggest
that the null hypothesis of b3=0 can be rejected at the 10% level for both call IV
and put IV. However, these results are inconsistent with the B-S model
because the B-S model assumes that ‘6’ for call (=0¢/0VY?) or for put (=
dp/3V /%) is positive and ‘@’ for call (=0¢/8S) is positive whereas ‘0’ for put (=
dp/8S) is negative, where V2, S, ¢ and p represent volatilities, stock prices, and
call and put prices, respectively. Given a constant call or put premium, when
the data is adequately captured by the B-S model, a negative correlation
between the call IV and the stock prices and a positive correlation between the
put IV and the stock prices should be obtained.

The results in this investigation are ambiguous and this may be caused by
biased estimates. In this examination, there are two problems that should not
to be ignored : the ‘generated regressor’ problem of Pagan [1986] and the model
mis-specification problem. When estimates of the volatility obtained from the
IVR method assuming that the true data follows the B-S model are used, the
estimation procedure suffers from a ‘generated regressor problem. If the
pricing model, the B-S model, is not true, estimates obtained by the procedure
are affected by mis-specification errors, as suggested above. To examine more
explicitly the relationship between the volatility and the stock return, two main
approaches with time-series models, the parametric method and the nonpar-
ametric procedure, are used in the empirical tests that follows.

3.3.2 GARCH-M Frameworks
As in previous studies, for example, French, Schwert and Stambaugh [1987]

and Campbell and Hentschel [1992], in order to examine the relationship
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between the volatility and the level of the stock returns, a maximum likelihood
(ML) estimation procedure is used to estimate the parametric models: (7 ) and
(8) in the GARCH-M framework, which are simultaneously used to estimate
the conditional variance, V,. In particular, the GARCH-M framework which
permits the conditional mean to depend on the volatility, Vi3, is useful to
investigate the volatility feedback effect.

Table 4 presents the parameter estimates of (7 ) and (8 ), their ¢ statistics,
and the maximized value of the log likelihood. In (7), the hypothesis that a;
is zero cannot be rejected at the 5 percent significance level, which means that
the conditional mean does not depend on the volatility and that a clear effect of
the volatility feedback to the stock return is not found.

Turning to the conditional variance in (8 ), the hypothesis that £ is zero can
be rejected at the 5 percent significance level. This rejects the hypothesis of no
correlation between the conditional variance and the past stock returns, even
though the earlier evidence suggested the negative relation between the
volatility and the realized stock return is weak and uncertain. In addition, the
parameter 3; is not found to be zero at the 5 percent significance level suggesting
that the conditional variances are heteroskedastic and are likely to have
nonlinear functions.

Both the econometric procedure with the TVR model and the parametric
approach using the GARCH-M framework may suffer from a model
mis-specification. Suppose the movement of the volatility is inversely
proportional to that of the stock return. This is an asymmetric property not
captured by the GARCH-M model, so the estimates are biased because of the
approximation error. Moreover, when the conditional variance function
exhibits a complex nonlinearity, which is not explained by the GARCH-M

model, the estimates are also biased. A nonparametric approach that does not
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need to specify the estimation model parametrically may be useful if the
parametric model is mis-specified.
3.3.3 Nonparametric Derivative Procedures

The nonparametric procedure that does not assume a particular financial
model nor estimation model is useful not only to estimate the volatility but also
to test the relationship between the conditional variance and the level of the
stock returns.

At first, in order to investigate the predicted negative correlation, the first
order derivative of the conditional variance (V;(z) in (11)) with respect to the
past stock return (X,—; in (9)) can be estimated using (21) for the sample
period. The negative relation with the volatility and the level of stock returns
cannot be checked obviously in the other two econometric approaches: the
regression method with the IV and the GARCH-M method, while the
nonparametric procedure which can estimate the relationship directly, using
only the data and avoiding model mis-specification errors. A estimate of the
partial derivative, 8V;(x)/0X,—;, may provide information about both the
dependence of the conditional variance on the level of the stock return and the
nature of the heteroskedasticity present. A estimate of the partial derivative,
OM,(x)/0X;-1, may provide information about the dependence of the conditional
mean on the level of the stock return. Both estimates of 8V;(x)/0X;-, and

OM,(x)/0X;_; may indicate the correlation between M,(x) and V,(x) because
aM,(x)/aXt_l
Vi (x)/0X;—

positive correlation of the volatility with the expected stock return.

=0M,(x)/0V:(x), which may be used in order to investigate the

Table 5 includes estimates of the average first order derivatives using the
KERNEL model. The value of 8V (X,)/0X;-1 is negative and the hypothesis
that 0V (X,)/0X,—1=0 can be rejected at the 5% level. This result means that

the volatility is heteroskedastic and depends negatively on the past return in the
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Japanese stock market. The value of 6M (X,)/8X,_; is also negative and the
hypothesis that M (X;)/8X,—;=0 can be rejected at the 5% level. The two
results indirectly show the positive correlation between the expected return and
the volatility, which induces the effect of the volatility feedback in the Japanese
stock market.

In addition, to examine how the stock return is correlated with the volatility
and the nature of the nonlinearity in the conditional variance, the average second
order derivatives of the nonparametric regression are estimated. The second
order derivative of Vi(x) with respect to X;_; can be estimated using (23).
Estimates of the average second order derivatives in (23) using the KERNEL
function are also presented in Table 5 for the sample period. The null
hypothesis that 82V (X,)/0X2%,=0 can be rejected at the 5% level. This result
suggests that a complex nonlinearity may exist in the conditional variance of the
Japanese stock return which is evidence of the mis-specification in the simple
regression and GARCH-M models, and that the two other parametric
approaches may be inadequate to estimate the volatility and to test the

correlation with the stock return.
4 CONCLUSION

In this paper, the relationships between the stock returns and their volatilities
estimated by the several methods are investigated using data for Japan.

This paper has two essential contributions. In the first, three different type
approaches: the IVR method assuming a particular pricing model, the
GARCH-M method which specifies a parametric model as an approximation,
and the nonparametric method which does not make strong assumptions about
the shape of the true regression function, are used to estimate the conditional

variance and then the volatility of the stock returns. Secondly, the nonparamet-



86 (572) HA9% Ea4F

ric method is used to directly test the relationship between the estimated
volatility and the stock returns. None of the earlier studies on the subject have
used a nonparametric procedure to not only estimate the volatility but also to test
this relationship.

There are two important conclusions. First, both a negative correlation
between the volatility and the level of the realized excess holding return and a
positive correlation of the volatility with the expected stock return can be found
in the Japanese stock market. This finding can give an evidence to the previous
studies suggesting the relationships between the volatilities and the stock
returns in the U.S. market, which is usually explained by the leverage effect and
the volatility feedback effect (for example, Christie [1982] and French, Schwert
and Stambaugh [1987)).

Second, some time-series parametric models such as a GARCH-M model that
are offen used in this type of investigation are found to be inadequate. In
contrast to the nonparametric model, the parametric models cannot explain an
asymmetric property such as the negative correlation of the volatility
conditioned on the realized stock returns. Moreover, a nonlinearity can be
found in the conditional variance of the Japanese stock returns. The
nonlinearity cannot be clearly captured by the usual parametric models, which
indicates that the parametric models may not explain the actual market
behaviour and should not be used to test in examining the data.

Although there are some problems with the derivative estimates? ,
closed-form solutions for stochastic diffusion models of stock prices (or stock

returns) including what properties, which the most commonly used models in

3) For example, the possible existence of an estimation bias remains in estimating first or second
partial derivatives with the KERNEL model and is left for future research (see Takeuchi and Ohya
[1995]).
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the valuation of contingent claims ignore, need to be derived and used to
examine the predicted correlations between the stock returns and the volatilities,

more directly.
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Table 1: Summary Statistics

Variables N Mean Std.Dev.
St 743 24621.258 6032.349
R, 743 —0.0000282 0.0177

Note: The daily data on the Japanese Nikkei 225 index (S;) run from 22 November 1989
through to 30 November 1992. The variable R, represents the stock return defined as R,
=InS;—InS;-;. N denotes the number of observations, and Mean and Std.Dev. are the
average and the standard deviation of the variables, respectively

Table 2: Estimates of the Volatility

Mean Std.Dev. Min Max
IV (Call) 0.0201 0.00963 0.000638 0.0553
IV (Put) 0.0154 0.00769 0.000299 0.0514
KERNEL 0.0167 0.00442 0.000136 0.0368
GARCH-M 0.0129 0.0122 8.68 D-6 0.124
KERNEL GARCH-M IV (Calb) IV (Put)
KERNEL 1.000 — — —
GARCH-M 0.333 1.000 — -—
IV (Call) —0.0504 —0.111 1.000 —
IV (Put) 0.0567 0.0686 0.00818 1.000

Note: The volatilities of the rate of returns of the Nikkei 225 index are computed using the
nonparametric method (KERNEL), the GARCH-M method (GARCH-M), and the IVR
method for both the call Nikkei 225 option (IV (Call)) and the put Nikkei 225 option (IV
(Put)). Mean is the average, Std.Dev. is the standard deviation, Min is the minimum value,
and Max is the maximum value of these estimates, respectively. The matrix of correlations
among the estimates of the volatility is also shown below this table. This table includes two
figures named ‘Volatility v.s. Return’ below, which plot the volatilities (Volatility) estimated
with the GARCH-M model (GARCH-M) and the KERNEL model (KERNEL) versus the
past stock rate of returns (Return), respectively.
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Table 3: OLS Estimates with the IV

by
cul (= 8%
ro b 35
Call (k=2) 781?92)130
Put (k=2) 78:ggg;91
cal =5 pe2
il e

Note: If k=1 (or k=2, k=3), the OLS model is (24) (or (25), (26)) including
by, for the call (Call) and put (Put) I'V, respectively. The absolute value of
the # statistics of the parameters are reported in parentheses. The 10%
critical values for the # statistics are 1.64 and a superscript * indicates that
the parameter is statistically different from zero at the 10% level

Table 4 : ML Estimates of the GARCH-M Model

[243 Bo .31 .82
0.000311 8.16-3 0.0892 0.563
(0.0814) (3.541)* (4.584)% § (5.336)*

Note: The maximized value of the log likelihood function is 1216.6. The
absolute values of the f statistics of the parameters are reported in
parentheses. The 5% critical values for the f statistics are 1.96 and a
superscript % indicates that the parameter is statistically different from
zero at the 5% level.
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Table 5: Derivatives of the Nonparametric Regressions

2

estimate 7z
OM (X)) /60X~ —0.0772 9.968*
0°M (X) /60X —4.277 0.401
OV (X.)/8X -1 —0.00732 35.654*
0%V (X)/0X 0.326 4,174

Note: The ¥ value is a test of the null hypothesis that the mean of the
partial derivative is equal to 0. The 5% critical value for the 3*(1)
statistics is 3.84 and a superscript % indicates that the null hypothesis
that the derivative is zero can be rejected at the 5 percent significance

level.
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