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Abstract 

In the near future, power converters will be introduced into transmission grids on a large scale due to 

the increase of renewable energy sources. The control schemes of grid-connected inverters currently assume 

that there are sufficient synchronous generators (SGs) in the grid for the synchronization and integration of 

electric power. These inverters are called “grid-following” inverters. However, when grid-connected inverters 

significantly outnumber SGs, there is a need for the “grid-forming” inverters to operate the transmission grid 

autonomously. These inverters should generate AC voltages, share power with each other, and emulate the 

inertia effect like SGs do. 

To satisfy these requirements, different control schemes for grid-forming inverters have been 

proposed in the literature, such as the droop control, virtual synchronous generator, and synchronverter for 

power control, and the cascaded PI controller for voltage regulation. This dissertation proposes two control 

schemes for grid-forming inverters. 

The first control scheme is based on the dq domain for power and voltage control. The cascaded PI 

controller has often been used for voltage regulation. However, it is difficult to tune the control gains because 

of system couplings and the controller’s bandwidths. This dissertation proposes a new controller based on a 

linear quadratic regulator (LQR) for voltage regulation and presents comparisons of the performances 

between them by simulations. It is also well known that instability due to interactions between the grid-

connected inverter and the grid is sometimes observed. The stability is thus compared for the grid-forming 

inverters with both the cascaded PI controller and the LQR by eigenvalue analysis and the impedance method. 

The second control scheme is based on the αβ-domain. With this controller, active and reactive powers 

can be controlled according to simple complex power control principles described only in the αβ-domain. 

The control system is described based on complex vector theory, which models the system as a single input 

single output (SISO) model so that the controller design is easier than dq- or αβ-multiple inputs multiple 

outputs (MIMO) models. Controller gain tuning for both the outer power and the inner voltage regulator is 

also proposed. The power control gains are tuned based on transfer functions around an operating point and 

the voltage regulator is tuned by the LQR. The proposed control method is investigated and validated by 

simulations with a C control program and by experiments with a DSP-based digital control system. 

  



 
 

Contents 

Abstract .............................................................................................................................................. 3 
List of Figures .................................................................................................................................... 5 
List of Tables ...................................................................................................................................... 7 
List of Acronyms ................................................................................................................................ 8 
1. Introduction ................................................................................................................................. 1 

1.1 Context and motivation ......................................................................................................... 1 
1.2 State of the art ...................................................................................................................... 2 

1.2.1 Grid-following control ................................................................................................... 2 
1.2.2 Grid-forming control ..................................................................................................... 3 
1.2.3 Stability analysis ......................................................................................................... 11 

1.3 Objectives and outline of the thesis ...................................................................................... 13 
1.4 List of publications related to this work ................................................................................ 13 

2. Controller Design and Analysis for Grid-Forming Inverter in Rotating Frame ................................ 15 
2.1 Controller design in rotating frame ...................................................................................... 15 

2.1.1 System modeling in rotating frame ............................................................................... 15 
2.1.2 Design of power control .............................................................................................. 19 
2.1.3 Design of voltage control ............................................................................................. 20 

2.2 Impedance and stability analysis in rotating frame ................................................................ 30 
2.3 Summary ........................................................................................................................... 37 

3. Design and Analysis of Stationary Reference Frame Controller for Grid-Forming Inverter .............. 38 
3.1 Design of stationary reference frame controller ..................................................................... 38 

3.1.1 Stationary reference frame modeling ............................................................................ 38 
3.1.2 Design of droop control ............................................................................................... 39 
3.1.3 Design of voltage control ............................................................................................. 44 

3.2 Simulation and experimental results ..................................................................................... 50 
3.3 Summary ........................................................................................................................... 55 

4. Conclusions ............................................................................................................................... 56 
5. References ................................................................................................................................ 58 
Acknowledgements ........................................................................................................................... 61 
 
 

  



 
 

List of Figures 

Fig. 1-1. Basic control structure for three-phase grid-following inverter. .......................................... 2 
Fig. 1-2. Basic control structure for three-phase grid-forming inverter. ............................................. 5 
Fig. 1-3. Equivalent circuit of grid-forming inverter and grid. ......................................................... 5 
Fig. 1-4. Frequency and voltage droop characteristics in grids with dominant inductive behavior. ...... 7 
Fig. 1-5. Droop control. ................................................................................................................ 8 
Fig. 1-6. Cascaded PI voltage control. ........................................................................................... 9 
Fig. 1-7. Equivalent circuit of a grid-forming inverter and a grid. .................................................. 11 
Fig. 1-8. Block diagram of the equivalent circuit. ......................................................................... 11 
Fig. 2-1. Grid-forming inverter controlled in rotating frame. ......................................................... 15 
Fig. 2-2. Block diagram of droop control. .................................................................................... 19 
Fig. 2-3. Continuous servo-system for voltage regulation. ............................................................. 20 
Fig. 2-4. Block diagram of the optimal regulator system. .............................................................. 22 
Fig. 2-5. State variables participation on λ10-11. ............................................................................. 27 
Fig. 2-6. State variables participation on λ12. ................................................................................ 27 
Fig. 2-7. Proposed control performance compared to cascaded PI (Voltage step response). .............. 28 
Fig. 2-8. Proposed control performance compared to cascaded PI (Active power step response). ..... 29 
Fig. 2-9. Small-signal equivalent circuit of a three-phase grid system in the dq frame. .................... 30 
Fig. 2-10. Output impedance of grid-forming inverter. .................................................................. 33 
Fig. 2-11. Bode diagram of the eigen-loci of minor loop transfer function matrix L(s). .................... 33 
Fig. 2-12. Simulated active power of grid-forming inverter. .......................................................... 35 
Fig. 2-13. Comparison of the stability margins between LQR and cascaded PI controllers. .............. 36 
Fig. 3-1. Grid-forming inverter controlled in stationary reference frame. ........................................ 38 
Fig. 3-2. Proposed complex droop control. ................................................................................... 39 
Fig. 3-3 Active power control loop around an operating point. ....................................................... 40 
Fig. 3-4. Step response for active power p .................................................................................... 41 
Fig. 3-5. Reactive power control loop around an operating point. .................................................. 43 
Fig. 3-6. Step response for reactive power q. ................................................................................ 43 
Fig. 3-7. Block diagram of voltage control system consisting of CVRA and state-feedback control. . 44 
Fig. 3-8. Flow chart of voltage control tuning. .............................................................................. 46 
Fig. 3-9. Root locus for voltage control system. ............................................................................ 46 
Fig. 3-10. Comparison of frequency responses for different LQR weights. ..................................... 48 
Fig. 3-11. Comparison of time responses of output voltage for different LQR weights. .................... 49 
Fig. 3-12. Active power setpoint change and its coupling on the reactive power by simulations. ...... 50 
Fig. 3-13. Reactive power setpoint change and its coupling on the active power by simulations. ...... 51 



 
 

Fig. 3-14. Effects of different voltage responses on coupling of active and reactive power. .............. 51 
Fig. 3-15. Experimental system set-up. ........................................................................................ 53 
Fig. 3-16. Voltage and current waveforms in steady state by experiment. ........................................ 53 
Fig. 3-17. Transient power response by experiment. ..................................................................... 54 

 

  



 
 

List of Tables 

Table 1-1. Concerns and their influences with high penetration of grid-following inverters. ............... 3 
Table 1-2. Services required for an electrical system [13]. ............................................................... 4 
Table 1-3. Stability analysis methods [31] .................................................................................... 12 
Table 2-1. System parameters in SI units. .................................................................................... 16 
Table 2-2. System parameters in per-unit. .................................................................................... 16 
Table 2-3. Operating point. ......................................................................................................... 25 
Table 2-4. System eigenvalues with Qc and Rc identity matrices. ................................................... 25 
Table 2-5. LQR weight. .............................................................................................................. 26 
Table 2-6. System eigenvalues after tuning. ................................................................................. 26 
Table 2-7. Eigenvalues of Al where mp = 0.20. ............................................................................. 34 
Table 2-8. Eigenvalues of Al where mp = 0.22. ............................................................................. 34 
Table 3-1. System parameters. .................................................................................................... 42 
Table 3-2. Controller gains, LQR weights, and eigenvalues. .......................................................... 47 

 

  



 
 

List of Acronyms 

AC Alternative Current 

CVRC Complex Vector Resonance Controller 

DC Direct Current 

DSP Digital Signal Processor 

FOC Fractional Order Controller 

GHG Greenhous Gas 

LPV Linear Parameter Varying 

LTI Linear Time-Invariant 

LQR Linear Quadratic Regulator 

MG Micro-Grid 

MIMO Multiple Inputs and Multiple Outputs 

PCC Point of Common Coupling 

PI Proportional and Integral 

PLL Phase-Locked Loop 

PWM Pulse Width Modulation 

RES Renewable Energy Source 

SG Synchronous Generator 

SISO Single Input and Single Output 

SS Storage System 

VSM Virtual Synchronous Machine 

 

  



1 
 

1.  Introduction 

1.1 Context and motivation 

For environmental reasons, more than 150 countries including Japan have declared that they will 

realize carbon-neutrality by 2050 [1]. To achieve zero greenhouse gas (GHG) emissions, it is essential to 

introduce a large amount of storage systems (SSs) and renewable energy sources (RESs), such as solar 

photovoltaics (PVs) and wind farms, and to reduce the reliance on energy from fossil fuels. From another 

point of view, energy security is also strengthened with the expansion of the electricity supply from RESs, 

and this is independent of the global situations. 

Over the last decade, the capacity of RESs in Japan has expanded from 20 to over 80 million kilowatts 

and this rapid expansion is expected to continue for the next decade [1][2]. With the increased application of 

RESs and SSs, massive power electronic converters will be interfaced with alternative grids [3]. These 

converters are now controlled under the presumption that SGs dominate in the grid and establish a nominal 

voltage amplitude and frequency that allow converters to synchronize with AC voltage at the point common 

coupling (PCC) by phase-locked loop (PLL) or zero-crossing detection techniques. These converters are 

called “grid-following” converters [4]. 

However, as the share of grid-following inverters is growing rapidly, some grids will be possibly 

operated with few or no SGs. In these cases, conventional grid-following inverters are not able to inject power 

into the grid due to the functions of synchronization. Moreover, due to the massive introduction of grid-

following inverters, the ratio of the power supply from SGs is decreased, which results in the reduction of 

total inertia in the grid. Consequently, it becomes more difficult to stabilize the frequency in the event of fault 

or large load fluctuations due to faster dynamic responses of frequency [1], and this has already been noticed 

in several European areas [5]. For autonomous operation, the control principle of grid-connected inverters 

will no longer need to follow the grid but instead will lead the grid. Grid-connected inverters based on this 

concept are called “grid-forming” inverters [3][4]. 

It is widely known that interactions among grid-connected inverters and grid impedances may 

destabilize the inverter control loops and lead to oscillations [6]. This issue becomes severe with higher 

penetration of grid-connected inverters [7]. Some incidents of destabilization due to undesired harmonics and 

resonances have been reported in [8]-[10]. Hence, it is essential to find ways to analyze the stability of 

inverter-based grids and embed them into the design process of inverter controls. 

To meet these challenges, this dissertation mainly focuses on controller designs of “grid-forming” 

inverters and stability analysis. Two controller structures and tuning methods are proposed and their stabilities 

are then analyzed in different ways. 
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1.2 State of the art 

1.2.1 Grid-following control 

The grid-following inverter control assumes that SGs dominate in the grid and establish a stiff 

nominal voltage amplitude and frequency. Its objective is to ensure the injection of a reference current, which 

is synchronized with the grid voltage at the PCC and is derived from reference active and reactive powers, 

into the grid. Fig. 1-1 shows a basic control structure of a three-phase grid-following inverter. The inverter is 

connected to the grid through an LCL filter that attenuates switching harmonics. It has a current controller to 

behave as a current source, and the synchronization function is implemented by PLL [11] or zero-crossing 

technique [12]. 

This controller is based on the dq-frame, the amplitude of vq,pcc has a null value thanks to the PLL or 

the zero-crossing, while vd,pcc is equal to the amplitude of the grid voltage. pref and qref are the reference active 

and reactive powers, respectively, and the current iod controls the active power, while ioq controls the reactive 

power. The current control is accomplished through the use of a proportional and integral (PI) controller and 

a decoupling control. To reduce harmonics of the injected current, the PI controllers are often replaced with 

proportional-resonant (PR) controllers. Another current tracking controller for the grid-following inverter has 

been proposed in the three-phase domain in [12]. Its difference from the PI control is that the Park 

transformation is not needed in the controller stage so the references are three-phase sinusoidal currents. 

 

 

Fig. 1-1. Basic control structure for three-phase grid-following inverter. 
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Table 1-1. shows the concerns and their influences with high penetration of grid-following inverters. 

First, if they dominate the grid or a micro-grid (MG) area, and are disconnected from the main AC grid, they 

can no longer inject current (power) to the load due to the loss of followed AC voltage. Second, their high 

penetration, meaning the reduction of electric power provided from SGs that have mechanical inertia, causes 

decreases of total grid inertia. Consequently, this induces a faster dynamic response of the frequency and it 

is more difficult to stabilize the frequency under grid faults or large load fluctuations. Lastly, the grid voltage 

is sensitive to the current injection under the weak grid or high impedance grid and may exceed the threshold. 

 

Table 1-1. Concerns and their influences with high penetration of grid-following inverters. 

No. Concerns Influences 

1 Loss of synchronism Current (power) can no longer be injected to the grid due to 

the synchronization mechanism. 

2 Decreases of total grid inertia It causes a faster dynamic response of frequency, and 

frequency exceeds the threshold under grid faults or large 

load fluctuations. 

3 Voltage fluctuations under weak grid Grid voltage is sensitive to the controlled current under weak 

grid (high grid impedance) and exceeds the threshold. 

 

 

1.2.2 Grid-forming control 

Like SGs, the grid-connected inverters should be able to operate under any topology of the 

transmission grid, which is mainly divided into two topologies: grid-connected mode and islanded mode. In 

grid-connected mode, the inverters are connected through the PCC to an equivalent Thevenin source 

including other sources of electrical energy. In islanded mode, a passive load is only fed by sources interfaced 

by grid-connected inverters. There are two types of operations for islanded mode: standalone operation and 

parallel operation. In standalone operation, one inverter is responsible for supplying loads to establish a fixed 

voltage and frequency. In parallel operation, several inverters are operated in parallel, with or without 

communication. It is necessary to ensure that the power is shared according to the capacity of each source. 

An MG with 100% power electronics or uninterruptible power supply (UPS) lines-interactive converters are 

found in this operation. Grid-connected inverters must have a voltage source behavior to operate in the 

islanded mode. Grid-connected inverters that can operate in both grid-connected and islanded modes are 

called “grid-forming” inverters. 

The penetration of grid-connected inverters is growing around the world. In some areas, such as 

Ireland and Germany, they have already reached very high levels and can occasionally be operated without 

SGs. The situation involving no SGs in the grid can occur. Even in this case, the grid must supply the same 



4 
 

quality as the electromechanical transmission grid. The grid-forming inverters must be able to supply the 

system with sinusoidal current of a given frequency, and must generate a fixed voltage at the PCC. 

 

Table 1-2. Services required for an electrical system [13]. 

No. Services Conditions 

1 Supply of AC currents Frequency: fmin < f < fmax 

2 Supply of all loads connected according to their nominal 

operation power 

RMS voltage: Vmin < V < Vmax 

3 Power sharing between parallel generators Active power: ΣPgen = Pload 

4 Infrastructure security (overcurrent limitation) Inverter current: I < Imax 

 

Table 1-2 indicates the services that the electrical system including grid-forming inverters must 

guarantee like the system dominated SGs have done [13]. Unlike inverters, SGs have inertia and the 

frequency is determined by the rotation speed with slow dynamic. In contrast, the inverter’s frequency is 

determined by its control principle, and its primary control can form virtual inertias and damping factors to 

the grid-forming inverters. The primary control also allows inverters to synchronize to the grid without 

detecting the grid-phase and to share power with other generators. Four well-known primary controls have 

been proposed in the literature: the synchronverter [14], the virtual synchronous machine (VSM) [15]-[19], 

the virtual oscillator [20], and the droop control [21]-[25]. 

Grid forming inverters are designed for autonomous operation to impose AC voltage and fix 

frequency, by balancing the generating power and loads. Fig. 1-2 shows the basic circuit diagram for a grid-

forming inverter. The scheme of control consists of a primary control and multi-cascaded loop in the dq frame. 

The primary control is the droop control to share power with other generators and the control frequency. In 

the cascaded loop, the outer loop is responsible for voltage control, and the inner loop is responsible for 

current control. 
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Fig. 1-2. Basic control structure for three-phase grid-forming inverter. 

 

 

Fig. 1-3. Equivalent circuit of grid-forming inverter and grid. 

 

The principle of the droop control is discussed here. Fig. 1-3 shows the equivalent circuit, described 

by phasor, of the grid-forming inverter and the grid, where δ is the phase of Vc with respect to Vg. It is assumed 

here that the grid is sufficiently inductive as ωLg = Xg>>Rg. The complex power S supplied from the inverter 

to the grid can be written as follows, where the output current of inverter is Io. 
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 (1.1) 

 (1.2) 

where * denotes the complex conjugate. The active power P and reactive power Q are real and imaginary 

parts of equation (1.2), respectively. 

 (1.3) 

Equation (1.3) can be linearized at the operating point, where δ0 and Vc0 are values at the operating point of 

δ and Vc respectively, and are described as small signal models as follows: 

 (1.4) 

 
(1.5) 
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Assuming that the phase difference between the inverter voltage and the grid voltage is δ0≅0, where sinδ0≅0 

and cosδ0≅1, ΔP and ΔQ can be rewritten as follows: 

 (1.6) 

 (1.7) 

Equations (1.6)and (1.7) indicate that the active power and reactive power are decoupled at the operating 

point i.e., the active power can be controlled by the phase of the inverter voltage, while the reactive power 

can be controlled by the amplitude of the inverter voltage. In other words, the phase and amplitude of the 

inverter voltage, which the inverter outputs in response to fluctuations in power demand, should be 

determined according to the equations below, where mp > 0 and nq < 0 are defined as P-f and Q-V droop 

coefficients, respectively. 

 (1.8) 

 (1.9) 

Equations (1.8)and (1.9) can be rewritten as shown in equations (1.10)and (1.11) by defining ΔP=p - pref 

and ΔQ=q - qref .As shown in Fig. 1-4, the active and reactive power can be controlled to the reference values 

by operating the frequency and amplitude of the inverter voltage, respectively. 

 

 

Fig. 1-4. Frequency and voltage droop characteristics in grids with dominant inductive behavior. 
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Fig. 1-5. Droop control. 

 

 (1.10) 

 (1.11) 

The block diagrams of the conventional droop control are shown in Fig. 1-5. The measured active 

and reactive power are defined as pmes and qmes, respectively. To avoid power noises, a low-pass filter is added 

on the active and reactive power measurement, where ωc is the cut-off angular frequency. This low-pass filter 

also provides a function of virtual inertia to the inverter, and it was proven that the droop control and VSM 

are mathematically identical at the operating point [25]. Fig. 1-5 indicates that when pref is smaller than p, 

frequency is decreased to reduce the phase difference δ. In contrast, when pref is larger than p, frequency is 

increased to enlarge the phase difference δ. The same is true for the reactive power. 



9 
 

 

Fig. 1-6. Cascaded PI voltage control. 

 

A cascaded PI controller in the dq-domain shown in Fig. 1-6 has been investigated as an inner 

controller for voltage regulation. The cascaded PI controller consists of an inner controller for the filter 

inductor current iL and an outer controller for the capacitor voltage vc. The outer closed loop voltage controller 

is composed of two PI controllers and a feedforward for decoupling the coupling ωCvdq between the d-axis 

and the q-axis, and a compensation for the current iodq. The outer voltage controller calculates the reference 

value of the filter inductor current iLdq. The inner current controller is the same structure as the outer voltage 

controller, and it outputs the reference of the inverter voltage vmdq. 

The advantage of the cascaded PI controller is the ability to obtain the current reference from the 

voltage control so that grid-forming inverters prevent overcurrent in the case of grid-fault. However, the 

design of the PI controllers is difficult because of the system coupling and the controller’s bandwidth. 

Conventionally, PI controllers in cascaded structures are independently tuned in the frequency-domain by 

setting a faster response time for the inner loop and a slower one for the outer loops. The inner current 

controller gains are tuned by setting a slower response time than the PWM response described in equation 

(1.12), which can be described as the first-order transfer function that approximates the effect of the PWM 

[26]. 

 
(1.12) 

where fsw is the switching frequency of the inverter. With the above conventional tuning method, it is difficult 

to design a control gain that stabilizes the system especially in the grid-connected mode, hence various tuning 

methods and control system designs have been proposed [26]-[28]. Reference literature [28], which proposed 

the tuning method of the voltage control gains based on the small-signal model and the participation factor, 
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aims to improve the response of the voltage by analyzing the eigenvalues of the entire system. In reference 

literature [29], robust control is enabled by applying H2/H∞ control to the voltage loop, and in reference 

literature [30], voltage control responsiveness is improved by using a fractional order controller (FOC). 
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1.2.3 Stability analysis 

This section introduces the reason why an interaction between grid-connected inverters and the grid 

may destabilize the grid system, and presets the analysis methods of system stability in the literature. 

 

Fig. 1-7. Equivalent circuit of a grid-forming inverter and a grid. 

 

The system in Fig. 1-2 can be modeled into two subsystems as shown in Fig. 1-7. Since the grid-

forming inverter behaves as a voltage source, the inverter is expressed as the Thevenin’s circuit composed of 

the output impedance Zo(s) and the inverter control voltage Vc(s). The grid system can also be expressed with 

the Thevenin’s circuit composed of the line impedance Zg(s) and the equivalent grid voltage Vg(s). Then the 

interfaced voltage Vl(s) can be written as equation (1.13): 

 (1.13) 

The fraction of this equation can be described by the block diagram shown in Fig. 1-8. It shows that the 

system has a negative feedback control system with the forward gain Zo(s)/Zg(s). In linear control theory, the 

system is stable if and only if Zo(s)/Zg(s) satisfies the Nyquist stability criterion. 

 

Fig. 1-8. Block diagram of the equivalent circuit. 

It is also indicated that high impedance of the grid-forming inverter or low impedance of the grid may 

destabilize the inverter control loop and lead to sustained harmonic resonance or other instability problems. 
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Table 1-3. Stability analysis methods [31] 

Stability analysis method Domain Modeling Measurement 

State-space analysis Time-domain White-box modeling --- 

Impedance-based analysis [32] Frequency-domain Black-box modeling Frequency scan [33] 

 

There are two stability analysis methods as summarized in Table 1-3 [31]. The first is the state-space 

analysis method. The state-space model at the operating point is derived and the stability of the whole grid 

system, including grid-connected inverters, is analyzed by its eigenvalues. This method often requires high 

order system as the number of grid-connected inverters increases. Moreover, to derive a state-space model, 

“white-box” modeling is needed, which is an inverter model that includes control schemes and parameters 

that are usually confidential. 

The second analysis method is the impedance-based stability criterion [32]. Applying the Nyquist 

criterion to the denominator of equation (1.13), the system is stable when the phase of Zo(s)/Zg(s) is less than 

180 degrees or |Zo(s)/Zg(s)| <1 at the cross frequency of 180 degrees. It is equivalent that the phase difference 

of Zo(s) and Zg(s) is less than 180 degrees or |Zo(s)| < |Zo(s)| at the cross frequency. The impedance modeling 

is based on the transfer function that can be measured with frequency scan [33], without any inverter control 

schemes or parameters. 

It is also noted that when the phase of the output impedance of the grid-connected inverter is passive, 

or the phase variation range is within ±90 degrees, the resistive component is always positive and the 

impedance satisfies the impedance-based stability criterion. The passive control for the grid-following 

inverter has been applied to Lyapunov-based control [34] and feed-forward control [35] in the literature. 
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1.3 Objectives and outline of the thesis 

The first objective of this Ph.D. thesis is to propose control schemes and control gain tuning methods 

for grid-forming inverters to enhance transient response and stability. The second objective is to analyze the 

stability of designed systems and derive the critical point of the stability according to the control gains. 

This thesis is composed of four chapters. Chapter 1 is the Introduction. Chapter 2 develops controller 

design and stability analysis in the dq-frame[J1][J2][C1][C2][C3][C6]. Chapter 3 develops the controller 

design and stability analysis in the αβ-domain[J3][J4][C4][C5][C7][C8]. Chapter 4 concludes the thesis and 

provides the prospects. 
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2.  Controller Design and Analysis for Grid-Forming 

Inverter in Rotating Frame 

2.1 Controller design in rotating frame 

2.1.1 System modeling in rotating frame 

 

Fig. 2-1. Grid-forming inverter controlled in rotating frame. 

 

Fig. 2-1 shows a three-phase grid-forming inverter controlled in the dq frame. It is connected with an 

AC grid through LCL filters that attenuate harmonics and is powered by an ideal DC bus. In this section, the 

grid is modelled as an equivalent AC voltage source and an impedance. Following the notations in Fig. 2-1, 

the state variables are the inverter current is through the filter inductor Lf in series with the resistance Rf, the 

voltage eg across the filter capacitor Cf, and the current ig through the filter inductance Lc in series with Rc 

and the grid inductance Lg. Udc, vpcc, and vm are the ideal DC voltage, PCC voltage, and system input that is 

determined by a controller, respectively. The controller is composed of two control loops: an outer loop for 

power control that is a droop control and an inner loop that is state-feedback control for output voltage control. 

The system can be modeled as follows: 
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(2.1) 

Table 2-1. System parameters in SI units. 

Parameter Value Parameter Value 
Base real power ����� 1 [GW] Base voltage ��� 320 [kV] 
Power factor 	
�∅ 0.95 Resistance 
�, 
� , 
� 0.4904 [Ω] 
Frequency � 50 [Hz] Inductance ��, �� , �� 0.0468 [H] 
Base angular velocity �� 2�� [rad/s] Capacitance �� 2.14 [μF] 

 

Table 2-2. System parameters in per-unit. 

Parameter Value Parameter Value  

� 0.5 [pu] 
���, 
���, 
��� 0.005 [pu] 

� 50 [Hz] ����, ����, ���� 0.15 [pu] 

�� 2�� [rad/s] ���� 0.066 [pu] 

�� 0.02 [pu]  !" -10 [pu] 

#��$ 1 [pu]  !� 0,1 [pu] 

%�!&�� 0 [pu]   

 

The parameters in SI unit are shown in Table 2-1. In this section, a per-unit system is used [36]. The 

main idea of the per-unit system is to absorb large differences in absolute values into base relationships. Thus, 

the representations of elements in the system with per-unit values become more uniform. The per-unit 

calculations are as follows: 

 
(2.2) 

where, Sbase and Zbase are base apparent power and base impedance for the per-unit system. The per-unit 

parameters can be calculated as below, 
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(2.3) 

The parameters in the per-unit system are shown in Table 2-2. 

In this section, the controller is designed in the dq frame. State variables in three-phase auvw = [au av aw]T can 

be transformed into dq variables, assuming that the system is perfectly balanced so that zero phase can be 

negligible, 

 (2.4) 

The active and reactive power, denoted by pmes and qmes, respectively, are given by the following equations 

 (2.5) 

The state-space model of the per-unit system in the dq frame can be written as 

 
(2.6) 

where, 

 
 

(2.7) 
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where T denotes transposition. xdq(t) and udq(t) represent the state variables and the system inputs respectively. 

This system is called a multiple inputs and multiple outputs (MIMO) system since it has two inputs and two 

outputs. It is also called a linear parameter-varying (LPV) system since the value of the frequency ω is 

variable in the matrix A due to the active power changing at the PCC. 

The rank of this system is first taken into account. The controllability matrix can be defined as matrix 

M: 

 (2.8) 

The rank of the controllability matrix M is 6 orders, which is the same dimension of the matrix A, so this 

system has controllability, indicating that capacitor voltage can be controlled. 
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2.1.2 Design of power control 

 
(a) P-f droop. 

 
(b) Q-V droop. 

Fig. 2-2. Block diagram of droop control. 

Fig. 2-2 shows the block diagram of the droop control. The control is P-f and Q-V droop since the 

nature of the grid is sufficiently inductive as Xg>>Rg. To avoid power noises and emulate virtual inertia [21], 

a low-pass filter is added on the active and reactive power measurement, where ωc is the cut-off angular 

frequency. 

 (2.9) 

For attenuating the noise of measured power, the cutoff frequency of the low pass filter is set to 31.4 rad/s 

(5Hz), which is 1/10 of the fundamental frequency. 

The reference of the phase θ for the controlled voltage as follow: 

 (2.10) 



20 
 

where, mp, ωset, and pref are the P-f droop gain, the fundamental frequency, and the reference of the active 

power, respectively. The amplitude of the controlled voltage is also determined as follows: 

 (2.11) 

where nqp, nqi, Eset, and qref are the Q-V droop proportional gain, the integral gain, the fundamental amplitude 

of voltage, and the reference of the reactive power, respectively. 

 

 

2.1.3 Design of voltage control 

 

Fig. 2-3. Continuous servo-system for voltage regulation. 

 

Grid-forming inverters are designed for autonomous operation by imposing AC voltage amplitude 

and frequency. This section presents a servo-system composed of a state-feedback and an integral 

compensator instead of the cascaded voltage and current loops. The integral compensator is sufficient to 

control the voltage across the capacitor without any steady-state error in the dq frame. Fig. 2-3 shows a block 

diagram of the servo system for the voltage regulation. Kf and Ki are the state- feedback gain matrix and the 

integral compensator matrix, respectively. The vector egref is defined as the voltage reference across the 

capacitor derived from the Q-V droop operation. The vector ε is the derivative of the error between the 

reference and the output voltage; these can be expressed in the following equations; 

 (2.12) 
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The controlled system of augmented matrixes can be written as 

 (2.13) 

In order to utilize the linear quadratic regulation (LQR), augmented matrixes are defined as 

 (2.14) 

This controller has 16 gains due to the controller structure, while the cascaded PI controller has only 8 gains, 

meaning that the proposed controller has a greater degree of freedom. Moreover, the coupling effect between 

the d- and q- axes can be taken into account when the gain matrices are determined. 

An advantage of the quadratic optimal control method over the pole-placement method is that it 

provides a systematic way of computing the state-feedback control gain matrix, which is, of course, 

applicable to some compensator gains such as an integral compensator. Another advantage is that the 

designed system is always stable when matrix P exists because the LQR is based on the concept of a 

Lyapunov function in the progress of calculation. 

The quadratic optimal regulator problem is used to determine the control gain matrix  so as to 

minimize the performance index 

 (2.15) 

where Qc is a positive-definite (or positive-semidefinite) Hamiltonian or real symmetric matrix and Rc is a 

positive-definite Hamiltonian or real symmetric matrix. It is noted that the first term on the right side of the 

equation is related to the convergence speed of each of the state variables, and the second term accounts for 

the expenditure of the energy of the control signals [37]. 
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Fig. 2-4. Block diagram of the optimal regulator system. 

 
If eigenvalues of  have all negative real parts, the system including the controller is stable, 

which means that the reference egref and the disturbance wdq are not related to the stability. Fig. 2-4 shows the 

block diagram of the optimal regulator system, where the reference and the disturbance are ignored, to 

consider the system stability. The following equations that solves the optimization problem ignores them, 

substituting the system input  into the performance index equation as follows: 

 (2.16) 

The matrix P is defined as follows; 

 (2.17) 

where P is a positive-definite Hamiltonian or real symmetric matrix. The equation derives followings; 

 (2.18) 

The following equation holds true for any , 

 (2.19) 

If  is a stable matrix, there exists a positive-definite matrix P that satisfies the equation (2.19), 

meaning that if it is solved and one positive-definite matrix can be P found, then the system is stable. 

In order to solve the quadratic optimal problem, Rc is decomposed as follows; 
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 (2.20) 

where T is a nonsingular matrix. This operation is possible since Rc was set to be a positive-definite 

Hamiltonian or real symmetric matrix. Then equation (2.19) can be written as 

 (2.21) 

which can be rewritten as 

 (2.22) 

This equation is called the Ricatti equation. To minimize the performance index Jc with the controller gain 

matrix , it should be determined as, 

 (2.23) 

The matrix P in the above equation must satisfy the following reduced equation, 

 (2.24) 

This equation is called the reduced Ricatti equation. 
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The servo system for voltage regulation is determined for the matrices Qc and Rc values in the 

equations above. However, the phase of the grid-voltage and the droop control that is non-linear should be 

taken into account for the parameter determination. Moreover, the feedback gains should be tuned carefully 

to decouple the active power control from the reactive power control, which is related to the voltage 

regulation. To consider the whole system behaviors, the eigenvalues of the system are analyzed using a small-

signal state-space model around an operating point [38]. The derived small-signal model of the grid-forming 

inverter with the LQR is as follows: 

 (2.25) 

where 

 (2.26) 

 
(2.27) 
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(2.28) 

The operating point are listed in Table 2-3. Egd, Egq, Igd, Igq, Vgd, and Vgq are the values at the operating point 

of egd, egq, igd, igq, and grid-voltage on the dq-frame respectively. θs, which is defined as a phase difference 

between the capacitor voltage and the grid voltage, can be converted to a constant value under steady-state 

conditions. Table 2-4 shows the eigenvalues of the state transition matrix Al when both weighting matrices 

Qc and Rc identity matrices. The three eigenvalues, λ10-11 and λ12 indicate that the stability margin of this 

system is relatively small since they are close to the imaginary axis. The controller gains should be tuned to 

acquire a better stability margin. 

Table 2-3. Operating point. 

Operating point Values Operating point Values 

'� 0.316 [rad] (�) 0.5 [pu] 

cos'� 0.95 (�! 0 [pu] 

sin'� 0.3123 /�) 1 [pu] 

#�) 1 [pu] /�! 0 [pu] 

#�! 0 [pu]   

 

Table 2-4. System eigenvalues with Qc and Rc identity matrices. 

λ1-2= -1337 ± 4519j λ3-4= -1337 ± 3891j 

λ5-6= -1137 ± 3891j λ7= -31 

λ8-9= -13 ± 10j λ10-11= -0.416 ± 3.42j 

λ12= -2.76  
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Table 2-5. LQR weight. 

Q1~ Q6 = 1  Q7 , Q8 = 107 R1 , R2 = 1 

 

Table 2-6. System eigenvalues after tuning. 

λ1-2= -1458 ± 4658j λ3-4= -1375 ± 4075j 

λ5-6= -1802 ± 145j λ7-8= -162 ± 207j 

λ9-10= -14 ± 27j λ11-12= -5.19 ± 39.1j 

 

The participation factor is utilized to tune the controller gains. The participation factor shows a 

sensitivity of an eigenvalue to a state variable [39]. The participation factor of mode k to a state variable j is 

defined as 

 (2.29) 

where qkj and pkj are the j-th components of the left and right eigenvectors of mode k for the linearized matrix 

Al. The participation factors for eigenvalues λ10-11 and λ12, presented in Fig. 2-5 and Fig. 2-6, show the link 

with εd and εq, respectively. This indicates that the weighting factor Q7 and Q8 should be increased in order 

to improve the voltage dynamics. The weighting matrices are finally determined as shown in Table 2-5 and 

the eigenvalues are shown in Table 2-6. The system has more stability margins rather than just the one before 

tuning. 
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Fig. 2-5. State variables participation on λ10-11. 

 

 

Fig. 2-6. State variables participation on λ12. 

 

In order to investigate the proposed control, the cascaded PI [28] and the proposed controls are 

compared by MATLAB/Simulink. The voltage step response is applied to the system Eset = 1.1 pu at t = 0.1 

sec. This case was chosen in order to check the coupling between the active power and controlled voltage. 

The results are shown in Fig. 2-7. The proposed method generates a faster response with much smaller 

overshoot compared to the cascaded PI controller. The proposed method also presents a very small transient 

coupling effect between the active and reactive powers (voltage), in contrast to the cascaded PI controller.  

The active power response is also applied to the system shown in Fig. 2-8. Thanks for the well-tuned 

control gains, the proposed method has lower overshoot of the active power and less coupling to the voltage 

than the conventional one. 
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Fig. 2-7. Proposed control performance compared to cascaded PI (Voltage step response). 
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(a) d-axis voltage 

 
(a) Active power 

Fig. 2-8. Proposed control performance compared to cascaded PI (Active power step response). 
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2.2  Impedance and stability analysis in rotating frame 

Due to interactions among grid-connected inverters, the grid system might possibly become unstable. 

To analyze the stability of the circuit system including the grid-connected inverters, the impedance-based 

stability criterion is widely applied [32]. In this section, the stability based on the impedance method and the 

eigenvalue analysis is investigated and validated by numerical simulations, and the stability of the LQR is 

compared to the cascaded PI controller. 

 

Fig. 2-9. Small-signal equivalent circuit of a three-phase grid system in the dq frame. 

 

The stability is analyzed by the impedance-based small-signal method in the dq frame. The 

linearization of the nonlinear circuit around the operating point is needed for deriving the small-signal 

impedance of the grid-connected inverter. The system in Fig. 2-1 can be modeled into two subsystems as 

shown in Fig. 2-9. Since the grid-forming inverter behaves as a voltage source, the inverter is expressed as 

the Thevenin’s circuit composed of the output impedance 2×2 matrix Zo(s) and the inverter control voltage 

Vc(s). The grid system can also be expressed with the Thevenin’s circuit composed of the line impedance 2×2 

matrix Zg(s) and the equivalent grid voltage Vg(s). Then the interfaced voltage Vl(s) can be written as equation 

(2.30) and the minor loop L(s) can be defined as equation (2.31). 

 (2.30) 

 (2.31) 

where, I is the identity matrix. Applying the generalized Nyquist criterion to the minor loop L(s), the system 

is stable if the eigenloci of the L(s) encircle is greater than the -1, or crosses to the right side, when the phase 

is 180° [40]. It is noted that the eigenloci is the loci of the eigenvalues of the loop gain transfer function 

matrix parameterized as a function of frequency. 
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In the frequency-domain, the output impedance of the grid-forming inverter can be derived from 

equation (2.30); 

 (2.32) 

The second term on the right side represents the transfer function from the grid-voltage to the injected currents 

to the grid, and is equivalent to output admittance. The output admittance Yo(s) can be written as 

 (2.33) 

Considering the direction of the defined current, the negative sign should be added. The output impedance 

where the system parameter is based on Table 2-2 is shown in Fig. 2-10. In order to keep the voltage constant 

under fluctuations of the output current, the output impedance around 0 Hz in the dq frame, which is around 

50 Hz in the stationary frame, is designed as small as possible. 

The line impedance Zg(s) can also be written as, 

 (2.34) 

The stability is checked for different P-f droop control gain mp. Fig. 2-11 shows the frequency 

characteristics of the eigenloci of the minor loop L(s). In the case of mp = 0.21, the magnitude is -0.079 dB 

at 180°, indicating that this is the critical point of the stability, whereas it is unstable, when mp = 0.22, since 

the magnitude of the eigenvalue is 3.51 dB which exceeds 0 dB at 180°. It can also be said that an increase 

in the power control gain causes enlarged output impedance gains at low frequency. 
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Fig. 2-10. Output impedance of grid-forming inverter. 

 

 

Fig. 2-11. Bode diagram of the eigen-loci of minor loop transfer function matrix L(s). 
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Table 2-7. Eigenvalues of Al where mp = 0.20. 

λ1-2= -1458 ± 4658j λ3-4= -1475 ± 146j 

λ5-6= -1802 ± 146j λ7-8= -176 ± 194j 

λ9-10= -0.3 ± 100j λ11-12= -0.570 ± 38j 

 

Table 2-8. Eigenvalues of Al where mp = 0.22. 

λ1-2= -1458 ± 4658j λ3-4= -475 ± 4075j 

λ5-6= -1802 ± 146j λ7-8= -180 ± 191j 

λ9-10= 3.96 ± 112j λ11-12= -5.57 ± 38j 

 

The stability is also investigated by the eigenvalue analysis of the linearized matrix Al, where Rcpu 

and Lcpu are replaced by Rcpu + Rgpu and Lcpu + Lgpu, respectively to take the grid impedance into account. 

Table 2-7 and Table 2-8 show the eigenvalues of Al where the P-f droop control gain mp is 0.21 and 0.22 

respectively. The eigenvalues in Table 2-7 indicate that the system is stable, whereas the positive eigenvalues 

λ9-10 in Table 2-8 indicate that the system is unstable. Although the two stability methods are mathematically 

identical, and in other cases, for example, inverters are connected in parallel, the eigenvalue analysis needs 

considerable calculation due to the increase of the state variables. Moreover, since very few companies 

disclose their inverter controls and parameters, the impedance method is effective because the output 

impedance can be derived with black-box testing. 

These stability analyses are also validated by time domain simulations with MATLAB/Simulink. The 

active power step response is applied to the system pref = 0.51 pu at t = 1 sec. Fig. 2-12(a) shows that the 

active power is converged and the system is stable where the droop coefficient mp = 0.21, whereas the active 

power is diverged where mp = 0.22 in Fig. 2-12(b). The stability analysis based on the impedance method 

and eigenvalues are validated with the time domain simulations. 
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Fig. 2-12. Simulated active power of grid-forming inverter. 
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The output impedance of the grid-forming inverter with the cascaded PI controller can be derived the 

same way as in equation (2.25). The comparison of stability margins between the LQR and the cascaded PI 

controllers is shown in Fig. 2-13. In this case, the stability margin is considered with the power control gain 

mp fixed as 0.02. Fig. 2-13 indicates clearly that the LQR has more stability margins than the cascaded PI 

controller. 

 

 

Fig. 2-13. Comparison of the stability margins between LQR and cascaded PI controllers. 
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2.3 Summary 

This section proposes a new control method for the grid-forming inverters and analyzes the stability, 

which can be summarized in the following six parts. 

(1) The proposed voltage controller is composed of the state-feedback and the integral 

compensator. The proposed controller has 16 control gains compared to the 8 gains of the 

cascaded PI controller; as such the former has a greater degree of freedom. 

(2) Controller gains are tuned based on the LQR and the participation factor. The participation 

factor helps in the determination of LQR weights since it indicates the sensitivity of an 

eigenvalue to a state variable. 

(3) Compared to the cascaded PI controller, the proposed system generates a faster voltage 

response with a lower overshoot and a very small transient coupling effect between the active 

and reactive powers. 

(4) The stability is analyzed based on the impedance small-signal method in the dq-frame. The 

output impedance Zo(s) can be derived from the small-signal state space model and the 

generalized Nyquist criterion is applied to the minor loop transfer function L(s) to analyze the 

stability. 

(5) The impedance method and the eigenvalue analysis obtain the same results since they are 

mathematically identical. These stability analyses are also validated by time domain 

simulations. 

(6) The LQR has better performances and more stability margins than the cascaded PI controller, 

which indicates that the LQR has potential to be applied to grid-forming inverters. 
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3.  Design and Analysis of Stationary Reference Frame 

Controller for Grid-Forming Inverter 

3.1 Design of stationary reference frame controller 

3.1.1 Stationary reference frame modeling 

 

Fig. 3-1. Grid-forming inverter controlled in stationary reference frame. 

 

Fig. 3-1. shows a three-phase grid-forming inverter controlled in a stationary reference frame. It is 

powered by an ideal DC bus and connected with an AC grid through LC filters that attenuate harmonics. In 

this section, the grid is modelled as an equivalent AC voltage source. Following the notations in Fig. 3-1, the 

state variables are the inverter current iL through the filter inductor L in series with the resistance R, the 

voltage vc across the filter capacitor C, and the current io through the grid inductance Lg in series with Rg. E, 

vg, and u are the ideal DC voltage, the grid voltage, and the system input that is determined by a digital 

controller, respectively. The digital controller is composed of two control loops: an outer loop for power 

control that is a complex droop control and an inner loop that is composed of Complex Vector Resonance 

Controller (CVRC) and a state-feedback controller for output voltage control.  

State variables in three-phase auvw = [au av aw]T can be transformed into the state variable denoted by 

the complex vector in the αβ-frame as 

2 1 3 1 3
1

3 2 2

u

v

w

a a ja

a
j j

a

a

αβ α β= +

 
 − + − −  

=    
       

(3.1) 
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The active and reactive power injected from the inverter to the grid is given by 

[ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ]

C o C o

C o C o

p i v i i i v i i i

q i v i i i v i i i

α α β β

α β β α

= +

= −  
(3.2) 

where p[i] and q[i] are the active and reactive power, respectively, which are the values at time t=i Ts with 

Ts as the sampling period. The complex power can be written as 

*

*

[ ] [ ] ( [ ] [ ]) ( [ ] [ ])

[ ] [ ]

C C o o

C o

p i jq i v i jv i i i ji i

v i i i

α β α β

αβ αβ

+ = + +

=  
(3.3) 

where * denotes the complex conjugate. 

The state space model of the grid-forming inverter based on the complex vectors in the αβ-frame can 

be written as follows: 

( ) ( ) ( ) ( )

( ) ( )

c c c o

c

t t u t i t

y t t

αβ αβ αβ αβ

αβ αβ

= + +

=

ɺx A x b h

c x  
(3.4) 

where 

T
L Cx i vαβ αβ αβ =   , 

/ 1/ / 2 0
, , , 0 1

1/ 0 0 1/
c c c c

R L L E L

C C

− −     
= = = =         −     

A b h c  (3.5) 

The vectors xαβ and uαβ are the state variables and the system input respectively, and ioαβ is the injected current 

to the grid, considered as a perturbation in this case. The output yαβ is the voltage across the capacitor. It is 

noted that this system is an SISO system and a linear time-invariant (LTI) system. 

 

3.1.2 Design of droop control 
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Fig. 3-2. Proposed complex droop control. 

Fig. 3-2. shows the proposed complex droop control. A complex angular frequency ωαβ[i] and a complex 

phase angle θαβ[i] are introduced in the proposed control [11]. The complex angular frequency is composed 

of the P-f and Q-V droop components that are placed in the real and imaginary parts respectively. It can be 

obtained as follows: 
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0[ ] { ( [ ] [ ]) }

{ ( [ ] [ ])}

ref m

ref m

i m p i p i

j m q i q i

αβ α

β

ω ω= − +

+ −
 (3.6) 

The complex phase angle θαβ[i] computes as discrete integral of the complex angular frequency ωαβ[i]. 

[ ] [ ]
1

sT
i i

z
αβ αβθ ω=

−
 (3.7) 

The amplitude and the phase rotation of the voltage reference vCαβ,ref[i] can be expressed with the complex 

exponential form: 

[ ] [ ] [ ]
, 0 0[ ] ( )

j i i j i
C ref C Cv i V e V e eαβ β α

θ θ θ
αβ

−
= =  (3.8) 

where VC0 is the fundamental voltage amplitude. It can be seen from the equations above, (3.6), (3.7), and 

(3.8), that the complex phase angle can express both the magnitude and the phase angle of the voltage 

reference, that is, that θα[i] is derived from the active power droop and contributes as the phase angle of the 

voltage reference as %678["] , while θβ[i] is derived from the reactive power droop and VC0  %<7=["] 

characterizes the magnitude of the voltage reference. It is also noted that the integration of ωαβ[i] works as 

an integral compensation for both active and reactive powers and eliminates steady-state errors. 
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Fig. 3-3 Active power control loop around an operating point. 

 

The droop gains, mα and mβ, are tuned based on transfer functions around an operating point. Equation 

(1.3) indicates that active and reactive power is coupled, that is, they are both affected by fluctuations of 

phase difference as well as of voltage amplitude. Although this coupling complicates the tuning of droop 

gains, at operating points in equations (1.6)and (1.7), they are tuned independently since active and 

reactive power are decoupled. 

First, the P-f droop gain mα is tuned. The control system of the active power around an operating point 

derived from equations (1.6), (3.6), and (3.7) is shown in Fig. 3-3, where the phase difference of the voltages 

is Δδ = Δθα−Δθg. In this control, the voltage control loop is neglected since it should be fast enough to 
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not affect the power control. The transfer functions from the reference of the active power Δpref[i] and the 

grid frequency Δfg[i] to the inverter output active power Δp[i] are as follows: 

[ ] [ ] [ ] [ ] [ ]p ref f gp i G z p i G z f i∆ = ∆ + ∆  
(3.9) 
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Fig. 3-4. Step response for active power p 
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Table 3-1. System parameters. 

Parameters Values 

DC voltage # 400 [V] 

Line-voltage amplitude /AB 200 [V] 

Fundamental frequency �B 50 [Hz] 

Filter inductance � 0.76 [mH] 

Filter resistance 
 0.055 [Ω] 

Filter Capacitance � 20 [μF] 

Sample frequency �� 10 [kHz] 

Grid inductance �� 1.73 [mH] 

Grid resistance 
� 0.055 [Ω] 

Reference of active power C&�� 1000 [W] 

Reference of reactive power D&�� 0 [var] 

 

Table 3-1 presents the system parameters. For attenuating the noise of measured power, the cut-off 

frequency of the low-pass filter is set to 31.4 rad/s (5Hz), which is 1/10 of the fundamental frequency. Fig. 

3-4.(a)(b) show the step responses from the reference active power Δpref and grid frequency Δfg to the 

measured active power, respectively, where the droop gain is set to some parameters. These indicate that 

increase of the droop gain results in a higher peak of overshoot for the step response from the reference of 

the active power, while it enables suppression of the active power droop when the grid frequency is fluctuated. 

The active power droop gain is set to mα =0.0005 [rad/(s･W)], where the trade-off described above is taken 

into account. With this parameter, the peak of the overshoot of active power p is 1.37 times higher than the 

reference and the settling time is 0.24 sec, which is here defined as 2% error range from the reference. The 

peak of the overshoot of measured active power pm is 1.20 times higher than the reference and the settling 

time is 0.22 sec. 

Second, the Q-V droop gain mβ is also tuned. The control system of the reactive power around an 

operating point derived from equations (1.7), (3.7), (3.6), (3.7), and (3.8) is shown in Fig. 3-5. Increase in 

Δθβ results in the reduction of amplitude ΔVc due to the term −VC0 %
<7=E. A transfer function from the 

reference of the reactive power Δqref[i] to the inverter output reactive power Δq[i] is as follows: 

[ ] [ ] [ ]q refq i G z q z∆ = ∆  (3.11) 
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Fig. 3-5. Reactive power control loop around an operating point. 

 

Fig. 3-6. Step response for reactive power q. 

 
Fig. 3-6. shows a step response from the reference reactive power Δqref to the measured active power 

Δq, where the Q-V droop gain is set to some parameters. Thanks to the integrator, the reactive power can be 

tracked to the reference. It also indicates that the increase of the Q-V droop gain results in a higher peak of 

overshoot for the step response from the reference of the reactive power. The Q-V droop gain is set to mβ 

=0.0004 [rad/(s･var)], where the peak of the overshoot is 1.27 times higher than the reference and the settling 

time is 0.24 sec. 
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3.1.3 Design of voltage control 

 

Fig. 3-7. Block diagram of voltage control system consisting of CVRA and state-feedback control. 

 

For the voltage controller design in the discrete-time domain, equations (3.4) and (3.5) should be 

discretized as follows: 
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The voltage reference represented in complex vectors can be written as vCαβ,ref(t)=Vamp ejωt in the 

continuous-time domain, where ω and Vamp are derived from the complex droop control described in Section 

3.1.2. Since the voltage reference vCαβ,ref(t) provided from the droop control is discretized, the z-transform 

should be considered. 
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(3.15) 

Based on the internal model principle, the discrete voltage regulator should have the denominator of equation 

(3.15) for tracking the reference, called the CVRC [41] [42]. A proposed voltage regulation system is shown 

in Fig. 3-7, where the voltage regulation is composed of a state-feedback control and the CVRC, whose kf, 

and kr are a state-feedback gain vector and CVRC gain, respectively, ω0 is the fundamental frequency in the 

grid, and k0 is a damping of the CVRC. The controlled system of augmented matrices can be written as 

follows: 
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wαβ is a state variable for CVRC. It is noted from equation (3.16) that the number of state variables including 

the controller is 3, but if the system is modelled using the real vectors it is 6. Moreover, the model based on 

the complex vectors is the SISO system, while a system modelled in the real vectors is the MIMO system. 

From these points of view, the modeling and design of the controller using complex vectors are simpler 

compared to real vector modeling. 

The quadratic optimal regulator problem is applied to determine the control gain vector MN so as to 

minimize the performance index, 

� �{ }
0

1
( [ ]) [ ] [ ] [ ]

2
T

i

J i i u i ru iαβ αβ αβ αβ

∞
∗ ∗

=

= + x Qx

 
(3.18) 

where Q is a positive-definite (or positive-semidefinite) Hermitian or real symmetric matrix and r is a 

positive-scalar. Note that the first term on the right side of the equation is related to the convergence speed 

of each of the state variables, and the second term is the expenditure of the energy of the control signals. The 

matrix Q and the scalar r determine the relative importance of the convergence speed and the expenditure of 

this energy, respectively. An advantage of the LQR method over the pole-placement method is that it provides 

a systematic way of computing the state-feedback control gain vector. 

In this thesis, the response time of the voltage control system is designed to be 10 times slower than 

the droop control. Since the absolute value of poles for the droop control is |λp|= 0.9984, which is derived 

from the transfer function O�[P]  in equation (3.9), that of the voltage control should be exp(10log|λp|)= 

0.9841, which is 10 times slower than the droop control [43]. The weights Q and r in equation (3.18) are 

tuned so that an average of the absolute value of eigenvalues defined as λvi (i=1~3) for the closed-loop voltage 

control (QN) − RN)MN) is set to 0.9841. First, the weight Q for all state variables is set to be a third-order unit 

matrix, and then the weight r in which the control input becomes smaller by increasing, indicating that the 

response has become equivalently slower, is tuned to obtain complex gain vector MN. The poles of the closed-

loop voltage control system are tuned based on the flow chart presented in Fig. 3-8. The root loci of the three 

eigenvalues λvi, or poles, of the voltage control system during this tuning are shown in Fig. 3-9. As the weight 

r is increased, the response becomes slower and the poles of the voltage control system become larger toward 
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the outside. The average eigenvalue is set to 0.9841 at r =9.286×107. The complex gains kf and kr, LQR 

weights, and poles of the voltage control system are shown in Table 3-2. 

 

 

Fig. 3-8. Flow chart of voltage control tuning. 

 

 

Fig. 3-9. Root locus for voltage control system. 
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Table 3-2. Controller gains, LQR weights, and eigenvalues. 

Active power droop gain �S 0.0005 [(rad/(s･W)] 

Reactive power droop gain �T 0.0004 [rad/(s･var)] 

Cut-off frequency �� 31.4 [rad/s] 

CVRC damping coefficient UB 0 

Feedback gain MV [1.417×10-3+j1.942 ×10-5 

6.213×10-6+j9.253 ×10-6]  

CVRC gain U& 9.671×10-5+j4.943 ×10-6 

LQR weight Q diag[1 1 1 ] 

LQR weight r 9.286×107 

Eigenvalue λv1 0.6774 + j0.7164 

Eigenvalue λv2 0.9789 + j0.0307 

Eigenvalue λv3 0.6778 - j0.7168 

 

To analyze the closed-loop voltage control system, transfer functions from the voltage reference VCαβ,ref[z] 

and the output current Ioαβ[z] to the output voltage VCαβ[z] are derived as follows: 

 (3.19) 

where, Gv[z] is the closed-loop transfer function from VCαβ,ref[z] to VCαβ[z], and Zo[z] is the closed-loop output 

impedance, where the power control is not taken into account, as given by, 

Gain and phase of Gv[z] around the fundamental frequency should be 0 dB and 0 degrees, respectively, for 

the tracking performance; that is, in the steady state, the output voltage can be followed to the reference 

voltage without amplitude error, phase-lag, and phase-lead. The output impedance Zo[z] should be as small 

as possible in order to enhance the load disturbance rejection capability. This is indicated by equation (3.19), 

which shows that the output current minimally affects the output voltage. 

To compare the performance of different control gains, the frequency and time responses are analyzed 

for three scenarios, where the closed-loop voltage control systems are designed to be 5, 10, and 20 times 

slower than the power control, where the control gains are determined by the flow-chart presented in Fig. 

3-8. The frequency characteristics for each LQR weight are shown in Fig. 3-10. It indicates that the gains and 

phases of Gv[z] at the fundamental frequency are all 0 dB and 0 degrees, respectively, while the output 

impedance Zo[z] is reduced by smaller weight r, especially at lower frequency. Fig. 3-11. shows time 

responses from the reference voltage to the output voltage. The increase of weight r results in faster response, 

 

(3.20) 
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but also causes overshoot in the transient state. It is also noted in the next section in detail that a slower 

voltage response affects the coupling between active and reactive powers. 

 

 

(a) Gv[z] 

 

(b) Zo[z] 

Fig. 3-10. Comparison of frequency responses for different LQR weights. 
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(a) Time response for α-axis voltage. 

 

(b) Time response for β-axis voltage. 

Fig. 3-11. Comparison of time responses of output voltage for different LQR weights. 

  

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

time [sec]

-250

-200

-150

-100

-50

0

50

100

150

200

250

α
-a

x
is

 v
o
lt

ag
e 

v
cα

 [
V

]
voltage reference

5 times slower than power control

      (r = 2.118×10
7
)

10 times slower than power control

      (r = 9.286×10
7
)

20 times slower than power control

      (r = 3.2606×10
8
)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

time [sec]

-250

-200

-150

-100

-50

0

50

100

150

200

250

β
-a

x
is

 v
o
lt

ag
e 

v
cβ

 [
V

]

voltage reference

5 times slower than power control

      (r = 2.118×10
7
)

10 times slower than power control

      (r = 9.286×10
7
)

20 times slower than power control

      (r = 3.2606×10
8
)



50 
 

3.2 Simulation and experimental results 

Performances with different controller gains are compared by simulations. Since controller gains for 

active and reactive power and voltage response were tuned individually and there are some couplings among 

them, the comparison of performances with all controls combined is needed. Simulations are executed by 

Saber RD [44] and its C control program is the same as that in the experiments described below. The 

simulation system consists of the circuit shown in Fig. 3-1, where a switching model is applied, and the 

parameters are based on Table 3-1 and Table 3-2. 

 

 

Fig. 3-12. Active power setpoint change and its coupling on the reactive power by simulations. 

 
Fig. 3-12 shows the active power setpoint change and its coupling on the reactive power. Time 

responses of the active power almost coincide with those shown in Fig. 3-4, and increase of the droop gain 

mα results in a higher peak of overshoot. The coupling with the reactive power, which is not represented in 

equation (3.9), can also be confirmed, and increasing the active power gain mα makes the coupling slightly 

larger. 
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Fig. 3-13. Reactive power setpoint change and its coupling on the active power by simulations. 

 

Fig. 3-14. Effects of different voltage responses on coupling of active and reactive power. 

 

 
Fig. 3-13 shows the reactive power setpoint change and its coupling on the active power. The same 

tendency can be observed in the response of the reactive power as that of the active power. Increase of the 

droop gain mβ results in a higher peak of overshoot and makes the coupling slightly larger. 

Fig. 3-14 shows the effects of different voltage responses on the coupling of active and reactive power. 

It indicates that the slower the voltage response is, the slower the active power is converged, which results in 

the reactive power also being converged slower. 
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The proposed complex control is also validated by experiments. An experimental system consists of 

the circuit shown in Fig. 3-1 and parameters based on Table 3-1 and Table 3-2. A photograph of the 

experimental set-up is shown in Fig. 3-15. A three-phase SiC inverter driven by a DSP (TMS320C6657) based 

digital control system is connected to a grid impedance and a grid simulator via an LC filter. 

Fig. 3-16 shows u-phase capacitor voltage vcu and output current iou in the steady state, where the 

active and reactive power are controlled to 1000 W and 0 var, respectively. It is evident that the phase of the 

output current is controlled the same as that of the capacitor voltage for setting the reactive power to 0 var, 

which meant that the power factor is 1. Although there is some distortion in the current waveform, the RMS 

voltage and current are controlled to 115 V and 2.9 A, respectively, to output 1000 W to the grid. 

 

The proposed control in the transient state is also investigated by an experiment shown in Fig. 3-17. 

The reference of the active power is controlled to 1000 W, changed in step to 1500 W at 0.5 sec, and changed 

back to 1000 W at 1.5 sec, where the reactive power is constantly controlled to 0 var. The active and reactive 

power is controlled to the reference values in the steady state. This is because the complex droop control has 

a desirable feature in that the integration for the complex phase computation described in equation (3.7) 

works for the active and reactive powers and eliminates steady-state errors. The peak of the overshoot of 

measured active power is 1.30 times higher than the reference and the settling time is 0.27 sec, which is 

slightly different from the design values of 1.20 times and 0.24 sec on page 42. The main reasons for these 

deviations are that the coupling between active and reactive power was neglected in the derivation of 

equations (3.9) and (3.11) by the approximation at the operating point, and the response of the voltage control 

is also neglected when designing the droop control gains, but the approximation is suitable for tuning the 

controller gains. 
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Fig. 3-15. Experimental system set-up. 

 

 

Fig. 3-16. Voltage and current waveforms in steady state by experiment. 

  



54 
 

 

 

 

Fig. 3-17. Transient power response by experiment. 
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3.3 Summary 

This section proposes a control system design method in a αβ-frame for a grid-forming inverter using 

complex vectors, which can be summarized in the following five points. 

(1) The proposed droop control is a novel method in the αβ-frame that does not require the 

estimation of the reference phase needed in the dq conversion. 

(2) The proposed controller utilizes the complex vector theory to treat state variables as complex 

vectors, and the MIMO system with three-phase αβ components can be described concisely as 

a complex SISO system, which simplifies the design and analysis of control systems. 

(3) It is verified by simulations and experiments that the proposed complex droop controller can 

control active and reactive power without steady-state deviation. 

(4) The gains of complex droop control are designed by deriving the transfer function at the 

operation point to balance the trade-off between the overshoot suppression of the step response 

and the inverter output power in the frequency fluctuation of the grid.  

(5) The gains for the voltage control system are determined by tuning the weight of the input r so 

that its response time is 10 times slower than the droop controller based on the LQR. 
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4.  Conclusions 

This dissertation examined controller schemes, tuning methods, and the analysis of the stability for 

grid-forming inverters. Two controller schemes were proposed: the first controller is composed of a basic 

droop controller for power control and a state-feedback controller and integral compensator for voltage 

regulation in the dq-domain, and the second controller is based on complex vector theory in the αβ-domain 

and is composed of a complex droop controller and a state-feedback controller with CVRC. 

In Section 1, the background and outline of this research were described and the characteristics of 

grid-following and grid-forming controls were discussed. The electrical system must guarantee the fixed 

frequency and voltage amplitude. Grid-forming inverters can help the system frequency and voltage 

amplitude with emulated inertia, power sharing (which is implemented by the primary control such as the 

droop control and the VSM) and voltage regulation (which is implemented by the inner voltage controller). 

The system stability was also discussed in this section. Interactions between grid-connected inverters and the 

grid may destabilize the grid system because of the closed loop of the impedances. This stability can be 

analyzed by means of state-space analysis and impedance-based analysis. 

In Section 2, a new voltage regulator was proposed. The proposed servo-system with a state-feedback 

and an integral compensator has 16 gains compared to the 8 gains of a cascaded PI controller; as such, the 

former has a greater degree of freedom. Controller gains are tuned based on the LQR and the participation 

factor. The participation factor helps in the determination of LQR weights since it indicates the sensitivity of 

an eigenvalue to a state variable. The performance of both the cascaded PI controller and the LQR were also 

compared by simulations. The proposed system generates a faster voltage response with lower overshoot and 

a small transient coupling effect between the active and reactive powers. The small-signal stability in the dq-

frame was also analyzed by state-space analysis and the impedance-based method. These two analysis and 

simulation results were consistent. It was also validated that the proposed servo system has more stability 

margins than the cascaded PI controller. 

In Section 3, the complex droop control and voltage controller based on complex vectors in the αβ-

frame is proposed. The complex droop control is a novel method that does not require the estimation of the 

reference phase that is needed in the dq conversion. With complex vectors, the MIMO system with αβ 

components can be described concisely as a complex SISO system, which simplifies the design and analysis 

of control systems. The gains of complex droop control are tuned by means of the small-signal transfer 

functions at the operating point to balance the trade-off between the overshoot suppression of the step 

response of the references and the droop characteristics. The gains for the voltage regulation are tuned based 

on the LQR so that its response time is 10 times slower than the droop control. This controller was 

investigated and validated by simulations and experiments. 

The two proposed controls have simple control structures with a sufficient number of gains to place 

the system poles arbitrarily, and the proposed tuning methods can implement the required power and voltage 
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responses without trial and error. Therefore, the proposed controls can be considered two effective methods 

for grid-forming control. 
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