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Abstract

Models are created in order to simulate and solve real-world problems. Linear models

have a similar purpose. The more a model describes the actual condition, the more

effective it is as a reference while making decisions. Linear models are widely applied in

practice and quantitative research fields because they are easy to understand and interpret.

However, problems in practice or research are complicated, requiring these models to be

modified; for example, the number of variables is increased compared with the original

model, assumptions are added to the models, or constraints are replaced. While limitations

on statistical techniques, such as a lack of follow-up models to solve problems, or theories

exist, there is no fixed method that can be applied to modified cases, or the estimation

method exists but has many restrictions that make it difficult to apply.

Within the scope of this dissertation, we aim to make two key contributions to the mul-

tivariate linear model literature with these complex models expressed through structural

latent variables:

• In Chapter 3, we propose an estimation method for a linear model containing numer-

ous independent and dependent variables that all have errors. It can also be seen as

a modification of a multivariate linear regression, wherein the number of dependent

variables is increased and assumptions pertaining to errors are added to the model.

• In Chapter 4, we focus on a more complex model, namely, structural equation mod-

eling (SEM). Essentially, SEM is a set of multivariate linear regressions wherein the

dependent variable in one equation can be an independent variable in another equa-

tion and vice versa. The estimation method proposed in this chapter is a constraint

improvement for the generalized maximum entropy (GME) for SEM.

Before going to key chapters, a general context is also provided in Chapter 1. Finally,

we present the conclusion to summarize the major contributions of the proposed methods

in Chapter 5.

In Chapter 3, we propose a multivariate multiple orthogonal linear regression (MMOLR).

The MMOLR expresses the relationship between two sets of dependent and independent



variables. The MMOLR especially considers the advantages of the errors-in-variables

(EIV) model, that is, the errors are included in all independent and dependent variables.

Consequently, the assumptions of the model are easy to satisfy in practice. Our contribu-

tion is deriving an estimation method. It is in this context of total least squares that we

reveal the relationship between the MMOLR and the canonical regression model.

Next, in Chapter 4, we derive a novel estimation method for SEM. SEM is widely

used in many fields such as psychology, behavioral science, and marketing, to measure

unobservable concepts and explore complicated relationships. Over the past four decades,

especially, the maximum likelihood (ML) has become the predominant estimation method

for SEM. However, this method relies upon sample size to ensure a normal distribution

for data and non-negative degree of freedom: The more complicated the model is, the

larger the sample size that is required. This is particularly evident in the present world,

wherein researchers must consider increasingly multi-parameter problems. This increase

in concepts gives rise to an upsurge in relationship paths. At the same time, research

subject matters and/or populations with sensitive issues (e.g., managers of enterprises or

patients with social diseases ) present challenging barriers to data collection. Therefore, an

estimation method that does not require assumptions on data distribution but works with

minimum sample sizes is necessary. We contribute to this by proposing a new estimation

method, the K-means GME for SEM. The K-means GME-SEM can reduce the volume of

calculation and redundant constraints through the K-means centroid as a representative

for data in consistency constraints. The simulation results also confirm that the new

method improves the appropriate goodness of fit. Although there are many limitations to

the proposed method, the results of this study are a major step toward a new approach

for an information-theoretic-based SEM.
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Chapter 1

Introduction

This chapter presents a general picture of multivariate data analysis as an overview of

the research area, its implications, and its contributions.

Multivariate analysis refers to a set of models, or statistical techniques, for use in nu-

merous fields (McArdle and Anderson, 2001). Some of the more common models used to

analyze two sets of variables include canonical regression (Bartlett, 1951; Tatsuoka and

Lohnes, 1988; Lutz and Eckert, 1994), two-block partial least squares (Wold, 1975), and

multivariate linear regression. The choice of method depends on the type of data and

the information needs of the researchers (Elo and Kyngäs, 2008). These complex linear

models are expressed through structural latent variables, which, in turn, refer to the linear

relationship between the measurement variables and their latent construct. These struc-

tural latent variables are also known as unobservable variables because they cannot be

measured or inspected directly; they can only be indirectly measured through observable

variables; for example, the physical condition is an abstract concept that can be evaluated

through height, weight, and blood, among others (see Figure 1.1).
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Figure 1.1: Example of a structural latent variable

Because of their wide applicability and appeal to researchers from diverse fields, mul-

tivariate processing methods have been studied in theory as well as from the application

perspective. These methods are classified according to the criteria used; the criteria in-

clude the following:

1. Characteristics of the variable: For example, are there any variables that be con-

sidered dependent variables? If yes, how many dependent variables are there, and

what types are they? Accordingly, the common methods in multivariate processing

are divided into two main groups.

1.a. “Dependent” methods, wherein the relationship of two sets of variables is con-

sidered. Common methods that can be included in this group are multiple

regression, discriminant analysis, canonical correlation, and multivariate anal-

ysis of variance.

1.b. “Interdependent” methods, wherein all variables have the same role and there is

no distinction between “independent” or “dependent” variables. These methods

often investigate the latent structure between variables or elements. Common

methods in this group are principal component analysis, factor analysis, and

cluster analysis.

2. Purpose of the processing: There are four main groups of methods based on this

criterion.
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2.a. Multivariate processing methods that investigate relationships between two

groups of variables using correlation and regression methods.

2.b. Those that evaluate the difference among groups of elements 1 using analysis

of variance methods.

2.c. Those that group elements using clustering methods, logistic regression, and

discriminant analysis.

2.d. Those that find the underlying structure of data using principal component

analysis and factor analysis.

Following these two criteria, the scope of this thesis contributes to multivariate process-

ing methods that belong to group 1.a. or 2.a. in terms of the estimation method.

Generally, each analysis method requires certain conditions for the data. Some common

conditions may include

- Absence of outliers: As points for which the values are very different from the rest

of the data, outliers affect the normalization of the data and estimation results.

However, outliers also contain certain information; hence, the decision to eliminate

these data points or retain them is a matter of debate.

- Normality: The value of each variable must have a normal distribution.

- Standardization: Data normalization is the process of removing the influence of the

unit of measure, that is, placing the variables on the same scale. After normalization,

the variables have a variance of 1 (standard deviation) and a mean of 0. Data

normalization methods include:

+ Subtracting the mean and dividing by the standard deviation;

+ Subtracting mean;

+ Dividing by the standard deviation;

+ Subtracting the first value, and then dividing by the second; and

+ Making range from start to end.

- Homoskedasticity: Homoskedasticity is a statistical phenomenon wherein the errors,

that is, residuals, do not follow a special rule. This means the results are unbiased

estimates.

1Elements can be understood to be data points or observations
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Chapter 2

Notation

In this section, we introduce and define some notations to aid in readability. We denote

a matrix, a vector, and scalar by a capital bold italic letter, a bold italic letter, and an

italic letter, respectively. For example, X(n×p) is n × p matrix. X ∈ Rn×p denotes that

X is an n × p matrix whose elements are real values. x ∈ Rp denotes that x is a p-

dimensional vector whose elements are real values. In this thesis, no distinction is made

between random variables and data by notation, unless to avoid confusion.

Now, we will denote parameters and unobserved variables by Greek letters. The capi-

talization rule is applied to the Greek letter, that is, β denotes a parameter vector.

The table 2.1 lists the specific notation used in this thesis.
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Table 2.1: Notations used in the study

Notation Explanation
N Sample size

p,px,py Number of variables. Suffix shows data or random variables
corresponding to the number of variables.

r,rx,ry Number of dimensions of latent variables. Suffix shows data
or random variables corresponding to the number of dimen-
sions of latent variables.

K, L Number of support points in a generalized maximum entropy
estimation.

q Number of clusters in k-means clustering
ε,εx,εy Error term. Suffix shows data or random variables corre-

sponding to the error term.
β,βx,βy Coefficient vector. Suffix shows data or random variables

corresponding to the coefficient vector.
Σ = (σij), Σx, Σy Covariance matrix. Suffix shows data or random variables

corresponding to the coefficient vector.
∥x∥ Euclidean norm.

E(x) Expectation value of x.
Cov(x,x) Covariance matrix of x.
Cov(x,y) Covariance matrix between x and y.
corr(x,y) Correlation matrix between x and y.
diag(x) Diagonal matrix whose ith diagonal elements is the ith ele-

ment of x.
X ′ Transpose matrix of X.

6



Chapter 3

Multivariate Multiple Orthogonal
Linear Regression

3.1 Overview

We now present an overview of the background and context of our research. We discuss

the ordinary least squares (OLS) and total least squares (TLS) methods as a pair of

contrasting concepts.

3.1.1 Model formula

Linear Regression

Considering the model formula to be a linear regression, the corresponding linear re-

gression model is defined as follows:

y = x′β + εy, (3.1)

where

y ∈ R is the dependent variable (DV),

x ∈ Rp
x are the independent variables (IVs),

β ∈ Rp
x is the coefficients’ vector, and

εy ∈ R is the error term.

This model formula, a popular one in research, is rewritten in the context of the total

least squares method:

7



Figure 3.1: Path diagram of multivariate linear regression

y = (x − εx)′β + εy, (3.2)

where εx is the error term for the dependent variables.

Multivariate Linear Regression

The multivariate linear regression (MvLR) is an extended form of the linear regression;

then, the general model under the OLS approach is described as follows:

y = xB + εy, (3.3)

where B = (β1,β2, . . . ,βpy ). Given the observation yi (i = 1, 2, . . . , N) and xi, the least

squares estimation of the coefficient is B = (X ′X)−1XY , where Y = (y1,y2, . . . ,yN )′

and X = (x1,x2, . . . ,xN )′.

However, equation (3.3) is only equivalent to a set of multiple regressions. Hence, the

correlation among the DVs is not considered (Velu and Reinsel, 2013), and thus, the

relationship among the response variables is also not considered.

We then pose the following question: With the same set of predictors, which dependent

variable will be affected the most or least? In other words, how do we compare DVs given

that these variables are influenced by another set of variables? To answer these question,

8



we discuss the extended MvLR model herein.

Canonical Regression

Canonical regression, also known as canonical correlation analysis (CCA), is a model

that expresses the relationship between two sets of px IVs and py DVs (Bartlett, 1951;

Tatsuoka and Lohnes, 1988; Lutz and Eckert, 1994). The CCA is an extension of the OLS

regression (Dattalo, 2013) and has numerous applications, such as testing the omnibus null

hypothesis 1, assessing the overall model fit, testing a composite hypothesis 2, and model

validation (Dattalo, 2013). The CCA focuses more on correlation than on regression, and

thus, the term “canonical correlation” is more commonly used.

Canonical analysis entails finding combining vectors u ∈ Rp and v ∈ Rp that maximize

the correlation between the linear combination of IVs and DVs. Specifically, its purpose

is to find k (≤ min{py, px}) pairs of linear combinations such that the correlation of each

pair is maximized and the successive pair is uncorrelated with the previous pairs (Breiman

and Friedman, 1997).

Z =
py∑

j=1
ujYj = u′y. (3.4)

W =
qx∑

j=1
vjXj = v′x. (3.5)

rZW = max corr
(
u′y,v′x

)
. (3.6)

In the aforementioned equations, Z and W are the canonical variates (see Anderson

(1962); Lutz and Eckert (1994); Tatsuoka and Lohnes (1988)). The solution for (3.6) is

obtained from the eigen-equation, as follows:

(E
(
yy′)−1

E
(
yx′) E

(
xx′)−1

E
(
xy′) − µ2I)u = 0. (3.7)

Two-block partial least squares

Contrasting the CCA, the two-block partial least squares method (2B-PLS) proposed

by Wold (1975) is used to analyze the covariance between two sets of variables (Rohlf

and Corti, 2000). In this method, the weighted vectors u (∥u∥ = 1), and v (∥v∥ = 1) are

defined as follows:

1The omnibus test checks the significance of multiple parameters in a model simultaneously, that is,
when the null hypothesis contains two or more parameters.

2A composite hypothesis has two disjointed parameter spaces for null hypothesis H0 and alternative
hypothesis H1
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{u,v} = arg max
{u,v}

Cov
(
u′y,v′x

)
. (3.8)

The 2B-PLS describes the relationship between the latent variables and latent constructs

of the two variables. It can handle collinearity by extracting the latent variables when we

apply this method to linear regression (?). It is also consistent with a large number of

predictor variables.

3.1.2 Ordinary Least Squares and Total Least Squares

Ordinary Least Squares

The OLS is a widely used parametric3 estimation method for regression equations. An

OLS estimator is obtained by minimizing the sum of squares of the distances from the data

points to the projection in the direction parallel to the axis representing the dependent

variable on the regression line/plane.

In the case of MvLR, the OLS estimator of B is obtained as B = (X ′X)−1X ′Y , where

X = (x1, x2, . . . , xn)′ ∈ Rn×px ,Y = (y1, y2, . . . ,yn)′ ∈ Rn×py . The data are represented

as a matrix. xi(i = 1, 2, . . . , n) is the value of the independent variables of object i and

yi is the value of the dependent variables of object i.

Total Least Squares

The error-in-variables (EIV) model by Durbin (1954) has a well-established relationship

with TLS. Explaining TLS through the EIV concept provides a comprehensive under-

standing of TLS and its implications.

In their study, Schaffrin and Wieser (2008) described the EIV model as follows:

y = (x − εx)β + εy, (3.9)

where εx is error of the IVs and the elements are assumed to be independent zero-means.

Further, the characteristics of the errors are described as follows:

 εy

εx

 ∼

 0

0

  σ2
y 0

0 Σx

 , (3.10)

where σ2
y is the variance of εy and Σy is the covariance matrix of εx.

Under the assumption of homoskedasticity 4, Σx = σyI. This model represents the

3Parametric statistical estimation is based on assumptions about certain distributions of data.
4Homoskedasticity, that is, homogeneity of variance, is a statistical phenomenon wherein the errors,

that is, residuals, do not follow a special rule. This makes the results unbiased estimates. The opposite of
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Figure 2. Linear regression by EIV model under the TLS approach – in two dimensions 
space. 

As the TLS approach, error is the distance from data points to orthogonal projection on
fitted line/plane (Markovsky and Van Huffel, 2007). Moreover, ε is a synthesis from the 
errors of all IVs and DVs. For an easy visualization, in the two dimensions ߝ⃗ = 	 ௫ሬሬሬ⃗ߝ + ௬ሬሬሬ⃗ߝ	  
(Figure 2), 

Review of canonical regression (CCA)
Canonical analysis is finding combining vectors ݑ ∈	ܴ௤ and ݒ ∈ 	ܴ௣ that maximize
the correlation between linear combination of IVs and of DVs. Specifically, the purpose 
is to find k=mean(q,p) pairs of linear combinations such that correlation of each pair is
maximized, and the successive pair uncorrelated with the previous pairs (Breiman and 
Friedman, 1997).

ܼ = ∑ ௝ݑ ௝ܻ =	௤
௝ୀଵ  (4) ݕ்ݑ

ܹ = ∑ ௝ݒ ௝ܺ =	௣
௝ୀଵ  (5) ݔ்ݒ

arg݉ܽݕ்ݑ)ݎݎ݋ܿ}ݔ, {(ݔ்ݒ = ௓ௐݎ (6) 
Z and W are called canonical variates. See Anderson et al. (1958), Tatsuoka and Lohnes 
(1988), and Lutz and Eckert (1994) the solution of (6) is obtained from eigen-equation: 

(்ݕݔ)ܧଵି(்ݔݔ)ܧ(்ݔݕ)ܧଵି(்ݕݕ)ܧ) − ݑ(ܫଶߤ = 0 (7) 
that is: ்ܷܯଶܷି் ∈ ܴ௤×௤

Where: 
ଶܯ = ,ଵଶߤ)݃ܽ݅݀ … ,  .(௞ଶߤ

Review of two-blocks partial least squares (2B-PLS):
If the CCA aims to the correlation, in contrast, 2B-PLS is to maximize covariance 

Figure 3.2: Linear regression by EIV model under the TLS approach in a two-dimensional
space

TLS problem. Thus, TLS and EIV are aligned and inseparable. TLS, first proposed by

Golub and Van Loan (1979), is among the most important applications to estimate the

parameters of the EIV model. Using the TLS instead of OLS in typical applications has

been shown to increase accuracy by 10—15% (Van Huffel and Vandewalle, 1991).

In the TLS approach, the error is the distance from the data points to the orthogonal

projection on a fitted line/plane (Markovsky and Van Huffel, 2007). ε is synthesized from

the errors of all IVs and DVs. For easy visualization, ε⃗ = ε⃗x + ε⃗y in the two dimensions

(see Figure 3.2).

In the following sections, we present an overview of related models in multivariate anal-

ysis.

3.1.3 Research Problem

The more popular and less limited interpretation in applications involves MvLR, which is

a prediction model wherein the values of responses can be predicted from a set of predictors

(?Velu and Reinsel, 1998). The model is also used to estimate the linear association

homoskedasticity is heteroskedasticity.
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between predictors and responses (Harrell Jr, 2015). However, each individual DV in this

model is regressed separately on the IVs. Therefore, the inter-correlation among the DVs

is left unexamined (Everitt et al., 2001).

From the perspective of applications, the variables generally measure related aspects,

and thus, the relational view of the DVs in a discrete way would lack merit and reduce

the significance of analyzing the variables in sets. To consider the association between IDs

and DVs, the interpretation of a large number of coefficients simultaneously is unwieldy

(Velu and Reinsel, 2013).

All three models take the OLS approach, which considers only the errors in IVs. Ac-

cording to Berkson (1950) and Durbin (1954), it is difficult to retain this assumption

strictly in practice. To extend the interpretation using the TLS approach, we propose the

MMOLR, which can describe linear relationships between two sets of variables, such as

MvLR, and the relationship among the DVs that are integrated into the model. Because

of its canonical coefficients, the proposed model is very similar to canonical regression.

We thus reveal the relationship between MMOLR and canonical regression based on the

TLS.

3.2 Multivariate Multiple Orthogonal Linear Regression

(MMOLR)

3.2.1 Model Formula of MMOLR

In the MMOLR model, the word “multivariate” refers to the existence of multiple DVs

as well as a large number of IVs; further, the model applies an orthogonal linear regression.

The following equation describes the MMOLR model (intercept excluded):

(Y − Ey)βy = (X − Ex)βx, (3.11)

where

Y = (y1,y2, . . . ,ypy ), X = (x1,x2, . . . ,xpx),

Ey = (εy1 , εy2 , . . . εypy
), Ex = (εx1 , εx2 , . . . εxpx

),

βy = (βy1 , βy2 , . . . , βypy
)′, βx = (βx1 , βx2 , . . . , βxpx

)′,

xi,yj , εxi , εyj ∈ Rn, (i = 1, 2, . . . , px; j = 1, 2, . . . , py).

The components and relationships of equation (3.11) are schematically depicted in Fig-

ure 3.3.
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Figure 3.3: Path diagram of multivariate multiple orthogonal linear regression

To estimate the coefficients, (3.11) is transformed by setting data matrix A =
(

Y ,X
)

=

(a1,a2, . . . ,apy+px) = (f1,f2, . . . ,fn)′ with k column vectors aj and m row vectors fi;

then, coefficient matrix β =
(

βy, −βx

)T
= (β1, β2, . . . , βpy+px)′ and error matrix

E =
(

Ey,Ex

)
= (ε1, ε2, . . . , εpy+px).

We then rewrite equation (3.11) as follows:

Aβ = Eβ. (3.12)

We also rewrite equation (3.12) as

β1a1 + β2a2 + · · · + βpy+pxapy+px = ε, (3.13)

where ε = β1ε1 + β2ε2 + · · · + βpy+pxεpy+px .

Estimation Method of MMOLR

Equation (3.13) describes the general expression of the hyperplane H with normal vector

(β1, β2, . . . , βk). Thus, we can assume that the estimation of coefficients is intended to find

H, such that the errors from data points to the perpendicular projections corresponding

to H are the smallest. H can be written as Pfi = αi, where P is a projection matrix

with orthogonal rows, and hence, PP T = I. The square distance of f to H is ∥ Pfi ∥2.

Then, the objective function g(P ) is

g(P ) =
m∑

i=1
∥ Pfi ∥2 → minimize

Subject to PP T = I
. (3.14)

The solution of (3.14) is a matrix whose column vectors are eigenvectors corresponding

to the smallest eigenvalues of the covariance matrix of A (Zamar, 1989; Maronna, 2005).
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citeGolubandReinsch1970 argue that singular value decomposition (SVD) can be used to

solve the least squares problem. Golub and Van Loan (1980) go further by claiming that

the eigenvector corresponding to the smallest eigenvalue (denoted by n) of SVD is the

solution to the TLS problem. Therefore, orthogonal regression deals with the directions

of n (Maronna, 2005). In other words, errors are minimized if we project the data to H

with the direction of n, that is, n is a normal vector of H. Thus, n = (n1, n2, . . . , nk) =

(β1, β2 . . . , βk). However, n is notably very sensitive to outliers (Brown, 1982), and hence,

it is better to use robust covariance matrixes when finding n.

3.2.2 Relationship between MMOLR and the Canonical Regression Model

The difference between the objective function of the proposed model and canonical

regression is the optimizing design. Canonical regression maximizes the correlation or co-

variance between IVs and DVs. However, the proposed model minimizes it. This difference

is caused by the following equation:

tr(β′(A + E)′(A − E)β) = ∥Aβ∥2 − ∥Eβ∥2. (3.15)

From equation (3.15), we can derive the objective function for the maximizing equa-

tion (3.15) by two types of design. The first is by maximizing ∥Aβ∥2; the second is by

minimizing ∥Eβ∥2. We extend the objective function of the proposed method to include

canonical regression in the context of TLS. The objective function g, extended from the

proposed method, is defined as follows:

g(β) = ∥Eβ∥2 → minimize

Subject to β′β = 1, β′A′Aβ ≥ r.

Using the Lagrange multiplier and assuming that the linear space spanned by β and E

is orthogonal and the direct sum is β⊕̇E, the objective function g is rewritten as follows:

g(β) = ∥Eβ∥2 − λ∥Aβ∥2 → minimize

Subject to β′β = 1,

where λ ≥ 0 represents the tuning parameters. The role of tuning parameters λ is to

adjust the maximizing ∥Aβ∥2 or minimizing ∥Eβ∥2. When λ = 0, the objective function

g is the same as that of the proposed model. However, g is equivalent to the canonical
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regression when we set a sufficiently large λ.

From this fact, we can affirm that the objective function g is an extension from the

objective function of canonical regression and the MMOLR.

We then adopt the algorithm for alternative least squares to optimize g. Given E, the

estimator of β satisfies the following equation:

(E′E − λA′A)β = ηβ, (3.16)

where η is the Lagrange multiplier. Equation (3.16) is the same as the eigenvalue

problem. Therefore, we obtain the estimator by the eigenvector whose eigenvalue is the

minimum. However, given β, the estimator of E satisfies the following equation:

E′ββ′ = O. (3.17)

Equation (3.17) indicates that the error matrix is the orthogonal from ββ′, that is, the

space of error is the orthogonal space of β. We set E = A−Aββ′, although it is arbitrary.

As mentioned earlier, we define the algorithm of the extended proposed model as follows:

Step 1 Set E = A.

Step 2 Update β.

Step 3 Update E.

Step 4 Repeat steps 2 and 3 until β converge.

3.3 Evaluating MMOLR

3.3.1 Numerical Example

In this section, we use the prediction error as a criterion to compare the proposed model

with CCA and canonical covariance analysis(CCoVA) which is similar method of 2B-PLS.

These two models can be considered special cases of MMOLR. We evaluate the variance

and bias of the estimators through the prediction error.

The simulation data are generated in following steps: First, coefficient β = (β′
y, −β′

x)

is generated under the condition βj
i.i.d.∼ U(−1, 1) (j = 1, 2, · · · , py + px), where

U(−1, 1) shows uniform distribution from −1 to 1. Then, IVs xi
i.i.d.∼ N(0px , σ2Ipx)(i =

1, 2, · · · , n), where 0px is the px dimensional vector whose elements is 0, Ip is the p

dimensional identical matrix and n is the number of objects. In this example, we set the

number of observations at 300. By generating the coefficients randomly, we could evaluate
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the average prediction error in various scenarios. Dependent variable yi is generated as

yi = xiβxβ
′
y. Therefore, the relationship between xi and yi is the ideal relationship for

regression. We set σ as 1, 2, the number of IVs px = 7, and the number of DVs py = 5.

The error matrix is highly correlated and the error variables are generated as εxi
i.i.d.∼

N(0, Σx) and εyi
i.i.d.∼ N(0, Σy). The (i, j)th element of Σx and Σy, which is represented

as σx
ij , σy

ij , respectively, is as follows:

σx
ij = r|i−j|, σy

oℓ = r|o−ℓ|

(i, j = 1, 2, · · · , px; o, ℓ = 1, 2, · · · , py),

where r is the parameter for correlations and is set as 0.5, 0.7, 0.9. We obtain the data

X∗,Y ∗ by X∗ = X + Ex and Y ∗ = Y + Ex.

The criterion of evaluation is the prediction error, which is defined as follows:

∥(Ypr,Xpr)β − (Y ∗
pr,X∗

pr)β̂∥2,

where Ypr, Xpr, Y ∗
pr, and X∗

pr are the test data obtained in the same way as Y , X, Y ∗,

and X∗, respectively. β̂ is the value of the estimator. We set the iteration to 100 times.

Figure 3.4 shows the boxplots of the prediction error. The boxplots depict, from left,

the CCA, canonical covariance analysis, and the proposed model. Our model has the best

result in all cases. Therefore, it is more effective than the CCA for highly correlated errors.

Table 3.1 shows the mean of prediction errors in all cases. The blanked values show the

standard deviation of the prediction error. The highlighted cells indicate the best result

under each condition. Table 3.1 shows that our model demonstrates the best results under

all cases.

The standard deviation of CCoVA tends to increase when the correlation among the

error variables is higher. However, the standard deviation of the proposed method does

not increase.

3.3.2 Practical Example

From the perspective of application, we analyze a typical example of biochemical data

extracted from the book Multivariate Reduced-Rank Regression: Theory and Applications

(see Velu and Reinsel (2013) [Appendix 1]). The data include 33 observations with five

DVs, comprising pigment creatinine (y1), concentration of phosphate (y2), phosphorus
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Figure 3.4: Boxplots of square prediction errors

Table 3.1: Mean and standard deviation of prediction error

CCA CCoVA MMOLR
r=0.5 176.355 (508.636) 35.440 (5.221) 29.053 (5.722)

σ = 1 r=0.7 215.599 (593.429) 34.566 (6.439) 26.818 (6.054)
r=0.9 283.832 (743.962) 35.440 (6.927) 26.042 (5.050)
r=0.5 565.195 (4629.857) 34.969 (9.731) 28.764 (8.861)

σ = 2 r=0.7 474.120 (2040.812) 35.046 (10.421) 28.728 (7.202)
r=0.9 881.278 (5244.808) 34.578 (12.038) 25.897 (6.859)
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(y3), creatinine (y4), and choline (y5); and three IVs, namely, weight (x1), volume (x2),

and x3=100 (specific gravity-1). In Chapter 1 of Velu and Reinsel (2013), the MvLR model

was applied for these data to measure the involvement of IVs x1, x2, and x3 in DVs y1,

y2, y3, y4, and y5.

The result of the MvLR model is summarized as follows:



y1

y2

y3

y4

y5


=



15.2809

1.4159

2.0187

1.8717

−0.8902


+



−2.9090 1.9631 0.2043

0.6044 −0.4816 0.2667

0.5768 −0.4245 −0.0401

0.6160 −0.5781 0.3518

1.3798 −0.6289 2.8908




x1

x2

x3

 (3.18)

According to the MvLR model, how the variables of y interact with each other (all

coefficients of the variables y are set to 1) cannot be known, although an analysis of the

correlation matrix of the DVs shows them to be correlated, and the correlation between

variables y1, y3, and y4 is especially high (see Figure 4.7).

In addition, the following two questions arise:

• i. For an individual or the same individuals, that is, when the values of x1, x2, and

x3 are determined, what is the relationship among the variables of y1, y2, y3, y4, and

y5?

• ii. Which are the most affected or weakest DVs?

The MvLR model itself cannot compare DVs, although these variables are affected by

the same set of IVs. Thus, it does not make sense to examine the relationships of variables

in a set. We apply the MMOLR model to answer these questions.

To compare variables, the intercept is not considered, and the data are centered. In

this example, we use a package that is robust to the “covRob” command in R to compute

the covariance matrix of the data. The default of covRob allows auto-selection among the

Donoho–Stahel projection-based estimators, the fast minimum covariance determinant al-

gorithm of Rousseeuw and Van Driessen, and the orthogonalized quadrant correlation pair-

wise estimator for good estimates in a reasonable amount of time (Wang et al., 2017). From

the covariance matrix, eight eigenvalues and eigenvectors are computed. In addition, the

smallest eigenvalue is 0.009 given eigenvector (−0.004, −0.682, 0.634, −0.062, 0.005, 0.116,

−0.008, 0.329). Thus, the equation expressing the relationship of the variables is as follows:
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Figure 3.5: Correlation of responses in biochemical data
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Figure 3.6: Path diagram of the MMOLR model

0.004y1 + 0.682y2 − 0.634y3 + 0.062y4 − 0.005y5 = 0.116x1 − 0.008x2 + 0.329x3. (3.19)

The general result is depicted in Figure (3.6) and the fitted plane in view of the three-

dimensional space in Figure (3.7).

With the same effect of the variables x1, x2, and x3, the DV y2 is most sensitive to the

changes to the set of IVs, whereas y1 is the least sensitive variable.
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 (a) View 1

 

(b) View 2

Figure 3.7: Fitted plane of the practical example
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(c) View 3

 
(d) View 4

Figure 3.7: Fitted plane of the practical example (continue)
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(e) View 5

 

 
(f) View 6

Figure 3.7: Fitted plane of the practical example (continue)
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(g) View 7

Figure 3.7: Fitted plane of the practical example (continue)

3.3.3 Concluding remarks

Our analysis model is a follow-up to the MvLR for estimating the linear association

between predictors and responses. In terms of the statistical calculus, there is no difference

among all the variables, including the DVs and IVs in the model; therefore, it is possible

to use the model to compare variables. When the number of DVs and IVs is one, the

analytical model transforms into a Deming regression, which is a method widely used for

the comparative evaluation of equipment in chemistry.

Notably, the smallest eigenvector is the solution of the MMOLR model; however, this

is very sensitive to outliers, as stated at the end of subsection 3.2.1. Therefore, the effect

of outliers on the estimation results is a suggestion for future research.

In the next chapter, a more complex linear model is mentioned. In Chapter 3, we

enhance the estimation methods for the linear model, which is widely used in behavioral

science, psychology, and supply-chain management, among others.
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Chapter 4

K-means Structural Equation
Modeling via Generalized
Maximum Entropy

4.1 Overview

Structure equation model (SEM) is a multivariate analytical technique widely used

in research areas such as psychology and marketing. It is especially used in studies on

supply chain management. A common feature of SEM-applicable domains is that there are

concepts that cannot be measured directly. Sometimes, SEM is used to describe the causal

relationship between these concepts. For example, in the field of marketing, researchers

evaluate brand awareness (BA) as well as customer loyalty (CL), and the relationship

between these two concepts. However, these two concepts cannot be measured or directly

observed. SEM allows us to develop and evaluate the concept through clearly measurable

manifestations.

Specifically, we assume that a customer

i. who repeatedly returns to buy a product (CL1),

ii. willing/has introduced products to acquaintances (CL2), and

iii. has no intention of switching to another similar product (CL3)

is rated as a loyal customer. We can evaluate CL by observing CL1, CL2, and CL3. In

this relationship, CL is the latent variable/construct and variables CL1, CL2, and CL3

are called observed variables; the same holds for BA.
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Currently, there are three techniques to estimate the parameters in SEM: total least

squares (TLS), maximum likelihood (ML), and generalized maximum entropy (GME).

TLS and ML techniques are applied when the statistical assumption is “as observed vari-

ables with normal distribution.” However, ML is more widely applied in application re-

search communities and commercial software using SEM. GME has a long history of being

employed in other industries. It does not require statistical assumptions of the normal dis-

tribution, which is an advantage compared with TLS and ML. However, in the context of

SEM, the GME is not widely accepted because GME–SEM has many constrained formu-

lation for parameters. Many constrained formulation for parameters make the estimation

of parameters difficult. Moreover, the GME–SEM still has many shortcomings that will

be discussed more in the upcoming sections.

This study aims to

i. synthesize theories to provide full knowledge and elevate GME to a clear branch

of SEM and

ii. to improve current technologies.

In this section, we present the summary of the ML method and the shortcomings of ap-

plying this estimation method, thereby showing why it is necessary to include a parameter

estimation method in SEM.

4.1.1 Structural Equation Modeling

SEM, as introduced by Jöreskog (1978), is a multivariate statistical analysis technique

for discovering or describing complex systems. Jöreskog specifically separates the model

into measurement and structural models:

• The measurement model, depicted by B.12 and 4.2, is as follows:

x = Λx
(px×rx)ξ+ δ, (4.1)

where x is the vector of px exogenous observed variables, Λx is a matrix of coef-

ficients, and ξ is a vector of n exogenous latent constructs and disturbance vector

δ.

We interpret the latent variables (i.e., concepts) using Λx.

y = Λy
(py×ry)η+ ε, (4.2)
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where y is the vector of py endogenous observed variables, Λy is a matrix of the

coefficients, and η is a vector of m endogenous latent variables and disturbance

vector ε.

We interpret the relationship between y and latent variables using Λx.

• The structural model can be defined as follows:

η = B(ry×ry)η+ Γ(ry×rx)ξ+ ζ(m×1), (4.3)

where B is also a matrix of the coefficients, Γ is a matrix of the relationships be-

tween the exogenous and endogenous latent variables, and ζ is the vector of dis-

turbances/errors. From B and Γ, we interpret the relationship among the latent

variables.

The most popular estimation method for this model is the maximum likelihood (Ander-

son and Gerbing, 1988). This method compares the observed covariance matrix (S), that

is, the covariance matrix of data, with the implied covariance matrix (Σ), which can be

calculated as 4.4 to gain a certain model-fit.

Σ =

 Cov(x,x) Cov(x,y)

Cov(y,x) Cov(y,y)

 , (4.4)

where

Cov(x,x) = E(xx′)

= E[(Λxξ+ δ)(Λxξ+ δ)′]

= E[Λxξξ′Λx′ + δξ′Λx′ + Λxξδ′ + δδ′]

= ΛxE(ξξ′)Λx′ + E(δξ′)Λx′ + ΛxE(ξδ′) + E(δδ′). (4.5)

Assuming that the error terms of indicators are independent of the exogenous concepts,

this then means that E(δξ′) = 0, E(ξδ′) = 0 and set E(ξξ′) = Φ, E(δδ′) = Θδ.

Then,

Cov(x,x) = ΛxΦΛx′ + Θδ. (4.6)
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Similarly, we have

Cov(y,y) = E(yy′)

= E[(Λyη+ ε)(Λyη+ ε)′]

= E[Λyηη′Λy ′ + εη′Λy ′ + Λyηε′ + εε′]

= ΛyE(ηη′)Λy ′ + E(εη′)Λy ′ + ΛyE(ηε′) + E(εε′). (4.7)

With the same assumption as for x, the errors are independent of the latent constructs,

that is, E(εη′) = 0, E(ηε′) = 0, and set E(εε′) = Θε. The following equations will help

us find E(ηη′) and determine this matrix; we can then find Cov(y,y).

First, with some of the transformation steps from (B.16), we obtain η = (I − B)−1(Γξ+

ζ) (4.8), and then

E(ηη′) = E([(I − B)−1(Γξ+ ζ)][(I − B)−1(Γξ+ ζ)]′)

= E[(I − B)−1(Γξ+ ζ)(Γξ+ ζ)′(I − B)−1′]

= (I − B)−1E[Γξξ′Γ′ + ζξ′Γ′ + Γξζ′ + ζζ′](I − B)−1′ (4.9)

= (I − B)−1[ΓE(ξξ′)Γ′ + E(ζξ′)Γ′ + ΓE(ξζ′) + E(ζζ′)](I − B)−1′

and set E(ζζ′) = ψ.

⇒ E(ηη′) = (I − B)−1(ΓΦΓ′ +ψ)(I − B)−1′
. (4.10)

Therefore,

Cov(y,y) = Λy(I − B)−1(ΓΦΓ′ +ψ)(I − B)−1′
Λy ′ + Θε. (4.11)

Finally, Cov(x,y) = Cov(y,x), where

Cov(x,y) = E(xy′)

= E[(Λxξ+ δ)(Λyη+ ε)′]

= E[Λxξη′Λy ′ + δη′Λy ′ + Λxξη′Λy ′ + δε′]

= ΛxE(ξη′)Λy ′ + E(δη′)Λy ′ + ΛxE(ξη′)Λy ′ + E(δε′)

= ΛxE(ξη′)Λy ′; (4.12)
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and

E(ξη′) = E[ξ(I − B)−1(Γξ+ ζ)′]

= E[ξ(ξ′Γ′ + ζ′)(I − B)−1′]

= E[ξξ′Γ′(I − B)−1′ + ξζ′(I − B)−1′]

= E(ξξ′)Γ′(I − B)−1′ + E(ξζ′)(I − B)−1′

= ΦΓ′(I − B)−1′
. (4.13)

From (4.12) and (4.13), we gain (4.14)

Cov(x,y) = ΛxΦΓ′(I − B)−1′
Λy ′. (4.14)

The maximum likelihood estimation function is

FML = ln |Σ| − ln |S| + tr[SΣ−1] − (px + py). (4.15)

The parameters/unknowns are only estimated if and only if the implied model satisfies

the following identification rules:

• Degree of freedom:

Model degree of freedom (df ) is defined as the subtraction of the number of observed

variance/covariance (p∗) and the number of parameters to estimate (t).

df = p∗ − t (4.16)

Typically, p∗ = p(p + 1)/2, where p = (px + py) and the value of t depends on the

specific model implied.

There are three cases of degrees of freedom:

– Over-identified (df > 0): there is no exact solution; only an approximate solu-

tion exists.

– Just-identified (df = 0): there is only one solution for the model.

– Under-identified (df < 0): there are no solutions for the model; a model with

more free parameters than data points (i.e., too many paths in the model) is

generally under-identified.

A model is identified if it is possible to find one or more solutions from the data, that
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is, df ⩾ 0. However, an over-identified model may not fit as well as a just-identified

model; therefore, we need statistical hypotheses tests, including a global model fit

(Loehlin, 1998).

An additional complication that can arise is empirical under-identification. This

occurs when we perform the inversion of a parameter matrix that establishes a

model identification that has a very small (close to zero) estimate.

For structural under-identification, the only solution is to re-specify the model.

Empirical under-identification may be correctable by collecting more data or re-

specifying the model.

• The non-recursive rule: There are no loops in the relationships among endogenous

variables and uncorrelated latent disturbances.

c3

2l

1l 3l
Figure 4.1: Example of a recursive model.

4.1.2 Research Problem

First, we explain the motivative example. In a joint research project, we applied SEM

to depict numerous concepts and their relationships in supply chain management. The

model of this research includes 10 latent variables as in Figure 4.3 and 50 manifests as in

Table 4.1. Hair et al. (1998) and Hoelter (1983) recommend that the minimum sample

size should be from between 100 to 150 or even from 200 when using the ML estimation

method. Therefore, with this model, we need data with 200 objects.
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Table 4.1: Designed measurement model: empirical example

No. Constructs Observed items

1 QD

QD1

QD2

QD3

QD4

QD5

2 PSD

PSD6

PSD7

PSD8

PSD9

PSD10

3 PM

PM11

PM12

PM13

PM14

PM15

4 CF

CF16

CF17

CF18

CF19

CF20

5 SM

SM21

SM22

SM23

SM24

SM25

6 TMS

TMS26

TMS27

TMS28

TMS29

TMS30

TMS 31

Continued on the next page
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No. Constructs Observed items

7 HRM

HRM32

HRM33

HRM34

HRM35

HRM36

HRM37

HRM38

HRM39

8 OP

OP40

OP41

OP42

OP43

OP44

9 CS
CS45

CS46

10 FP

FP47

FP48

FP49

FP50

Collecting data is a difficult task, especially when the objects are managers. We first

emailed around 50 structural questionnaires to managers. The response rate, however,

was very low. Only three people responded, and they were those who already knew about

our research work. Finally, substantial resources were spent on contacting the research

population over a three-month period, which resulted in 179 valid questionnaires.

This empirical research shows that the prerequisite on sample size causes certain barriers

to research, such as the high cost of collecting data or the inaccessibility of population.

The entropy principle was first introduced by Shannon (1948) and was based on the prin-

ciple of indifference. Following this, Jaynes (1957, 1984) developed Shannon’s approach

to produce the maximum entropy principle (MEP) with which to estimate the probability

distribution by maximizing the entropy function. This new approach was considered a

powerful approach for both ill-posed (where there are more variables than observations)
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and well-posed data. The MEP combines constraints into the model but does not directly

solve the objective function; therefore, the problem of under-identifying in complicated

models such as SEM is also eliminated.

As computer power has increased, the MEP has gradually been applied to statistical esti-

mations as well (Berger et al., 1996). Golan et al. (1996) went further by re-parameterizing

and reformulating the MEP and accompanying it with the necessary inferences. This pro-

cess is now known as the generalized maximum entropy (GME) estimation (Al-Nasser,

2003). GME-SEM is thus an estimation method without a strict distribution assumption

of data or sample size. However, in this method, each data point becomes a constraint that

might lead to redundant constraints when the number of observations increases, leading

to over-fitting and heavy calculation cost.

Therefore, in this study, the method of K-means-GME-SEM is proposed for reducing

the number of constraints and heavy calculation cost. In the new method, instead of

using whole data as a consistency constraint, some means of groups in data are used, thus

reducing the number of constraints.

4.2 K-means Generalized Maximum Entropy Estimation for

Structural Equation Modeling

This section presents the fundamental and most important theoretical foundation, along

with the algorithm for K-means GME-SEM method. The highlight of the study here is

not only the synthesizing and arranging of the theoretical parts of GME for SEM, but the

improvements through a combination of K-means clustering and GME-SEM.

4.2.1 Generalized Maximum Entropy

Information Theory

The basis of information theory is to quantify the volume of information of a mes-

sage/data transmitted through a noisy channel. In this theory, information can be con-

sidered the resolution of uncertainty, that is, as information is treated as a set of possible

messages of a communication over a noisy channel, it can be reconstructed with low

probability of error (Shannon, 1948). The argument is that nearly error-free communi-

cation/information can be achieved through the channel and has a greater capacity than

the entropy of the source. By this approach, a statistical sample could be considered a

noisy channel, and the message is about parameters with prior distribution (Golan, 2002).

The purpose, then, is to retrieve that distribution. The idea is to recover the distribution
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using entropy as a measure of disorder in a dataset and information to gain a measure of

the decrease in disorder achieved by partitioning the original dataset.

Information source
(With certain distribution)

Output
(Random number)

Noisy channel • Binary (computer data)
• Two dimensional intensity 

(images)
• Continuous or discontinuous
• Etc.

The space contents all 
possible out puts The sample space

Message

Figure 4.3: Information theory model

In particular, maximum entropy information theory based on probability theory and

statistics gives a certain criterion for finding probability distributions from the basis of

partial knowledge. This leads to a statistical inference that is known as the maximum

entropy, which is considered as a least biased estimation method (Jaynes, 1957). Fur-

thermore, maximum entropy is taken to be a general approach of logit models (Soofi,

1994).

Entropy

Given a finite set A = {a1, a2, . . . am} with a probability mass function π on A, the

entropy function is defined by Shannon (1948) as follows:

H(π) ≡ −
m∑

i=1
πi ln πi, (4.17)

where πi = P (ai). The probability distribution must satisfy the normalization condition

(4.18), and 0 ln 0 = 0.

m∑
i=1

πi = 1. (4.18)

Entropy is a measure of the volume of information transmitted in a message through a

channel.

Maximum Entropy Principle

The entropy measures uncertainty or the average amount of information provided by

p (Jaynes, 1957, 1984; Golan et al., 1996; Golan, 2002). Uncertainty refers to situations
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with imperfect or unknown information and can be applied to predictions of future events,

that is, uncertainty means the range of possible values within which the true value of the

measurement lies (Golan, 2002).

The MEP gives the probability density function with certain constraints and has entropy

as large as possible, leading to a decision with the least surprising or without unwarranted

information (Jaynes, 1957, 1984; Golan et al., 1996; Conrad, 2004; Bickel, 2015). Moreover,

MEP provides a guide with which to solve the constraints of a model rather than directly

concerning the criterion function (Berger et al., 1996; Golan et al., 1996). According

to Conrad (2004), all Gaussians have the same value of entropy on infinitely maximum

entropy distribution with a fixed variance; therefore, the difference in solution is from

constraints. It allows the largest amount of information to be extracted from any given

small data with a unique solution (Paris and Howitt, 1998; Conrad, 2004; Berger et al.,

1996).

MEP is a robust statistical inference that is applied in recovering techniques or to inverse

problems. Many studies have shown surprising results in recovering images (Studholme

et al., 1999), estimating coefficients for dynamic systems (Golan et al., 1996), classifying

(Nigam et al., 1999), and sampling (Wynn, 1993).

In the case of ill-posed data 1, the maximum likelihood estimation is non-unique (Csiszar,

1991) and the least squares objective function vanishes (Paris and Howitt, 1998). However,

the MEP approach provides a unique solution (Golan et al., 1996; Paris and Howitt, 1998).

With well-posed data, an MEP estimation will be more reliable (Paris and Howitt,

1998). It seems that we can solve almost any complex problem with very limited data.

This powerful characteristic comes from the fact that no distribution assumptions are

required (Gupta et al., 2007). The MEP’s constraint rule is unsatisfactory (Uffink, 1996)

and we should not ignore these debates. However, any approach has certain controversies;

yet, MEP still shows remarkable efficiency in many fields.

Generalized Maximum Entropy Estimation

The fundamentals of MEP come from probability, but the coefficients of many models

do not have the properties of probabilities. Therefore, a re-parameterization and reformu-

lation procedure was proposed by Golan et al. (1996) to overcome this.

• Re-parameterization:

The idea here is that a coefficient can be written as a linear combination of discrete

points with corresponding weights, that is, a parameter β is a convex combination

1The number of unknown parameters is larger than the number of data points/observations.
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of finite K support points zk and probabilities πk so that πk ⩾ 0 and
∑K

k=1 πk = 1.

β =
K∑

k=1
zkπk = z′π, (4.19)

where z′ = (z1, z2, . . . , zK) and π = (π1, π2, . . . , πK)′.

The figure (4.4) gives a simple explanation of a convex combination, where P is a

convex combination of z1 z2 z3, but Q is not.

Z1

P

Z2

Z3

Q

Figure 4.4: Example of a convex combination

Now, instead of estimating β, we face the problem of recovering π with the chosen

z. Note that choosing z will span a space for each parameter and this could affect

the estimation results. Furthermore, the recovered parameters are not affected by

the number of support points, but are variant to different end-points (Paris and

Howitt, 1998). To assure the recovered β is not aberrant, the support interval

should be around the usual value of the parameters. For example, if we believe or

empirical research shows that 0 ⩽ β ⩽ 1 and choose K = 5, we must then specify

z′ = (0, 0.25, 0.5, 0.75, 1).

• Re-formulation:

The main purpose of this step is to define the objective function and constraints.

To make use of MEP, the objective function is the maximum nonlinear Shannon’s

entropy function. Furthermore, there are two kinds of constraints: consistency and
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normalization. The consistency constraint comes from data and the statistic model

(e.g., linear regression), whereas the normalization constraint comes from the defini-

tion of a convex combination and/or when the total probability is one. In the next

section, the procedure of generating an objective function and constraints for SEM

will be described in detail.

To measure the goodness of the recovered model, the normalized entropy measure S(π̃)

(Soofi, 1992; Golan, 2008) is given. Where 0 ⩽ S(π̃) ⩽ 1 , the value 0 implies perfect

certainty, whereas 1 implies total uncertainty, and the calculation of S(π̃) is expressed as

follows:

S(π̃) = −π̃′ ln(π̃)
M ln(D)

, (4.20)

where π̃ is the estimated value of π and the number of parameters to estimate M .

4.2.2 K-means Clustering

The K-means algorithm was first introduced by Lloyd (1957). It is a method of vector

quantization and a popular clustering algorithm. This algorithm starts with a first group

of randomly selected centroids, and then repeatedly calculates to optimize the positions

of the centroids. The iterative halts when the centroids have stabilized, or the defined

number of iterations has been achieved. In the result, N observations are partitioned

into q groups/clusters with the nearest mean2. Below is the mathematical depiction of

K-means clustering.

Given a set of data points (x1,x2, . . . ,xN ), xi ∈ Rp
x, these N observations are assigned

into q ⩽ N sets S = (S1, S2, . . . , Sq) by minimizing the objective function (4.21):

F =
n∑

i=1

q∑
j=1

wij∥xi − µj∥2, (4.21)

where wij = 1 if data point xi belongs to cluster Sj ; otherwise, wij = 0; and µj is the

mean/centroid of cluster Sj .

The iteration to minimize the objective function is conducted in two main step: assigning

the data points into the closest cluster (E-step) and computing the centroid of each cluster

(M-step).

• E-step: assign the xi into the closest cluster judged by sum of squared (squared

Euclidean) distance from cluster’s centroid:

2minimum the sum of the squared distance between the data points and the cluster’s centroid
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∂F

∂wij
=

n∑
i=1

q∑
j=1

∥xi − µj∥2 (4.22)

⇒ wij =


1 if j = arg min

j
∥xi − µj∥2

0 otherwise

• M-step: recomputing the centroid of each cluster:

∂F

∂µj
= 2

n∑
i=1

wij (xi − µj) = 0 (4.23)

⇒ µj =

n∑
i=1

wijxi

m∑
i=1

wij

Note: at the start of the algorithm, different initializations may lead to different results

because the algorithm can be stuck in local optimum, that is, not converge to global

optimum.

When changing the distance calculation, we use a different algorithm. Beside Euclidean

distance, there are two other popular distances used in K-means algorithm: (weighted)

Manhattan distance (see Figure 4.6) and (weighted) Minkowski distance (Singh et al.,

2013).

X

Y

Figure 4.5: Euclidean distance
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X

Y

Figure 4.6: Manhattan distance

• (weighted) Manhattan distance 3 is calculated by summing the horizontal and verti-

cal distances on a grid, that is, summing the absolute differences of their Cartesian

coordinates. For example, given X = (x1, x2) and Y = (y1, y2), the Manhattan

distance is |x1 − y1| + |x2 − y2|. In general, the Manhattan distance is calculated by

equation (4.24).

Manhattan(X, Y ) =
p∑

j=1
wi (|xi − yi|), (4.24)

where p is number of dimensions and w = (wi) is the weight vector.

• (weighted) Minkowski distance is a generalized metric form of Manhattan distance

and Euclidean distance.

Minkowski(X, Y, λ) = λ

√√√√ p∑
j=1

wλ
p (|xp − yp|)λ, (4.25)

where λ is the degree of Minkowski; when λ = 1, the Minkowski distance equals the

Manhattan distance, and when λ = 2, the Minkowski distances equals the Euclidean

distance.

3also known as city block distance
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4.2.3 Generalized Maximum Entropy Estimation for Structural Equa-
tion Modeling (GME-SEM)

SEM is depicted in a general form as follows:

• Measurement model:

x = A(px×r)γ+ ε (4.26)

• Structural model:

γ = B(r×r)γ+φ, (4.27)

where x is the vector of the observed variables (manifests), γ is the latent construct

vector, A = (αij) is the matrix of coefficients that reflect the relationship between the

manifests and latent constructs, B = (βef ) is the matrix of the coefficients reflecting the

relationship between the latent constructs, and ϵ and φ are the vectors of disturbances

with elements ε and φ, respectively.

The objective is to estimate the coefficients A, B and disturbances ϵ and φ. To

use GME based on the procedure from Golan et al. (1996), these unknowns are re-

parameterized. Choosing K as the number of support points, every coefficient is rewrit-

ten in the form of αij = zα
ij

′πα
ij , βef = zβ

ef

′
πβ

ef , where zα
ij

′ = (z(αij)
1 , z

(αij)
2 , . . . , z

(αij)
K );

zβ
ef

′ = (z(βef )
1 , z

(βef )
2 , . . . , z

(βef )
K ); πα

ij = (π(αij)
1 , π

(αij)
2 , . . . , π

(αij)
K )′ and

πβ
ef = (π(βef )

1 , π
(βef )
2 , . . . , π

(βef )
K )′ with normalization constraints

K∑
k=1

π
(αij)
k =

K∑
k=1

π
(βef )
k = 1;

π
(αij)
k , π

(βef )
k ⩾ 0; for all i = 1, 2, . . . , N , j = 1, 2, . . . , px; e = 1, 2, . . . , rx; f = 1, 2, . . . , rx.

Similarly, by the number of support points L, disturbances are also in the form of εi =

vε
i
′πε

i ; φe = vφ
e

′πφ
e ; where vε

i
′ = (v(εi)

1 , v
(εi)
2 , . . . , v

(εi)
L ), vφ

e
′ = (v(φe)

1 , v
(φe)
2 , . . . , v

(φe)
L ),

πε
i = (π(εi)

1 , π
(εi)
2 , . . . , π

(εi)
L )′ and πφ

e = (π(φe)
1 , π

(φe)
2 , . . . , π

(φe)
L )′ with normalization con-

straints
L∑

ℓ=1
π

(εi)
ℓ =

L∑
ℓ=1

π
(φe)
ℓ = 1; π

(εi)
ℓ , π

(φe)
k ⩾ 0; for all i = 1, 2, . . . , N , e = 1, 2, . . . , rx.

From empirical research and simulation, Golan et al. (1996) revealed that the mean

squared error (MSE) would be better if K = L = 5. If the value of coefficients belong to

[−α; α], then the support vector z′ = α(−1, −0.5, 0, 0.5, 1). The value of α should come

from theoretical or empirical research; if not, we should perform a sensitivity analysis by

considering the results with different α.

Because the end-points of the support vectors for the disturbances proposed follow

the three sigma rule (Pukelsheim, 1994) by Ciavolino and Al-Nasser (2009), then v′ =

3σ(−1, −0.5, 0, 0.5, 1), where σ is the empirical standard deviation of the standardized

errors. However, because choosing support spaces relies heavily on empirical research,

this is one of the disadvantages to GME-SEM, as it could cause confusion in innovative
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research.

Once the support vectors have been established, unknowns are simply estimated through

the recovering probabilities by maximizing the entropy function (4.28) subjected to con-

straints.

H(πA,πB,πε,πφ) = H(πA) + H(πB) + H(πε) + H(πφ)

= −πA′ lnπA − πB′ lnπB − πε′ lnπε − πφ′ lnπφ,
(4.28)

where πA = (πα
11

′,πα
12

′, . . . ,πα
1rx

′,πα
21

′, . . . ,πα
Nrx

′)′;

pB = (πβ
11

′,πβ
12

′, . . . ,πβ
1m

′,πβ
21

′, . . . ,πβ
rxrx

′)′; πε = (πε
1

′,πε
2

′, . . . ,πε
N

′)′;

πφ = (πφ
1

′,πφ
2 , . . . ,πφ

rx

′)′, and lnπ is element wise logarithmic function means lnπ =

(ln πi).

Following GME-SEM, we eliminate the latent constructs and re-parameterize; (4.26)

and (4.27) could be combined into a consistency constraint for each data point as (4.29).

xi = A(I − B)−1φi + εi, (4.29)

where I is an rx by rx identity matrix, i = 1, 2, . . . , n.

However, as mentioned in the introduction, when using data size n of N variables as

constraints, and the model wherein the number of coefficients is u and the number of

disturbances is v, consequently a large number of consistency constraints is N ×n and the

number of normalization constraints is (u+v)×N . This can cause problems of redundant

constraints, over-fitting, heavy calculating volume, and is even difficult to converge when

using numerical optimization to solve objective function. Furthermore, as GME-SEM is a

full-estimation method that is supposed to depend on large-sample properties, this makes

this situation more serious.

4.2.4 K-means Generalized Maximum Entropy Estimation for Struc-
tural Equation Modeling

To overcome issues of GME-SEM, data points are allocated into q groups, and then the

means of these groups are used as consistency constraints. The purpose of this grouping is

to gain clusters that simply compress data points and preserve the nature of data to assure

the representativeness of constraints. This is the procedure of thinning the constraint grid.

The consistent constrained of K-means GME-SEM is described as follows:

x̄(k) = A(I − B)−1φk + εk, (4.30)
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where x̄(k) is the centroid of cluster k, (k = 1, 2, . . . , q). We choose the cluster algorithm as

K-means. Among cluster algorithms, K-means is still the most popular method because

data points are partitioned into groups because of their inherent characteristics4. This

algorithm is also supposed as a simplest clustering algorithm (Jain, 2010). Moreover, K-

means creates tighter groups, and the sparse of the grid can be adjusted by choosing q.

Therefore, in the context of this study, K-means clustering is suitable for thinning the

constraint grid.

It is noteworthy that the number of consistency constraints now reduce to some q×N ≪

n × N , leading to a decrease in the number of normalization constraints. Thus, u + v × q.

Each mean-value represents the characteristic of each group and, as such, the constraints

of the new method still assure that all the core information is covered.

Here, we maximize a nonlinear objective function subject to linear constraint equations.

The solution can be obtained by the theory of constrained optimization with the first order

of Lagrange multipliers (Berger et al., 1996; Golan et al., 1994).

4.3 Evaluating the Performance of K-means GME-SEM

In this section, we evaluate the performance of K-means GME-SEM through two main

tasks:

a. First, we verify whether the algorithm works effectively with a simulation. This

simulation will also guide readers on how to apply K-means GME-SEM in model

parameter estimation. It is also a comparison of the efficiency of the two algorithms.

b. Second, we show the practical significance of this new method when applied to

real data. Key to our process is that K-means GME-SEM can be applied in some

situations wherein the ML, the current most popular model estimation method for

SEM, cannot be solved. We consider this the strongest contribution of “the new

branch,” and it also enhances the importance of GME in SEM. However, to the best

of our knowledge, prior studies have not recognized this importance in practice.

4.3.1 Simulation

We conduct a simulation to compare the performance of the proposed method with the

original one. The data reflected in the model (Figure 4.7) were generated with N = 150

by Simsem package in R and are summarized in Table (4.2). The input for generating

data includes factor loading matrix FL, factor covariance matrix FC, and σerror = 0.7

4Nature of data.
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(see Appendix C).

FL =



0.5 0 0

0.6 0 0

0.7 0 0

0 0.7 0

0 0.8 0

0 0.9 0

0 0 0.6

0 0 0.7

0 0 0.8



FC =


0.8 0.5 0.6

0.5 0.9 0.7

0.6 0.7 0.7


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Figure 4.8: Histogram of simulated data: Y1
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Figure 4.9: Histogram of simulated data: Y2
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Figure 4.10: Histogram of simulated data: Y3
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Figure 4.11: Histogram of simulated data: Y4
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Figure 4.12: Histogram of simulated data: Y5
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Figure 4.13: Histogram of simulated data: Y6
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Figure 4.14: Histogram of simulated data: Y7

Y8

x

0

5

10

15

20

25

30

−3 −2 −1 0 1 2

Figure 4.15: Histogram of simulated data: Y8
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Figure 4.16: Histogram of simulated data: Y9

The Solnp function in the Rsolnp package (Ghalanos and Theussl, 2012) is used to solve

the optimization problem. Solnp is a non-linear optimization function using an augmented

Lagrange method to solve the minimization problem in form of (4.31).

min f(x). (4.31)

subject to

g(x) = 0.

LBh ⩽ h(x) ⩽ UBh.

LBx ⩽ x ⩽ UBx.

In the above, LB is the lower bound and UB is upper bound, and are optional.

Because our objective function needs to be maximized, a small adjustment is applied

here: maximizing f(x) is equivalent to minimizing −f(x). Proof for this statement is

below:

Given x0 ∈ X is an absolute maximum point of f : X → R if f(x0) ⩾ f(x) (∀x ∈ X).

Similarly, x0 ∈ X is an absolute minimum point of −f : X → R if −f(x0) ⩽ −f(x)

(∀x ∈ X).
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Proof.

−f(x0) ⩽ −f(x)

f(x) − f(x) − f(x0) ⩽ f(x0) − f(x0) − f(x)

f(x) + (−f(x) − f(x0)) ⩽ f(x0) + (−f(x0) − f(x))

remove − f(x0) − f(x) from both sizes, then:

f(x) ⩽ f(x0)

. (4.32)

Done.

After this adjustment, our problem changes from maximizing function (4.28) to mini-

mizing function (4.33), subject to the same constraints.

f(x) = −H(πA,πB,πε,πφ) = −H(πA) − H(πB) − H(πε) − H(πφ)

= πA′ lnπA + πB′ lnπB + πε′ lnπε + πφ′ lnπφ.
(4.33)

g(x) is a set of constraints and LBx = 0 because pi ⩾ 0.

Within the scope of this simulation, the control parameters are set at outer.iter = 10,

inner.iter = 800, delta = 1e − 13, and tol = 1e − 14, while considering q = 2, q = 6, and

q = 10.

The results are summarized in Table (4.3). Note that the optimization procedure of

GME-SEM stopped after two iterations with a caution about the “Problem Inverting

Problem.” According to Gill and King (2004), non-invertible Hessians can be a signal of a

nonsensical model. However, with the same design but different constraints, the models of

q = 2, 6, 10 gave normal results. It can thus be understood that the problem was caused by

constraints. Temporarily, as a limitation of this study, the results are compared without

taking the warning into consideration.

The value pseudo-R2 measures the goodness of fit, where 0 ⩽ R2 ⩽ 1, 1 means it is

perfectly fitted and 0 means no informational value (Ciavolino and Al-Nasser, 2009; Soofi,

1992). The R2 value of GME-SEM near 1 is a sign of over-fitting; in the model with q = 2,

this value quite low. The model q = 6 and q = 10 give acceptable goodness of fit values,

with a balanced number of constraints and calculation volume.

In practice, good calculation speed for SEM is required because researchers often have

many candidate models for SEM. For this reason, within the scope of this simulation, the

K-means GME-SEM with 6 and 10 clusters shows dominant results compared with just
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Table 4.3: Summary of the simulation results

K-means GME-SEM GME-SEM

Size q = 2 q = 6 q = 10 N = 150*

No. CC 18 54 90 1, 350
No. NC 36 84 132 1, 812

S(π̃) 0.666 0.222 0.133 0.007
Pseudo-R2 0.333 0.778 0.866 0.992

Time 7.716 (s) 51.810 (s) 5.615 (m) 1.554 (h)
Convergence 0 0 0 2

* Problem inverting Hessian

No. CC: Number of consistency constraints

No. NC: Number of normalization constraints

S(p̃): normalized entropy

Pseudo-R2 = 1 − S(π̃)

s: seconds; m: minutes; h: hours

0: converged ; 1: not converged; 2: not converged with warnings

the GME-SEM.

Next, we compare the proposed method with SEM based on ML by parameter recoveries.

The generating model is the same as in Fig 4.7. The setting of Rsolnp is also the same

as in the first simulation. We use sem package in R for the parameter estimation of SEM

based on ML. The evaluation criterion is the mean square error (MSE) of matrices of

coefficients A and B. The number of repetitions is 20. The number of objects N is 150

and 300.

Table 4.4: MSE of A

N K-means GNE-SEM ML
q=2 q= 6 q=10

150 3.239 3.789 2.103 2.516
300 3.235 2.097 3.325 2.549

Table 4.5: MSE of B
N K-means GNE-SEM ML

q=2 q= 6 q=10
150 3.240 3.919 4.220 1.073
300 3.240 3.479 3.782 1.159
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Tables 4.4 and 4.5 show the MSE of A and B by each method, respectively. When N

is 150, in the proposed method, q= 10 is the best result among the MSEs of A. When N

is 300, in the proposed method, q= 6 is the best result among the MSEs of A. Therefore,

the proposed method recovers measurement model A when we select a suitable number

of q. However, the proposed method is the estimation of the parameter of the latent

structure B. This property may be caused by a constraint of the proposed method. The

proposed model is constrained by only means. Hence, the constrained disturbance vector

φ is not sufficient as the disturbance vector ε is. The results of the simulation show

that, with large sample size, in most cases, the MSEs of the ML estimation method are

still better than that of K-means GME-SEM. For a comprehensive understanding of the

proposed method, a large number of simulations are required for evaluating the MSE of

the covariance matrix and for checking the convergence and the effect of misspecification.

However, the proposed method still has a role to play (as will be discussed in the next

section) in the application field.

4.3.2 A Real Data Example

To describe some characteristics of K-means GME-SEM in practice, an example using

real data 5 from empirical research in the construction sector in the field of supply chain

management is given. The model included 13 observations abbreviated as TMS1, TMS2,

TMS3, and TMS4 to measure for the latent variable TMS; HRM5, HRM6, HRM7, HRM8,

HRM9, and HRM10 to measure for latent variable HRM; and QD11, QD12, and QD13 to

measure for latent variable QD on a seven-point Likert scale. Furthermore, the structure

of the model includes three coefficients that reflect the effect TMS has on QD and HRM,

as seen in Figure 4.17.

In the original study, based on the theory, the authors proposed two hypotheses that

need to be tested:

* H1: TMS positively affects HRM.

* H2: TMS positively affects QD.

However, in this study, we must discover one more relationship, that is, the relationship

of TMS on QD.

5The data are extracted from part of the study “Supply chain management and organizational perfor-
mance: the resonant influence,” published by Emerald
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For the CB-SEM with the ML estimation method, the recommended minimum sample

size should be from 100 to 150 (Hair et al., 1998), or if more rigid, it should be 200 (Hoelter,

1983). In a complicated model with many observed variables, the number of data points

could be higher in order to assure the degree of freedom is non-negative. However, in

this study, the subjects in the design who are tasked with answering the questionnaire are

managers from enterprises. This is a difficult population to reach, and only 50 valid answers

were collected. The data gained also does not have normal distributions of each variable

(see Figures from 4.18 to 4.30, and Table 4.6). With this sample size and distribution,

applying the available CB-SEM estimation methods is not possible. In this situation,

K-means GME-SEM is an alternative solution.
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Figure 4.18: Distribution of real data: variable TMS1
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Figure 4.19: Distribution of real data: variable TMS2
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Histogram of TMS3
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Figure 4.20: Distribution of real data: variable TMS3
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Figure 4.21: Distribution of real data: variable TMS4
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Histogram of HRM5
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Figure 4.22: Distribution of real data: variable HRM5

Histogram of HRM6
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Figure 4.23: Distribution of real data: variable HRM6
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Histogram of HRM7
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Figure 4.24: Distribution of real data: variable HRM7
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Figure 4.25: Distribution of real data: variable HRM8
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Histogram of HRM9
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Figure 4.26: Distribution of real data: variable HRM9

Histogram of HRM10
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Figure 4.27: Distribution of real data: variable HRM10
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Histogram of QD11
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Figure 4.28: Distribution of real data: variable QD11
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Figure 4.29: Distribution of real data: variable QD12
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Histogram of QD13
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Figure 4.30: Distribution of real data: variable QD13

Applying K-means GME-SEM starts with deciding the constraint grid. The value of

q should be considered by combining the optimal number of clusters from the Elbow,

Silhouette, and Gap statistic methods. Figures 4.31, 4.32, and 4.33 depicting q = 2, 3, 4

are set as the three cases of the constraint grid.
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Figure 4.31: Optimal number of constraints: Elbow
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Figure 4.32: Optimal number of constraints: Silhouette
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Figure 4.33: Optimal number of constraints: Gap

According to the viewpoint of the author, the dimension of spanned space for parameters

should be equal, that is, K = L, to maintain the uniformity in measurement system. In this

example, K = L = 5, as the guideline of Golan et al. (1996), and z = (−1, −0.5, 0, 0.5, 1),

v = (−3, −1.5, 0, 1.5, 3), and control parameters outer.iter=10, inner.iter = 800, delta =

1e-13, tol = 1e-13.
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Table 4.7: Estimation results

q = 2 q = 3 q = 4

TMS1 <– TMS 0.667 −0.795 0.445

TMS2 <– TMS 0.668 −0.798 0.446

TMS3 <– TMS 0.661 −0.793 0.447

TMS4 <– TMS 0.657 −0.790 0.459

HRM5 <– HRM 0.543 −0.700 0.574

HRM6 <– HRM 0.534 −0.690 0.565

HRM7 <– HRM 0.530 −0.694 0.570

HRM8 <– HRM 0.521 −0.679 0.566

HRM9 <– HRM 0.531 −0.692 0.567

HRM10 <– HRM 0.564 −0.729 0.576

QD11 <– QD 0.575 0.718 0.580

QD12 <– QD 0.497 0.686 0.554

QD13 <– QD 0.476 0.688 0.560

HRM <– TMS 0.889 0.976 0.587

QD <– TMS 0.558 −0.456 0.506

QD <– HRM 0.508 −0.791 0.608

S(p̃) 0.462 0.247 0.136

Pseudo-R2 0.538 0.753 0.864

As the results in Table (4.7) show, q = 4 has the best goodness of fit value. Besides,

there is a tendency that the goodness of fit increases when q increases (see Figure (4.34)).

If this value is too high, the result could imply over fitting. As with the simulations, and

the application on real data, q in the range of 4 to 6 usually implies acceptable goodness

of fit for the model.
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Figure 4.34: Goodness of fit when q increase

In addition, using the optimal case with q = 4 as benchmarking, the three-dimension

spanned space for parameters, that is, K = L = 3, is also tested to consider the existence

of any differences between the number of support points. The estimated coefficients are

0.5678220, 0.5576318, 0.5664214, 0.5631794, 0.5675743, 0.5535214, 0.5586630, 0.5466499,

0.5491629, 0.5569383, 0.5060573, 0.5678182, 0.5552965, 0.5676999, 0.5307815, 0.5676955,

and S(p̃) = 0.1075043, with pseudo-R2 = 0.8924957. With this result, there are almost

no large differences between K = L = 3 and K = L = 5. These results consolidate the

results of previous studies, that is, that the number of support points has no effect on the

recovered parameters.

In the published study, ML was used to estimate the parameters. To be able to use the

ML estimation method, this research team had to distribute 2,147 questionnaires; with

a response rate of 11.5%, only 246 usable questionnaires were collected. Whereas with

K-means GME-SEM, only 50 valid questionnaires are needed, that is, only 20–25% of the

effort is needed.

The results of the original study are as follows:

*H1: TMS positively affects HRM at 0.638.

*H2: HRM positively affects QD at 0.612.

In this study, with K-means GME-SEM, the results are as follows:
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*H1: TMS positively affects HRM at 0.587.

*H2: HRM positively affects QD at 0.608.

The two results are almost equivalent. Importantly, we discover that TMS has a positive

effect on QD at 0.506.

4.3.3 Concluding Remarks

A problem in applying SEM is that, in complex models, where many relationships/paths

are expressed, the degrees of freedom are quickly exhausted, leading to an underdetermined

model. SEM also requires a set of assumptions such as multivariate normality and mini-

mum sample size with various criteria (Hair et al., 2011; Boomsma, 1985)6 to be fulfilled

(Hair et al., 2011). This, in turn, restricts CB-SEM.

Given these limitations, GME-SEM is an information-theoretic-based approach that

evaluates results by quantifying the reduction in information uncertainty, that is, it mea-

sures the level of information in the data under the recovered model. These criteria could

be used to measure the goodness of the estimated model regardless of the sample size

and distribution of data. Together, this makes GME-SEM more flexible. However, some

challenges persist, and to overcome them, we proposed K-means GME-SEM. K-means

GME-SEM inherits the advantages of GME-SEM but outperforms it in terms of reducing

calculation volume with acceptable goodness of fit, thus becoming a hands-on estimation

method.

This research contributes one more step in developing the new branch of SEM: the

information-theoretic-based branch. However, SEM research not only refers to estimation

methods, but also combines other techniques. After estimating coefficients, we must also

calculate the modification indices for K-means GME-SEM and improve the model to

achieve a final suitable model. We hope to explore this in the near future.

The simulation in this research shows that the estimation results are sensitive to consis-

tency constraints. This effect has not been examined carefully. Our simulation used the

Hartigan–Wong K-means algorithm; how other K-means algorithms, such as the Lloyd

algorithm or Forgy algorithm, might affect the result of the new SEM estimation is yet

unknown. Moreover, K-means algorithm has many local optima. Thus, the standard error

of estimator of proposed method may be larger than ML and TLS. For investigating the

performance of proposed method in some practical cases, we should conduct simulation

including various scenarios. This is future works.

6Larger sample size when applying SEM is widely accepted as a “rule of thumb”
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K-means is also not the only method that can be used to thin the constraint grid. A

study that compares alternative choices, such as hierarchical clustering when incorporated

with GME-SEM, should be conducted as well. One limitation of our model is that when

its complexity increases, that is, the number of parameters increases, the proposed model

becomes heavy. A possible solution is to integrate the approach of Huang et al. (2017) to

balance the complexity and the goodness of fit for the model. The effects of misspecification

should also be investigated for the proposed method to comprehensively compare it with

the CB-SEM, as in Kolenikov and Bollen (2012). We consider these to be fruitful directions

for future research on the newly proposed method in SEM.
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Chapter 5

Conclusion

In this study , we develop two estimation methods for complex linear models to reduce

the burden of assumptions for data. The reviewed linear models provide a baseline for the

more intricate steps in data analysis.

In Chapter 2, we develop a total least squares (TLS) model, which has been a staple

of fitting methods for decades . Although we propose a regression model to describe the

relationship between two sets of variables, the true contribution of this study lies in its

specifying an application of the TLS and orthogonal regression. Multivariate multiple or-

thogonal linear regression (MMOLR) is suitable for applications in medical and chemical

fields, where numerous variables are known to interact in a complex process that is affected

by control variables. In fact, 2B-PSL that is related MMOLR, is developed in chemical

research fields. In these research field, linear model is widely used because interpreta-

tion of parameters is easy and prediction performance of linear model is often sufficient

for practical use. From the result of numerical example, MMOLR has superior predic-

tion performance. Thus, MMOLR will be widely used instead of 2B-PSL and canonical

regression.

The MMOLR can be considered a solution for data having multicollinearity, that is,

when the independent variables in a regression model are strongly correlated. This phe-

nomenon is especially common in medical or chemical data owing to the specific charac-

teristics of these sectors.

In Chapter 3, we employ the generalized maximum entropy (GME) estimator as an

appropriate method for cases without distributional assumption, that is, normality can be

omitted when running data analysis. We find that the K-means GME-SEM (structural

equation modeling), originally developed for small data, is also suitable for big data.

Within the scope of this thesis, the K-means GME was developed for SEM; nevertheless,

without changing the theoretical basis, this method can still be applied to other simple
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linear regression models1.

Although the estimation method in Chapter 4, K-means GME, can be applied to the

model in Chapter 3, it is, at the same time, recommended to use MMOLR for the model

with two latent variables because of the brevity of this estimation method.

There are two common points in the proposed estimation methods . The first is assum-

ing a complex relationship among the observed variables caused by the latent variables

described in the simple linear model. The two proposed estimation methods estimate

the latent variables because the research interests compose the concept from the data. In

MMOLR, the TLS is used for the estimation of the latent variable, whereas the GME-SEM

method uses the GME. The second point is that the independent variables include error

terms. In MMOLR, this is a key assumption. From this assumption, we extend MvMR

to MMOLR. In the GME-SEM approach, the error term is modeled and estimated. Mod-

eling the error term by linear combination is the key assumption of GME-SEM because

this assumption raises the number of parameters and makes the estimator more robust.

Although this robustness is inherent to the K-means GME-SEM, the K-means method

reduces the number of constraints in the GME-SEM.

Now, we consider the usefulness of the proposed method in real data analysis. In the

context of Industrial Revolution 4.0, our two estimation methods can be applied to big data

analysis, machine learning, artificial intelligent systems, and so on. Industrial Revolution

4.0, also known as the 4.0 Revolution toward digital transformation, has been theorized as

a concept since 2011. It refers to a paradigm shift wherein all fields of life and production

are enhanced through the integration of the physical and digital in order to support real-

time data and the Internet of Things. Within this paradigm, emergent concepts such as

“smart”—for example, smart city, smart industrial park, smart device, and smart supply

chain—have come to exist, and they imply increased productivity and responsiveness of

production and service systems through digitalization. This “revolution” is now a global

development. In this era, data are collected and processed continuously (real-time data);

as a result, they are chaotic, and it is difficult to satisfy the assumptions of distribution.

Our estimation method could thus be useful for building linear regression models that can

be applied in machine learning and artificial intelligent systems regardless of the chaotic

nature of the data.

1for a similar approach, see Corral et al. (2017) for GME of linear models.
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Appendix A

Singular Value Decomposition

Any matrix X(n×m) with rank r can be decomposed as

X(n×m) = U(n×r)D(r×r)V(r×m), (A.1)

where

• U is the column orthogonal matrix (U ′U = I) contains the eigenvectors of XX ′;

• D = diag(σ1, σ2, . . . , σr) and σ1 > σ2 > · · · > σr;

• di =
√

λi, with λi as the eigenvalue of X ′X; and

• V is the column orthogonal matrix (V T V = I) that contains the eigenvectors of

X ′X.
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Appendix B

Structural Equation Modeling

SEM has developed to be one of the main techniques of data analysis and attracted many

scholars across different disciplines, especially those in the social sciences (Barrett, 2007;

Kelloway, 1995). SEM is a technique to analyze multiple and interrelated relationships

among the constructs for model building (Tabachnick and Fidell, 2007; Hair et al., 2014;

Byrne, 2013).

SEM has its own language. To fully understand the complexity of SEM, we summarize

its definitions/notations.

SEM includes a set of regression equations simultaneously, where the exogenous or

upstream variables are the independent variables. These are assumed to be measured

without errors. The endogenous or downstream variables are the dependent or mediator

variables 1. For example, in figure B.1, l1 is the exogenous variable, l2 is the mediator 2,

and l3 is the endogenous variable.

1A mediator variable is the variable that mediates between the dependent and the independent variables,
that is, it explains the indirect relationship between the dependent and the independent variable.

2The mediator is also treated as an endogenous variable.
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c3

d2

d32l

1l 3l
Figure B.1: Relationship in SEM

Manifest/observed variables/indicators are measured by appliers through sampling or

from data, whereas latent/unobserved variables are inferred/built from measured vari-

ables in the analysis. The relationships among observed and unobserved variables are

represented using path diagrams, where latent variables are denoted as ovals or circles,

and rectangles or squares represent the measured variables 3. The single-headed arrows

represent causal effects/regression relations in the path diagram. Figure B.2 is an example

of the relationships among the manifest constructs v1, v2, and v3 and the latent construct

l1.

e1

e2

e3

1l
1v

2v

3v
Figure B.2: Example of the relationships between the manifest and latent construct

The numbers on the arrow-shaft are the coefficients or loading of dependent variables

on the independent variables. A two-headed arrow represents correlation.

3Residuals/errors/disturbances are always unobserved; hence, they are depicted by ovals or circles.
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B.1 Expression of an SEM

We now explain how a matrix in an SEM model is formed. As mentioned earlier,

single-head arrows represent causal effects. The direction of the arrow distinguishes the

independent variable from the dependent variable in a relationship. The arrowhead points

to the dependent variable; thus, we could write equations for SEM from the path diagram,

or in contrast, draw a path diagram from equations. For instance, in the path diagram in

Figure B.2, the arrowhead points to v1, v2, and v3, which yields three equations, (B.1),

(B.2), and (B.3).

v1 = a1l1 + e1. (B.1)

v2 = a2l1 + e2. (B.2)

v3 = a3l1 + e3. (B.3)

Similarly, in Figure B.1, the arrowhead points to L2 and L3, which can be expressed as

(B.4) and (B.5).

l2 = c1l1 + d2. (B.4)

l3 = c3l1 + c2l2 + d3. (B.5)

In more complicated models, such as in Figure B.3, we have 11 equations besides

(B.1),(B.2), (B.3), (B.4), and (B.5), that is, from (B.6) to (B.11).

c3

d2

d3e1

e2

e3

e4 e5 e6

e7

e8

e9
3v

2v

1v

4v 5v 6v

7v

8v

9v

1l

2l

3l

Figure B.3: Prototype path diagram of an SEM
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v4 = a4l2 + e4. (B.6)

v5 = a5l2 + e5. (B.7)

v6 = a6l2 + e6. (B.8)

v7 = a7l3 + e7. (B.9)

v8 = a8l3 + e8. (B.10)

v9 = a9l3 + e9. (B.11)

In practice, the models are even more complicated; hence, the best way to express SEM

is systematizing through matrices. Matrices allow us to easily write the algorithm for

estimating parameters simultaneously. In the next section, we demonstrate the ways to

depict SEM in a matrix term.

B.2 SEM in the Matrices Term

Jöreskog (1970) first introduced a general model for SEM; later research developed the

basics, that is, theories, terms, and rules, for SEM on this model. One such later model

is the Jöreskog’ model, which is separated as follows:

• The measurement model specifies the relationships between the observed and

unobserved variables, for example, Figure B.2. The Jöreskog’s model is divided into

exogenous and endogenous measurement models.

– The exogenous measurement model includes the relationship between the ob-

served variables and the upstream latent constructs, such as equations (B.1)

to (B.3) in the aforementioned example. This model is depicted generally in

matrices, as in (B.12).

x = Λx
(px×rx)ξ+ δ, (B.12)

where x is a vector of px exogenous observed variables, Λx is the matrix of

coefficients, ξ is a vector of rx exogenous latent construct, and δ is the distur-

bance vector.
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For example, equations (B.1)–(B.3) are arranged in matrices as follows:


v1

v2

v3

 =


a1

a2

a3

 (l1) +


e1

e2

e3

 . (B.13)

– The endogenous measurement model expresses the relationships between the

observed variables and the downstream latent constructs, for example, see equa-

tions (B.6) to (B.11). (B.14) is the matrix term thereof.

y = Λy
(py×ry)η+ ε, (B.14)

where y is a vector of r endogenous observed variables, Λy is the matrix of

coefficients, η is a vector of m endogenous latent variables, and ε is the distur-

bance vector.

For reference, equations (B.6)–(B.11) are compiled in matrices as (B.15):



v4

v5

v6

v7

v8

v9


=



a4 0

a5 0

a6 0

0 a7

0 a8

0 a9



 l2

l3

 +



e4

e5

e6

e7

e8

e9


(B.15)

• The structural model expresses the relationship between the latent variables as

(B.16); here, B is the matrix of coefficients between the endogenous unobserved

variables, ξ is the matrix of relationships between the exogenous and endogenous

latent variables, and ζ is the vector of disturbances/errors.

η = B(ry×ry)η+ Γ(ry×rx)ξ+ ζ. (B.16)

In the prototype model, the structural model in the matrices term is as follows

(B.17):

 l2

l3

 =

 0 0

c2 0

  l2

l3

 +

 0

c3

 (l1) +

 d2

d3

 . (B.17)
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Appendix C

R Code and Simulated Data for
Evaluating K-means GME-SEM

The R code for generating data:

# Generate data:

N<-150

library("simsem")

# Factor loading - FL

loading <- matrix(0, 9, 3)

loading[1:3, 1] <- c(1, NA, NA)

loading[4:6, 2] <- c(1, NA, NA)

loading[7:9, 3] <- c(1, NA, NA)

loadingVal <- matrix(0, 9, 3)

loadingVal[1:3, 1] <- c(0.5, 0.6, 0.7)

loadingVal[4:6, 2] <- c(0.7, 0.8, 0.9)

loadingVal[7:9, 3] <- c(0.6, 0.7, 0.8)

FL <- bind(loading, loadingVal)

# Factor covariance - FC

facCov <- matrix(NA, 3, 3)

facCovVal <- diag(c(0.8, 0.9, 0.7))

facCovVal[lower.tri(facCovVal)] <- c(0.5, 0.6, 0.7)

facCovVal[upper.tri(facCovVal)] <- c(0.5, 0.6, 0.7)
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FC <- binds(facCov, facCovVal)

# Error covariance

error.var <- matrix(0, 9, 9)

diag(error.var) <- 0.49

TE <- binds(error.var)

# Sigma

err.sig<- 0.7

# Model

CFA.model <- model(LY=FL, PS = FC, TE=TE, modelType="CFA")

# Simulate data

simulated_data_Eigen_GME_SEM <- generate(CFA.model, N, seed = 2)
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Appendix D

Real Data Description

The real data used in Chapter 4 is extracted from a research project on supply chain

management, which published the results under the title “Supply chain management

and organizational performance: the resonant influence” (DOI https://doi.org/10.1108

/IJQRM-11-2017-0245 by Emerald in Sight). This project was supported by the Eu-

ropean Commission to advance the understanding of the ASEAN region —in this case,

Vietnam. The scope of the data in this project is much broader; however, we only describe

a part of it in this thesis.

The scales of constructs were developed as shown in Table D.1 based on an extensive

literature review. The data were collected using a structural questionnaire whose answers

were rated on a seven-point Likert scale, ranging from 1 indicating “strongly disagree”

to 7 indicating “strongly agree.” This way, we extracted the different attitudes of the

respondents, that is, Vietnam-based garment enterprises.

* Note: To provide more information about the data, hereafter the more in-depth terms

of supply chain management will be used.

Table D.1: Questionnaire for collecting data

No. Constructs Observed items

1

Top

management

support

(TMS)

TMS1: Offer of innovation and continuous improvement

policies.

TMS2: Provision of necessary resources for processes.

TMS3: Promotion of partners’ involvement in firm’s ac-

tivities.

TMS4: Participation of top management in supply chain

improvement process.

Continued on the next page
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No. Constructs Observed items

2

Human

resource

management

(HRM)

HRM5: Relationship between human resource objectives

and strategy.

HRM6: Role of environment on the development of all em-

ployees.

HRM7: Promoting the motivation of employees

HRM8: Involvement in determining training needs.

HRM9: Timely training program for employees.

HRM10: Responsibility in employees’ tasks.

3

Reporting and

analysis of

quality data

(QD)

QD11: The collection of quality data.

QD12: Display of quality data, control charts... at worksta-

tions.

QD13: Delivery feedback of quality data to employees.

The data are presented in Table D.2.
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