
Exact WKB Analysis of Difference Equations for Bessel Functions

Shun Ito∗ and Yoshitsugu Takei∗∗

(Received April 12, 2022)

In this paper the exact WKB analysis, that is, the WKB analysis based on the Borel resummation method,

of difference equations for Bessel functions is considered. We investigate their WKB solutions, Stokes curves, and

connection formulas by using integral representations of solutions. In particular, we will show that infinitely many

new Stokes curves appear for the difference equations for Bessel functions.
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1. Introduction

WKB solutions, which are divergent solu-

tions of the form of power series in the Planck

constant ℏ, have been used to solve eigenvalue

problems for Schrödinger equations. Since the

pioneering work of Voros1) the Borel resumma-

tion method is employed to give analytical mean-

ing to WKB solutions and such analysis based

on the Borel resummation is now called the ex-

act WKB analysis. At present, it is applied not

only to Schrödinger equations but also to high-

order ordinary differential equations and nonlin-

ear equations2,3). However, the exact WKB anal-

ysis for difference equations is still almost un-

touched. In this paper, as a first step toward the

extension of the exact WKB analysis to difference

equations, we consider a difference equation

σ2γψ − 2γ

x
σ1γψ + ψ = 0, (B)

where γ and x are variables and σγ denotes a

small shift operator γ 7→ γ + ℏ for γ, that the

Bessel functions satisfy from the viewpoint of the

exact WKB anaysis. To be more specific, we dis-

cuss WKB solutions, Stokes curves and connec-

tion formulas for Eq. (B). In particular, we will

∗Graduate School of Science and Engineering, Doshisha

University, Kyoto
∗∗Department of Mathematical Sciences, Doshisha Uni-

versity, Kyoto, E-mail: ytakei@mail.doshisha.ac.jp

show that infinitely many new Stokes curves ap-

pear for Eq. (B) by using integral representations

of Bessel functions.

The plan of this paper is as follows: We first

review the basic theory of the exact WKB analy-

sis for Schrödinger equations in Section 2. Then,

with the help of contiguity relations, we derive

the difference equation Eq. (B) for Bessel func-

tions and discuss its WKB solutions and Stokes

curves in Section 3. Sections 4 and 5 are the main

part of this paper: Applying the so-called steep-

est descent method to integral representations of

Bessel functions, we investigate the exact WKB

theoretic structure of Eq. (B) in details and show

that infinitely many new Stokes curves appear for

Eq. (B).

2. Brief Review of the Exact WKB

Analysis

Following Ref.2), we briefly review the exact

WKB analysis for the Schrödinger equation with

a large parameter η = ℏ−1:(
− d2

dx2
+ η2Q(x)

)
ψ = 0, (1)

where Q(x) is a polynomial or a rational function.

In what follows we assume η > 0.

A formal solution of Eq. (1) of the form

ψ± = exp(±y0(x)η)
∞∑
n=0

ψ±,n(x)η
−n−1/2 (2)



is called a WKB solution. Here y0(x) =∫ x√
Q(x)dx and ψ±,n(x) (n ≥ 0) are recursively

determined. For the construction of WKB solu-

tions see Ref.2). As WKB solutions are divergent

in almost all cases, we employ the following Borel

resummation method in the exact WKB analysis.

Definition 1. Let α ̸∈ R \ {0,−1,−2, . . .}. For

a formal series of the form

ψ(η) = exp(y0η)
∞∑
n=0

ψnη
−n−α (3)

where y0, ψn are independent of η, we define its

Borel transform ψB(y) and Borel sum Ψ(η) by

ψB(y) =

∞∑
n=0

ψn

Γ(n+ α)
(y + y0)

n+α−1 (4)

and

Ψ(η) =

∫ ∞

−y0

exp(−yη)ψB(y)dy, (5)

respectively. Here Γ(z) denotes the gamma func-

tion and the path of the integral (5) is taken to

be a straight line emanating from −y0 and being

parallel to the positive real axis.

When the Borel sum (5) is well-defined, that is,

when the Borel transform ψB(y) is convergent

and analytically continuable along the integral

path of (5), and further the integral (5) con-

verges, we say that a formal series ψ(η) is Borel

summable.

To describe where WKB solutions are Borel

summable, we introduce the following terminol-

ogy.

Definition 2. (i) A zero of Q(x) is called a turn-

ing point of Eq. (1). In particular, a simple zero

of Q(x) is called a simple turning point.

(ii) A real one-dimensional curve defined by

ℑ
∫ x

a

√
Q(x)dx = 0, (6)

where a is a turning point, is called a Stokes curve

of Eq. (1). A region surrounded by Stokes curves

is called a Stokes region.

For example, when Q(x) = x, the origin x = 0

is a unique turning point and the Stokes curves

consist of three straight lines emanating from the

origin.

In the case of Eq. (1) the following holds2).

Theorem 1. Assume that all turning points of

Eq. (1) are simple and that none of the turning

points are connected by Stokes curves. Then we

have

(i) Except on Stokes curves WKB solutions are

Borel summable and define analytic solutions.

(ii) On each Stokes curve Stokes phenomena oc-

cur with Borel sums of WKB solutions. That is,

after crossing a Stokes curve the analytic continu-

ation of Borel sums Ψ± of WKB solutions become

Ψ+ → Ψ̃+ ± CΨ̃−, Ψ− → Ψ̃−, (7)

or

Ψ+ → Ψ̃+, Ψ− → Ψ̃− ± CΨ̃+, (8)

where C is a constant and Ψ̃± are Borel sums of

WKB solutions in a new Stokes region adjacent

to the original region across the Stokes curve.

The relations (7)-(8) are called the connection

formulas for WKB solutions. For the determi-

nation of the constant C see Ref.2).

The purpose of this paper is to investigate

to what extent these results can be extended to

the difference equation (B) for Bessel functions.

3. Bessel’s Difference Equation — Its

WKB Solutions and Stokes Geometry

In this section we recall some properties

of Bessel functions and introduce the difference

equation that the Bessel functions satisfy.

Definition 3. The Bessel function Ja(x) is de-

fined by

Ja(x) =
(x
2

)a ∞∑
n=0

(−1)n (x/2)2n

Γ(n+ a+ 1)n!
, (9)

where a is a complex parameter.



As is well-known, Ja(x) and J−a(x) satisfy

x2
d2ψ

dx2
+ x

dψ

dx
+ (x2 − a2)ψ = 0. (10)

Furthermore, the Bessel functions satisfy the fol-

lowing relation (12) known as the contiguity re-

lation or recurrence formula4,5):

Proposition 2. Let

H(a) =
∂

∂x
− a

x
, B(a) =

∂

∂x
+
a

x
. (11)

Then the following relation holds.

H(a)Ja(x) = −Ja+1(x), B(a)Ja(x) = Ja−1(x).

(12)

In other words, H(a) is a raising operator that

changes the parameter a to a + 1 and B(a) is a

lowering operator that changes a to a− 1.

By Proposition 2, letting σ1aψ := −H(a)ψ =

−ψ′ + (a/x)ψ, we find that σ1a acts on the Bessel

functions Ja(x) as a shift operator that increases

the parameter a by 1. Rewriting Bessel’s differen-

tial equation (10) by using the shift operator σ1a,

we thus obtain the following difference equation

for Bessel functions Ja(x).

σ2aψ − 2(a+ 1)

x
σ1aψ + ψ = 0. (13)

In what follows we study the difference

equation (13) from the viewpoint of the exact

WKB analysis. For that purpose we introduce a

large parameter η into (13) in the following way:

x 7→ ηx, a+ 1 7→ ηγ. (14)

We also let σ1γ be a small shift operator for the

paramater γ: σ1γf(γ) = f(γ + η−1). Then Eqs.

(10) and (13) become

x2
d2ψ

dx2
+ x

dψ

dx
+ η2(x2 − (γ − η−1)2)ψ = 0 (15)

and

σ2γψ − 2γ

x
σ1γψ + ψ = 0, (B)

respectively. In particular, Eq. (B) is the equa-

tion that has already appeared in Introduction.

Eq. (B) is the main object of our study.

We first construct WKB solutions of Eq.

(B). In what follows we consider an unknown

function ψ(γ) to be a function of γ (while x is

considered to be just a parameter) and assume

that ψ has the following expansion:

ψ = exp

(
η

∫ γ

ϕ(γ)dγ

) ∞∑
n=0

ψn(γ)η
−n−1/2.

(16)

Further, via the Taylor expansion, we regard the

small shift operator σ1γ as an infinite order differ-

ential operator

σ1γψ(γ) = ψ(γ + η−1) =
∞∑
n=0

η−n

n!

dn

dγn
ψ(γ). (17)

Then, substituting (16) into Eq. (B) with apply-

ing (17) to (16) and comparing like powers with

respect to η, we find(
e2ϕ − 2γ

x
eϕ + 1

)
ψ0 = 0, (18)

and(
2eϕ − γ

x

)
ϕ′ψn + 2

(
eϕ − γ

x

)
ψ′
n = Gn, (19)

where n = 0, 1, 2, . . . and Gn is a function of ϕ,

ψ0, . . ., and ψn−1. Hence,

ϕ = ϕ±(γ) = log

(
γ

x
±
√(γ

x

)2
− 1

)
(20)

and ϕn(γ) (n = 0, 1, 2, . . .) are recursively deter-

mined by (19). In this way we obtain WKB so-

lutions of (B).

Remark 1. Corresponding to the choice of ϕ±(γ),

there are two WKB solutions ψ±(γ). More pre-

cisely, due to the multivaluedness of the logarith-

mic function, there exist infinitely many WKB

solutions ψ±,m(γ) (m ∈ Z) corresponding to

ϕ±,m(γ) = Log

(
γ

x
±
√(γ

x

)2
− 1

)
+ 2mπi,

where Log denotes the principal value.

Next we define turning points and Stokes

curves of the difference equation (B). Taking Def-

inition 2 into account, we define them as follows:



Definition 4. (i) A point γ satisfying ϕ+(γ) =

ϕ−(γ) is called a turning point of Eq. (B). Thus

γ = ±x are the turning points of Eq. (B).

(ii) A Stokes curve of Eq. (B) is defined by

ℑ
∫ γ

γ0

(ϕ+(γ)− ϕ−(γ)) dγ = 0, (21)

where γ0 (= ±x) is a turning point.

Fig. 1 shows the configuration of turning points

(denoted by △) and Stokes curves for x = 1. Dif-

Fig. 1. Stokes curves for x = 1

ferent from the case of Schrödinger equations, we

can observe that Stokes curves do really cross in

the case of Eq. (B). Such crossing of Stokes curves

are common features for higher order differential

equations3). In fact, the small shift operator is

here regarded as an infinite order differential op-

erator. This problem will be discussed in more

details in Section 5.

4. Exact WKB Analysis of Bessel’s

Difference Equation via Integral

Representations

It is well-known that solutions of Eq. (10)

admit the following integral representation4,5):∫
Γ
exp

[
x

2

(
u− 1

u

)]
u−a−1du, (22)

where Γ is a suitably chosen integral path con-

necting 0 or ∞ so that the integral converges.

After the introduction of a large parameter η by

(14), this becomes∫
Γ
exp

[
ηx

2

(
u− 1

u

)]
u−ηγdu =

∫
Γ
eηf(γ,u)du

(23)

with

f(γ, u) =
x

2

(
u− 1

u

)
− γ log u. (24)

Then we can confirm the following

Proposition 3. The integral representation (23)

also satisfies the difference equation (B).

Proof. Substitution of (23) into (B) entails∫
Γ
exp

[
ηx

2

(
u− 1

u

)]
u−ηγ

( 1

u2
− 2γ

x

1

u
+ 1
)
du

=
2

ηx

∫
Γ

∂

∂u

(
exp

[
ηx

2

(
u− 1

u

)]
u−ηγ

)
du = 0.

This completes the proof.

Making use of the integral representation (23)

and following Ref.6), we discuss the Borel summa-

bility and Stokes phenomena for WKB solutions

of Eq. (B) in this section.

To this end, we apply the so-called “steep-

est descent method” to (23), that is, we consider

the integral (23) along a steepest descent path

of ℜf through a saddle point of f to study the

asymptotic behavior of the integrals (23).

Definition 5. (i) A point satisfying ∂f/∂u = 0

is called a saddle point of f .

(ii) A steepest descent path of ℜf is an integral

curve of −grad ℜf = −
(
∂(ℜf)/∂v, ∂(ℜf)/∂w

)
(where u = v+ iw), that is, a curve on which ℜf
decreases most rapidly.

Note that, since f(γ, u) is a holomorphic function,

ℑf is constant on each steepest descent path of

ℜf .
In our case the saddle points of (23) are

explicitly given by

u± :=
γ

x
∓
√(γ

x

)2
− 1. (25)



(Here, for the sake of later convenience, we use

the opposite sign ∓ in the right-hand side.) Let

Γ± be the steepest descent path of ℜf passing

through the saddle point u = u± and consider

the integral

ΨIR
± :=

∫
Γ±

eηf(γ,u)du. (26)

As Γ± extends in two directions from u±, we de-

note these two portions of Γ± by Γ±,1 and Γ±,2.

Decomposing the integral (26) into these two por-

tions, we employ a change of integral variable

y = −(f(γ, u)− f(γ, u±)) for each integral. If we

assume that the steepest descent path Γ± does

not hit any other saddle point, the new integral

variable y increases monotonically from 0 to ∞
on Γ±,j (j = 1, 2) and we obtain

ΨIR
± =eηf(γ,u±)

∫ ∞

0
e−ηy(

1

fu

∣∣∣∣
u=u±,1(γ,y)

− 1

fu

∣∣∣∣
u=u±,2(γ,y)

)
dy,

(27)

where fu = ∂f/∂u and u±,j (j = 1, 2) is the

inverse function of y = −(f(γ, u) − f(γ, u±)) on

Γ±,j .

For the exponential term f(γ, u±) on the

right-hand side of (27), the following holds:

Proposition 4. f(γ, u±) can be expressed as

f(γ, u±) =

∫ γ

ϕ±(γ)dγ. (28)

Proof. Since (∂f/∂u)(γ, u±) = 0, we have

∂

∂γ
f(γ, u±) =

∂f

∂γ
(γ, u±) = log(u±)

−1.

As u+u− = 1 holds, we obtain

∂

∂γ
f(γ, u±) = log u∓ = ϕ±(γ).

This completes the proof.

Furthermore, to the integral on the right-hand

side of (27) we apply Watson’s lemma7):

Proposition 5. (Watson’s lemma) Let f(t) be

an analytic function on {0 < |t| < R+δ, | arg t| <
∆} for some R, δ,∆ > 0. Furthermore, for some

q,K, b > 0 we assume the following:

(i) Near t = 0 f(t) has a convergent expansion

f(t) =
∑

k≥1 akt
k/q−1 (0 < |t| ≤ R).

(ii) |f(r)| ≤ Kebr holds for r ≥ R.

Then, the asymptonic expansion formula∫ ∞

0
e−ztf(t)dt ∼

∞∑
k=1

akΓ
(k
q

)
z−k/q

holds for z → ∞, | arg z| < π/2− ϵ with ϵ > 0.

We set

h(y) :=
1

fu

∣∣∣∣
u=u±,1(γ,y)

− 1

fu

∣∣∣∣
u=u±,2(γ,y)

. (29)

Note that u = u± given by (25) is a nondegen-

erate saddle point when γ is not a turning point.

Therefore, the inverse function u±,j (j = 1, 2) has

the Puiseux expansion of the form

u±,j = u±+(−1)ja1/2y
1/2+a1y+(−1)ja3/2y

3/2+· · ·

around y = 0 corresponding to u = u±. In par-

ticular, the coefficients of u±,j for a half-integer

power of y have the opposite sign. Consequently,

we find h(y) has the expansion of the form

h(y) =

∞∑
n=0

bny
(2n+1)/2−1 (30)

around y = 0. Then, by applying Proposition 5

to (27) with q = 2, we obtain

ΨIR
± ∼ eηf(γ,u±)

∞∑
n=0

cnη
−n−1/2 (31)

with

cn = bnΓ(n+ 1/2). (32)

The right-hand side of (31) has exactly the form

of WKB solutions (16) in view of Proposition 4.

Furthermore, Proposition 3 implies it is a formal

solution of (B). Thus the right-hand side of (31),

which is denoted by ψIR
± hereafter, defines a WKB



solution of (B). In what follows we discuss this

WKB solution ψIR
± .

It follows from (30) and (32) that the Borel

transform of ψIR
± coincides with h(y + f(γ, u±)).

Hence the Borel sum of ψIR
± is∫ ∞

−f(γ,u±)
e−ηyh(y + f(γ, u±))dy

= eηf(γ,u±)

∫ ∞

0
e−ηyh(y)dy,

which is nothing but ΨIR
± . That is, ΨIR

± gives

the Borel sum of ψIR
± . Since h(y), that is, the

Borel transform of ψIR
± , is singular only at the

saddle points in view of the expression (29), we

consequently obtain the following

Theorem 6. (i) The WKB solution ψIR
± of (B) is

Borel summable if and only if the steepest descent

path Γ± through the saddle point u = u± does not

hit any other saddle points.

(ii) When Γ± hits another saddle point, a Stokes

phenomenon occurs with ψIR
± .

Theorem 6 tells us that we can check the Borel

summability of the WKB solution ψIR
± of (B)

by tracing the configuration of steepest descent

paths of the integral representation (23). In what

follows, using a computer, we will investigate the

configuration of steepest descent paths of (23) to

examine whether a Stokes phenomenon occurs or

not on Stokes curves of Bessel’s difference equa-

tion (B).

For the sake of simplicity we assume x = 1

and investigate the configuration of steepest de-

scent paths of (23) around the crossing point, de-

noted by γ∗, in the upper half plane in Fig. 1.

First, the configuration of steepest descent paths

at γ = γ∗ is shown in Fig. 2. In Fig. 2 (and also

in the following Fig. 5) the saddle points u = u±

and the singular points u = 0 of f(γ, u) are desig-

nated by (red) △ and by (blue) •, respectively. In
particular, the upper saddle point is u+ and the

lower saddle point is u− in Fig. 2, and the steepest

Fig. 2. Steepest descent paths at γ = γ∗

descent path that extends upward (resp., down-

ward) from u± is denoted by Γ±,1 (resp., Γ±,2).

As is clearly shown in Fig. 2, Γ+,2 hits u− and

Γ−,2 hits u+ simultaneously at γ = γ∗. Thus,

according to Theorem 6, the Borel summability

of ψIR
± breaks down at γ∗. Next, we take sample

points γ1, γ2, . . . , γ7 around γ∗ (cf. Fig. 3) and

investigate the configuration of steepest descent

paths at these sample points. The results are

Fig. 3. Sample points γ1, γ2, . . . , γ7 around γ∗

shown in Fig. 5 (a)–(g) placed at the end of the

paper. From these figures we can observe that

a steepest descent path passing through a sad-

dle point hits another saddle point at points on

Stokes curves such as γ1, γ3, γ5 and γ7, while

there exists no such steepest descent paths at

points outside Stokes curves. For example, let

γ vary from γ3, γ4, . . . , to γ6. At γ3 on a Stokes

curve emanating from γ = −x = −1, a steepest

descent path Γ−,2 passing through a lower saddle

point u− hits the other saddle point u+ (cf. Fig.



5 (c)). This steepest descent path Γ−,2 goes to

infinity without hitting u+ at γ4 (cf. Fig. 5 (d)).

Then at γ5, that is, at a point on a Stokes curve

emanating from γ = 1, another steepest descent

path Γ+,2 passing through u+ hits u− instead (cf.

Fig. 5 (e)). It is also observed that the steepest

descent path Γ+,2 no longer hits u− at γ6 (cf.

Fig. 5 (f)). In this way, by tracing the config-

uration of steepest descent paths and combining

the results with Theorem 6, we can confirm that

the Borel summability of the WKB solution ψIR
±

breaks down on Stokes curves.

Furthermore, by comparing Fig. 5 (d) and

Fig. 5 (f), we find that the Borel sum ΨIR
+ near

γ = γ4 is analytically continued to ΨIR
+ + ΨIR

−

near γ = γ6. As a matter of fact, the integral

path for ΨIR
+ at γ = γ4 is the steepest descent

path Γ+, that is, a path that starts from infin-

ity, passes through a saddle point u+, and goes

to the singular point u = 0 with passing near an-

other saddle point u−. This path is expressed as

the sum of two steepest descent paths Γ+ ∪ Γ−

at γ = γ6 (provided that the orientation of Γ±

is appropriately chosen). This implies the above

formula.

As this change of the configuration of steep-

est descent paths occurs on every Stokes curve, we

thus obtain the following

Theorem 7. On each Stokes curve of Bessel’s

difference equation (B) Stokes phenomena occur

with the Borel sums of the WKB solutions ψIR
± .

That is, after crossing a Stokes curve the analytic

continuation of the Borel sums ΨIR
± become

ΨIR
+ → Ψ̃IR

+ + CΨ̃IR
− , ΨIR

− → Ψ̃IR
− , (33)

or

ΨIR
+ → Ψ̃IR

+ , ΨIR
− → Ψ̃IR

− + CΨ̃IR
+ , (34)

where Ψ̃IR
± are Borel sums of ψIR

± in a new Stokes

region adjacent to the original region across the

Stokes curve. The constant C equals +1 or −1,

which depends on the orientation of the steepest

descent paths Γ±.

The relations (33)-(34) are the connection formu-

las for the WKB solutions ψIR
± of Bessel’s differ-

ence equation (B).

5. New Stokes Curves of Bessel’s

Difference Equation

Berk-Nevins-Roberts8) pointed out that

Stokes curves may cross for higher order differen-

tial equations and that a new Stokes curve may

appear from such crossing points of Stokes curves.

Here a new Stokes curve means a curve where

Stokes phenomena occur with WKB solutions but

which does not emanate from a turning point.

As we have observed in Section 3, Stokes curves

do cross also for Bessel’s difference equation (B).

In this section we examine whether new Stokes

curves appear or not for (B) by using the integral

representation (23).

We investigate the configuration of steep-

est descent paths of (23) at several sample points

γ8, γ9, . . . , γ14 between γ7 and γ1 around the

crossing point γ∗ (cf. Fig. 4). See Fig. 5 (h)–(n)

Fig. 4. Sample points γ8, γ9, . . . , γ14 between γ7

and γ1

at the end of the paper for the results. We can

observe the following configuration from these fig-

ures (although it is not so clearly visualized).

First, at γ8 neither of Γ± hits another saddle



point. However, at γ9 the steepest descent path

Γ− (more precisely, Γ−,2) passing through u− hits

the other saddle point u+ after going around the

singular point u = 0 once (with passing just be-

low u−). Furthermore, at γ10 the steepest de-

scent path Γ− hits u+ after going around u = 0

twice. It is naturally expected that, when γ varies

further from γ10 to γ11, Γ− hits u+ after going

around u = 0 three times, four times, . . . (with

the rotation number increasing) at some points

between γ10 to γ11. Then, at γ11 on the imag-

inary axis, both the two steepest descent paths

Γ± hit their starting saddle points u± simultane-

ously. In the left-half plane similar configurations

can be observed, but this time with Γ+ instead of

Γ−. That is, the steepest descent path Γ+ pass-

ing through u+ hits u− after going around u = 0

. . . , twice, and once at . . . , γ12, and γ13.

The above observation indicates that there

exist several points outside Stokes curves where

a steepest descent path passing through a saddle

point hits another saddle point. Theorem 6 im-

plies Stokes phenomena occur with the WKB so-

lutions ψIR
± at these points and hence these points

are considered to be on new Stokes curves passing

through the crossing point γ∗ of the Stokes curves

of Bessel’s difference equation (B). As a matter

of fact, using the notation explained in Remark

1, the Stokes curve emanating from γ = 1 of (B)

is expressed as

ℑ
∫ γ

1
(ϕ+,m − ϕ−,m)dγ = 0 (m ∈ Z).

Following the convention for the types of Stokes

curves used in Ref.3), this is a Stokes curve of type

(+,m) > (−,m). On the other hand, the Stokes

curve emanating from γ = −1 is expressed as

ℑ
∫ γ

−1
(ϕ+,m − ϕ−,m−1)dγ = 0 (m ∈ Z)

and this is a Stokes curve of type (−,m − 1) >

(+,m). (Note that it is equivalently said to be

of type (−,m) > (+,m + 1).) According to

the general rule for the types of a new Stokes

curve for higher order differential equations3),

it is expected that a new Stokes curve of type

(−,m − 1) > (−,m) and one of type (+,m) >

(+,m + 1) appear from the crossing point γ∗.

These new Stokes curves are expressed as

ℑ
∫ γ

γ∗

(ϕ−,m − ϕ−,m−1)dγ = ℑ
∫ γ

γ∗

(2πi)dγ = 0

and

ℑ
∫ γ

γ∗

(ϕ+,m+1 − ϕ+,m)dγ = ℑ
∫ γ

γ∗

(2πi)dγ = 0,

respectively. This is nothing but the imagi-

nary axis and this result is consistent with Fig.

5 (k). Furthermore, the general rule also sug-

gests that new Stokes curves of type (−,m) >

(+,m+ 2), (−,m) > (+,m+ 3), . . . and those of

type (+,m) > (−,m + 1), (+,m) > (−,m + 2),

. . . appear from γ∗ as well. The points γ9, γ10, . . . ,

γ12, γ13 where the steepest descent path Γ± hits

u∓ after going around u = 0 several times are con-

sidered to correspond to these new Stokes curves.

To be more specific, γ9 is considered to be on a

new Stokes curve of type (−,m) > (+,m+2), γ10

on one of type (−,m) > (+,m + 3), . . . , γ12 on

one of type (+,m) > (−,m+ 2), and γ13 on one

of type (+,m) > (−,m+1). Thus it is confirmed

that there exist infinitely many new Stokes curves

passing through the crossing point γ∗ of Stokes

curves for Bessel’s difference equation (B).

Remark 2. The new Stokes curves of type

(−,m) > (+,m + µ) and of type (+,m) >

(−,m+µ) (µ ∈ {1, 2, . . .}) passing through γ∗ are

defined respectively by the following relations:

ℑ
∫ γ

γ∗

[
Log

(γ
x
+

√(γ
x

)2
− 1
)

− Log
(γ
x
−
√(γ

x

)2
− 1
)
− 2πiµ

]
dγ = 0,

(35)

ℑ
∫ γ

γ∗

[
Log

(γ
x
−
√(γ

x

)2
− 1
)



− Log
(γ
x
+

√(γ
x

)2
− 1
)
− 2πiµ

]
dγ = 0.

(36)

Finally, we consider the connection formu-

las on these new Stokes curves. Taking the multi-

valuedness of f(γ, u) defined by (24) into account

(here we place a cut on the negative real axis in

u-plane to fix the branch of f(γ, u)), we obtain

the following Theorem 8 by the argument similar

to that employed in verifying Theorem 7, that

is, by tracing the change of the configuration of

steepest descent paths that occurs when crossing

a new Stokes curve.

Theorem 8. On a new Stokes curve of type

(−,m) > (+,m+µ) and of type (+,m) > (−,m+

µ) (µ ∈ {1, 2, . . .}) passing through the crossing

point γ∗ of Stokes curves of Eq. (B), the connec-

tion formulas

ΨIR
+ → Ψ̃IR

+ , ΨIR
− → Ψ̃IR

− ± e2πiµΨ̃IR
+ (37)

and

ΨIR
+ → Ψ̃IR

+ ± e2πiµΨ̃IR
− , ΨIR

− → Ψ̃IR
− (38)

hold, respectively. Here the sign ± depends on the

orientation of the steepest descent paths Γ±.

6. Summary

As a first step toward the extension of the

exact WKB analysis to difference equations, we

discuss Bessel’s difference equation (B) in this pa-

per. Applying the steepest descent method to

integral representations of solutions, we investi-

gate WKB solutions, Stokes curves, and connec-

tion formulas for (B). In particular, we show that

Stokes curves do really cross and infinitely many

new Stokes curves appear from the crossing point

for Bessel’s difference equation (B).

It is a future problem to extend these re-

sults to more general difference equations. One

possible next interesting target will be difference

equations that Gauss’ hypergeometric functions

satisfy.

This research is supported by JSPS KAK-

ENHI Grant No. 19H01794.

References

1) A. Voros, “The Return of the Quartic Oscilla-

tor. The Complex WKB Methods”, Annales de

l’institut Henri Poincaré, 39, 211–338 (1983).
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Fig. 5. Steepest descent paths at γ = γj (1 ≤ j ≤ 14)


