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 Abstract  

 

The olfactory cortex (OC), which consists of some distinct subareas, receives both 

olfactory sensory signals from the olfactory bulb and top-down signals from higher-order 

regions. However, it remains unknown as to how each area of the OC encodes for sensory- 

and behavior-related information from higher-order regions. We addressed this issue in 

rodents, particularly focusing on four areas of the OC: the anterior piriform cortex (aPCx), 

ventral tenia tecta (vTT), nucleus of the lateral olfactory tract (NLOT), and anterior 

cortical amygdaloid nucleus (ACo). Using electrophysiological recordings in the OC 

subareas with an odor-guided go/no-go task, we found that each area showed unique 

behavioral state signals that were predicted by the cue odors (i.e., moving to the reward 

port, waiting for the reward, and drinking reward state). 

 First, aPCx, which is the most studied OC subarea, neurons responded to a 

specific combination of cue odors with increased firings during a specific state of the 

subsequent behaviors, possibly related to the communication between odor information 

and all behavioral states (Chapter 3). Our findings suggest that bottom-up and top-down 

communication exists in the OC, and we hypothesized that not only the aPCx but also the 

other subareas have their own unique top-down signal processing. As one of the candidate 
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sources of the top-down signals, we next focused on the vTT, which receives top-down 

projections from the medial prefrontal cortex (mPFC) and projects to the broad olfactory 

areas (Chapter 4). We found that individual vTT neurons tuned to a specific behavioral 

state, and the vTT state representations were degraded with optogenetic inactivation of 

the mPFC-to-vTT inputs. These suggest that vTT acts as a hub that sends context-

dependent signals from the mPFC to broad olfactory areas. 

 To investigate how such top-down signals to the OC are distributed to the 

subareas, we finally focused on the NLOT and ACo, which are not only a part of the OC, 

but also a part of the cortical amygdala. Many NLOT neurons that selectively responded 

to go-cue odor also increased their firing rates during drinking reward, suggesting that the 

NLOT is involved in odor-reward association learning (Chapter 5). On the other hand, 

ACo neurons exhibited two types of reward anticipation signals: one neuron group type 

exhibited gradual increases in the signals to the reward, while the other type showed 

phasic anticipation signals, suggesting that the ACo is involved in odor-guided reward-

directed learning (Chapter 6). 

 In conclusion, we propose a circuit model in which behavioral state signals are 

shared to the OC, and each subarea plays a distinct role in the formation of an “odor-

functions map” based on the functions that lead to odor-evoked behaviors. 
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 Chapter 1. General Introduction  

 

1.1. What is odor? 

Flavor and aroma have a strong influence on the pleasure derived from food and drink. 

This can be felt by pinching the nose while eating or drinking; when the odor disappears, 

even the taste seems to have changed. To prepare good food, we need to learn how to 

make odors as well as taste, and the knowledge will make our daily diet more pleasant. 

The scents of flowers, incense, perfume, and freshly laundered shirts are good examples 

of how odors can lead to comfort and mental stability. 

 Meanwhile, fish, meat, fruits, and other foods decay over time and emit strange 

odors. The strange odor of food is regarded as a “danger signal” and leads to avoidance 

of eating. An example of another dangerous odor is volcanic gas that smells like sulfur; 

it is artificially added to the natural gas used as fuel, which is odorless, to make people 

aware of the smell in case there is a gas leak. Similarly, the smell of smoke can alert 

people about a fire. 

 Odors are important methods of communication in some animals. They use odor 

to determine whether others are mates or enemies, to identify individuals, to distinguish 

between males and females, and to detect whether they are in estrus. 
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 “As soon as I taste a madeleine dipped in tea, it recalls my childhood of long ago” 

is a famous quote from Proust’s In Search of Lost Time. It often happens that an odor 

triggers a vivid memory of a distant event or situation in the past that was sad or pleasant. 

Odors can also make us feel nostalgic and happy by accessing our deeper emotions. 

Indeed, odors have an extraordinary ability to evoke memorable episodes, learned 

experiences, and sometimes the far distant past (Chu, 2000; Larsson et al., 2014; Zucco 

et al., 2012). 

 Thus, “What is odor for living things?” is an attractive question, but it is difficult 

to answer clearly because it has various aspects. Moreover, since there are hundreds of 

thousands of different odor-molecules, how the brain perceives odors and processes them 

as information remains a mystery (Mori, 2010). 

 

1.2. What are odorant molecules? 

Plants, animals, and many other things in the outside world emit a variety of different 

volatile molecules (very small invisible molecules that floats in the air). However, these 

volatile molecules are not always odor molecules. Only molecules that are received by 

the receptors (proteins that directly receive odor molecules and act as sensors) of the 

olfactory sensory neurons lining the interior of our nose, translated into signals, and sent 
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to the brain are identified as odor molecules. For example, human olfactory sensory 

neurons do not have receptors for carbon dioxide (CO2); therefore, CO2 is not an odor 

molecule for humans. However, some animals, including mice, do have receptors for CO2, 

and for these animals, CO2 is an odor molecule. In other words, the nature of whether a 

volatile molecule is an odor molecule is determined by the nature of the olfactory nervous 

system in humans and animals, rather than by the physicochemical properties of the 

molecule. Therefore, if we aim to elucidate the mystery of what makes a “molecule” odor, 

the best way will be to study the olfactory nervous system in the human and animal brain. 

 

1.3. Olfactory neural processing in the olfactory epithelium 

Odorant receptors → olfactory sensory neurons in the olfactory epithelium 

When the nose sniffs a cup of tea, the odor molecules from the tea are inhaled into the 

nose through the external nostrils along with the air and reach the olfactory epithelium 

inside of the nasal cavity (Figure 1-1A). The olfactory epithelium is packed with millions 

of olfactory sensory neurons (OSNs), and when the sniffed odor molecules reach them, 

they generate electrical signals that are transmitted to the olfactory bulb (OB) at the 

bottom of the brain. 
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 The OSNs extend numerous cilia from the tips of their protrusions, and the 

surface membrane of these cilia is equipped with odorant receptors (ORs) (Figure 1-1A). 

The first researchers to discover ORs were Linda Buck and Richard Axel (Buck and Axel, 

1991), who were awarded the 2004 Nobel Prize in Physiology or Medicine for their work. 

ORs are members of a family of proteins called the “seven transmembrane receptor 

family,” which consists of seven transmembrane regions surrounded by a keyhole 

structure. When a single odor molecule gets caught in the keyhole-like structure of the 

OR, the structure of the OR changes slightly, and the signal is transmitted to the G-protein 

(called “Golf” because it is a G-protein of the olfactory system) that connects to the 

intracellular site of the OR, activating Golf (Figure 1-1B). The activated the Golf induces 

the activation of an enzyme called adenylate cyclase, which is in the surface membrane 

of the cilia. When adenylate cyclase is activated, it produces a series of molecules called 

cyclic AMP (cAMP) and increases the concentration of cAMP in the OSN. When the 

concentration of cAMP increase in the OSN, cAMP combines with cAMP-dependent ion 

channels in the surface membrane of the cilia, opening holes for the ions (Na+ and Ca2+) 

in these channels. When this channel is opened, the ions enter the membrane, and the 

membrane potential changes to the positive side. In this way, when odor molecules attach 

to ORs, the membrane potential of the OSN expressing the receptor changes in the 
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positive direction. The signal from the odor molecule is converted into an electrical signal 

in the OSN, and this series of processes is the odor signal conversion mechanism in the 

OSN. 

 The OSN has a single axon that extends to the OB at the base of the brain, where 

it makes synaptic contacts with OB neurons. When the membrane potential change in the 

positive direction caused by the odor molecule is large enough, the OSN produces an 

action potential through the axon and transmits it to the OB. 
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Figure 1-1 | Olfactory neural processing: Odorant receptors → olfactory 

sensory neurons in the olfactory epithelium 

(A) Structure and organization of the olfactory epithelium. 

(B) Odor signal conversion mechanism in the olfactory sensory neuron. The 

signal from the odor molecule is converted into an electrical signal in the 

olfactory sensory neuron via G-protein, cAMP, and cAMP-dependent ion 

channels. 
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One olfactory sensory neuron–one odorant receptor rule 

After the discovery of ORs, the remarkably simple “one OSN–one OR rule” was found: 

one OSN selects only one type of receptor out of a repertoire of 390 ORs and uses it on 

the membrane surface of its cilia to equip itself. The many ORs that one OSN is equipped 

with are all the same type of ORs. Due to this mechanism, to know the combination of 

ORs activated by an odor molecule, the brain only needs to know the combination of the 

types of OSNs that are emitting electrical signals. The “one OSN–one OR rule” links the 

logic of odor molecule identification at the molecular level, in relation to the combination 

of odor molecules and types of ORs, to the logic of odor molecule identification at the 

cellular level, in relation to the combination of odor molecules and types of OSNs that 

emit signals. 

 

1.4. Olfactory neural processing in the olfactory bulb 

Olfactory sensory neurons → glomerulus in the olfactory bulb 

The axon of the OSN passes through the depth of the olfactory epithelium, enters the skull 

through a hole called the ethmoid bone, reaches the OB at the base of the brain, and 

extends into one of the thousands of glomeruli that line the surface of the OB (Figure 1-

2). The axon is not branched between the OSN and the glomerulus, but once inside the 
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glomerulus, it makes numerous branches and excitatory synapses on the dendrites of 

principal OB neurons (named mitral cells and tufted cells). When the action potential is 

transmitted in the axon and reaches the site of the synapse in the glomerulus, the 

neurotransmitter (glutamate) is released from the end of the axon. When this glutamate is 

combined with the glutamate receptors on the dendrites of the principal OB neurons, 

electrical signals are emitted from them. Thus, the electrical signals generated by a single 

OSN are sent through the axon to only one specific glomerulus. In other words, the 

glomerulus of the OB is the input terminal for signals from the OSN, and each of the left 

and right pairs of OBs is equipped with thousands of input terminals. In mice, there are a 

thousand different OSNs corresponding to approximately a thousand different ORs, and 

the total number of OSNs is several million. A single glomerulus collects axons from 

thousands of OSNs. 

 

  



22 

 

 

Figure 1-2 | Olfactory neural processing: Olfactory sensory neurons in the 

olfactory epithelium → olfactory bulb neurons 

The axon of the olfactory sensory neurons passes through the depth of the 

olfactory epithelium, enters the skull through a hole called the ethmoid bone, 

reaches the OB at the base of the brain, and extends into one of the thousands 

of glomeruli that line the surface of the OB. It makes numerous branches and 

excitatory synapses on the dendrites of principal OB neurons (named mitral cells 

and tufted cells). 
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One glomerulus–one odorant receptor rule 

The “one glomerulus–one OR rule”, which means that thousands of axons assembled in 

a single glomerulus come from a group of OSNs all expressing the same OR, was revealed. 

As a result, to know what odor molecule has just been inhaled into the nose, the brain 

needs to know the combination of activated ORs, i.e., the combination of the types of 

OSNs emitting electrical signals, as well as the combination of activated glomeruli. As 

the “one OSN–one OR rule” links the molecular level odor molecule identification 

mechanism to the cellular level odor molecule identification mechanism, the “one 

glomerulus–one OR rule” links the molecular and cellular level odor molecule 

identification mechanisms to the glomerular neural circuit level odor molecule 

identification mechanism. 

 Whether a single odor molecule or a complex mixture of different odor 

molecules, such as the smell of tea, is inhaled into the nose, the corresponding 

combination of glomeruli is activated in the OB. That is, whether it is a single odor 

molecule or a mixture of many odor molecules, the odor is encoded in the OB as a 

combination of activated glomeruli. This spatial distribution of thousands of glomeruli 

on the OB surface will create the “odor-molecule map”. 
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Odor-molecule map in the olfactory bulb 

In mammals, there are a pair of OBs on each side. How is the “odor-molecule map” of 

each OB organized? One OB has two maps arranged in almost mirror-like positions 

(Figure 1-3). One is the lateral map, which is in the antero-lateral part of the OB and 

receives axonal input from a group of OSNs in the antero-lateral part of the olfactory 

epithelium. The other is the medial map, which is in the posterior medial part of the OB 

and receives input from the OSNs in the posterior medial part of the olfactory epithelium. 

The interior of each of the lateral and medial maps is divided into regions called zones 

and domains. For example, the lateral map is divided into a dorsal zone (D zone) and a 

ventral zone (V zone). The dorsal zone is further divided into class I domains and class II 

domains. 

 It was found that (1) each glomerulus responds to a group of odor molecules with 

a similar molecular structure, (2) the range of odor molecules to which each glomerulus 

responds differs between glomeruli, and (3) groups of glomeruli with a similar range of 

odor molecules cluster together to form “glomerulus clusters” (Igarashi et al., 2012; Mori 

and Sakano, 2011). Furthermore, the glomerular clusters were arranged in a certain 

position in the odorant receptor map. Specifically, the OB domain (dorsal zone class I 

domain) contains glomeruli that respond to odor molecules in the homologous linear fatty 
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acid series, forming a “fatty acid response cluster” (cluster A). Since fatty acids are 

produced in large quantities when food is decomposed by bacteria, it is assumed that 

Cluster A is a cluster of glomeruli that responds to decomposing odors and has developed 

to detect food decomposition. Interestingly, most of the glomeruli in cluster A respond to 

both odors. 

 In front and outside of cluster A, glomeruli that respond to odor molecules with 

structures such as fresh-smelling straight-chain alcohols, anethole, and straight-chain 

ketones gather to form cluster B. These cluster B-activating odor molecules have a 

common fresh alcohol-like, anise-like, or fruit-like odor. A little behind cluster B is 

cluster C, which responds to phenolic odor molecules with a chemical odor like phenol 

and cresol. In addition, behind cluster C is cluster D, which responds to linear ketones, 

ketones with cyclic structures, and diketones. Clusters B, C, and D are aligned in this 

order in the domain (dorsal zone class II domain) with cluster A at a fixed position in the 

domain and clusters B, C, and D from anterior to posterior in the domain. This 

arrangement of clusters is the same in all rats examined. In the V zone outside the OB, 

glomeruli that respond to petroleum odors such as benzenes and linear hydrocarbons are 

clustered together to form cluster H. In addition to benzene and linear hydrocarbons, 
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cluster I has also been found to contain glomeruli that respond to terpene hydrocarbons 

(woody or citrusy odors). 
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Figure 1-3 | Olfactory neural processing: Odor-molecule map in the olfactory 

bulb 

Upper right diagram: a lateral view of the domain organization of glomeruli in the 

lateral map of the rodent OB. One OB has lateral and medial maps arranged in 

almost mirror-like positions. These maps are divided into regions called domains 

(D-I, D-II, and V). Lower diagram: a dorsal centered view of an unrolled flattened 

map of glomerular layer of the OB. The glomerular clusters were arranged in a 

certain position in the odorant receptor map. 
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Functions associated with the odor-molecular map 

Thus, it was found that every rat OB has a certain odor-molecular map in which specific 

odor response cluster groups are arranged in an orderly fashion at specific positions within 

the receptor zone or receptor domain. Comparing the rat odor-molecular map with that of 

the mouse, there is a slight discrepancy in the positions of the odor response clusters, but 

the relative arrangement of the clusters is the same. What type of function is associated 

with the well-organized odor-molecular map that is common to many mammals? By 

observing the behavior of mice lacking the D-zone to odors, it was surprisingly 

discovered that the innate fear response to the odors of predators such as cats and foxes 

was eliminated (Kobayakawa et al., 2007). When normal rats and mice smell 

trimethylthiazoline, which is found in fox feces and is a major component of fox odor, 

they have a fear response. Researchers investigated how the glomeruli that respond to 

trimethylthiazoline are distributed in the odor-molecular map of normal mouse OB and 

found that they clustered together at the back of the domain, but not in the domain. There 

were also many glomerular clusters that responded to trimethylthiazoline in the V-zone, 

and they were widely distributed. Based on these experimental results, it can be 

hypothesized that the receptor zones and receptor domains in the OB odor-molecular map 

may be related to various behavioral responses induced by odors. For example, when a 
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mouse smell various odor-molecules coming from a cat, both the glomeruli in the V-zone 

and D-zone are activated in the odor molecular map of the mouse OB, but only the 

glomeruli in the D-zone may send signals to the brain for a behavioral response called the 

fear response. The glomeruli in the V zone may be associated with a different behavioral 

response. Thus, there may be a functional difference in the odor molecular map of OB by 

region. This understanding may provide the first important insight into the brain neural 

mechanisms that link various odor information to appropriate behavioral responses. If 

each region in the odor-molecular map can determine what odor information it receives 

and what groups of behavioral and emotional responses it is associated with, and then 

determine where the OB neurons within each region send axons to contact higher 

olfactory centers, it could be possible to develop a new method of understanding the 

neural mechanisms that are still largely unknown. 

 

Glomerular module containing mitral and tufted cells 

Mitral cells and tufted cells usually extend from one main dendrite to a single glomerulus 

and receive excitatory synaptic input from OSN axons only within that glomerulus. That 

is, just as each OSN communicates with one glomerulus, each mitral or tufted cell belongs 

to one glomerulus. Each glomerulus contains approximately 10 to 20 mitral cells and 
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approximately 50 tufted cells. The thousands of OSNs, their axons, and the dendrites and 

axons of dozens of mitral and tufted cells belonging to a single glomerulus are collectively 

called the “glomerular module”. Since a single glomerulus represents one type of OR, the 

cells in a glomerular module are responsible for the information of the same type of OR. 

In other words, a group of OSNs in each glomerular module collects information from 

one type of Ors from a large part of the olfactory epithelium and sends it to that 

glomerulus, while mitral and tufted cells that receive excitatory synaptic input from OSNs 

in that glomerulus send information from their receptors to the olfactory cortex (OC). 

Each glomerular module creates an “odor molecule receptor information channel” that is 

responsible for the information of a specific OR. 

 OB neurons, which receive excitatory synaptic input from OSNs axons in the 

glomerulus and project their axons to the OC, are classified into two types: large cells 

named “mitral cells” because their cell bodies resemble the hats worn by European monks, 

and smaller cells named “tufted cells” because the fine branching of dendrites in the 

glomerulus resembles the ornamentation of a tuft. The cell bodies of mitral cells are 

arranged in the mitral cell layer, while the cell bodies of tufted cells are distributed in the 

outer plexiform layer. Since both mitral and tufted cells extend their axons to the OC, one 

glomerular module (odorant molecular receptor information channel) has two neural 
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pathways that send odor information via mitral or tufted cells. Considering that each 

glomerular module including mitral cells and tufted cells creates an odorant receptor 

information channel, the entire OB is a map of odorant receptor information channels. 

 

1.5. Olfactory neural processing in the olfactory cortex 

Olfactory bulb neurons → olfactory cortex subareas 

Information about the odor sniffed in the nose is encoded in a separate and distinct 

glomerular module in the OB odor molecular map. To recognize the smell of tea, the 

information from the many glomerular modules activated by the odor molecules in the 

“odor-molecular profile” of tea must be further integrated and read out by the OC. Since 

mitral cells and tufted cells in the OB project axons to the OC and make excitatory 

synaptic contacts on the dendrites of OC neurons, it is considered that each neuron in the 

OC integrates information from many “odor-molecular receptor information channels”. 

The mechanism of integration of odor information may be hidden in the connection 

between OB and OC. However, it is still unclear how the axons of mitral and tufted cells 

connect to OC neurons, and how these rules relate to the recognition of odors associated 

with targets. 
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 The OC is a collection of many subareas where the axons of mitral and tufted 

cells of the OB project. Figure 1-4 shows a view of the rat brain from the bottom, where 

the colored areas indicate the OC. The axons of mitral cells and tufted cells branch out in 

the most superficial layer of these OCs (layer Ia) and make excitatory synapses on the 

dendrites of OC neurons in this layer. In rats and mice, the OC is spread out so widely 

that it occupies most of the basal part of the brain, with the anterior olfactory nucleus, 

anterior piriform cortex, tenia tecta, olfactory tubercles, nucleus of the lateral olfactory 

tract, amygdaloid cortex, posterior piriform cortex, and entorhinal cortex arranged from 

anterior to posterior. Most of these OC areas are organized into three layers, namely layer 

Ⅰ, layer Ⅱ, and layer Ⅲ from the surface, while the entorhinal cortex consists of six 

layers. Each OC has its own complex neural circuitry, and an OC neuron has excitatory 

synaptic contacts with many neurons in the same or other OC areas via its axonal lateral 

branches. However, it is still not well understood how the OC function. Perhaps each area 

reads the OB odor map differently and has its own olfactory information processing 

mechanism. Understanding this is a major challenge for olfactory researchers at present. 

The olfactory nervous system also could recognize if the food we are smelling is the same 

as something we have eaten before. Neural circuits in the anterior and posterior piriform 
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cortices are expected to play an important role in the process of remembering and 

recognizing food odor information (Manabe et al., 2011). 

 

Unique inputs and outputs of olfactory cortex subareas 

It remains unknown as to how each area of the OC encodes for sensory- and behavior-

related information from higher-order regions. This is because most of the OC areas are 

very small and difficult to access in the deep part. In addition, since previous olfactory 

researchers have only observed odor responses about OC, there has been no research to 

investigate the processing of higher-order information such as task variables during 

behavioral tasks. Indeed, the importance of motor and behavioral state information 

observed in the whole brain has recently been reported (Musall et al., 2019; Parker et al., 

2020; Steinmetz et al., 2019; Stringer et al., 2019). In this thesis, I focused on the OC 

subareas: aPCx, vTT, NLOT, and ACo (Figures 1-5 and 1-6). 

 The piriform cortex is the largest of the olfactory cortical regions. The aPCx 

(Chapter 3) has strong reciprocal connections with the OB (Ghosh et al., 2011; Igarashi 

et al., 2012; Luskin and Price, 1983a; Miyamichi et al., 2011; Mori and Sakano, 2011; 

Nagayama, 2010; Sosulski et al., 2011). On the other hand, the piriform cortex also 

receives substantial top-down projections originated in higher order regions and projects 
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to the frontal cortex, amygdala, thalamus, and many OC subareas (Mori, 2010). The vTT 

(Chapter 4) has reciprocal connections with the OB, aPCx, and pPCx (Igarashi et al., 

2012; Luskin and Price, 1983a, 1983b). In addition, the deep layers of the vTT receive 

top-down projections from the medial prefrontal cortex (Hoover and Vertes, 2011). The 

NLOT (Chapter 5) receives direct projections from the OB and piriform cortex (Luskin 

and Price, 1983a; Price, 1973) and, along with the anterior amygdaloid area, anterior 

cortical and posterolateral cortical amygdaloid nuclei, and amygdalo-piriform transition 

area, forms part of the olfactory amygdala (Santiago and Shammah-Lagnado, 2004). The 

NLOT strongly innervates the basolateral amygdala and ventral striatum (Luskin and 

Price, 1983a; Price, 1973; Santiago and Shammah-Lagnado, 2004). The ACo (Chapter 

6) receives dense projections from the OB, moderate projections from the piriform cortex, 

lateral entorhinal cortex, basomedial amygdaloid nucleus, and medial amygdaloid 

nucleus, and scarce projections from the ventral tegmental area and the tenia tecta (Cádiz-

Moretti et al., 2017). The ACo projects densely to basomedial amygdaloid nucleus 

(Cádiz-Moretti et al., 2017). Thus, each area has unique input and output properties. 
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Figure 1-4 | Olfactory neural processing: Olfactory bulb neurons → olfactory 

cortex subareas 

Upper left diagram shows a rat brain, and the olfactory area (OB and OC) is shown 

by the brown shaded area. Center diagram shows a olfactory area a view of the 

rat brain from the bottom, where the colored areas indicate the OC. 

Abbreviations: ACo, anterior cortical amygdaloid nucleus; AON, anterior olfactory 

nucleus; aPCx, anterior piriform cortex; LEC, lateral entorhinal cortex; NLOT, 

nucleus of lateral olfactory tract; OT, olfactory tubercle; PLCo, postero-lateral 

cortical amygdaloid nucleus; PMCo, postero-medial cortical amygdaloid nucleus; 

pPCx, posterior piriform cortex; vTT, ventral tenia tecta. 
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Figure 1-5 | Schematic representation of the pattern of inputs and outputs 

of the olfactory cortex subareas described in the previous work, focusing on 

vTT, NLOT, and ACo. 

The olfactory circuits (OB and OC) are shown by the brown shaded area. The aPCx 

has strong reciprocal connections with the OB and receives substantial top-down 

projections originated in higher order regions. It projects to the frontal cortex, 

amygdala, thalamus, and many OC subareas. The vTT has reciprocal connections 

with the OB and piriform cortex (PCx). The deep layers of the vTT receive top-

down inputs from the medial prefrontal cortex (mPFC). The NLOT receives direct 

projections from the OB and PCx. The NLOT strongly innervates the basolateral 

amygdala (BLA) and ventral striatum. The ACo receives dense projections from 

the OB, moderate projections from the PCx, lateral entorhinal cortex, basomedial 

amygdaloid nucleus (BMA), and medial amygdaloid nucleus (Me), and scarce 

projections from the ventral tegmental area and the tenia tecta. The ACo projects 

densely to BMA. Thus, each area has unique input and output properties. Other 

abbreviations: OT, olfactory tubercle; dTT, dorsal tenia tecta; FC, frontal cortex; 

HPT, hypothalamus; LH, lateral hypothalamus; Amy, amygdala; Str, striatum; 

NAcc, nucleus accumbens. 
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Figure 1-6 | The previous accumulation of knowledge about anatomy, 

function, and neural recordings in the aPCx, vTT, NLOT, and ACo 

Well-researched fields are shown by the blue shaded area and poorly ones are 

shown by the red shaded area. In this thesis, I focused on the neural responses to 

odor-sampling and behavioral epochs of four OC subareas (aPCx, vTT, NLOT, and 

ACo) during odor-guided behavioral tasks. 
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1.6. Olfactory neural processing as links to higher functions 

Orbitofrontal cortex circuits integrate sensory inputs to evaluate the food 

The OC, where the axons of the mitral and tufted cells of the OB project, is an 

evolutionarily old region of the cerebral cortex. In the neocortex, which is evolutionarily 

new, where is the olfactory information sent? In 1975, it was reported that neurons 

receiving odor information were clustered in the lateral posterior part of the orbitofrontal 

cortex (OFC) in the monkey neocortex (Tanabe et al., 1975). In 1980, a group of neurons 

receiving olfactory information was discovered in the central part of the OFC (Yarita et 

al., 1980). In addition, it was found that these cells receive olfactory information from the 

OC via the dorsomedial nucleus of the thalamus. These studies showed that a large 

amount of odor information is sent to the OFC in the neocortex. After that, Edmund T. 

Rolls’ group found that neurons in the OFC collect a special combination of taste, smell, 

temperature, and texture information of food in the mouth (Rolls, 2004, 2000). In other 

words, the OFC integrates different sensory inputs (smell, taste, and somatosensory). In 

addition, when the subjects were satiated with a food item, the response of OFC neurons 

to the sensory input of that food was reduced, while the response to the sensory input of 

another food was not (OʼDoherty et al., 2000). Human brain imaging studies have also 

reported that OFC activity correlates with subjective ratings of the pleasantness of food 
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tastes and smells. This suggests that the OFC and the neural pathways that communicate 

with it integrate different sensory inputs to evaluate the food in the mouth. The OFC may 

play a major role in perceiving the food being chewed in the mouth as tasty and in 

directing the food to the esophagus. 

 

Olfactory tubercle circuits in the olfactory cortex link odors to motivational states 

Various odors induce various behavioral responses and emotional behaviors in rodents. 

When they detect the odor of food, they move toward the odor to find and eat the food 

based on the odor. The rodents’ brains predict the reward of food based on the odor 

information and induce the motivational state of appetite. When they detect the odor of a 

natural enemy such as a cat or fox, they exhibit escape behaviors and fear responses. In 

this case, rodents’ brains predict the approaching cat or fox and induce motivational states 

such as alarm and fear. The odor of a rival male, which is not a mate, may induce a fight 

motivation in the brain of rodent. Part of the neural mechanism that links various odor 

inputs to different motivational states may be hidden in the neural communication from 

the odor map in the OB to the olfactory tubercle (OT) in the OC. The OT together with 

the nucleus accumbens forms a structure called the ventral striatum. The output 

information of OT neurons is transmitted via neurons in the ventral pallidum to 
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dopaminergic neurons in the midbrain, which contain the neurotransmitter dopamine. The 

neural pathway from OB - OT - ventral globus pallidus - midbrain dopaminergic neurons 

is assumed to be closely related to the prediction of food and reward by odor. Not only 

the OT, but also various other areas of the OC may have their own function maps of 

motivation and emotional behavior induced by odors. 

 

Conversion of the odor processing mode depending on the internal state 

Motivation and emotional behaviors induced by odors change significantly depending on 

the internal states (behavioral and emotional states) of the brains of humans and rodents 

at the time. For example, when we smell grilled meat in a state of hunger, we feel 

motivated to eat. However, when we smell grilled meat after eating until we are full, we 

no longer feel motivated to eat. When we are asleep, the smell of grilled eel does not 

arouse our appetite. In other words, depending on the internal state of the brain, such as 

hunger or satiety and wakefulness or sleep, the neural circuits that link odor input to 

emotional behavior and motivation work in different ways. Interestingly, it has been 

found that OB neurons are active when odors are inhaled into the nasal cavity during both 

wakefulness and sleep, while OC neurons respond to odors only during wakefulness and 

hardly at all during non-REM sleep (Murakami et al., 2005). During wakefulness, 
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olfactory information is sent to the OC and higher centers, but during non-REM sleep, it 

is sent to the OB, but not to the OC or higher centers. This sleep-induced blocking of 

sensory information transmission in the central nervous system is also observed in vision 

as well as auditory and somatosensory perception and is commonly referred to as “sensory 

gating”. The changes in the mechanisms by which neural circuits work are not only due 

to changes in sleep and wakefulness. Even when we are awake, the neural circuits of the 

brain work differently when we are resting than when we are searching for food, and 

differently when we are eating. Such a change in the information processing mode of the 

neural circuits depending on the behavioral state is not seen in artificial machines such as 

computers and is a major characteristic of the brain. In addition to changes in behavioral 

states, changes in emotional states probably have a significant impact on changes in the 

information processing mode of neural circuits. Research on the mechanism of 

conversion of the olfactory information processing mode of the olfactory nervous system 

depending on the emotional state, which is expected to progress in the future, may provide 

important clues for studying the relationship between changes in the emotional state and 

changes in the sensory information. 
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Closing remarks for future olfactory research 

Research on the olfactory nervous system has progressed from studies on odor molecular 

receptors and the odor molecular map of the OB to studies on the relationship between 

various regions of the odor map and emotional and motivational behaviors induced by 

odors. However, research on olfactory neural circuits to understand the brain’s neural 

mechanisms that make us take appropriate emotional and motivational actions in response 

to sensory information from the outside world has just started. Since olfaction is closely 

linked to emotion and motivation, research using olfactory cues is expected to make an 

important contribution by paving the way for the understanding of neural mechanisms for 

emotion and motivation. 
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 Chapter 2. Material and Methods  

 

2.1. Animals 

All the experiments were performed on Long-Evans rats (11~ weeks old; weighing 250-

350 g) and male C57BL/6 mice (9~ weeks old; weighing 20–25 g), purchased from 

Shimizu Laboratory Supplies Co., Ltd., Kyoto, Japan. The animals were individually 

housed in a temperature-controlled environment with a 13-hr light/11-hr h dark cycle 

(lights on at 8:00 and off at 21:00). They were provided with water after the training and 

recording sessions to ensure that the body weights dipped no lower than 85% of the initial 

levels, and food was supplied ad libitum. All experiments were performed in accordance 

with the guidelines for animal experiments at Doshisha University and with the approval 

of the Doshisha University Animal Research Committee. 

 

2.2. Apparatus 

We used a behavioral apparatus controlled by the Bpod State Machine r0.5 (Sanworks 

LLC, NY), an open-source control device designed for behavioral tasks. The apparatus 

comprised a custom-designed mouse behavior box with two nose-poke ports on the front 

wall. The box was contained in another soundproof box (BrainScience Idea. Co., Ltd., 
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Osaka, Japan) equipped with a ventilator fan that provided adequate air circulation and 

low-level background noise. Each of the two nose-poke ports had a white light-emitting 

diode (LED) and infrared photodiode. Interruption of the infrared beam generated a 

transistor-transistor-logic (TTL) pulse; thus, signaling the entry of the mouse head into 

the port. The odor delivery port was equipped with stainless steel tubing connected to a 

custom-made olfactometer. In the rat experiment, almond, banana, coffee, lemon, orange, 

rose, tea, vanilla flavors (Narizuka Co., Ltd., Tokyo, Japan), +limonene, acetophenone, 

anisole, ethyl butyrate, ethyl hexanoate, eugenol, isoamyl acetate, and m-Cresol (Tokyo 

Chemical Industry Co., Ltd., Tokyo, Japan) were used as the go/no-go cue odors. In the 

mouse experiment, eugenol was used as the go-cue odor and amyl acetate as the no-go-

cue odor (Tokyo Chemical Industry Co., Ltd., Tokyo, Japan). These odors were diluted 

to 1:9 by airflow. Water-reward delivery was based on gravitational flow, controlled by 

a solenoid valve (The Lee Company, CT), and connected via Tygon tubing to the 

stainless-steel tubing. The reward amount was determined by the opening duration of the 

solenoid valve and was regularly calibrated. 

 



47 

 

2.3. Behavioral task: Four odors-guided go/no-go task with rats (Chapter 3) 

Rats were trained and tested on an odor-guided go/no-go task in which the recognition of 

two odors as reward-predicting go-cues (go cue odor-1 and -2) and other two odors as no-

reward-predicting no-go-cues (no-go cue odor-1 and -2). Each trial started by the 

illumination of the LED light at the right odor deliver port, which instructed the rat to 

nose poke into the odor deliver port. A nose poke in the odor deliver port resulted in the 

delay and delivery of one of the four cue odors, selected pseudo-randomly, for 500 ms. 

To decorrelate the timing of port entry and the delivery of odor, opening of the odor valve 

was delayed following entry into the odor deliver port by 200–500 ms (uniformly 

distributed). The rat was required to sniff the odor and then keep nose poking during the 

odor stimulation. If the odor port withdrawal occurred less than the odor deliver delay 

after odor onset, the rat was required to nose poke into the odor deliver port again. After 

the odor stimulation, the LED light at the right odor deliver port was turned off, the LED 

light at the left reward deliver port was turned on, and the rat could withdraw its nose 

from the odor deliver port. When a go-cue odor was presented at the odor deliver port, 

the rat was required to move to and nose poke into the left reward deliver port within 2 s. 

At the reward deliver port, the rat was required to keep nose poking for 500 ms before 

reward delivery began. Then 80 μl of 5% sucrose water or 40 μl of water was delivered 
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as reward. If a no-go-cue odor was presented, the rat was prohibited from poking its head 

into the reward deliver port for 2 s after the offset of odor stimulation. An incorrect port 

entry, or an absence of a port entry, resulted in 10 s interval as punishment with alarm 

sound. Inter-trial interval was 2 s each trial. Once every 10 trials, we introduced catch 

trials in which the airstream was delivered through a filter containing no odorants during 

which, the rats were not rewarded regardless of their choice (go or no-go behavior). 

During the training sessions, the rats learned to obtain water rewards at the left water port, 

move from the right odor port to the left odor port, and associate odor cues with the correct 

action. 

 

2.4. Behavioral task: Two odors-guided go/no-go task with mice (Chapter 4-6) 

After a 3 s inter-trial interval, each trial began by illuminating the LED light at the right 

odor port, which instructed the mouse to poke its nose into that port. A nose-poke into the 

odor port resulted in the delivery of one of the cue odors for 500 ms. The mice were 

required to maintain their nose-poke during odor stimulation to sniff the odor. After odor 

stimulation, the LED light was turned off and the mice could withdraw their noses from 

the odor ports. If a go-cue odor was presented, the mice were required to move to and 

nose-poke into the left water reward port within a timeout period of 2 s. At the water port, 
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the mice were required to maintain their nose-poke for 300 ms before water delivery 

began. Next, 6 μL of water was delivered as a reward. If a no-go-cue odor was presented, 

the mice were required to avoid entering the water port for 2 s following odor stimulation. 

Once every 10 trials, we introduced catch trials in which the airstream was delivered 

through a filter containing no odorants during which, the mice were not rewarded 

regardless of their choice (go or no-go behavior). During the training sessions, the mice 

learned to obtain water rewards at the left water port, move from the right odor port to the 

left odor port, and associate odor cues with the correct action. The accuracy rate was 

calculated as the total percentage of successes in the go and no-go trials in a session. 

 To test the time lag between the start of odor stimulation and the arrival of the 

odor molecules to the mouse’s nose, we conducted additional experiments in which odor 

presentation durations were 100, 200, 300, and 500 ms, without keeping the mice’s nose 

inserted into the odor port during the odor presentation in each session (14, 6, 11, and 7 

sessions in three mice) (Figure 5-1C). The odor presentation duration was fixed in each 

session and reduced from 500 ms to 100 ms across sessions. 
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2.5. Electrophysiology 

The rats were anesthetized with ketamine (67.5 mg/kg, i.p.) and medetomidine (0.5 mg/kg, 

i.p.), and implanted with a custom-built microdrive of 12 to 14 tetrodes targeted to the 

left aPCx (2.1 mm anterior to bregma and 3.8 mm lateral to the midline). The mice were 

anesthetized with medetomidine (0.75 mg/kg i.p.), midazolam (4.0 mg/kg i.p.), and 

butorphanol (5.0 mg/kg i.p.), and implanted with a custom-built microdrive of four 

tetrodes in the vTT (2.6 mm anterior to bregma, 0.4 mm lateral to the midline), NLOT 

(0.1 mm anterior to the bregma, 2.0 mm lateral to the midline), and ACo (0.1 mm anterior 

to the bregma, 2.2 mm lateral to the midline). Individual tetrodes consisted of four twisted 

polyimide-coated tungsten wires (California Fine Wire, single wire diameter 12.5 μm, 

gold plated to <500 kΩ). Two additional screws were threaded into the bone above the 

cerebellum for reference. The electrodes were connected to an electrode interface board 

(EIB-18, Neuralynx, MT) on the microdrive. The microdrive array was fixed to the skull 

using LOCTITE 454 (Henkel Corporation, Düsseldorf, Germany). After the completion 

of surgery, the rats and mice received atipamezole (0.75 mg/kg i.p.) to reverse the effects 

of medetomidine and allow for a shorter recovery period. Additionally, the rats and mice 

received analgesics (ketoprofen, 5 mg/kg, i.p.). Behavioral training resumed at least 1 

week postoperatively. Electrical signals were obtained with either a Cheetah recording 
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system (Neuralynx) or open-source hardware (Open Ephys). For unit recordings, the 

signals were sampled at 32 kHz in NeuraLynx and at 30 kHz in Open Ephys and band-

pass filtered at 600–6,000 Hz. After each recording, the tetrodes were adjusted to obtain 

new units. Their locations during each recording session were estimated based on their 

depth and later confirmed histologically based on electrolytic lesions and on the visible 

tetrode tracks. 

 

2.6. Data analyses: Spike sorting 

All data analyses were performed using built-in and custom-built software in MATLAB 

2019a (The Mathworks, Inc., MA). 

 The spikes were sorted into clusters offline based on their waveform energy, 

peak amplitudes, and the first principal components (PC) from the four tetrode channels 

using an automated spike-separation algorithm KlustaKwik (K.D. Harris) (Figure 2-1). 

The resulting classifications were corrected and refined manually using MClust software 

(A.D. Redish). The clusters were considered as single units only when the following 

criteria were met: (1) refractory period (2 ms) violations were <0.2% of all spikes, and 

(2) the isolation distance, estimated as the distance from the center of the identified cluster 

to the nearest cluster based on the Mahalanobis distance, was >20. 
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Figure 2-1 | An example of the spike sorting results 

The left panel shows five single neurons identified from a tetrode. The x- and y-

axes represent energy of spikes detected by ch. 1 and ch. 2, respectively, of the 

four tetrode chs. Clusters, represented by different colors, indicate different single 

neurons. The right panel indicates the average spike waveform of the five 

identified single neurons. The colors correspond to those of the clusters. 
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2.7. Data analyses: Spike histograms 

Neural and behavioral data were synchronized by inputting each event timestamp from 

the Bpod behavioral control system into the electric signal recording system. To calculate 

the firing rates during tasks, peri-event time histograms were calculated using a 20 ms bin 

width and smoothed by convolving spike trains with a 60 ms-wide Gaussian filter. To 

examine the relationship between the firing rate changes among individual neurons and 

the development of behavioral epochs in behavioral tasks, we created event-aligned spike 

histograms (EASHs) (Ito and Doya, 2015). As behavioral epoch durations varied for each 

trial, the median duration of the epoch was calculated first. The spike timing during each 

epoch and for each trial was linearly transformed to correspond with the median 

behavioral duration of each epoch. The number of spikes in each epoch was preserved. 

In this way, the regular raster plots were transformed into event-aligned raster plots. 

Consequently, an EASH was calculated using a 20 ms bin width and smoothed by 

convolving the spike trains with a 60 ms-wide Gaussian filter from the event-aligned 

raster plots. 
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2.8. Data analyses: Receiver operating characteristic (ROC) analyses 

To quantify the firing rate changes, we used an algorithm based on ROC analyses that 

calculates the ability of an ideal observer to classify whether a given spike rate was 

recorded in one of two conditions (e.g., during go-cue or no-go-cue odor presentation) 

(Felsen and Mainen, 2008). We defined an area under the ROC curve (auROC) equal to 

2 (ROCarea - 0.5), with the measure ranging from -1 to 1, where -1 signifies the strongest 

possible value for one alternative and 1 signifies the strongest possible value for the other. 

The statistical significance of these ROC analyses was determined using a permutation 

test. For this test, we recalculated the ROC curves after randomly reassigning all firing 

rates to either of the two groups arbitrarily. This procedure was repeated many times 

(500~1000 repeats for analyses of dynamics; we shuffled only the trial labels) to obtain a 

distribution of values. Subsequently, we calculated the fraction of random values 

exceeding the actual value. For all analyses, we tested for significance at α = 0.01. Only 

neurons (sessions) with a minimum number of three trials for each analyzed condition 

were included in the analyses. 

 For analyses of dynamics (width: 100 ms, step: 20 ms), we calculated three 

measures from the auROC values of correct trials: 
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(1) Time of center of mass (tuning peak time): This refers to the time corresponding to 

the center of mass of the significant points of the auROC values (p < 0.01, permutation 

test). The center of mass was calculated as the average of the histogram 

(∑ [class value𝑖  frequency𝑖]𝑖 / ∑ frequency𝑖𝑖 ). Only neurons with significant points for 

each analyzed condition were included in this analysis. 

(2) Duration (tuning duration): This refers to the duration in which the auROC values 

were significant (p < 0.01, permutation test) for ≥5 consecutive bins, containing the time 

of center of mass. Only neurons with consecutive bins for each analyzed condition were 

included in this analysis. 

(3) Onset time: The onset time refers to the time at which the duration was first evident. 

 We classified vTT cells (Chapter 4) with tuning peak times into five groups 

based on the epoch in which tuning peak time occurred during correct go trials. Of these, 

7% of all cells had tuning peak times in the approach epoch, 24% in the odor-sampling 

epoch, 23% in the moving epoch, 11% in the waiting epoch, and 15% in the drinking 

epoch. The distribution of behavioral epoch-specific firing for each cell type (yellow and 

blue shadows in Figure 4-2B) was calculated as follows. First, for each cell group, the 

number of cells with significant excitatory (or suppressed) firing during each time bin for 

each task was calculated. Their distribution was estimated using Gaussian kernel 
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smoothing via the fitdist function in MATLAB with a bandwidth of 100 msec. Second, 

the distribution of the significant excitatory (or suppressed) firing was compared with the 

cell-shuffled data for each cell group. To calculate the 99% confidence intervals of this 

distribution, we ran 1,000 iterations in which cellular group identities were randomized. 

We then calculated the distribution of significant excitatory (or suppressed) firing of each 

cell group, as above. For each bin in the tasks, the edges of the confidence interval were 

at the 0.5th and 99.5th percentiles of the distribution, as calculated from the cell-shuffled 

data. The significance of activity patterns for each cell group was determined by 

comparing the standard deviations of the data with those obtained from the cell-shuffled 

data, in which shuffling was performed 1,000 times by randomizing the cell selection. 

 Based on the ROC analyses during the odor-sampling epoch, we classified the 

NLOT neurons (Chapter 5) into five types (Figure 5-2). First, we calculated the auROC 

values of the go-cue versus baseline (1,000 to 0 ms before the end of the inter-trial 

interval) and the no-go-cue versus baseline during the odor-sampling epoch in the correct 

trials. Based on these values, we defined the cue odor selective population that exhibited 

significant responses for at least one cue odor presentation and cue odor non-selective 

population (type Ⅴ neurons). Second, in the cue odor selective population, we also 

calculated the auROC values of the go-cue versus the no-go-cue during the odor-sampling 
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epoch in the correct trials. Based on these values, we defined go-cue responsive neurons 

(significant go-cue > no-go-cue, type I neurons) and no-go-cue responsive neurons 

(significant go-cue < no-go-cue, type II neurons). Finally, in the remaining population, 

we also calculated the auROC values of cue odors (go-cue + no-go-cue) versus baseline 

during the odor-sampling epoch in the correct trials. Based on these values, we defined 

cue excitatory neurons (cue odors > baseline, type Ⅲ neurons) and cue suppressed 

neurons (cue odors < baseline, type Ⅳ neurons). For all mentioned analyses, we tested 

for significance at α = 0.01 (permutation test). 

 

2.9. Data analyses: Generalized linear models (GLM) 

To quantify the contribution of behavioral variables to neural activity, we used 

generalized linear models (GLM), which was a multiple linear regression with the firing 

rate of each neuron as the dependent variable, and predictors derived from the behavioral 

variables as the independent variables (Engelhard et al., 2019). In this analysis, the firing 

rate (5 ms bin width and smoothed by convolving spike trains with a 25 ms-wide Gaussian 

filter) of each neuron is described as a linear sum of temporal filters aligned to task events.  

 We quantified the relative contribution of each behavioral variable to neural 

activity by determining how the performance of the encoding model declined when each 
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variable was excluded from the model (Engelhard et al., 2019; Pho et al., 2018). We 

predicted the firing rate of each neuron with all variables (full model) or by excluding one 

of the variables (partial model). The relative contribution of each behavioral variable was 

calculated by comparing the variance explained of the partial model to the variance 

explained by the full model. 

 

2.10. Data analyses: Population vector construction and analyses 

We constructed some conditions during the odor-sampling epoch, in which columns 

contained the auROC values of the correct trials corresponding to the trial-averaged firing 

rate changes from the baseline. By performing principal component analysis on the data, 

we reduced the dimensionality of the population from neurons to three PCs and obtained 

the odor-sampling epoch subspaces. To visualize the population responses, we projected 

the data onto the three-dimensional subspaces. This allowed us to obtain a point reflecting 

the response of the entire population for each of the two conditions at a given instant. The 

distance between the cue responses was computed as the Euclidean distance between 

pairs of activity vectors of all subspaces at a given instant (Cury and Uchida, 2010). The 

velocity of population responses was determined as the distance between successive 20 

ms bins. These values were compared with the values during the baseline epoch. 
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2.11. Data analyses: Support vector machine (SVM) decoding analyses 

We used a SVM algorithm with a linear kernel as a classifier (Cury and Uchida, 2010; 

Miura et al., 2012) and a MATLAB function (fitcsvm) for analyses. All analyses were 

conducted on trial data pooled across animals. A matrix containing concatenated firing 

rates for each trial and each neuron provided input to the classifier. The matrix dimensions 

were the number of cells by the number of trials. To avoid over-fitting, k-fold cross-

validation (k = 10) was used to calculate the decoding accuracy of trial type 

discrimination. To compute the decoding accuracy, 20~40 trials for each trial type (from 

the start of the session) were chosen as the data. Next, the data were partitioned into ten 

equal parts; one part was used for testing and the remaining parts were used for training 

the classifier. This process was repeated ten times to test each individual part; the mean 

value of the accuracy was used for decoding accuracy. To compute the decoding accuracy 

of a 100 ms bin window (step: 20 ms), the classifier was trained and tested with a 100 ms 

bin window (step: 20 ms). 
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2.12. Histology 

After recording, the rats and mice were deeply anesthetized using an intraperitoneal 

injection of sodium pentobarbital. Electric lesions were made using 10–20 μA direct 

current stimulation for 5 s of one of the four tetrode leads. The rats and mice were perfused 

transcardially with phosphate-buffered saline (PBS) and subsequently with 4% 

paraformaldehyde. The brains were removed from the skull and post-fixed in PFA. Next, 

the brains were cut into 50-μm thick coronal sections and stained with cresyl violet. The 

electrode track positions were determined in reference to the atlas developed by Paxinos 

and Watson. 

 

2.13. In situ hybridization (Chapter 4) 

Adult male mice (n=3) were used. Digoxigenin-(DIG)-labeled RNA probes for Slc17a7 

and Gad1/2 were generated using an in vitro transcription kit (Roche, Basel, Switzerland), 

according to the manufacturer’s protocol using plasmids generously provided by Drs. 

Katsuhiko Ono and Yuchio Yanagawa. Brain sections (20-μm-thick) were mounted on 

glass slides (CREST, Matsunami, Osaka, Japan) using a paintbrush and dried overnight 

in a vacuum desiccator. The dried sections were then fixed in 4% PFA, digested with 

Proteinase K (10 μg/mL) for 30 min, and post-fixed in 4% PFA. After prehybridization, 
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the sections were incubated overnight at 65°C with DIG-labeled RNA probes. After 

stringent washing, sections were blocked with 1% blocking reagent (11096176001, 

Roche) in TNT for 1 h. Subsequently, sections were incubated overnight at 4°C with 

alkaline phosphatase-conjugated anti-DIG antibody (1:1,000; Roche). Sections were then 

washed three times in TNT and once in TS 8.0 (0.1 M Tris-HCl, pH 8.0, 0.1 M NaCl, 50 

mM MgCl2). Finally, alkaline phosphatase activity was detected using an HNPP 

fluorescence detection set (11758888001, Roche), according to the manufacturer's 

instructions. After three 30-min incubations, sections were washed with PBS. Finally, 

sections were counterstained with NeuroTrace green (Thermo Fisher Scientific, MA, 

USA) and mounted in PermaFluor (Thermo Fisher Scientific). 

 

2.14. Retrograde tracing (Chapter 4) 

Adult male mice were anesthetized with medetomidine (0.75 mg/kg i.p.), midazolam (4.0 

mg/kg i.p.), and butorphanol (5.0 mg/kg i.p.), and then placed in a stereotaxic apparatus 

(SR-5M, Narishige, Tokyo, Japan). Injections were conducted with a syringe pump 

(UltraMicroPump III, WPI, FL, USA) connected to a Hamilton syringe (RN-1701, 

Hamilton, Nevada, USA) and a mounted glass micropipette with 50 μm tip diameter 

connected to the syringe with an adaptor (55750-01, Hamilton). 
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 Cholera toxin B subunit (CTB) conjugated with Alexa 555 (Thermo Fisher 

Scientific) was unilaterally or bilaterally injected (300 nL at 100 nL/min) into the medial 

prefrontal cortex (A/P, 2.4 mm; M/L, 0.4 mm from bregma; D/V, 1.0 mm from the brain 

surface; n = 3 from 2 mice), OB (A/P, 4.3 mm; M/L, 0.8 mm from bregma; D/V, 1.5 mm 

from the brain surface; n = 3 from 2 mice), AON (A/P, 2.8 mm; M/L, 1.3 mm from 

bregma; D/V, 2.6 mm from the brain surface; n = 3 from 2 mice), OT (A/P, 1.5 mm; M/L, 

1.0 mm from bregma; D/V, 4.7 mm from the brain surface; n = 5 from 3 mice), aPCx 

(A/P, 2.3 mm; M/L, 1.8 mm from bregma; D/V, 3.4 mm from the brain surface; n = 4 

from 4 mice), or pPCx (A/P, -1.5 mm; M/L, 3.6 mm from bregma; D/V, 4.5 mm from the 

brain surface; n = 3 from 2 mice), or vTT (250 nL; A/P, 0.3 mm tilted 30°; M/L, 0.4 mm 

from bregma; D/V, 4.6 mm from the brain surface; n = 3 from 2 mice). After surgery, 

mice received atipamezole (0.75 mg/kg i.p.) and ketprofen (5 mg/kg, i.p.). One week later, 

mice were deeply anesthetized and perfused with saline followed by 4% PFA under 

anesthesia. Brains were sliced into 50-μm-thick coronal sections. 

 Sections were examined with a confocal laser microscope (FV1200, Olympus, 

Tokyo, Japan) and a bright-field and fluorescent microscope (Zeiss, Oberkochen, 

Germany). 
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In the following chapters, I describe our analyses of the aPCx (Chapter 3), vTT 

(Chapter 4), NLOT (Chapter 5), and ACo (Chapter 6) neural activity recorded during 

the odor-guided behavioral tasks (Figure 1-4). 

 

 Chapter 3. Research: anterior piriform cortex (aPCx) 

in the OC  

 

3.1. Short summary 

The anterior piriform cortex (aPCx) in the OC mediates the processing of incoming 

olfactory sensory signals and top-down cognitive signals originated in higher order 

regions. However, it remains unknown how neurons in the aPCx represent top-down 

cognitive signals and integrate them with olfactory sensory signals. Using an extracellular 

recording, we demonstrated that individual aPCx neurons responded and maintained a 

specific state of subsequent animals’ behaviors that were predicted by the cue odors even 

after the reversal learning, whereas the firing pattern during odor presentation exhibited 

various changes during the reversal learning. Based on these results, we report here 

unique behavioral state representations in the OC and speculate that aPCx neurons have 
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an important role in the association between flexible odor representations and top-down 

signals related to odor-guided learned behaviors. 

 

3.2. Introduction 

The piriform cortex, the largest of the olfactory cortical regions, receives not only 

olfactory sensory signals but also top-down cognitive signals originated in higher order 

regions. On one hand, the piriform cortex, particularly the aPCx, has strong reciprocal 

connections with the olfactory bulb shown by neural tracing studies (Ghosh et al., 2011; 

Igarashi et al., 2012; Luskin and Price, 1983a; Miyamichi et al., 2011; Mori and Sakano, 

2011; Nagayama, 2010; Sosulski et al., 2011). Olfactory bulb neurons project broadly to 

the aPCx, and neural recording studies showed that odor stimulation activates widely 

distributed neurons in the aPCx without an odor-specific topography (Miura et al., 2012; 

Rennaker et al., 2007; Stettler and Axel, 2009; Uchida et al., 2014; Zhan and Luo, 2010). 

On the other hand, the piriform cortex also receives substantial top-down projections 

originated in higher order regions that are involved in processing expectation, working 

memory, and decision-making. For example, the aPCx receives projections from the 

orbitofrontal cortex (OFC) (Johnson et al., 2000). In rats trained to perform an odor-

outcome association task, both aPCx and OFC neurons fired during odor-sampling and 
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the outcome-related periods such as the period of expectation of the outcomes (Roesch et 

al., 2006). 

 Based on these observations, it has been proposed that the piriform cortex may 

function not only as a primary sensory region but also as an olfactory association cortex, 

integrating odor sensory signals with top-down cognitive signals necessary for 

performing odor-guided behaviors. To investigate the associative relationship in olfactory 

circuits, the aPCx is a good candidate for the reasons above; however, the 

electrophysiological features that directly explain the rules has been poorly explored. 

Specifically, most previous studies have focused on the aspect of the aPCx activity during 

odor presentation (Miura et al., 2012; Stettler and Axel, 2009) and not on the activity of 

the olfactory cortex during freely-moving odor-guided behavior (Shiotani et al., 2020b; 

Tanisumi et al., 2021) driven by top-down inputs. Indeed, recent studies have been 

emphasizing the importance of behavioral states and motion signals supplied to the 

sensory cortex in information processing (Parker et al., 2020; Speed and Haider, 2021; 

Stringer et al., 2019). Therefore, the purpose of the present study was to understand how 

top-down signals are expressed in the aPCx and associated with olfactory sensory signals. 

 Herein we recorded neural ensemble activity in the aPCx of freely moving rats 

performing the go/no-go association task and its reversal. During odor-sampling, many 
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aPCx neurons responded to a specific combination of cue odors. Many of them also 

showed increased firings during a specific state of subsequent behaviors that were 

predicted by the cue odors (i.e., moving to the reward port, reward waiting, drinking, and 

waiting on no-go trials). Furthermore, most of them maintained their behavioral state 

selective firings even after the reversal learning, whereas the firing pattern during odor-

sampling exhibited various changes during the reversal learning. Our results suggest that 

aPCx neurons play an important role in the association between flexible cue odor 

representations and stable top-down cognitive state signals that occur during odor-guided 

learned behaviors. 

 

3.3. Results: Distributed cue odor representations and sequential behavioral state 

signals 

We recorded data from 251 well-isolated neurons in the aPCx of three rats performing 

the go/no-go association task using four odors (Figure 3-1A). Briefly, the go trial requires 

the rat to first sample a go-cue odor stimulus presented at an odor port and then to move 

to a reward port to receive water (go response). Conversely, the no-go trial requires the 

rat to first sample a no-go-cue odor stimulus presented at the odor port and then to stay 

near it to wait for the next trial (no-go response). The cue odors used in a session consisted 
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of four of the eight pure odors or four of the eight mixed odors. In each session, two cue 

odors induced the rat to make go responses, and another two induced the rat to make no-

go responses. Below, we describe our analyses of the neural activity recorded during 

odor-sampling and the performing of odor-guided behaviors. 

 Firstly, we focused on the odor selective firing during cue odor presentation. For 

most of the neurons recorded, we found that aPCx neurons had a wide variety of odor 

selective responses during cue odor presentation irrespective of the odor set used as cue. 

As a population, 57% of aPCx neurons were activated by at least one of the four odors 

tested while 44% were activated by two or more (p < 0.01, Wilcoxon rank-sum test). 

Therefore, the aPCx responses to the cue odors were observed in a widely distributed, 

moderately sparse neural population, which is consistent with previous studies (Miura et 

al., 2012; Rennaker et al., 2007; Stettler and Axel, 2009; Uchida et al., 2014; Zhan and 

Luo, 2010). 

     Secondly, our findings revealed that most of these odor selective neurons also 

responded to the odor-guided behavioral epochs: the movement to the reward port, 

waiting for the rewards, consumption of the rewards, and waiting on no-go trials. For 

instance, the neuron in Figure 3-1B left was excited sharply by the reward-predicting 

odor and the early phase of the reward-waiting epoch. This figure also shows that intervals 
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of time between the behavioral states varied across trials (Figure 3-1B left top). To 

develop an overall response profile despite this timing variability, we created EASH (Ito 

and Doya, 2015), which is derived by linearly scaling time intervals between behavioral 

states in each trial to the median interval across all trials. EASH shows clearly that 

individual aPCx neurons fired to cue odors and the specific behavioral state on go/no-go 

trials (Figures 3-1B right, 3-2A, and 3-2B). To quantify the dependence of state-selective 

firings to each behavioral state, we calculated response changes of EASHs from baseline 

(during inter trial interval periods) in 100 msec bins using a ROC analysis. We calculated 

the auROC at each time bin. auROC values ranged from -1 to +1, with positive and 

negative values reflecting increased and decreased firing rates relative to baseline, 

respectively. We further determined the auROC value significance using a permutation 

test. Across the population, we found that many cue odor-selective cells significantly 

responded to each behavioral state (Figures 3-2C and 3-2D; colored lines were 

significantly selective, p < 0.01, permutation test). Go-cue odor selective neurons 

significantly increased from the baseline rate for two consecutive bins (200 msec) during 

moving epoch (27.7%), waiting for the reward epoch (21.1%), and drinking epoch 

(20.3%). No-Go-Cue odor-selective neurons increased from the baseline rate for two 

consecutive bins (200 msec) during waiting epoch (42.3%) on no-go trials. 
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 Compared to the wide variety of odor-selective responses, behavioral state-

selective responses did not differ between cue odors having the same meaning (go cue 

odor-1 [G1] vs. go cue odor-2 [G2], no-go cue odor-1 [N1] vs. no-go cue odor-2 [N2]). 

To qualify this, we also calculated the auROC values between these same cue odors. We 

firstly calculated the values during the odor presentation between same cue odors and 

defined “primary preferred go/no-go-cue odor” and “less preferred go/no-go-cue odor” 

in each session. Then, auROC values were adjusted as a response between primary 

preferred cue odor vs. less preferred cue odor. Across the population, we found that many 

cue odor-selective neurons had no selectivity for a single cue odor after odor port exit 

(Figures 3-2E and 3-2F right; colored lines were significantly preferred, p < 0.01, 

permutation test). We next defined the peak time of behavioral state responses, which is 

the center of mass of the significantly increased points from baseline (p < 0.01, 

permutation test). Each peak was calculated using the auROC values between each cue 

odor and the baseline after the odor port exit. These peaks overlapped across the 

population, appearing at approximately the same time for go-cue odors (Figure 3-2E left) 

and at slightly different times for no-go-cue odors (Figure 3-2F left). Thus, individual 

aPCx neuron expressed not only odor signals, but also the odor-guided behavioral state 
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signals. In the following sections, we focus on the relationships between odor selectivity 

and odor-evoked behavioral state selectivity. 
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Figure 3-1 | Electrophysiological recordings in the aPCx of freely moving rats 

performing the odor-guided go/no-go association task 

(A) Schematics of the odor-guided go/no-go association task. 

(B) An example of event-aligned spike data. Colored shading indicates the odor 

delay (yellow), odor presentation (orange), odor valve offset to odor port exit 

(yellow), waiting (light blue), and drinking (blue) behavioral epoch. 
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Figure 3-2 | Distributed cue odor representations and sequential behavioral 

state signals 

(A) Left panel: examples of event-aligned spike data for three representative cells 

tuned to specific go-cue odors and behaviors (go cue odor-1 and -2). Right panel: 

event-aligned firing rates for correct go trials for go-cue odor selective neurons, 

sorted by the peak time for the max values after odor-sampling. Each row 

corresponds to one cell. Vertical white lines indicate transitions between 

behavioral epochs. Right top panel: event-aligned behavioral epochs of the task 

by EASHs (time scale: odor valve on ~ off, 0.5s). As behavioral epoch durations 

varied for each trial, the median duration of the epoch was calculated. Spike 

timing during each epoch and for each trial was linearly transformed to 

correspond with the median duration of each behavioral epoch. 

(B) Same as (A), for correct no-go trials. 

(C) auROC values were calculated from event-aligned spike data for the cells. The 

values were calculated by comparing go correct trials to baseline in sliding bins. 

Colored lines were significantly selective, p < 0.01, permutation test; each line 

color was defined by where the firing peak after odor-sampling in (A). 

(D) Same as (C), for correct no-go trials. 

(E) Left panel: the center of mass (peak) of the significantly increased points from 

baseline of each go-cue condition. Right panel: auROC values were calculated as 

a response between primary preferred go-cue odor vs. less preferred go-cue odor. 

Colored lines were significantly preferred, p < 0.01, permutation test. 

(F) Same as (E), for correct no-go trials. 
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3.4. Results: Associative correlation in the odor and behavioral state firings 

In the odor and behavioral state-selective population, the neurons that expressed go-cue 

odors-selective firings during odor presentation tended to enhance their behavioral state 

firings during go-cue odor-guided behaviors (Figures 3-2A and 3-2C). Conversely, the 

neurons that expressed no-go-cue odors-selective firings during odor presentation tended 

to slightly enhance their firings to the early phase of the waiting state during a no-go-cue 

odor-guided behavior (Figures 3-2B and 3-2D). To quantify the encoding relationship 

between the odor and behavioral state firings, we calculated the auROC values during the 

behavioral states in each odor-selective subpopulation (Figure 3-3A). The cumulative 

sums of the auROC values that significantly increased from baseline (Figure 3-3B; p < 

0.01) were higher than the control at each time bin (shuffled categories of odor selective 

neurons), excluding the that of the late phase in the less preferred no-go cue odor-selective 

neurons. In addition to this evaluation, we calculated the Lorenz curve of these cumulative 

sums, describing inequality among the sequential behavioral state firings (Figure 3-3B). 

The Gini coefficient, which is the ratio of the area that lies between the line of perfect 

equality and the observed Lorenz curve over the total area under the line of equality, was 

significantly higher than the control (p < 0.01, shuffled categories of odor-selective 
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neurons). These results suggest that each odor-selective population represented a 

relatively equal tiling of the behavioral states evoked by the odor. 

 Thus, when a group of neurons that selectively respond to each odor was 

collected, the behavioral state signals were assembled to cover the behaviors lead by that 

odor. It is possible that subpopulations defined based on go/no-go cue response profiles 

exhibit behavioral states that reflect go/no-go directional profiles, indicating that go/no-

go association relationships are represented within the aPCx when subpopulations are 

overlooked. To verify the details of the behavioral state signal contained in the 

subpopulation determined by the odor response profile, we first used k-means clustering 

to classify the odor selectivity of individual neurons into six types based on the auROC 

epoch values of the go/no-go odor conditions (Figure 3-3C). Clusters were ordered in the 

high value of go-cue odors vs. no-go cue odors and were stable. Then, we calculated the 

cumulative auROC values of the go/no-go behavioral states in each cluster (Figure 3-

3D). The go-cue odors-selective clusters have high values in the go behavioral states, as 

well as the no-go-cue odors and no-go behavioral states. We summarized this by 

comparing the mean of go/no-go cue odor preference values with the state value index: 

the cumulative values of go behavioral states / the cumulative values of no-go behavioral 

states (Figures 3-3E). For a cluster that prefers go/no-go-cue odors and their following 



76 

 

go/no-go states, the plot falls along the line x = y. Clearly, values were correlated for 

go/no-go preference, demonstrating that there was a positive correlation between the 

selectivity for cue odors and odor-guided behavioral states in the aPCx populations. 

Furthermore, to maximize the reliability of this result, a set of 80% resampled datasets 

obtained by subsampling without replacement were clustered into six clusters, and the 

correlation was evaluated. Similar results were observed for each dataset 1000 times. 

These results indicate that although individual aPCx exhibit a variety of odor response 

patterns (Miura et al., 2012; Stettler and Axel, 2009), each of these represents an odor-

outcome association that also expresses the behavioral state guided by the odor, thus 

establishing the aPCx associative representation. 
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Figure 3-3 | Associative correlation in the odor and behavioral state firings 

(A) auROC values were calculated from event-aligned spike data for each odor-

selective cells, sorted by the peak time for the values after odor-sampling. Each 

row corresponds to one cell. 

(B) The cumulative sums of the auROC values (black line) that significantly 

increased from baseline. The values were compared to the control values (gray 

line, shuffled categories of odor selective neurons) at each time bin. The Lorenz 

curve of these cumulative sums describes inequality among the sequential 

behavioral state firings. 

(C) Clustering results based on the auROC epoch values of the go/no-go odor 

conditions. Clusters were ordered in the high value of go-cue odors vs. no-go cue 

odors. The right panel indicates averaged firing rates for each cluster. 

(D) The cumulative auROC values of the go/no-go behavioral states in each 

cluster (black value). The values were compared to the control values (gray line, 

shuffled categories of cluster) at each time bin. 

(E) The mean of go/no-go cue odor preference values vs. the state value index: 

the cumulative values of go behavioral states / no-go behavioral states. Light 

colored plots show the 80% resampled datasets obtained by subsampling without 

replacement and clustered into six clusters for each dataset 1000 times. 
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3.5. Results: Changing formats of individual selective firing of odor and behavioral 

states during reversal learning 

To examine the dependence on learning of the odor and behavioral states encoded in the 

aPCx, we also recorded neural activity in rats engaged in a reversal learning task in which 

the associations between cue odors and outcomes were first well learned, and then 

suddenly changed within the same sessions (Figure 3-4A). After reversal, rats had 

learned the reversed cue-outcome associations and reached criterion performance (16/20 

correct responses in a moving block of 20 trials for 10 consecutive trials) (Figure 3-4B). 

 After criterion performance was reached, the associations between the odor and 

behavioral state firings were also observed (Figure 3-4C) across the aPCx population 

(Figure 3-5A; The analysis methods are the same as in Figures 3-3A and 3-3B). Across 

the reversal learning, many odor- and behavioral state-selective neurons maintained the 

behavioral state-selective firings, respectively, whereas the odor-selective firings during 

the odor presentation exhibited various changes in their firing patterns before or after 

reaching criterion performance (Figure 3-4C). We qualified these firing changes of the 

tuning profiles and their speed in each state by the following two analyses. First, we 

evaluated the similarity of the odor and behavioral state’s tuning profiles between the 

original criterion and reversal criterion based on the Pearson’s correlation coefficient 



80 

 

(Figure 3-6A). The correlation coefficient distribution of the odor tuning profiles was 

wide, while that of the behavioral state tuning profiles was close to 1, suggesting a 

similarity. Second, we evaluated the speed of the firing changes in each state by fitting 

the firing rates on go response trials after reversal as the psychometric function (Figure 

3-6B). We then defined trials of the increased peak in each state and compared the odor 

with the behavioral state (p < 0.01, paired t-test). The firing change speed in each 

behavioral state tended to be faster than the change speed of odor-selective firings. These 

results indicate that the firing changes of the odor and behavioral states encoded in the 

aPCx depended on learning and expressed two features, flexible odor representations and 

steady top-down signals related to odor-guided behaviors. 
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Figure 3-4 | Reversal learning of the odor-guided go/no-go association task 

(A) Table of correct choices in an example session. 

(B) Averaged learning curve before and after reversal. 

(C) Change of firing rate of an example cell during reversal learning: original, 

before, and after reaching criterion performance. 
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Figure 3-5 | Associative correlation in the odor and behavioral state firings 

after reversal learning 

Same as Figures 3-3A and 3-3B, for after reversal learning. 
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Figure 3-6 | Quantifying the firing change of the tuning profile and their 

speed in each state during reversal learning 

(A) Response similarity of the odor and behavioral state’s tuning profiles between 

the original criterion and reversal criterion based on the Pearson’s correlation 

coefficient. Tuning profile values were calculated by the auROC values relative to 

baseline in each state. The top panel indicates a tuning profile of an example cell 

(green, original criterion; red: reversal criterion). 

(B) Quantifying and comparing the number of trials to reach the peak of response 

increase for each go-behavioral state response. The left panel indicates a 

response fitting in each state of an example cell. To qualify the firing changes 

each state and define their peaks during reversal learning, we first extract 

significantly odor- and behavior-state selective cells base on the auROC value for 

each state (the right top panels) and fit them using a psychometric function. The 

defined increase peaks were compared between odor- and behavior-state 

selective firings (p < 0.01, paired t-test) for each state (the right bottom panels). 
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3.6. Results: Stable population coding in the aPCx during the completed learning 

period 

While individual aPCx neurons’ odor–outcome encoding properties change in a learning-

dependent manner (Figures 3-4, 3-5 and 3-6), does the structure of the relationship 

between population activity patterns change or remain stable? To gain insight into the 

dynamics of the population response, we visualized the average population activity using 

principal component analysis, a dimensionality reduction method. Figure 3-7A top shows 

the trajectories of the mean response of the aPCx neuron population to go-cue and no-go-

cue odors, represented as the projections onto the first three PCs during the odor sampling 

epoch. For the evaluation of coding differences between conditions for population 

activities at each learning stage, the instantaneous separation of the population responses 

was measured in the original criterion, reversal learning, and reversal criterion periods, 

respectively (Figure 3-7A bottom). Across all learning stages, the trajectory remained 

convergent for approximately 200 ms after the odor onset, and there was little difference 

between conditions when compared to the degree of convergence during the baseline. 

During the 300–700 ms after the onset of the odor, the subspace trajectory of the odor 

sampling epoch began to spread out and was separated at the population level, suggesting 

stability of the population coding. Importantly, in the late phase of odor sampling, the 
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distances between odors with the same meaning (primary vs. less preferred go/no-go-cue 

odors) tended to converge, whereas the distances between conditions with different 

meanings tended to remain above the baseline levels over the initiation of cue-odor-

evoked behaviors. This trend emerged in the original and reversal criterion periods but 

disappeared in the reversal learning period. Taken together, the population of aPCx 

neurons developed dramatic transitions in the dynamics of cue encoding at 300–700 ms 

after odor onset and, specifically, stable population representations of differences 

between go/no-go conditions in a learning-dependent manner. 

 To further investigate the stability of population coding, we performed a 

decoding analysis to evaluate whether population activity explains the accuracy of the 

animals’ behavioral accuracy at each learning stage. This analysis determined whether 

the firing rates of the aPCx neuron populations could be used to classify each trial as go 

or no-go. We used SVMs with linear kernels as a decoder. Analyses of the decoding time 

course based on aPCx neurons using a sliding time window revealed that the decoding 

accuracy was maintained at chance levels 200 ms after odor onset; subsequently, it 

increased above the level of animals’ behavioral accuracy 300–700 ms after the odor 

onset (Figure 3-4B). The explanation for this animal’s behavioral performance was 

obvious over the initiation of cue-odor-evoked behaviors during the original and reversal 
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criterion periods, but became a little unclear during the reversal learning period. Thus, the 

aPCx neuron population activity was stable enough to provide sufficient information to 

explain the accuracy of behavior 300 ms after odor onset, even though individual coding 

properties were variable. 
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Figure 3-7 | Stable population coding in the aPCx during the completed 

learning period 

(A) Top: visualization of the aPCx neuron population responses during odor-

sampling epoch using principal-component analysis. The responses to cue odors 

are projected onto the first three PCs corresponding to the odor-sampling epoch 

subspaces. Blue/light blue lines, primary/less go-cue odor; orange/brown lines, 

primary/less no-go-cue odor. Temporal progression is depicted from unfilled 

colored spheres to filled colored spheres. Bottom: the distances between the 

neuron population responses. The gray line and shaded areas show the mean ±2 

standard deviation (SD) baseline values during the baseline epoch. Top dots 

indicate the time bins showing values more than mean +2 SD baseline values. 

(B) Time course of go/no-go cue decoding accuracy for each learning state. A 

vector consisting of instantaneous spike counts for all neurons in a sliding window 

was used as an input for the classifier. Training of the classifier and testing was 

performed at every time point. 
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3.7. Discussion 

The purpose of the present study was understanding how neurons in the aPCx represent 

top-down cognitive signals and integrate them with olfactory sensory signals. In this 

study, we demonstrated that individual odor-selective neurons expressed specific 

behavioral state signals that were predicted by the go/no-go-cue odors before and after 

the reversal of cue–outcome contingencies (Figures 3-3A and 3-5). These results suggest 

that aPCx neurons participate in the communication of the flexible odor representations 

with the sequential top-down signals required for learning of odor-guided behaviors. 

 One of the most well-researched olfactory cortex areas, aPCx, expressed a 

variety of behavioral state response patterns (Figure 3-2) in addition to the traditional 

distributed odor information representation patterns (Miura et al., 2012; Rennaker et al., 

2007; Stettler and Axel, 2009; Uchida et al., 2014; Zhan and Luo, 2010), possibly related 

to the association between odor information and animal behavioral states (Figure 3-3). 

These response patterns had the following three properties. First, the response pattern of 

the aPCx changed in a learning-dependent manner (Figures 3-4, 3-5, and 3-6). This 

finding suggests that the aPCx is not only a sensor that receives odor information, but 

also has a system that constantly updates the odor-related information. Our results are 

consistent with recent reports stating that odor representation patterns in the aPCx 
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continue to be updated with learning (Pashkovski et al., 2020; Schoonover et al., 2021). 

Second, while the odor representations of individual neurons gradually and flexibly 

varied in response to rule changes, the behavioral state representations stably maintained 

the same information without changing their responses before and after rule changes 

(Figures 3-6A and 3-6B). In addition, both odor and behavioral state representations 

were stable at the population level (Figure 3-7). The knowledge that neural 

representations of individual neurons are fluid but stable at the population level has been 

reported in various regions of the brain (Deitch et al., 2021; Schoonover et al., 2021). The 

coexistence of drifting representations for odors and stability for behavioral state 

representations in the aPCx has provided new insights to the previous studies. Third, there 

were associative relationships between the odor and behavioral state properties of 

individual neurons that corresponded to the go/no-go conditional directions (Figures 3-

3A, 3-5 and 3-7). This finding suggests that bottom-up and top-down communication 

occurs in the aPCx to preserve the association between odor and odor-evoked behavioral 

states at the population level in response to rule changes, that is, environmental changes, 

and that the associative information continuously being updated. These three properties 

support the hypothesis that one of the functions of the aPCx is to adapt to learning and to 
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associate distributed and flexible odor information with stable behavioral state 

information. 

 We acknowledge that there are several limitations to this study. First, it is 

necessary to suppress aPCx directly with muscimol or other such methods to examine 

whether there is any effect on normal and reversal learning. Second, the source of the 

behavioral state signals represented by the aPCx remains unclear. As the candidates, the 

OFC and prefrontal cortex (PFC), which represent the behavioral states, higher-order 

variables, and state-space of animals (Hirokawa et al., 2019; Hyman et al., 2012; Schuck 

et al., 2016) are reasonable. Therefore, it is necessary to investigate the causal evidence 

of the top-down pathway from the OFC to the aPCx and the pathway from the PFC to the 

aPCx via the ventral tenia tecta (vTT) in the olfactory cortex (Shiotani et al., 2020b) in 

regulating the behavioral state responses of the aPCx using optogenetic approaches. Third, 

the effect of these top-down signals on the odor-evoked behavioral choice and odor-

reward learning in animals needs to be clarified, since the top-down input from the frontal 

cortex to the primary sensory cortex has been reported to affect decision-making and 

learning (Banerjee et al., 2020; Liu et al., 2020; Zhang et al., 2014). Proving functional 

causality within the same framework will lead to a better understanding of the 



93 

 

significance of top-down input to the sensory cortex in the whole brain and the olfactory 

circuits. 

 In conclusion, we extended the view that the aPCx processes a wide variety of 

odor information through distributed coding and proposed the concept that the aPCx can 

receive stable behavioral state signals from upstream regions while continuously updating 

the associations between odors and behavioral states. Our study provides a new 

framework for the existence of rules between the non-topographical and unstable 

olfactory processing of the aPCx with behavioral state signals and may serve as a basis 

for developing a circuit model for understanding the active bottom-up and top-down 

communication in the sensory cortex. Furthermore, it is possible that not only the aPCx 

but also other olfactory cortex subregions (Shiotani et al., 2020b, 2020a; Tanisumi et al., 

2021) have their own unique top-down signal processing. 
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 Chapter 4. Research: ventral tenia tecta (vTT) in the 

OC  

 

4.1. Short summary 

Based on the unique behavioral state representations in the OC (Chapter 3), it is assumed 

that there are some sources of top-down input to the OC wide area. The ventral tenia tecta 

(vTT) is a component of the olfactory cortex and receives both bottom-up odor and top-

down signals. However, it remains unknown how the vTT neurons represent these signals 

during cognitive and behavioral decision processes. Using an extracellular recording, we 

demonstrate individual vTT neurons tune to specific time windows in the behavioral 

context during odor-guided goal-directed behaviors (Shiotani et al., 2020b). The vTT 

receives top-down projections from the medial prefrontal cortex and projects to the broad 

olfactory areas, suggesting that vTT acts as a hub that sends context-dependent signals to 

broad olfactory areas. 

 

4.2. Introduction 

The vTT is a relatively unexplored area of the olfactory cortex located in the ventromedial 

aspect of the olfactory peduncle. Physiological studies of the visual, auditory, and 
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somatosensory cortices have revealed that neocortical sensory area neurons receive 

sensory signals from the environment, as well as top-down signals that are generated 

internally by higher-order cognitive and behavioral decision processes, including 

attention, reward-prediction, working memory, and behavioral choice processes (Allen et 

al., 2019; Gilbert and Sigman, 2007; Roelfsema and de Lange, 2016). In olfactory circuits, 

olfactory tubercle neurons encode goal-directed behaviors and exhibit enhanced odor 

responses when animals selectively attend to specific odors (Carlson et al., 2018; 

Gadziola and Wesson, 2016). Furthermore, c-Fos expression (a marker of neuronal 

activity) increases in different cells in the olfactory tubercle during distinct motivated 

behaviors in mice (Murata et al., 2015). However, the physiological and behavioral 

functions of the vTT are poorly understood. 

 To examine whether vTT neurons are modulated by cognitive and behavioral 

decision-making processes, we recorded neural activity of individual vTT cells during the 

performance of a series of odor-guided behaviors in mice. We observed that the firing of 

individual vTT neurons during odor-guided goal-directed behaviors was highly tuned to 

distinct task-elements that occurred in relation to the flow of goal-directed tasks, with 

each task-element occurring in a specific behavioral context. Our results indicate that vTT 

functions are dynamic rather than fixed, whereby changes in information processing 
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mode occur in a context-dependent manner during a sequence of feeding and drinking 

behaviors. 

 

4.3. Results: Activity of vTT neurons during the odor presentation phase of the odor-

guided go/no-go task 

We recorded the spiking activity of 270 vTT cells from six mice while they performed 

the go/no-go task (Figures 4-1A and B). After the mice were well trained, their 

behavioral accuracy remained above 80% throughout the session. The median duration 

of nose pokes after the onset of odor stimulation was 839 msec (interquartile range: 703-

1,003 msec) in the go trials and 738 msec (interquartile range: 621-946 msec) in the no-

go trials (57 sessions from six mice). 

 As the vTT receives direct inputs from mitral and tufted cells of the olfactory 

bulb, we first focused on whether vTT cells exhibited odor cue-responsive activity during 

odor presentation. We observed that a subset of vTT cells increased their firing rates 

during the odor presentation phase during both go and no-go trials (an example is shown 

in Figure 4-1C). To quantify the dependence of firing rate on the odor presentation phase, 

we calculated firing rate changes from baseline (pre-odor cue period, 1.2 to 1 sec before 

the odor port entry) in sliding bins (width, 100 msec; step, 20 msec) using a ROC analysis 
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approach. We calculated the auROC at each time bin (spike data were aligned to the onset 

of odor valve opening). auROC values ranged from -1 to +1, with positive and negative 

values reflecting increased and decreased firing rates relative to baseline, respectively. 

We further determined auROC value significance using a permutation test. Using the 

auROC approach, we defined the odor cue-responsive population (n = 68 cells, 25% of 

the recorded cells) as cells that significantly increased their firing rates from baseline for 

five consecutive bins (100 msec) during the odor presentation phase (500 msec after the 

odor valve opening) in correct go or no-go trials. Across all the cells, many exhibited 

significant increases in firing rate relative to both the go and no-go odor cue presentation 

phases (top color maps in Figure 4-1D, p < 0.01, permutation test). No significant 

differences in the magnitude of these increases between the go and no-go odor cue phases 

at each time point were observed (bottom lines in Figure 4-1D, p > 0.01, Welch’s t test). 

Changes in firing rate in individual vTT cells exhibited similar time courses for go and 

no-go trials. We quantified this by calculating the correlation coefficients of response 

profiles between correct go trials and correct no-go trials for each cell (top lines in Figure 

4-1E). This analysis revealed that the activity of vTT cells was strongly correlated 

between go and no-go odor cue presentation phases, whereas different cell pairs did not 

exhibit this correlation (bottom lines in Figure 4-1E, p < 10-13, two-sample Kolmogorov–
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Smirnov test). These results suggest that individual vTT cells did not represent odor cue 

differences between go and no-go trials during odor presentation phases. We therefore 

hypothesized that firing activity mainly reflected animal behavior and was dependent on 

task context.  
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Figure 4-1 | vTT cell activity patterns during the odor presentation phase of 

the odor-guided go/no-go task 

(A) Schematic of the odor-guided go/no-go task. 

(B) Nissl-stained frontal sections (arrow indicates recording track) and recording 

tracks (vertical thick lines) of the vTT in the odor-guided go/no-go task. Scale bar: 

500 µm. 

(C) Example firing patterns of vTT cells during the odor-guided go/no-go task. 

Purple and red ticks indicate times of odor valve closing and odor port exits, 

respectively. 

(D) Upper panels: auROC values for cells with significantly higher firing rates than 

baseline (n = 68 cells) during the odor presentation phase (upper, go trials; lower, 

no-go trials). Each row corresponds to one cell, with cells in both graphs 

presented in the same order. auROC values (aligned by odor valve opening) were 

calculated by comparing odor cue presentation and baseline in sliding bins. Cells 

were sorted by peak value times of auROC values calculated by comparing go 

odor cue presentation and baseline for each cell. Color scale shows significant 

auROC values (p<0.01, permutation test). Black boxes indicate bins with non-

significant auROC values (p>0.01, permutation test). Arrows indicate the same cell 

as that in (C). Lower panel: mean cell auROC values. Green line indicates go odor 

cue presentation versus baseline; pink dashed line indicates no-go odor cue 

presentation versus baseline. Shaded areas represent 95% confidence intervals. 

(E) Neural response similarity measures between go and no-go odor cue 

presentation. Upper panel: examples of auROC values during the go/no-go odor 

cue presentation phase for one cell and the correlation coefficient of auROC 
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values during the go/no-go-cue odor presentation phase. Lower panel: 

comparison of the correlation coefficients and cell-shuffled data, calculated for 

different pairs of cells. 
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4.4. Results: Behavior-specific activity of vTT cells in the odor-guided go/no-go task 

Many vTT cells exhibited an increase in firing rate during specific behaviors over the 

course of the odor-guided go/no-go task. Time intervals between behavioral events (the 

time from odor valve opening until the mouse withdrew its snout from the odor port, and 

the time from odor port withdrawal until reward port entry) also varied across trials. To 

develop an overall firing profile accounting for this variability, we created EASHs (Ito 

and Doya, 2015). An EASH was derived by linearly scaling time intervals between 

behavioral events in each trial and the median interval for all trials. The EASHs clearly 

demonstrated that individual vTT cells were activated during different behavioral epochs 

(between-event intervals), such as when mice were poking the odor port in the approach 

epoch (plots in bottom left, Figure 4-2A) and during the odor-sampling epoch (plots 

second from the bottom left, Figure 4-2A). 

 To quantify neural activity across behavioral epochs during the go trials, we 

calculated changes in event-aligned firing rates from baseline (pre-odor cue period, 1.2 

to 1 sec before odor port entry) in sliding bins (width, 100 msec; step, 20 msec) using 

ROC analyses. Across the population, almost all vTT cells exhibited a significant increase 

in firing rates during a specific behavior in each epoch (right color map in Figure 4-2A). 

Furthermore, individual vTT cells exhibited a significant decrease in firing rates in certain 
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epochs. These results were independent of the size of the window in which auROC values 

were calculated. To evaluate the relationships between epoch-specific firing rates, vTT 

cells were classified into five groups based on their tuning peak time with reference to 

the five go trial behavioral epochs. For each cell group, we calculated relative 

distributions of significant responses for each bin, according to significantly increased or 

decreased changes in firing rate throughout the tasks (Figure 4-2B). Of vTT cells, 7% 

exhibited tuning peak times within the time window of the approach epoch, indicating a 

significantly greater probability of exhibiting an increase in firing rate during the 

approach epoch; 24% had tuning peak times during the odor-sampling epoch, indicating 

that the firing rates of these cells were increased during the odor-sampling epoch; 23% 

and 11% had tuning peak times during the moving and waiting epochs, respectively, 

indicating that these cells were tuned to each epoch; and 15% had tuning peak times 

during the drinking epoch, indicating that they were tuned to the drinking epoch. 

Moreover, we observed that these classified cells tended to decrease their activity during 

other behavioral epochs, suggesting that individual vTT cells exhibit distinct tuning 

profiles for specific goal-directed behaviors. 
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Figure 4-2 | Tuning of vTT cells to distinct behaviors in the odor-guided 

go/no-go task 

(A) Left panel: examples of event-aligned spike data for five representative cells 

tuned to specific behaviors. Gray shading indicates the approach epoch (500 ms 

before odor port entry), yellow shading indicates the odor-sampling epoch (from 

entry into the odor port to exiting the odor port), orange shading indicates the 

moving epoch (from exiting the odor port to entry into the water port), light blue 

shading indicates the waiting epoch (water reward delay, 300 ms before water 

valve was turned on), blue shading indicates the drinking epoch (1000 ms after 

the water valve was turned on). Right panel: auROC values were calculated from 

event-aligned spike data for all cells, sorted by the peak time for auROC values. 

Each row corresponds to one cell. auROC values were calculated by comparing 

go correct trials to baseline in sliding bins. Vertical white lines indicate transitions 

between behavioral epochs, including odor port entry (corresponding to odor 

valve opening), odor port exit, water port entry, and water valve opening. The 

color scale for this figure is the same as that used in Figure 4-1D, with positive 

and negative values reflecting increased and decreased firing rates relative to 

baseline, respectively. Right top panel: Schematics of the approach (gray bar), 

odor-sampling (yellow bar), moving (orange bar), waiting (light-blue bar), and 

drinking (blue bar) behaviors. As behavioral epoch durations varied for each trial, 

the median duration of the epoch was calculated. Spike timing during each epoch 

and for each trial was linearly transformed to correspond with the median 

duration of each behavioral epoch. 
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(B) Relative distribution of significant auROC values (p<0.01, permutation test) 

per cell group tuned to a specific behavioral epoch in the odor-guided go/no-go 

task, and the schematics of the approach, odor-sampling, moving, waiting, and 

drinking behaviors. Cell groups were tuned to the approach, odor-sampling, 

moving, waiting, and drinking epochs (from bottom to top graphs). Each line 

corresponds to one cell (left axes, auROC values). Yellow and blue indicate a 

significant increase and decrease from baseline, respectively. Gray indicates 

neither a significant increase nor decrease. Shaded regions show the relative 

distributions of significant auROC valves (right axes, probability). Red dots 

indicate that a time bin contained more cells with significant responses than in 

the distribution of 1000 resampling datasets. Blue dots indicate that a time bin 

contained fewer cells with significant responses than in the distribution of 1000 

resampling datasets. Vertical black lines indicate the timing of odor port entry 

(corresponding to odor valve opening), odor port exit, water port entry, and water 

valve opening. Note that each cell group exhibited an excitatory response to a 

specific behavioral epoch, with suppressed responses relative to other epochs. 
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4.5. Results: Behavioral context-dependent activity of vTT cells 

We observed that many vTT cells tended to increase their firing rates before the most 

preferred behavioral epochs, and some cells maintained their increased firing rate after 

the epoch (Figure 4-2B). We therefore hypothesized that individual vTT cell firing was 

tuned to a specific behavioral context and was thus dependent on specific task-elements 

during task progression rather than on specific behaviors. If this were true, the response 

patterns of vTT cells would change in a different context, even for the same behavior. We 

assessed nose poke behaviors during the odor-sampling epoch of the odor-guided go/no-

go task and observed that a subset of cells exhibited differences in firing rates between 

the go and no-go trials just before the animals exited the odor port, despite involving the 

same nose-poking behavior. We quantified this by calculating go-cue versus no-go-cue 

trial preference using ROC analyses with real-time data. When the differences in firing 

rate were aligned to odor port exit times, we observed that more cells had differences in 

firing rate between the go and no-go trials before the animal exited from the odor port 

compared to that during the odor presentation phase (Figure 4-3A). A subset of cells with 

tuning peak times not during the odor-sampling epoch also exhibited differences in firing 

rate just before odor port exit times. 
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 To examine whether the population activity of vTT cells could account for 

behavioral accuracy, we performed a decoding analysis to determine whether the firing 

rates of vTT cell populations could be used to classify each individual trial as go or no-

go. We used SVMs with linear kernels as a decoder (Cury and Uchida, 2010; Miura et al., 

2012). Analyses of the decoding time course based on all 270 cells using a sliding time 

window revealed that decoding accuracy was maintained at chance levels during odor 

presentations and subsequently increased close to the level achieved during behavioral 

accuracy just before odor port exit (Figure 4-3B). These results suggest that vTT cells 

were tuned to task elements in a particular behavioral context during goal-directed 

behaviors.  
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Figure 4-3 | Behavioral context-specific activity of vTT cells 

(A) Upper panel: auROC values for all cells around the odor sampling epoch in 

the odor- guided go/no-go task. Each row corresponds to one cell. auROC values 

(left, aligned to the odor valve opening; right, aligned to the odor port exit) were 

calculated for correct go trials versus correct no-go trials in sliding bins. These 

values were sorted based on the time of peak auROC values in the right graph. 

The color scale indicates significant auROC values (p<0.01, permutation test). The 

black boxes indicate bins with non-significant auROC values. Lower panel: the 

number of cells that exhibited significant auROC values (p<0.01, permutation test) 
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for each time bin (orange, cell group tuned to the approach epoch; green, odor 

sampling epoch; blue, moving epoch; red, waiting epoch; brown, drinking epoch). 

(B) The time course of odor decoding accuracy in the odor-guided go/no-go task. 

A vector consisting of instantaneous spike counts for 270 neurons in a sliding 

window was used as input for the classifier. Training of the classifier and testing 

were performed at every time point. The orange line indicates the level of 

behavioral performance. The gray line and shaded area indicate the mean ±2 SD 

of control decoding accuracies calculated from 1000 trial-label-shuffled datasets. 

Top asterisks indicate accuracies greater than the mean + 2SD. 
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4.6. Results: Cell types and connectivity patterns of vTT cells 

Although many neurons in layer II of the vTT comprise pyramidal cells, the vTT also 

contains additional cell types (Haberly and Price, 1978; Shepherd, 2004). To examine the 

distribution of glutamatergic and GABAergic cells in the vTT, we performed in situ 

hybridization to measure vesicular glutamate transporter 1 (VGluT1) and glutamic acid 

decarboxylase (GAD) 67 and GAD65 mRNA (Slc17a7 and Gad1/2 mRNAs, 

respectively) in the vTT (Figure 4-4A and 4-4B). Approximately 86% and 8% of vTT 

cells were Slc17a7-positive and Gad1/2-positive, respectively, suggesting that the 

principal neurons of the vTT are glutamatergic. 

 It has previously been reported that the vTT has reciprocal connections with the 

olfactory bulb (OB), anterior piriform cortex (aPCx), and posterior piriform cortex 

(pPCx) (Igarashi et al., 2012; Luskin and Price, 1983a, 1983b). In addition, the deep 

layers of the vTT receive top-down inputs from the medial prefrontal cortex (mPFC) 

(Hoover and Vertes, 2011). To further examine cortical areas projecting to the vTT, we 

injected a retrograde tracer, CTB conjugated with Alexa 555, into the mouse vTT (Figure 

4-4C). A number of retrogradely labelled (CTB-positive) cell bodies were identified in 

the OB, aPCx, pPCx, and mPFC. In contrast, CTB-positive cell bodies were rarely 

observed in the anterior olfactory nucleus (AON), which is located just dorsal to the vTT 
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(Figure 4-4D). To examine cortical regions that received axonal projections from vTT 

cells, we injected CTB into the mPFC, OB, AON, olfactory tubercle (OT), aPCx, and 

pPCx. We then quantified retrogradely labelled CTB-positive cells in the vTT (Figures 

4-4E and 4-4F). Many retrogradely labeled vTT cells were observed in mice that received 

CTB injections in the OB, AON, and aPCx. In contrast, only a small number of 

retrogradely labeled vTT cells were observed in mice that received CTB injections in the 

OT and pPCx. Furthermore, retrogradely labeled cells were scarce in the vTT following 

injections of CTB into the mPFC. These results suggest that, in addition to dense 

reciprocal connections with the OB, the vTT projects to the AON and aPCx, and receives 

top-down projections from the aPCx, pPCx, and mPFC (Figure 4-4G). 
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114 

 

Figure 4-4 | Cell types and connectivity patterns of vTT cells 

(A) In situ hybridization of Slc17a7 (upper panels) and Gad1/2 (lower panels) 

mRNAs with Neurotrace staining of vTT cells. Scale bar, 100 µm. 

(B) Average percentages of Slc17a7-positive cells (left column) and Gad1/2-

positive cells (right column) among Neurotrace-positive cells in the vTT (n = 3 

mice). Error bars indicate SEM. 

(C) Upper left: Coronal section of the vTT after injection of Alexa 555-conjugated 

cholera toxin subunit B (CTB, red). Scale bar, 500 µm. The five other panels show 

CTB-labeled cells after CTB injections in the vTT. mPFC, medial prefrontal cortex; 

OB, olfactory bulb; AON, anterior olfactory nucleus; aPCx, anterior piriform cortex; 

pPCx, posterior piriform cortex. Scale bar, 100 µm. 

(D) Average density of CTB-labeled cell bodies in each area (mPFC, n = 5 from 

three mice; OB, n = 5 from three mice; AON, n = 3 from two mice; aPCx, n = 5 

from three mice; pPCx, n = 5 from three mice). Error bars indicate SEM. 

(E) CTB-labeled vTT cells after injection of CTB into the mPFC (upper left), OB 

(upper middle), AON (upper right), olfactory tubercle (OT, lower left), APC (lower 

middle), and pPCx (lower right). Scale bar, 100 µm. 

(F) Average density of retrogradely labeled CTB-positive cells in the vTT (n = 3 

from two mice). Error bars indicate SEM. 

(G) Schematic diagram of vTT connectivity patterns. Arrows indicate axonal 

projections. 
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4.7. Results: mPFC-to-vTT top-down input potentially shares behavioral state 

signals to the olfactory cortex 

As described above, we anatomically elicited the possibility that the mPFC-to-vTT-to-

olfactory cortex pathway may be important as a candidate for the top-down input to the 

olfactory cortex. To test this hypothesis, we expressed inhibitory archaerhodopsin 3.0 

(Arch3.0) in the mPFC and recorded from vTT neurons with and without optogenetic 

inactivation of mPFC axons while head-fixed mice conducted the odor-outcome 

association task. Without mPFC-to-vTT inputs, the vTT state representations were 

degraded and less integrated (Figure 4-5). Although these results are still preliminary and 

require data from enough samples including control conditions in the future, our data 

suggest that vTT acts as a hub that sends context-dependent signals from the mPFC to 

broad olfactory areas. 
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Figure 4-5 | mPFC-to-vTT top-down input potentially shares behavioral state 

signals to the olfactory cortex 

Left panel: Examples of spike data for four representative cells tuned to specific 

behaviors. Blue line indicates odor-reward trials (control trials); green line 

indicates odor-reward trials with the optogenetic inactivation. Light green 
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shading indicates the optogenetic inactivation periods. Right panel: Colored 

boxes indicate bins with significant auROC values (p>0.01, permutation test). 

auROC values were calculated by comparing odor-reward trials and baseline in 

sliding bins. 
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4.8. Discussion 

In the present study, we reported seminal recordings of neuronal activity in the vTT in 

freely behaving mice during the performance of odor-guided behaviors. We characterized 

the neural activities of the vTT cells in mice performing the odor-guided goal-directed 

behavioral task. Our results demonstrated characteristic tuning of individual vTT cells to 

specific temporal windows in the behavioral context of goal-directed tasks. 

 In the odor-guided go/no-go task, 25% of vTT cells exhibited increased firing 

during the learned odor presentation phases (Figure 4-1). Although many of these vTT 

cells exhibited peak firing ~100 msec after odor onset, they did not encode learned odor 

differences during the odor presentation phases (Figure 4-1E). Firing rate differences in 

a subset of cells emerged just before the odor port exit during which mice performed 

behavioral choices (Figure 4-3). These features resembled the response pattern for 

learned odor-guided tasks observed in the piriform cortex (Gadziola et al., 2020; Gire et 

al., 2013). However, many vTT cells increased their firing rate before the odor 

presentation (Figures 4-1D and 4-2B), and individual vTT cells exhibited a particular 

tuning pattern characterized by peak tuning and tuning duration. Therefore, we 

hypothesized that the firing activity of vTT cells mainly reflected animal behavior and 

was dependent on task context. 
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 During the odor-guided go/no-go task used here (Figure 4-2), vTT cells 

exhibited a specific firing rate tuning to each behavioral epoch (e.g., moving to the odor 

port, odor-sampling in the odor port, moving to the water reward port, waiting for the 

reward, and obtaining the water reward) of the go trials. Furthermore, these cells tended 

to suppress their firing activity during epochs other than the most preferred epoch. 

Collectively, these results indicate that each vTT cell has a unique behavior- and context-

dependent preference, demonstrated by tuning peak time and tuning duration. These 

properties of vTT cells may contribute to the representation of a series of specific 

behavioral context information (i.e., an episode) during odor-guided behaviors in the vTT. 

As vTT cells send their axons to other olfactory cortex areas such as the AON and 

piriform cortex (Figure 4-4) (Luskin and Price, 1983a, 1983b), we speculate that the vTT 

may provide information to widespread olfactory areas regarding moment-to-moment 

changes in behaviors within certain behavioral contexts. Indeed, context-dependent 

modulation of neural activity is observed in mitral cells in the OB, an area that receives 

direct inputs from the vTT during the performance of odor-reinforcer association learning 

(Kay and Laurent, 1999). 

 We conjecture that behavioral context-dependent inputs from other higher-brain 

areas may contribute to the context-dependent activity of vTT cells because it is difficult 
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to explain how behavioral context-dependent activity may otherwise be induced by 

bottom-up olfactory sensory input alone. The vTT receives direct top-down projections 

from the mPFC and indirect projections from other olfactory cortical areas (Figure 4-4) 

(Luskin and Price, 1983a). Note that mPFC neurons are implicated in contextual encoding 

when animals move between different environmental contexts (Hyman et al., 2012) and 

preferentially fire at a specific position in the trajectory of a maze during a working 

memory task involving odor place-matching (Fujisawa et al., 2008). Along with the 

evidence presented here, these findings suggest that context-specific activity of the mPFC 

may contribute to the generation of context-dependent activity in the vTT. In addition, 

Allen et al. recently reported that odor cue-induced reward-predicting responses were not 

restricted to the olfactory cortex but occurred throughout the brain, including sensory, 

motor, and prefrontal cortices, as well as subcortical regions (Allen et al., 2019). This 

suggests that context-dependent cells are located throughout the brain, and their activity 

may drive specific information processing modes in the brain. In this regard, the vTT may 

play an important role in entraining specific information processing modes in olfactory 

areas by acting as a hub, amplifier, or rectifier that sends context-dependent signals from 

the mPFC to broad olfactory areas. Indeed, our preliminary data (Figure 4-5) support this 

hypothesis. The direction of future research is to examine how the top-down input from 
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the frontal cortex to the olfactory cortex is distributed to each cortex subregion and how 

it is involved in unique information processing to create an overall map of the bottom-up 

and top-down communication circuits. 
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 Chapter 5. Research: nucleus of the lateral olfactory 

tract (NLOT) in the OC  

 

5.1. Short summary 

To explore how the top-down inputs to the OC suggested in the above chapters are 

distributed to the OC subareas, it is necessary to investigate the activity of subareas with 

unique anatomical backgrounds. The nucleus of the lateral olfactory tract (NLOT) is not 

only a part of the olfactory cortex, but also a part of the cortical amygdala. Using an 

extracellular recording, we demonstrate NLOT neurons exhibit context-based odor-

outcome associations, suggesting they play an important role in the translation from 

context-based odor information to appropriate behavior (Tanisumi et al., 2021). 

 

5.2. Introduction 

The NLOT is part of the olfactory cortex that receives direct sensory inputs from the 

olfactory bulb and the olfactory cortex, including the piriform cortex shown by neural 

tracing studies (Luskin and Price, 1983a; Price, 1973). Alternately, it also receives 

projections from the anterior amygdaloid area, anterior cortical and posterolateral cortical 

amygdaloid nuclei, and amygdalo-piriform transition area, and forms part of the olfactory 
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amygdala. While some authors have considered the NLOT to be a component of the 

olfactory cortex (Price, 1973; Swanson and Petrovich, 1998), others have regarded it as a 

component of the cortical amygdala areas that plays a critical role in generating odor-

driven behaviors. The NLOT not only has a bi-directional connection with the olfactory 

bulb and piriform cortex, but also strongly innervates the basolateral amygdala and 

ventral striatum shown by neural tracing studies (Luskin and Price, 1983a; Price, 1973; 

Santiago and Shammah-Lagnado, 2004). Due to its anatomical features, it is possible that 

the NLOT is involved in odor-evoked motivational behaviors. In addition to this 

anatomical evidence, a recent study (Vaz et al., 2017) has shown functional evidence that 

NLOT integrity is required for normal functioning of the olfactory system. Researchers 

have conducted a series of behavioral tests using rats with bilateral excitotoxic lesions of 

the NLOT. The NLOT-lesioned rats exhibited severe olfactory deficits with an inability 

to detect and discriminate between odors. 

 Despite the accumulation of knowledge, there are no reports of in vivo recording 

of neuronal activity in the NLOT. Therefore, the electrophysiological features of NLOT 

neurons on odor-evoked motivational behavior have not been clarified. The purpose of 

our study was to investigate how neural activity is modulated by motivational processes 

that occur during various behavioral states in a goal-directed task. Here, we recorded the 
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neural spike activities in the NLOT of freely moving mice performing an odor-guided 

go/no-go task. We observed that the majority of NLOT neurons exhibited go-cue 

excitation and no-go-cue suppression responses triggered by an odor onset. The bi-

directional cue encoding strongly contributed to the NLOT neuron population dynamics 

before executing cue-odor-evoked behaviors; additionally, the go-cue responsive neurons 

encoded a reward drinking state, indicating context-based odor-outcome associations. 

Our results suggest that the NLOT is critical for encoding context-based cue-outcome 

signals and may play an important role in the translation of odor stimulus information to 

appropriate behavior. 

 

5.3. Results: In vivo recording in the NLOT and the odor-guided go/no-go tasks 

We obtained recordings from 365 well-isolated neurons in the NLOT of four mice 

performing odor-guided go/no-go tasks (Figures 5-1A and 5-1B). Briefly, the go trial 

required the mice to first sample a go-cue odor stimulus presented at an odor port and 

then to move to a reward port to obtain a water reward. Conversely, the no-go trial 

required the mice to first sample a no-go-cue odor stimulus presented at the odor port and 

then to stay near it to wait for the next trial. It is important to note that the mice were 

required to keep their nose inserted into the odor port during odor presentation (500 ms). 
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After the mice were well-trained, their behavioral accuracy remained >80% throughout 

the session. For all mice, the median of the odor-sampling epoch (the time from odor 

valve opening until the withdrawal of the snout by the mouse from the odor port) was 788 

ms (interquartile range: 669–962 ms) in the go trials, and 642 ms (interquartile range: 

562–798 ms) in the no-go trials (44 sessions from four mice). 

 However, it is possible that these reaction times reflect the time lag between the 

start of odor stimulation and the arrival of the odor molecules to the mouse’s nose. We, 

therefore, examined how quickly the mouse decides on its behavior by shortening the 

duration of odor presentation and measuring the reaction time (from the onset of odor 

presentation to the timing of nose withdrawal) (Figure 5-1C). When the duration of odor 

presentation was shortened without the forced nose-poking during odor presentations, the 

mice showed shorter reaction times; however, the behavioral accuracy remained >80%. 

These results indicate that the arrival of the odors was at least within 400 ms after the 

opening of the odor valve, and the mice could make decisions within the odor presentation. 

In the following sections, we describe our analyses of the neural activity recorded during 

odor-sampling and the following odor-guided behaviors. 
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Figure 5-1 | Odor-guided go/no-go task and the NLOT 

(A) Time course of the odor-guided go/no-go task. 

(B) Nissl-stained frontal section (arrows indicate tips of the tetrodes) and 

recording tracks (vertical thick lines) of the NLOT. Scale bar, 500 µm. 

(C) The reaction times (from the onset of odor presentation to the timing of nose 

withdrawal, right axis, brown) in the odor-guided go/no-go tasks without keeping 

the mice’s nose inserted into the odor port. To test the time lag between the start 

of odor stimulation and the arrival of the odor molecules to the mouse’s nose, we 

verified odor presentation durations of 100, 200, 300, and 500 ms in each session. 

When the duration of odor presentation was shortened, the mice showed a 

shorter reaction; however, the behavioral accuracy remained >80% (left axis, 

orange), indicating that the arrival of the odors was within 400 ms after odor valve 

opening, and that the mice could make decisions within the period. 
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5.4. Results: Five-type classification of NLOT neurons based on odor-sampling 

epoch response 

As the NLOT receives direct inputs from the mitral cells of the olfactory bulb, we first 

focused on the neural activity during the odor-sampling epoch. We observed that the 

firing rates of the NLOT neurons increased or decreased during the odor-sampling epoch. 

For a large subset of neurons, these firing rate changes depended on whether the presented 

odor was a go-cue or no-go-cue (examples shown in Figure 5-2, left). To quantify the 

dependence of the firing rate on cue odor presentation, we used a ROC analysis approach. 

We calculated the firing rate changes from baseline (1,000-0 ms before the end of the 

inter-trial interval) during the odor-sampling epoch. Across the population, 73.2% of the 

NLOT neurons exhibited significant responses to at least one cue odor presentation (p < 

0.01, permutation test). In this cue odor selective population, we also calculated the 

preference for go-cue and no-go-cue odor presentation. We observed that 53.2% of the 

population showed a significant go-cue odor preference, whereas 7.9% showed a 

significant no-go-cue odor preference (p < 0.01, permutation test). The other population 

exhibited increased or decreased responses to both go-cue and no-go-cue odor 

presentations. Thus, most of the NLOT neurons showed a wide variety of firing rate 

changes during an odor-sampling epoch. 
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 Based on these response profiles of the odor-sampling epoch, we classified the 

NLOT neurons into five response types (Figure 5-2). The first neuron group (type I, 

38.9% of all neurons) exhibited significant preference for the presented go-cue odor; we 

will refer to these as “go-cue responsive neurons” (purple pie chart in Figure 5-2). The 

second neuron group (type Ⅱ, 5.8% of all neurons) exhibited significant preference for 

the presented no-go-cue odor; we will refer to these as “no-go-cue responsive neurons” 

(orange pie chart in Figure 5-2). Two other neuron groups (type III and IV, 11.5% and 

17.0% of all neurons, respectively) showed significant excitatory and suppressed 

responses, respectively, for both presented cue odors without preference for a particular 

cue odor; we will refer to these as “cue excitatory neurons” (pink pie chart in Figure 5-

2) and “cue suppressed neurons” (light blue pie chart in Figure 5-2), respectively. The 

remaining neuron group (type Ⅴ, 26.8% of all neurons) did not show significant responses 

for either presented cue odors; we will refer to these as “cue non-responsive neurons” 

(gray pie chart in Figure 5-2). This classification demonstrated the diverse cue encoding 

patterns in the NLOT, suggesting that the NLOT neurons did not represent a particular 

odorant profile from the olfactory bulb; instead, they represented the complex and diverse 

odor information leading to odor-guided behaviors. 
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Figure 5-2 | NLOT neuron activity patterns during the odor-guided go/no-

go task 

Example firing patterns of NLOT neurons during the odor sampling epoch (the 

time from odor valve opening to odor port exit) in the odor-guided go/no-go 

task. Each row contains the spikes (black ticks) for one trial, aligned to the time of 

odor valve opening (corresponding to the odor port entry, green ticks). Red ticks 

refer to the times of odor port exit. NLOT neurons were classified into five types 

(purple pie, type I; orange pie, type II; pink pie, type III; light blue pie, type Ⅳ; and 

gray pie, type Ⅴ) based on the odor-sampling epoch response. 
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5.5. Results: Go-cue responsive neurons bi-directionally encode cue odors with 

excitations and suppressions 

Among the go-cue responsive neurons (type I neurons, n = 142), which represented the 

major population of the NLOT neurons (Figure 5-2), each neuron showed a sharp peak 

in the firing rate after ~600 ms of go-cue odor presentation and persistent suppression 

during the latter part of the no-go-cue odor sampling epoch (Figure 5-3A). To quantify 

the dynamics of this bi-directional cue encoding, we calculated the firing rate changes 

from the baseline (200-0 ms before the end of the inter-trial interval) in the sliding bins 

during the odor-sampling epoch for each neuron. For each accurate trial type, we 

calculated the auROC value at each time bin (width: 100 ms, step: 20 ms) (Figures 5-3B-

C), and three measures from the auROC values: “onset time,” “time of center of mass,” 

and “duration”. The durations of the go-cue excitation responses were sharper (p < 0.05, 

Wilcoxon rank-sum test) than those of the no-go-cue suppression responses (Figure 5-

3D). The no-go-cue suppression responses were sustained until the mice withdrew their 

snouts from the odor port. For each neuron, both the go-cue excitation response and the 

no-go-cue suppression response were observed at 450-550 ms after the odor onset 

(Figure 5-3E, p < 0.01, permutation test). Thus, each go-cue responsive neuron exhibited 
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both sharp go-cue excitation and persistent no-go-cue suppression at specific times during 

the odor-sampling epoch. 

 It is possible that the sharp go-cue excitation responses correlated with the 

execution of the go behaviors or contained the premotor signals. To verify this possibility, 

we compared the peak firing rates and the half-width of firing in the go-cue excitation 

between the two alignment conditions (odor valve opening versus odor port exit). We 

observed that the peak firing rates were higher relative to the odor onset (p < 10–15, 

Wilcoxon signed-rank test) and the temporal organizations were significantly tighter (p < 

0.001, Wilcoxon signed-rank test) than the firing rate relative to the odor port exit 

(Figures 5-4A-B). Moreover, we developed an encoding model (GLM) that incorporated 

task-related variables from 370 ms after the odor onset (corresponding to the time that is 

the median of the go-cue excitation onsets measured by the auROC values) to the odor 

port exit as predictors of each neuron’s activity to help isolate the go-cue excitation 

responses triggered by odor onset and action (Figures 5-4C-D) (Engelhard et al., 2019). 

Using this encoding model, we quantified the relative contribution of each behavioral 

variable to the response of each neuron by determining how much the explained variance 

declined when that variable was removed from the model. Averaged across the go-cue 

responsive neurons, the relative contribution of the odor-triggered response (65.6 ± 1.4% 
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of the total variance explained, mean ± standard error of mean [SEM]) was significantly 

higher than that of the pre-odor port exit (34.4 ± 1.4%) (p < 10–9, Wilcoxon signed-rank 

test) (Figure 5-4E). These results indicated that the go-cue excitation responses of the 

go-cue responsive neurons were triggered by odor onset rather than pre-motor activities. 

Furthermore, distinct cue responses were observed in the correct go trials, and not in the 

trials that were correct no-go, error, or odorless, suggesting that the distinct go-cue 

excitation responses reflected signals eliciting appropriate motivational behavior. 

Notably, the intensities of majority of the cue responses remained stable across trials. In 

conclusion, the distinct go-cue excitation responses were triggered by odor onset and were 

stable with respect to the appropriate odor-guided behaviors. 
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Figure 5-3 | Go-cue responsive neurons show phasic excitation to go-cue 

odor and persistent suppression to no-go-cue odor 

(A) Example firing patterns of go-cue responsive neurons during the odor-

sampling epoch. 

(B) Example of the area under the auROC values for a go-cue responsive neuron. 

The auROC values (aligned by odor valve opening) were calculated by go-cue 

odor presentation versus baseline (top), and no-go-cue odor presentation versus 

baseline (bottom) in the sliding bins. The red bars show significant excitation, and 

blue bars show significant suppression (p < 0.01, permutation test). Based on the 

significant time points, the response “durations” (black horizontal lines) were 

calculated. 

(C) The auROC values for go-cue responsive neurons (n = 142, type I neurons). 

Each row corresponds to one neuron, with neurons in the left and middle graphs 

in the same order. The neurons are sorted by the times of center of mass (white 

dots) of the auROC values calculated by go-cue odor presentation versus baseline. 

The color scale is as in (B). An arrow indicates the same neuron as in (B). The 

average firing patterns of go-cue responsive group during the odor-sampling 

epoch (right). 

(D) Distributions of the response durations for significant excitations (red) and 

significant suppressions (blue). Statistical significance between excitations and 

suppressions (*p < 0.05) was assessed by the Wilcoxon rank-sum test. 

(E) Time course of excitation to go-cue odor and suppression to no-go-cue 

odor. Purple dots, significant both go-cue excitation and no-go-cue suppression 

(p < 0.01, permutation test); gray dots, other responses. 
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Figure 5-4 | Go-cue excitation response triggered by odor onset rather than 

the initiation of an odor-guided behavior 

(A) The activity of an example go-cue responsive neuron aligned to onset of odor 

valve opening (left, green ticks) or odor port exit (right, red ticks). The peak firing 

rate (black vertical line) and temporal half-width of the peak firing (black 

horizontal line) are defined from the spike histogram. 

(B) Comparison of the peak firing rates (top) and half widths of the peak firings 

(bottom) between the two alignment conditions (odor valve opening versus odor 

port exit). The peak firing rates were higher when triggered by odor valve opening 

(***p < 10-15, Wilcoxon signed-rank test). Half widths of the peak firings were 

longer when triggered by odor port exit (***p < 0.001, Wilcoxon signed-rank test). 

(C) Schematic of the encoding model used to quantify the relationship between 

behavioral variables and the activity of each neuron. Inset, predicted and actual 

averaged firing rate relative to the odor onset and odor port exit for one neuron. 

(D) Correlation coefficients (R of PSTH reconstructions) between predicted and 

actual averaged firing rate relative to the odor onset and odor port exit across the 

go-cue responsive neurons. 

(E) Relative contribution of each behavioral variable to the explained variance of 

the neural activity, averaged across the go-cue responsive neurons. Relative 

contribution of the odor-triggered response was significantly higher than that of 

the pre-odor port exit (***p < 10-9, Wilcoxon signed-rank test). All error bars are 

standard error of the mean (SEM). 
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5.6. Results: NLOT neuron population exhibits rapid response dynamics before 

executing cue-odor-evoked behaviors 

We demonstrated that the go-cue responsive neurons exhibited specific temporal 

dynamics during odor sampling as a representative population of NLOT neurons (Figure 

5-3). Similarly, the no-go-cue responsive neurons exhibited both no-go-cue excitation 

and persistent go-cue suppression during cue odor presentation (Figure 5-2). The cue 

excitatory neurons and the cue suppressed neurons also changed their firing rates during 

odor-sampling (Figure 5-2). Thus, the NLOT neurons exhibited diverse firing patterns 

and complex temporal dynamics during odor sampling. In this section, we examine the 

NLOT population encoding and the contribution of each neuron group during odor 

sampling using different methods of analysis. 

 Calculating go-cue versus no-go-cue preference during odor-sampling clearly 

showed the strong encodings of cue preference at 400-500 ms after odor onset across the 

population (Figure 5-5A, p < 0.01, permutation test). To gain insight into the dynamics 

of the population response, we visualized the average population activity using principal 

component analysis, a dimensionality reduction method. Figure 5-5B shows the 

trajectories of the mean response of the NLOT neuron population to go-cue and no-go-

cue odors, represented as the projections onto the first three PCs during the odor-sampling 
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epoch. Throughout the ~300 ms interval from the odor onset, trajectories remained 

converged, showing little difference across conditions. Over the late phase of odor-

sampling, specifically 400-500 ms from the odor onset, trajectories in the odor-sampling 

epoch subspace began to spread out and were clearly separated at the population level. 

To quantify these observations, we measured the instantaneous separation between the 

population cue responses (Figure 5-5C). The separation reached a maximum at ~500 ms 

and remained above the baseline levels until the odor port exited. Additionally, we 

calculated the rate at which the population activity vectors changed (width: 100 ms, step: 

20 ms; Figure 5-5D). These rates increased to a maximum within ~500 ms and remained 

above the baseline levels over the initiation of cue-odor-evoked behaviors (go or no-go 

behaviors). Thus, the NLOT neuron population showed dramatic transformations in the 

dynamics of cue encoding at 400-500 ms after odor onset. 

 Next, we examined the mechanism of the contribution of individual NLOT 

neurons to the population response to evaluate the absolute values of the principal 

component (PC) coefficients as the neural weights (Figure 5-5E). The values of the 

neural weights in the first dimension of the odor-sampling epoch subspaces showed that 

type I neurons contributed considerably to the population response. To further examine 

the contributions along the time course, we calculated the absolute values of the PC 
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coefficients in the sliding bins (width: 100 ms, step: 20 ms) during the odor-sampling 

epoch (Figure 5-5F). The values of the neural weights in the first dimension of each bin 

exhibited significant contributions of type I neurons to the population response, especially 

during 400-500 ms after the odor onset, corresponding to the dynamics of cue encoding. 

These results indicated that the go-cue responsive neurons strongly contributed to the 

profound transformations in the dynamics of NLOT cue encoding. 
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Figure 5-5 | NLOT neuron population response before the initiation of odor-

guided behaviors 

(A) The auROC values (go-cue versus no-go-cue odor presentation, aligned by 

odor valve opening) for all neurons. Each row corresponds to one neuron. 

Neurons are sorted by the peak time for the auROC values. The color scale 

indicates significant preferences (p < 0.01, permutation test; positive values 

correspond to the go-cue responsive responses). The black boxes indicate bins 

with non-significant preferences (p > 0.01, permutation test). The colored box on 

the right shows the neuron type for each neuron (purple, type I; orange, type II; 

pink, type III; light blue, type Ⅳ; gray, type Ⅴ). 

(B) Visualization of the NLOT neuron population responses during odor-sampling 

epoch using principal-component analysis (n = 365 NLOT neurons). The 

responses to cue odors are projected onto the first three PCs corresponding to 

the odor-sampling epoch subspaces. Purple line, go-cue odor; orange line, no-

go-cue odor. Temporal progression is depicted from unfilled purple/orange 

spheres to filled purple/orange spheres. 

(C) The distance between NLOT neuron population responses. The gray line and 

shaded areas show the mean ±2 standard deviation (SD) baseline values during 

the baseline epoch. Top dots indicate the time bins showing values more than 

mean +2 SD baseline values.  

(D) Rate of change (velocity) of NLOT neuron population responses. Purple line, 

go-cue odor; orange line, no-go-cue odor. The gray line and shaded areas show 

the mean ±2 SD baseline values during the baseline epoch. Top dots indicate the 

time bins showing values more than mean +2 SD baseline values. 
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(E) Neural weights in the first dimension of the odor-sampling epoch subspaces. 

Box plots in violin plots indicate medians and interquartile ranges. Purple, type I; 

orange, type II; pink, type III; light blue, type Ⅳ; gray, type Ⅴ. The statistical 

significance among five groups (**p < 0.01, ***p < 0.001) was assessed by one-

way analysis of variance (ANOVA) with Tukey’s post hoc test. 

(F) Neural weights along the time course in the first dimension of each sliding bin 

(width: 100 ms, step: 20 ms). The shaded areas represent Gstandard error of the 

mean (SEM). Purple, type I; orange, type II; pink, type III; light blue, type Ⅳ; gray, 

type Ⅴ. 
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5.7. Results: NLOT neurons provided sufficient information to account for 

behavioral accuracy 

To examine whether the population activity accounted for the animals’ behavioral 

accuracy, we performed a decoding analysis. This analysis determined whether the firing 

rates of the NLOT neuron populations could be used to classify each individual trial as 

go or no-go. We used SVMs with linear kernels as a decoder. Analyses of the decoding 

time course based on NLOT neurons using a sliding time window revealed that the 

decoding accuracy was maintained at chance levels 300 ms after odor onset; subsequently, 

it dramatically increased above the level of animals’ behavioral accuracy 400-500 ms 

after the odor onset (Figure 5-6). In the 400-500 ms period, 124 neurons provided 

sufficient information to account for behavioral accuracy (the top right panel in Figure 

5-6). Thus, <150 NLOT neurons provided sufficient information to account for 

behavioral accuracy at least 500 ms after odor onset. 
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Figure 5-6 | NLOT neurons provided sufficient information to account for 

behavioral choices 

Time course of odor decoding accuracy. A vector consisting of instantaneous 

spike counts for 1–365 neurons in a sliding window was used as an input for the 

classifier. Training of the classifier and testing was performed at every time point. 
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Green horizontal lines indicate the level of animal behavioral performance. Gray 

horizontal lines indicate chance levels (50%). Green vertical dashed lines indicate 

the first points wherein the decoding accuracy reached the level of the animal 

behavioral performance. Areas with shading represent ±SD. 
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5.8. Results: Bi-directional cue-outcome encoding following odor-guided behaviors 

Our analyses of the dynamics of cue encoding suggest that several NLOT neurons 

maintained cue selective responses during cue-odor-evoked behaviors after odor 

sampling. Notably, the persistent suppression responses of type I neurons during no-go-

cue odor-sampling were sustained over the odor port exit (Figures 5-3B-D). This raises 

the question of whether the selectivity disappears or persists once the cue-odor-evoked 

behaviors are executed. By aligning the neural activity to behavioral events, we noticed 

that type I neurons were selective for the reward drinking behavior after go-cue odor-

sampling and the persistent suppression responses were sustained during the no-go 

waiting behavior after no-go-cue odor sampling (Figure 5-7A). We quantified the 

response profiles of each neuron group during odor-evoked behaviors by calculating the 

firing rate changes from baseline (Figures 5-7B-C, the spike data were aligned to the 

odor port exit and water port entry). Across the population, several type I neurons showed 

significant excitatory responses for drinking behavior (purple histogram at the top in 

Figure 5-7B, p < 0.01, permutation test), and significantly suppressed responses for the 

no-go waiting behavior (purple histogram at the bottom in Figure 5-7C, p < 0.01, 

permutation test). The drinking responses of type I neurons were higher than those of 

other groups, and the no-go waiting responses of type I neurons were lower than those of 
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other groups, indicating that they were type I neuron specific responses (one-way analysis 

of variance with Tukey’s post hoc test). For each neuron, the suppressions were 

maintained for 800 ms (interquartile range: 290-1,480 ms) from the initiation of the no-

go behavior. Thus, type I neurons exhibited associations between the go-cue excitations 

and excitatory responses for drinking behavior with persistent no-go-cue suppressions, 

suggesting that NLOT neurons are involved in cue-outcome associations. 

 We aimed to determine whether other neuron groups responded to cue-odor-

evoked behavioral states. Several type II neurons showed significantly suppressed 

responses for drinking behavior (orange histogram at the bottom in Figure 5-7B, p < 0.01, 

permutation test) and significant excitatory responses for the no-go waiting behavior 

(orange histogram at the top in Figure 5-7C, p < 0.01, permutation test). The drinking 

responses of type II neurons were lower than those of type I neurons, and the no-go 

waiting responses of type II neurons were higher than those of type I neurons (one-way 

analysis of variance with Tukey’s post hoc test). Thus, the type I and type II neurons 

contrastingly encoded the go/no-go behavioral states after odor-sampling. Furthermore, 

a subset of type III, IV, and V neurons tended to show an excitatory response in a specific 

time window in behavioral epochs, with suppressed responses relative to other behavioral 

epochs, which is consistent with our previous findings in the ventral tenia tecta of the 
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olfactory cortex (Shiotani et al., 2020b). In particular, each type Ⅳ neuron maintained 

the excitatory response to the no-go waiting state (light blue histogram at the top in Figure 

5-7C, p < 0.01, permutation test) for 560 ms (interquartile range: 205–1,200 ms), from 

290 ms (interquartile range: 210–650 ms) after initiation of the no-go behavior. These 

results indicate that each NLOT neuron group showed a specific firing pattern during 

odor-guided behaviors, depending on the response profiles in the odor-sampling epochs. 
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Figure 5-7 | NLOT neurons exhibits bidirectional cue-outcome encoding 

following odor-guided behaviors 

(A) Example firing pattern of each neuron group following odor-guided behaviors. 

Vertical black lines indicate the odor valve offset and the onset of water reward. 

(B) The proportions of neurons that exhibited significant responses were 

calculated from the auROC values (p < 0.01, permutation test) in correct go trials 

for each neuron group (top, excitation; bottom, suppression). Vertical black lines 

indicate the odor port exit, water port entry, and the onsetofwater reward. Purple, 

type I; orange, type II; pink, type III; light blue, type Ⅳ; gray, type Ⅴ. 

(C) Same as (B), for correct no-go trials. 
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5.9. Discussion: Insights based on the results 

The purpose of the study was to understand the electrophysiological features of NLOT 

neurons in decision-making processes that occur during various behavioral states in odor-

guided go/no-go tasks. In this study (Tanisumi et al., 2021), we provided the first 

recording of neuronal activity in the NLOT in freely behaving mice performing odor-

guided go/no-go tasks. Indeed, NLOT neurons exhibited diverse neural activities in 

response to odor presentations and cue odor-evoked behaviors in the task.  

 Previous anatomical studies have shown that the NLOT receives odor 

information from the olfactory bulb and various areas of the olfactory cortex, including 

the piriform cortex (Luskin and Price, 1983a; Price, 1973). Subsequently, NLOT neurons 

project to the ventral striatum consisting of the olfactory tubercle (OT) and the nucleus 

accumbens (NAc), and also send the axons into the basolateral amygdala (BLA) (Luskin 

and Price, 1983a; Price, 1973; Santiago and Shammah-Lagnado, 2004), which plays a 

critical role in regulating motivated behaviors (Cox and Witten, 2019; Janak and Tye, 

2015; Murata et al., 2015). Moreover, a recent study (Vaz et al., 2017) has shown that 

NLOT-lesioned rats exhibited olfactory-related behavioral deficits with an inability to 

identify and discriminate between odors and interfere with the display of innate odor-

evoked behaviors, such as sexual behavior, aggression, and avoidance of predators. 
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Despite the accumulation of knowledge, the role of NLOT in the functional circuit to 

convert odor information into appropriate behaviors has not been clarified. 

 In this study, we classified five types of neurons based on their firing patterns 

during the odor-sampling epochs. A majority of NLOT neurons (type I neurons, go-cue 

responsive neurons) exhibited phasic excitatory responses during go-cue odor-sampling 

epochs and sustained suppressed responses during no-go-cue odor-sampling epochs 

(Figures 5-2, 5-3, and 5-4). The activity pattern of the no-go-cue responsive neurons 

(type II neurons) was opposite to that of the go-cue responsive neurons. These bi-

directional cue encoding patterns were similar to the cue encoding in the brain reward 

circuit, including the ventral striatum and the ventral tegmental area (Cohen et al., 2012; 

Menegas et al., 2017; Stephenson-Jones et al., 2020) rather than the olfactory circuit 

(Cury and Uchida, 2010; Miura et al., 2012; Uchida et al., 2014) during cue-outcome 

association tasks. We also demonstrated that the go-cue and no-go-cue responsive 

neurons highly contributed to the population dynamics of cue encoding and decoding, for 

accuracy of the animal’s choices (Figure 5-5), suggesting that these bi-directional 

response neurons for cue odors effectively provided sufficient information to account for 

the behavioral choices. These bi-directional cues encoding a small number of neurons 
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with a high level of information may be effective in the NLOT with only a small volume 

of 0.24 mm3 and 19,000 neurons (Vaz et al., 2016). 

 The go-cue responsive neurons also showed firing activities during drinking 

behavior (Figure 5-7B), consistent with other brain areas involved in motivational 

processes (Steinmetz et al., 2019; Watabe-Uchida et al., 2017). Additionally, the go-cue 

responsive neurons exhibited suppressed responses to the no-go waiting behavioral states 

(Figure 5-7C). Moreover, the no-go-cue responsive neurons suppressed their firing 

activity during the go behavioral states and exhibited excitatory activities in the no-go 

behavioral states (Figures 5-7B-C). These results suggest that these NLOT neurons 

functionally associated cue odor with the precise task outcomes derived from odor 

information. In other olfactory cortical areas, including the piriform cortex and OT, the 

odor-reward association reflects the cue odor responses (Calu et al., 2007; Gadziola et al., 

2020, 2015; Gadziola and Wesson, 2016; Millman and Murthy, 2020; Roesch et al., 2006). 

Although further studies are required to determine whether cue responses in the NLOT 

represent cue-reward learning, these cue-reward combination activities may play a role 

in odor-reward association learning. We speculated that the NLOT is one of the critical 

components of the circuitry responsible for creating and providing signals eliciting 
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appropriate behaviors. Due to the function of NLOT, we assumed that the lesion in NLOT 

caused suppression of olfactory-driven behaviors (Vaz et al., 2017). 

 The subsets of type III, IV, and V neurons exhibited an excitatory response in a 

specific time window in behavioral epochs and suppressed responses relative to other 

behavioral epochs. Similarly, our recent study has revealed that the individual neuron in 

the ventral tenia tecta, which is a part of the olfactory cortex, is tuned to a specific 

behavioral state in mice encountered during odor-guided behaviors (Shiotani et al., 

2020b). Moreover, a recent study has shown the brain-wide global representation of state-

dependent activity during odor-guided motivated behavior (Allen et al., 2019; Steinmetz 

et al., 2019). Together, the context-dependent activities of the type III, IV, and V neurons 

may contribute to the brain-wide specific information processing mode in the brain and 

be shared across the olfactory cortex. 

 

5.10. Discussion: The hypothesis of the NLOT with layer-specific functional 

projections and future directions. 

Olfactory information is transmitted to the NLOT with a three-layered structure (layers I, 

II, and III). The NLOT layer II neurons contribute to >80% of the total neuronal 

population of the NLOT (Vaz et al., 2016), and project to the dwarf cell regions in the 
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OT (Santiago and Shammah-Lagnado, 2004). The OT sends a major projection to the 

ventral pallidum regulating expected positive and negative valences. The layer II neurons 

also project to the NAc shell (Santiago and Shammah-Lagnado, 2004) that processes 

hedonic or motivational values. Similar to the neural responses in these areas, we 

demonstrated the reward-predicting cue and reward signals of type I neurons in the NLOT 

(Figures 5-3 and 5-7). Based on a recent frontal cortex research showing a connectivity-

defined neuron type that carries a single variable (Hirokawa et al., 2019). we speculated 

that type I neuron outputs in the NLOT layer II to the OT and NAc contribute to the 

encoding of positive or negative valences of expected and actual outcomes, and hedonic 

or motivational value. 

 Conversely, the NLOT layer III neurons project to the BLA (Santiago and 

Shammah-Lagnado, 2004), which is an essential component of the amygdala underlying 

fear conditioning memory. We demonstrated the no-go-cue responses of the type II 

neurons (Figure 5-7) and the sustained positive responses to the no-go behaviors of type 

Ⅳ neurons. We assumed that these specific firing patterns in the NLOT layer III might 

contribute to the fear-conditioning memory circuits. However, we did not verify the firing 

pattern of NLOT neurons in fear memory tasks. Future experiments are required to 
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monitor the changes in the firing activity in the NLOT during odor-punishment 

association tasks. 

 We acknowledge that there are several limitations to this study. First, although 

we performed the first in vivo recording of neuronal activity in the NLOT during only an 

odor-guided go/no-go task, our data do not reflect the neuronal activity across different 

cue modalities, behavioral paradigms, and contexts. However, our data are potentially 

important in that the NLOT neural activity in freely behaving mice is modulated by the 

motivation of learned, odor-guided, and goal-directed behaviors, and may provide basic 

information regarding NLOT encoding in positive and negative motivational contexts, 

reversal learning, and innate odor-driven behaviors (Root et al., 2014). Second, a direct 

relationship between the distinct cue response of NLOT neurons and context-dependent 

motivated behaviors is unclear. Third, the response profiles and functions of the NLOT-

specific projections to OT, NAc, and BLA on motivational processes have not yet been 

clarified. By using optogenetic manipulation or the fiber photometry tool to monitor cell-

type and projection specific population activity, future studies can build on the paradigm 

and findings described here to address how the NLOT interacts with the projected areas 

to mediate the processes necessary for odor-guided behavior. 
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 In conclusion, we extended the concept that NLOT integrity is required for 

normal functioning of the olfactory system (Vaz et al., 2017), and hypothesized that the 

NLOT plays a critical role in providing odor information that elicits appropriate 

behavioral motivation in the motivation circuits in odor-guided behavior. From a broad 

perspective, the verification of this hypothesis may have important implications for 

studying and leveraging neural circuits underlying odor-evoked motivation in health and 

disease. 
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 Chapter 6. Research: anterior cortical amygdaloid 

nucleus (ACo) in the OC  

 

6.1. Short summary 

To explore how the top-down inputs to the OC suggested in the above chapters are 

distributed to the OC subareas, it is necessary to investigate the activity of subareas with 

unique anatomical backgrounds. The anterior cortical amygdaloid nucleus (ACo) is one 

of the olfactory cortices and a part of the olfactory cortical amygdala. Using an 

extracellular recording, we demonstrate ACo neurons encode reward-related cue 

preference and reward anticipation, suggesting they may be involved in reward-related 

behavioral learning by associating the olfactory information with reward anticipation 

(Shiotani et al., 2020a). 

 

6.2. Introduction 

The ACo is a part of the olfactory cortical amygdala and has a bidirectional connection 

with the amygdala. A neural tracing study reported that the ACo receives dense 

projections from the main olfactory bulb, moderate projections from the piriform cortex, 

lateral entorhinal cortex, basomedial amygdaloid nucleus (BMA), and medial amygdaloid 
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nucleus (Me), and scarce projections from the ventral tegmental area (VTA) and the 

ventral tenia tecta (vTT) (Cádiz-Moretti et al., 2017). Moreover, the ACo projects densely 

to BMA (Cádiz-Moretti et al., 2017). These anatomical studies indicate that the ACo is 

closely related to the amygdala, and it is possible that the ACo is involved in odor-evoked 

motivational behaviors. 

 A behavioral study revealed that the ACo participates in olfactory fear 

conditioning in rats as electrical stimulation of the olfactory bulb induces evoked field 

potential signals, that are persistently potentiated specifically in the ACo after training 

(Sevelinges et al., 2004). Moreover, electrical stimulation of the VTA showed that the 

ACo, besides other mesolimbic structures, displays increased Fos expression in rats 

(Majkutewicz et al., 2010). A whole-cell patch clamp study showed that with the 

activation of sodium conductance, pyramidal neurons of the ACo displayed rhythmic 

fluctuations of intrinsically generated voltage-dependent membrane potential in the theta-

low beta range, suggesting that the ACo was related to synaptic plasticity and learning 

(Sanhueza and Bacigalupo, 2005). The ACo has been poorly investigated, but 

comprehensive evidence suggests that it may play a prominent role in reward-related 

behavioral learning by olfactory stimulation. 
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 However, little is known about the electrophysiological features of the ACo 

neurons for reward-related behavioral tasks. Here, we recorded the neural activity of ACo 

neurons during odor-guided reward-directed behaviors. Many ACo neurons responded to 

the go-cue odor stimulus at the late phase of the odor-sampling epoch. The ACo neuron 

population showed profound and persistent transformations in the dynamics of cue 

encoding over 400 ms after odor onset. Furthermore, we found that the ACo neuron 

groups each coded a different type of anticipation signal: one neuron group type exhibited 

gradual increases in the signals to the reward, while the other type showed phasic 

anticipation signals with the go-cue preference responses during odor sampling. Our 

results suggest that the ACo neurons may play an important role in odor-guided reward-

directed learning. 

 

6.3. Results: Go-cue-odor preferred responses of ACo neurons during the late phase 

of odor-sampling epoch 

We recorded 158 well-isolated neurons in the ACo of four mice performing an odor-

guided go/no-go task (Figures 6-1A-B). After the mice were well trained, their behavioral 

accuracy remained above 80% throughout the session. For all mice, the median duration 

of the odor-sampling epoch (the time from odor valve opening until the mouse withdrew 
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its snout from the odor port) was 1053 ms (interquartile range: 902–1212 ms) in the go 

trials, and 764 ms (interquartile range: 657–968 ms) in the no-go trials (31 sessions from 

four mice).  

 Since the ACo receives direct inputs from the mitral cells of the olfactory bulb, 

we first focused on whether ACo neurons exhibited cue-odor selective activity during 

odor-sampling epochs (from odor poke-in to odor poke-out). We found that a subset of 

ACo neurons increased their firing rates during the odor presentation phase (0–500 ms 

after the odor valve opening) during both go and no-go trials, and then showed a go-cue-

odor preferred response 500 ms after the odor onset (an example shown in Figure 6-1C). 

To quantify the dynamics of the cue-encoding, we calculated the firing rate changes from 

baseline (200 to 0 ms before the end of the inter-trial interval) in the sliding bins during 

the odor-sampling epoch for each neuron. For each correct trial, we calculated the auROC 

value at each time bin (width: 100 ms, step: 20 ms), and defined the go-cue selective 

neurons (n = 57 neurons, 36.1 % of the recorded neurons) as those neurons that 

significantly increased their firing rates from the baseline (p < 0.01, permutation test) for 

five consecutive bins (100 ms) during the odor-sampling epoch in the go correct trials 

(Figure 6-1D). Across the go-cue odor-selective population, calculation of go-cue versus 

no-go-cue preferences during odor-sampling epochs clearly showed a go-cue preference 
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manner from 500 ms after the odor onset to the odor poke-out (late phase of the odor 

sampling epoch) (Figure 6-1E, p < 0.01, permutation test). These results suggest that the 

ACo received not only a particular odorant profile directly from the olfactory bulb but 

rather the complex odor information, including behavioral contexts from other olfactory 

cortical areas and top-down inputs from higher areas. 
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Figure 6-1 | Cue-Odor-preferred responses of ACo neurons during the late 

phase of odor-sampling in the odor-guided go/no-go task 

(A) Time course of the odor-guided go/no-go task. 

(B) Nissl-stained frontal section (an arrow indicates recording track) and recording 

tracks (vertical thick lines) of the ACo. Scale bar: 500 μm. 

(C) Example firing patterns of ACo neurons during odor-sampling epoch (the time 

from odor valve opening to odor port exit) in the odor-guided go/no-go task. 

Red ticks represent times of odor port exit. 

(D) auROC values for go-cue selective neurons (n = 57). auROC values (aligned 

by odor valve opening) were calculated by go-cue odor presentation versus 

baseline (left) and no-go-cue odor presentation versus baseline (right) in the 

sliding bins. Red, increase from baseline; blue, decrease from baseline. Each row 

corresponds to one neuron, with neurons in the left and right graphs in the same 

order. Neurons are sorted by the peak time for auROC values calculated by go-

cue odor presentation versus baseline. 

(E) Cue preference curves (auROC values, go-cue versus no-go-cue odor 

presentation, aligned by odor valve opening, odor port exit) for go-cue selective 

neurons. Each row corresponds to one neuron, with neurons in the left and right 

graphs in the same order of (D). Color scale indicates significant preferences (p < 

0.01, permutation test; positive values correspond to the go-cue preferred 

responses). The black boxes indicate bins with non-significant preferences (p > 

0.01, permutation test). 
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6.4. Results: Late phase of go-cue odor preferred responses were evoked by the odor 

onsets and were stable across trials 

The go-cue odor-selective population showed cue-odor-preferred responses during the 

late phase of the odor sampling epoch (Figure 6-1C). It is possible that the late phase of 

odor-preferred responses was tuned to the odor port exit behaviors or contained the 

premotor signals that were observed in many brain regions (Allen et al., 2019; Parker et 

al., 2020; Steinmetz et al., 2019). To take these signals into account, and to help isolate 

signals related to odor presentation and action, we developed an encoding model (GLM). 

This model incorporated task-related variables during the odor-sampling epoch as 

predictors of each neuron’s activity (Figure 6-2A) (Engelhard et al., 2019). 

 Using this encoding model, we quantified the relative contribution of each 

behavioral variable during the odor-sampling epoch to the response of each neuron by 

determining how much the explained variance declined when that variable was removed 

from the model (a relative contribution for an example neuron is shown in Figure 6-2A). 

Averaged across the go-cue odor selective population, the highest relative contribution 

during odor-sampling epochs was attributed to late go-cue odor sampling (36.1 ± 3.3% 

of the total variance explained during the odor-sampling epoch), followed in descending 

order by the go-cue odor presentation (23.2 ± 1.7%), the no-go-cue odor presentation 
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(18.5 ± 1.6%), the late no-go-cue odor sampling (9.9 ± 1.5%), pre-go-behavior (8.2 ± 

1.7%), and pre-no-go behavior (4.2 ± 0.7%) (bars in Figure 6-2B). The relative 

contributions of the late go-cue odor sampling were significantly positive across 71.9% 

of the go-cue odor-selective neurons (a pie chart in Figure 6-2B). Furthermore, across 

the population, the go-cue responses during odor-sampling epochs in both correct and 

error trials were higher than those in the no-go-cue correct and odorless trials (Figure 6-

2C), suggesting that the go-cue excitation responses mainly reflected signals of encoding 

cue-odor information. Notably, the intensities of most of the go-cue responses remained 

stable across trials (Figure 6-2D). Taken together, the go-cue-preferred responses during 

the late phase of the odor-sampling epoch were considered to reflect the go-cue odor 

information. 
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Figure 6-2 | Late go-cue odor-preferred responses were evoked by the odor 

onsets and were stable 

(A) Schematic of the encoding model used to quantify the relationship between 

behavioral variables and the activity of each neuron. Behavioral predictors for the 

odor stimulus-presentation epoch are supported over the window 0 to 500 ms 

relative to the onset of odor valve, as well as late phase of odor-sampling epoch 

that are supported over the window 0 to 553/264 ms relative to the offset of odor 

valve in either go/no-go trials (median of the valve offset to odor port exit), and 

pre odor port exit epoch that are supported over the window -300 to 0 ms relative 

to the odor port exit. Inset, predicted and actual averaged firing rate relative to 

the odor onset and odor port exit for one neuron. 

(B) Top: relative contribution of each behavioral variable to the explained variance 

of the neural activity, averaged across the go-cue-selective neurons. All error bars 

represent the standard error of the mean. Bottom: relative contribution 

significance of the late phase of go-cue odor-sampling variable. 

(C) Go-cue odor-preferred responses during correct trials, error trials, and catch 

(odorless) trials. The auROC values were calculated during the odor-sampling 

epochs and only neurons with a minimum number of three trials for each 

analyzed condition were included in this analysis. Black horizontal lines and black 

vertical lines indicate medians and interquartile ranges. The statistical significance 

among five groups (*p < 0.05, **p < 0.01, ***p < 0.001) was assessed by one-way 

analysis of variance (ANOVA) with Tukey’s post hoc test.  

(D) The development of go-cue responses in go-cue-selective neurons during 

learning. For each go-cue-selective neuron, we calculated the correlation 
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between the firing rate during the go-cue odor-sampling epoch relative to the 

baseline (a mean firing rate during inter trial interval was subtracted for each 

neuron) and the order of go trial from the start of the session. The correlation 

coefficient was compared with control values calculated by the 1000 trial-shuffled 

data (gray shaded area) and then the statistical significance was determined (< 

0.5th percentiles of the control values, negative correlation; > 99.5th percentiles 

of the control values, positive correlation). Across go-cue-selective neurons, many 

of the go-cue responses were not correlated with trial progression (86.0%, not 

significant; 7.0%, negative; 7.0%, positive). 
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6.5. Results: Response dynamics of the ACo neuron population during the late phase 

of odor-sampling epoch 

We demonstrated that ACo neurons showed odor-evoked cue-preferred responses during 

the late phase of the odor-sampling epoch. Were the distinct cue responses reflected in 

the ACo neuron population dynamics, and how much could the population activity 

account for animals’ behavioral accuracy? First, to gain insight into the dynamics of the 

population response, we visualized average population activity using principal 

component analysis, a dimensionality reduction method. Figure 6-3A shows trajectories 

of the mean response of the ACo neuron population to go-cue and no-go-cue odors, 

represented as projections onto the first three PCs during the odor-sampling epochs. 

Throughout the approximately 400 ms interval from the odor onset, trajectories remained 

converged, showing little difference across conditions. Over the late phase of odor-

sampling epochs, trajectories in the odor-sampling epoch subspace began to spread out 

and were clearly separated at the population level. To quantify these observations, we 

measured the instantaneous separation between the population cue responses (Figure 6-

3B). The separation started to increase from 400 ms after odor onset, reaching a maximum 

at ~800 ms, and remained above baseline levels until odor port exit. Thus, the ACo neuron 
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population showed profound and persistent transformations in the dynamics of cue-

encoding, 400 ms after odor onset. 

 Second, to examine whether the population activity accounted for the animals’ 

behavioral accuracy, we performed a decoding analysis to determine whether the firing 

rates of the ACo neuron populations could be used to classify each individual trial as go 

or no-go. We used SVMs with linear kernels as a decoder. Based on ACo neurons, 

analyses of the decoding time course, using a sliding time window, revealed that decoding 

accuracy was first maintained at chance levels 400 ms after the odor onset, and then 

increased above the behavioral accuracy level of the animals around 500–600 ms after 

odor onset (the top-right graph in Figure 6-3C). In the 700–800 ms period, about 100 

neurons provided sufficient information to account for the behavioral accuracy (the 

bottom right graph in Figure 6-3C). Thus, a hundred ACo neurons accounted for animals’ 

behavioral accuracy in the late phase of odor sampling. 
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Figure 6-3 | Dynamics of ACo neuron population response during the late 

phase of odor-sampling 

(A) Visualization of ACo neuron population responses during odor-sampling 

epoch using principal component analysis (158 neurons). The responses to cue 

odors are projected onto the first three PCs corresponding to odor-sampling 

epoch subspaces. Blue line, go-cue odor; green line, no-go-cue odor. Temporal 

progression from unfilled blue/green spheres to filled spheres. 
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(B) Distance between ACo neuron population responses. Gray line and shaded 

area show mean ±2SD baseline values during pre-odor-sampling epoch. Top dots 

indicate time bins showing values more than mean +2SD baseline values. 

(C) The time course of odor decoding accuracy. A vector consisting of 

instantaneous spike counts for 1–158 neurons in a sliding window was used as 

input for the classifier. Training of the classifier and testing were done at every 

time point. Green horizontal lines indicate the level of animal behavioral 

performance. Gray horizontal lines indicate chance level (50%). Green vertical 

dashed lines indicate the first points at which the decoding accuracy reached the 

level of animal behavioral performance. Shaded areas represent ±SD. 
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6.6. Results: Two types of reward anticipation responses of ACo neurons 

We then focused on the ACo activity during odor-evoked behaviors after an odor-

sampling epoch. A subset of ACo neurons gradually increased their firing rates from the 

time of water port entry till the reward was received, and another subset of neurons 

increased their firing rates while waiting for reward (examples shown in Figure 6-4A). 

We quantified the data by calculating firing rate changes from baseline (spike data were 

aligned to the water port entry), and three measures from the values: “time of center of 

mass”, “onset time”, and “duration” (from water port entry to 1000 ms after opening the 

water valve, Figure 6-4B). The drinking epoch selective neurons (n = 30, 19.0 % of the 

recorded neurons) were defined as neurons that had the time of center of mass during the 

drinking epoch, and the waiting epoch selective neurons (n = 14, 8.9 % of the recorded 

neurons) were defined as neurons that had the time of center of mass during the waiting 

epoch. Across the population, the drinking-epoch-selective neurons gradually increased 

their firing rates -190 ms before the water valve opened for 432 ms, and the waiting-

epoch-selective neurons increased their firing rates 10 ms after water port entry for 108 

ms (Figures 6-4C-D, p < 0.01, permutation test). Thus, ACo neurons exhibited two 

distinct types of reward anticipation responses. 
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Figure 6-4 | Two types of reward-related responses of ACo neurons 

(A) Example firing patterns of reward-related responses. A vertical black line 

indicates the water valve opening.  

(B) Evaluation of the reward-related responses. auROC values were calculated by 

go-behavior versus baseline in the sliding bins. Left: red bars show significant 

excitation (p < 0.01, permutation test). Based on the significant time points, onset 

time (black triangle), time of center of mass (black circle) and duration (black 

horizontal line) were calculated. Vertical black lines indicate the water valve 

opening. Right: each row corresponds to one neuron and neurons are sorted by 

times of center of mass (white dots) of auROC values. Based on the times of center 

of mass, drinking-selective neurons and waiting-selective neurons were defined 

(a horizontal dashed line). Color scale as in Figure 6-1D. Vertical white lines 

indicate the water port entry and the water valve opening. 

(C) The proportions of neurons that exhibited a significant response, calculated 

from auROC values (p < 0.01, permutation test) for each neuron group (orange, 

drinking selective neurons; brown, waiting selective neurons). 

(D) Distributions of the times of center of mass, onset times and durations (orange, 

drinking-selective neurons; brown, waiting-selective neurons). 
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6.7. Results: Association of go-cue excitations with excitatory responses for the 

reward anticipation behavior 

We observed that the waiting-epoch-selective neurons showed go-cue-preferred activity 

during the odor-sampling epoch; however, the drinking-epoch-selective neurons did not 

(examples shown in Figure 6-5A). To examine the relationship between the reward 

anticipation responses and cue encoding, we quantified the response profiles of each 

neuron group during odor-evoked behaviors by calculating the firing rate changes from 

baseline (Figure 6-5B). Across the population, drinking-epoch-selective neurons showed 

significant excitatory responses for the waiting and drinking epochs (red histogram at the 

top in Figure 6-5B, p < 0.01, permutation test), and significant inhibitory responses for 

other behavioral epochs (blue histogram at the top in Figure 6-5B, p < 0.01, permutation 

test). Alternatively, waiting-epoch-selective neurons showed significant excitatory 

responses for the late phase of go-cue odor-sampling and waiting epochs (red histogram 

at the bottom in Figure 6-5B, p < 0.01, permutation test), and significant inhibitory 

responses for the drinking and no-go waiting epochs (blue histogram at the bottom in 

Figure 6-5B, p < 0.01, permutation test). The waiting-epoch-selective neurons showed 

higher responses during the go-cue odor-sampling epoch than those of other groups 

(Figure 6-5C, one-way analysis of variance with Tukey’s post hoc test). Thus, waiting-
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epoch-selective neurons exhibited associations between the go-cue excitations and 

excitatory responses for waiting behavior, suggesting that a subset of ACo neurons was 

involved in cue-outcome associations. 
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Figure 6-5 | Waiting-selective neurons showed go-cue odor-preferred 

responses during odor-sampling 

(A) Example firing patterns of cue-outcome responses. A vertical black line 

indicates the water valve opening. 

(B) The proportions of neurons that exhibited significant excitatory and inhibitory 

response calculated from auROC values (p < 0.01, permutation test) for each 

neuron group. 

(C) auROC values during odor-sampling epoch of go-cue odor-selective 

responses (top graph) and no-go-cue odor-selective responses (bottom graph) 

for each neuron group. Black horizontal lines and black vertical lines indicate 

medians and interquartile ranges. Red dots, significant excitation; blue dots, 

significant inhibition; gray dots, non-significant (p < 0.01, permutation test). 

Statistical significance among three groups (***P < 0.001) was assessed by one-

way analysis of variance (ANOVA) with Tukey’s post hoc test. 
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6.8. Discussion: Insights based on the results 

The purpose of the study was to understand the electrophysiological features of ACo 

neurons on odor-evoked reward-related behavioral tasks. We found that many ACo 

neurons exhibited go-cue odor-preferred responses at the late phase of the odor-sampling 

epoch (Figures 6-1 and 6-2). Consequently, the ACo population showed profound and 

persistent transformations in the dynamics of cue encoding and provided sufficient 

information to account for the behavioral performance before executing the odor-evoked 

behaviors (Figure 6-3). In addition to the late phase of odor-evoked activities, we also 

found two types of reward anticipation signals during the odor-evoked behaviors: ramp-

like gradual increases in the signals to the reward exhibited by drinking-epoch-selective 

neurons, and phasic anticipation signals exhibited by waiting-epoch-selective-neurons 

(Figure 6-4). The waiting-epoch-selective neurons exhibited associations between the 

go-cue excitations and excitatory responses for the waiting behavior (Figure 6-5). Thus, 

the ACo showed unique encodings during various behavioral states in the task, suggesting 

that the ACo neurons play an important role in reward-related learning evoked by 

olfactory stimulus. 

 The ACo was a previously unexplored area in the olfactory amygdala located 

caudally to the lateral olfactory tract and rostromedially to the posterolateral cortical 
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nucleus of the amygdala. Neural tracing studies showed that the projection from the OB 

terminates in the outer portion of the most superficial layer (layer Ia) of the cortex, and 

the projection from other olfactory cortex areas terminates in the deep portion of the ACo 

(Carmichael et al., 1994; Scalia and Winans, 1975). We found using an 

electrophysiological approach that ACo neurons exhibited cue-odor-preferred responses 

at the late phase of odor-sampling epochs. The peak firing in ACo neurons during odor-

sampling epochs was later than that in other olfactory cortical areas (e.g., the piriform 

cortex (Miura et al., 2012); and the ventral tenia tecta (Shiotani et al., 2020b)). This late 

phase coding in the ACo neurons was not the premotor signal (Figure 6-2). This may 

reflect the input of other olfactory cortex from layers Ib, II, and III, and the top-down 

inputs from other brain areas, rather than the direct sensory inputs from OB in layer Ia. 

Therefore, we speculate that ACo neurons send task-modulated olfactory information to 

other amygdala areas. 

 

6.9. Discussion: Two types of reward-related responses that are unique properties 

of the ACo 

Since the ACo sends many axons to the basolateral amygdaloid complex (BLA) (Cádiz-

Moretti et al., 2017) which plays a role in learning and memory of the CS-US association 
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(Gore et al., 2015), this projection is thought to carry olfactory information for the CS-

US association in the odor-guided learning task. Given that the ACo receives direct input 

from the BLA (Cádiz-Moretti et al., 2017), our finding that the type of ACo activity that 

shows go-cue-odor preference with increased activity in the reward anticipation epoch 

(Figure 6-5, “waiting selective neurons”) may play a role in the CS-US association by 

linking olfactory information with reward anticipation. In addition, a previous study 

revealed that pyramidal neurons of the ACo displayed rhythmic fluctuations of the 

intrinsically generated voltage-dependent membrane potential in the theta-low beta range 

with the activation of sodium conductance (Sanhueza and Bacigalupo, 2005). Increased 

synchronization of theta oscillations between regions, important for enhanced 

communication during memory acquisition and goal selection (Benchenane et al., 2010; 

Hoffmann and Berry, 2009; Jones and Wilson, 2005), is observed between the lateral 

olfactory entorhinal cortex (LEC) as a part of the olfactory cortex and the hippocampus 

during the learning phase of the CS-US associative learning task (Takehara-Nishiuchi et 

al., 2012). Taking these evidence together with the fact that ACo has a bidirectional 

connection with the LEC (Cádiz-Moretti et al., 2017), we speculate that the ACo 

additionally drives the LEC-HPC circuit and supports the CS-US association by 

synchronizing the ACo-LEC-HPC theta oscillations during the learning stage. 
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 A subset of ACo neurons started to increase their firing rate before the drinking 

epoch and these activities persisted during the epoch (Figures 6-4 and 6-5, “drinking 

selective neurons”). Previous studies reported that similar firing patterns were observed 

in the dopamine neurons in the VTA (Kim et al., 2020; Song and Lee, 2020). After 

learning, dopamine activity may change phasic responses to cues and rewards, and 

ramping activity may arise as the agent approaches the reward. Given that the ACo 

receives direct projections from the VTA (Cádiz-Moretti et al., 2017), it is assumed that 

the ramping-like response in the ACo may reflect the inputs from the VTA. In addition, 

ACo has anatomical connections with other olfactory cortices (Cádiz-Moretti et al., 2017). 

We speculate that the VTA reward signals may be transmitted to other olfactory cortical 

areas via ACo, making learning more efficient in the olfactory cortex. Finally, a previous 

behavioral study revealed that electrical stimulation of the VTA showed that the ACo, 

besides other mesolimbic structures, displayed increased Fos expression in rats 

(Majkutewicz et al., 2010). ACo sends excitatory glutamatergic/aspartatergic projections 

to the nucleus accumbens (NAc) (Ray et al., 1992). Dopamine projections from the VTA 

to the NAc, which constitute the mesolimbic dopamine system (Björklund and Dunnett, 

2007; Ikemoto, 2007; Morales and Margolis, 2017), play an essential role in motivated 

behaviors, reinforcement learning, and reward processing (Hamid et al., 2016; Watabe-
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Uchida et al., 2017). Therefore, the ACo may assist in driving the NAc-VTA circuit for 

reward-related behavior. 
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 Chapter 7. General Discussion  

 

7.1. “Odor-functions map” hypothesis in the OC 

In this doctoral dissertation, I summarized the research on the OC subregions aPCx, vTT, 

NLOT, and ACo, in which distinct neural spike activity patterns were recorded by 

extracellular recordings in each region during odor-guided tasks (Figures 7-1 and 7-2). 

Based on the general idea that different brain regions have different functional features 

consistent with their electrophysiological features, as well as the traditional theory on the 

localization of brain functions, we propose the hypothesis that different subregions of the 

OC have different electrophysiological and functional features, forming an “odor-

functions map”. In the 30-year history of olfaction research, since the finding of odorant 

receptors in 1991 (Buck and Axel, 1991), the existence of an “odor-molecular map” in 

the olfactory bulb had been revealed (Igarashi et al., 2012), and we now consider the next 

generation hypothesis that there is possibly the “odor-functions map” in the OC as 

reasonable, consistent with the knowledge that there is no topographical map based on 

odorant molecular profiles in the OC (Miura et al., 2012; Rennaker et al., 2007; Stettler 

and Axel, 2009; Uchida et al., 2014; Zhan and Luo, 2010). Given the idea that the OC 

processes sensory information in different subregions for each kind of functional meaning 
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of odor and leads to the function of inducing behavior, we may shed a new light on the 

process of translating odor molecular information into odor-evoked behavioral 

information in olfactory neural circuits. 

 In the aPCx, which is the most studied OC, in addition to the traditional 

distributed odor information representation patterns (Miura et al., 2012; Stettler and Axel, 

2009), various behavioral state response patterns were observed, such as those related to 

the association between odor information and the animal’s behavioral state (Figures 3-2 

and 3-3). Since the aPCx is the largest region in the OC and has connections with all OC 

subregions (Luskin and Price, 1983b), one of the anatomical features of the region is that 

it receives and mixes a variety of top-down information with a wide variety of odor 

information, which is consistent with our results. Furthermore, although the response 

properties of individual neurons are diverse and learning-dependent (Figure 3-3), the 

results that odor discrimination capabilities and odor-outcome associations are 

maintained at the population level (Figure 3-4) are consistent with the drift representation 

of the aPCx during odor representation (Schoonover et al., 2021) and extends the 

characteristics of the region, supporting our hypothesis from the point of view that it may 

represent a functional profile of the aPCx in the OC. 
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 Where does the behavioral state signal that characterizes the response pattern of 

the aPCx come from? The first candidate source of input is a direct projection from the 

frontal cortex to the OC (Johnson et al., 2000). This possibility has been shown in 

previous studies (Calu et al., 2007; Roesch et al., 2006), but future studies will need to 

prove this causal relationship by applying pathway-specific optogenetic approaches. 

Another candidate input source is the projection pattern from the mPFC to the OC wide 

area via the vTT (Figure 4-4) (Shiotani et al., 2020b). Individual neurons in the vTT show 

various behavioral state signals in transient firings as a characteristic of the region (Figure 

4-2), and we have proposed that the vTT is an ideal region as a hub to supply behavioral 

state signals to the OC wide area. Supporting our idea based on the anatomical 

background and electrophysiological features, optogenetic inhibition of the mPFC-to-

vTT input reduced the behavioral state representation of the vTT (Figure 4-5). These 

results indicate that at least the mPFC-to-vTT input contributes to the behavioral state 

representation of the vTT and suggest that higher-order information is supplied from the 

frontal cortex to the OC, where different information processing takes place based on the 

anatomical characteristics of the OC subregions. 

 Supporting this idea, characteristic electrophysiological features were observed 

in the NLOT, which is closely related to the amygdala that is particularly involved in the 
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stimulus-reward association. NLOT neurons that selectively responded to go-cue odor 

also responded during reward acquisition, thereby contributing to association learning 

(Figure 5-7). Similarly, in the ACo, which is closely related to the amygdala and located 

next to the NLOT, characteristic reward expectation and reward responses were observed 

that contribute to reward-based learning (Figure 6-5). We propose a circuit model in 

which behavioral state signals are supplied to the OC, and each subregion plays a different 

role in the formation of an “odor-functions map” based on the functions that guide 

behavior. 
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Figure 7-1 | Summary: “Odor-functions map” hypothesis in the OC 

In this doctoral dissertation, I summarized the research on the OC subareas aPCx, 

vTT, NLOT, and ACo, in which distinct neural spike activity patterns were recorded 

by extracellular recordings in each region during odor-guided tasks. The aPCx 

neurons responded to a specific combination of cue odors with increased firings 

during a specific state of the subsequent behaviors (Chapter 3). We hypothesized 

that not only the aPCx but also the other subareas have their own unique top-

down signal processing. As one of the candidate sources of the top-down signals, 

we next focused on the vTT, which receives top-down projections from the mPFC 

and projects to the broad olfactory areas (Chapter 4). We found that individual 

vTT neurons tuned to a specific behavioral state, and the vTT state representations 

were degraded with optogenetic inactivation of the mPFC-to-vTT inputs. To 

investigate how such top-down inputs to the OC are distributed to the subareas, 

we finally focused on the NLOT and ACo. Many NLOT neurons that selectively 

responded to go-cue odor also increased their firing rates during drinking reward, 

suggesting that the NLOT is involved in odor-reward association learning 

(Chapter 5). On the other hand, ACo neurons exhibited two types of reward 

anticipation signals: one neuron group type exhibited gradual increases in the 

signals to the reward, while the other type showed phasic anticipation signals, 

suggesting that the ACo is involved in odor-guided reward-directed learning 

(Chapter 6). In conclusion, we propose a circuit model in which behavioral state 

signals are shared to the OC, and each subarea plays a distinct role in the 

formation of an “odor-functions map” based on the functions that lead to odor-

evoked behaviors. 
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Figure 7-2 | The accumulation of knowledge about anatomy, function, and 

neural recordings in the aPCx, vTT, NLOT, and ACo 

Well-researched fields are shown by the blue shaded area, based on this thesis. 

The direction of future research is to examine how the top-down input to the OC 

is distributed to each subarea and how it is involved in unique information 

processing and the function. 
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7.2. Anatomical evidence for the “odor-functions map” in the OC 

It was shown that the OC has contacts with various higher-order regions (Johnson et al., 

2000). Recently, it has been suggested that the PCx output neurons that project to different 

target regions are enriched at specific locations along the A-P axis by using high-

throughput single-neuron projection mapping techniques, Multiplexed Analysis of 

Projections by sequencing and Barcoded Anatomy Resolved by sequencing (Y. Chen et 

al., 2021). They also found that inputs from the OB correlated with specific PCx output 

projections that varied along the A-P axis. For example, OB inputs to the anterior 

olfactory nucleus were stronger in neurons that also innervated more strongly the aPCx 

than those projecting more strongly to the posterior piriform cortex (pPCx). Conversely, 

OB inputs to the cortical amygdala (CoA) and lateral entorhinal cortex (LEC) were 

correlated with strong projections to the pPCx. That is, they demonstrated that these 

gradients are matched: OB neurons targeting a specific location within the PCx co-

innervate extra-piriform regions that receive strong inputs from the PCx neurons. Since 

CoA and LEC are closely related to behavior (photostimulation of odor-responsive CoA 

neurons induces specific behaviors that recapitulate innate attractive or aversive 

responses (Root et al., 2014)), the role of the projection system from the OB through each 

subregion may be determined not by the physical properties of the odorant molecules, but 



197 

 

by the properties associated with the function and behavioral output system of the 

projected region. 

 Given the unique input-output patterns of the olfactory circuits described above, 

it appears that the behavioral state signals observed among the OC subregions have 

unique properties perhaps reflecting anatomical and common properties. For example, 

while all behavioral state signals were commonly represented in all subregions, the vTT 

encodings uniquely covered behavioral state signals all over in a transient response 

pattern (Figure 4-2) that seemed to reflect behavioral state inputs from the mPFC (Hyman 

et al., 2012). The NLOT encoded the association between odor and reward responses 

(Figure 5-7) as observed in reward-related regions (Cohen et al., 2012; Menegas et al., 

2017; Stephenson-Jones et al., 2020) and the ACo encoded reward-related signals 

(Figure 6-5) such as dopaminergic ramping responses (Kim et al., 2020; Song and Lee, 

2020). The unique signals of each subregion are thought to reflect the input or output 

factors used for computation in the reward and motivation systems in which each region 

participates. In contrast, the behavioral state signals observed in all subregions may be 

caused by state information-sharing mechanisms from higher regions to the sensory 

cortex, such as the mPFC-to-vTT input (Figure 4-5). Such a phenomenon is thought to 

be one of the basic principles of brain information encoding shared by the whole brain 
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and has similarities with the recently reported brain-wide sharing of animal movement-

related signals (Musall et al., 2019; Parker et al., 2020; Steinmetz et al., 2019; Stringer et 

al., 2019). Although specific optogenetic suppression of this motor-related signal did not 

affect the behavioral choices of the animals, suppression of the unique properties of the 

visual cortex for visual sensory processing disrupted the behavioral output (Zatka-Haas 

et al., 2021). However, motor-related signals can affect behavioral output in situations 

where it is necessary to distinguish between signals produced by oneself and from 

external sources, or in situations involving higher-order processing such as attention 

(Parker et al., 2020; Speed and Haider, 2021). Based on the above, it is necessary to 

carefully describe which parts of the observed neural activity elements are shared 

elements and which parts are unique elements, including causal relationships. This issue 

is one of the challenges of the present times when large-scale neural activity recording 

and systematic optogenetic neural manipulation are now possible. 

 Notably, the shared and unique properties were also observed in the olfactory 

system, implying that the olfactory system is an ideal model system to investigate the 

basic principles of state information sharing in the brain starting from the sensory input. 

This is because the olfactory system has anatomical characteristics that allow direct 

sensory bottom-up input from the olfactory bulb to the olfactory cortex without involving 
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the thalamus, as well as a simple structure that allows direct top-down input from higher-

order areas such as the frontal cortex. It has therefore the advantage that the 

correspondence between bottom-up and top-down communication can be easily clarified. 

In the future, I would like to develop an “odor-functions map” in the OC and explore the 

future of olfaction research, using the olfactory system as a model to clarify the shared 

and unique properties of the state signals observed in the whole brain. 

 

7.3. Limitations and future direction 

We acknowledge that there are several limitations to our studies. First, although we 

performed the first in vivo recording of neuronal activity in some OC subregions during 

only a simple odor-guided go/no-go task, our data do not reflect the neuronal activity 

across different cue modalities, behavioral paradigms, and contexts, which would account 

for multidimensional behavioral states. To understand the shared and unique properties 

of neural activity in each OC subregion in multiple aspects, it is necessary to develop 

behavioral tasks that quantify other behavioral states, such as motivational states in 

positive and negative stimulus-outcome learning (Stephenson-Jones et al., 2020; Zhang 

et al., 2021), and internal state changes including arousal and sleep states (Manabe et al., 

2011). For example, behavioral tasks using the elevated plus maze (Gründemann et al., 
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2019; Hagihara et al., 2021; Yoshihara et al., 2021) and odors that elicit innate aversive 

behaviors (Root et al., 2014) are effective for understanding properties with an axis of 

negative and aversive behaviors. Meanwhile, since the factors that contribute to neural 

activity in situations where animals can move freely are complex, quantitative assessment 

and comparison of neural activity using a head-fixation task with restricted movement is 

also necessary. Comparing the activity during passive classical conditioning and active 

decision-making contexts improves our understanding of activity properties with 

behavioral freedom as the axis. To investigate learning as an axis of activity properties 

applied to behavioral tasks, task design that focuses on the learning process (Takamiya et 

al., 2021), and reversal learning (Ramesh et al., 2018) or set-shifting paradigms (Spellman 

et al., 2020) that change the relationship between stimuli and outcomes are effective. In 

this learning process, the axes related to the animal’s perception and interpretation of the 

sensory stimuli are revealed by the context in which the difficulty of the stimuli to 

determine the behavior gradually changes (Miura et al., 2012), the context in which 

categorization of multiple stimuli is required (Reinert et al., 2021), and the context in 

which the same behavior is derived from multisensory stimuli (Ohnuki et al., 2020). To 

further examine axes related to changes in internal states in response to stimuli, tasks that 

measure the animal’s confidence in its behavioral choices (Hirokawa et al., 2019; Kepecs 
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et al., 2008), quantify the relationship between confidence and memory (Joo et al., 2021), 

evaluate internal states that change with the behavioral choice situation (Osako et al., 

2021), evaluate the evidence accumulation for stimuli (Hanks et al., 2015), and evaluate 

working memory (Wang, 2021) and economic choice (Gardner et al., 2020) for stimuli 

are effective. Moreover, the task-related activity axes focused on in our study for time 

and place can be clarified in the context of freely exploring rewards in real mazes 

(Takahashi, 2015) and VR environments (Nieh et al., 2021; Radvansky et al., 2021), 

together with tasks that assess the neural coding of the absolute and relative time (Shimbo 

et al., 2021). Finally, it is necessary to introduce techniques for detailed analysis of animal 

behavior using deep learning (Mathis et al., 2018) and techniques for systematic 

quantification of various behavioral parameters (body movement (Parker et al., 2020), 

pupil (Cazettes et al., 2021; Lee et al., 2020), facial expression (Dolensek et al., 2020), 

respiration (Kepecs et al., 2007)) to define behavioral states in more detail. Considering 

these things, the future challenge is to design behavioral paradigms that allow us to 

observe external and internal variables for multiple aspects at once, and to the 

systematically reveal neural properties from lower-order to higher-order parameters of 

the OC subregion one by one in sequence. However, our data are potentially important in 

that OC subregions neural activity in freely behaving rodents is modulated by the odor-
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guided behaviors and may provide basic information regarding OC encoding in various 

behavioral contexts. 

 Second, in parallel with investigating the electrophysiological features of each 

OC subregion as described above, we need to clarify the pathway-specific functional 

features in comparison with them and break away from studies that simply collect the 

neural response profiles. To tackle this issue, it is necessary to investigate the function of 

individual subregions based on anatomical and electrophysiological findings. Specifically, 

we need to consider an experimental design that can quantify the behavioral changes that 

occur when each circuit is disrupted. For instance, the legion experiment of the NLOT 

has been reported to show olfactory behavioral disturbances (Vaz et al., 2017), while 

neural projections of the NLOT to different regions in different layers have been reported 

(Santiago and Shammah-Lagnado, 2004). Therefore, it is necessary to clarify the circuit 

structure and function spreading around the OC subregions by using genetic methods such 

as Cre-mice to reveal the function of each projection more specifically. Furthermore, to 

demonstrate that the vTT functions as a hub that supplies behavioral state signals within 

the OC, it is necessary to examine the effects on odor learning in animals when the mPFC-

to-vTT pathway is suppressed, together with other subregional neural activity changes. 

Tools for probing pathway-specific neural activity in these deep brain regions include 
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electrophysiological tagging techniques (Cohen et al., 2012; Hirokawa et al., 2019), fiber 

photometry (Matias et al., 2017), endoscope (Gründemann et al., 2019; Yoshizawa et al., 

2018), and imaging techniques using a prism (Spellman et al., 2020). Finally, it is a major 

goal of our research to elucidate the details of olfactory neural pathways related to flavor 

sensation (Shepherd, 2006), as a target for the study of higher-level olfactory functions. 

Understanding the structure and function of the orthonasal and retronasal pathways 

(Shepherd, 2011) will also lead to a better insight into the food sensation and subjective 

functional aspects of the integration of olfactory and other sensory information. Thus, 

based on the electrophysiological and anatomical data we have obtained, it is important 

to clarify the causal relationship between the function of each OC subregion and neural 

activity in a pathway-specific manner and to develop a more detailed “odor-functions 

map” in the OC at the neural circuit level. 

 Third, analysis techniques that can properly evaluate the large-scale data 

collected need to be further developed with integration to other research fields. For 

example, in precisely comparing neural properties across regions, the approach of 

computing neural manifolds for responsive properties (Ebitz and Hayden, 2021) may be 

effective in comparing properties of each OC subregion at the population level. Using 

this analysis to test whether subregion-specific neural representations can be shared and 
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complemented across animals (H.-T. Chen et al., 2021; Rubin et al., 2019) is a useful 

method for refining hypotheses and building neural circuits models. Furthermore, it 

would be useful to develop an OC circuit and computation model, which considers that 

vTT is the hub providing behavioral state signals within the OC. It provides an 

opportunity to deepen the mathematical aspects of the hypothesis, discuss it with 

outstanding research teams working on theory building, and expand the community. 

Beyond these connections with research in other fields, we can expect to see links with 

research on neural systems at the micro-scale (Iwata et al., 2019), research on primates 

(Sadakane et al., 2015), humans at the macro-scale, and brain-machine interface (BMI) 

and pathology research. In particular, the symptoms of COVID-19, which have posed a 

threat and challenge to human beings from the beginning of December 2019 until now in 

2021, are also closely related to the olfactory system, and therefore provide significance 

for the olfactory research. With such a broad perspective, it is crucial to promote the 

development of phenomena and theories and to clarify the “odor-functions map” in the 

OC. 

 In conclusion, I believe that the approach described above can be applied not 

only to olfaction but also to other sensory cortices and help to reveal basic principles 

common to the whole brain. I am currently considering that the technologies that will be 
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important for clarifying the problem are 1) large-scale electrophysiological and imaging 

data acquisition technologies that also provide long-term recording (Ota et al., 2021; 

Steinmetz et al., 2021; Stringer et al., 2021), and 2) technologies that allow neural 

manipulation of single cells to specific cell populations on a precise spatiotemporal 

activity scale (Adesnik and Abdeladim, 2021; Carrillo-Reid et al., 2019; Daie et al., 2021; 

Dalgleish et al., 2020; Gill et al., 2020; Jennings et al., 2019; Marshel et al., 2019; Okada 

et al., 2021; Robinson et al., 2020). For 1), it will enable us to study new aspects of 

neuroscience that have not been seen on a traditional scale, and it will also be necessary 

for researchers to provide large-scale data that is consistent not only with the surface of 

the brain but also with deeper regions such as the olfactory, reward, and emotional 

systems. For 2), neural manipulation on the spatiotemporal activity scale, we can study 

not only the manipulation of specific projection pathways, but also the overlap of spatial 

local circuits and activities that affect each other in a chain. For example, for the 

behavioral state responses of the OC found in our study, it is possible to artificially 

manipulate only the population of neurons that exhibit a particular state activity to test 

the causal relationship with the function. Since the manipulation of temporal activity 

patterns at the level of single cells is an unexplored field for neuroscientists, the combined 

manipulation of the spatiotemporal activity patterns of neural circuits may enable the 
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identification of the Hebbian rule, the identification of memory engrams (Josselyn et al., 

2015; Tonegawa et al., 2018) at the level of milliseconds, and the transfer of the neural 

information written in the circuits between animals. I believe that such research may lead 

to a better understanding of why neurons represent information “in groups” (Sakurai et 

al., 2018) — for example, how many different types of information can be written in a 

circuit formed by a particular group of cells? It could lead to a new stage in neuroscience: 

reading and writing the specific population activity patterns, such as the state 

representations observed in the OC, and verifying how they correspond to the dynamics 

of behavioral output in animals. 
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