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Abstract 

It is widely assumed that trial-by-trial variability in visual detection performance is 

explained by the fidelity of visual responses in visual cortical areas influenced by 

fluctuations of internal states, such as vigilance and behavioral history. However, it is not 

clear which neuronal ensembles represent such different internal states. Here, I utilized a 

visual detection task, which distinguishes internal states in response to identical stimuli, 

while recording neurons simultaneously from the primary visual cortex (V1) and the 

posterior parietal cortex (PPC). I found that rats sometimes withheld their responses to 

visual stimuli despite the robust presence of visual responses in V1. My unsupervised 

analysis revealed distinct population dynamics segregating hit responses from misses, 

orthogonally embedded to visual response dynamics in both V1 and PPC. Heterogeneous 

non-sensory neurons in V1 and PPC significantly contributed to population-level 

encoding accompanied with the modulation of noise correlation only in V1. These results 

highlight the non-trivial contributions of non-sensory neurons in V1 and PPC for 

population-level computations that reflect the animals’ internal states to drive behavioral 

responses to visual stimuli. 
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1. General introduction 

 

One of the fundamental functions of the brain system is to use the external sensory input 

to make adaptive decisions about future behavior. Over the course of daily life, for 

instance, when the traffic light changes from red to green, we decide to ‘go’ action by 

our car. Behind this seemingly simple perceptual decision, our brains process the 

specific external information (the color of traffic light) and choose one action (go) 

among a set of multiple possible alternative actions. This decision is obviously 

influenced by sensory information. However, if the external sensory information is 

uncertain, our decisions might be fluctuated based not only on the external stimulus but 

also on a myriad of our internal factors (bias, fatigue, satiety, motivation, attention, etc., 

see Appendix 7.1). For example, in a foggy intersection, the attentive drivers may not 

initiate the ‘go’ action quickly, even if the traffic light turns from red to green. This is 

due to the driver’s cautious anticipation of a traffic accident blunting his or her decision 

to guide the ‘go’ decision. These influences by the non-sensory internal factors to our 

decision can allow one to generate adaptive behavioral strategies in the various 

environments, and, together, they define an ‘‘internal state.’’ (O’Doherty et al., 2004; 

Sugrue et al., 2004; Soltani and Koechlin, 2022).  
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It has been speculated that the sensory cortex is necessary for the sequence from 

processing the external sensory stimuli to decision making (Hubel and Wiesel, 1962; 

Gold and Shadlen, 2007; Glickfeld et al., 2013; Ibos and Freedman, 2017; Licata et al., 

2017; Najafi et al., 2020; Goldbach et al., 2021). The visual cortex is believed to play a 

causal role in visually guided decision-making (Montijn et al., 2014; Licata et al., 2017; 

Jasper et al., 2019; Zhong et al., 2019). However, how the neuronal activities in the 

visual cortical area contribute to visually guided decision-making is yet largely 

unsolved. 

Numerous studies have reported that the neurons in the visual cortex selectively fire 

to the visual stimulus features (Somers et al., 1995; Lampl et al., 2001; Lauritzen and 

Miller, 2003; Monier et al., 2003; Cardin et al., 2007; Schiller, 2010). In particular, the 

primary visual cortex (V1), which is the principal telencephalic recipient of visual input 

in primates and rodents, has historically been most studied. Hubel and Wiesel recorded 

the neuronal activity from the V1 and found a selective response to the specific tilts and 

direction of the visual stimulus (Hubel and Wiesel, 1959, 1962, 1963, 1974). Recent 

studies have shown that V1 neurons represent not only visual information but also a 

variety of non-visual features; Niell and Stryker found that the V1 shows more than a 

twofold increase of the visual responses during locomotion compared to stationary, 
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while the firing rates in the thalamus (lateral geniculate nucleus) did not increase with 

locomotion (Niell and Stryker, 2010). They also found that specific narrow-spiking 

neurons (see Appendix 7.2) are activated during running but suppressed by the visual 

stimulus. Shuler and Bear reported that V1 neurons, which is solely selective to the 

physical attributes of the visual stimuli, predict the accurate reward timing after visual-

reward association learning (Shuler and Bear, 2006; Monk et al., 2020). The other 

studies revealed that V1 neurons show the mismatch responses strongly driven by 

mismatch between predicted and actual visual feedback (Keller et al., 2012), the relative 

value between multiple stimuli (Stănişor et al., 2013), and decision-related activity 

(Nienborg and Cumming, 2014). These pioneering works imply that V1 neurons do not 

function as only simple feature detectors but also reflect the non-sensory information 

including animal’s internal state. Furthermore, the posterior parietal cortex (PPC), 

which is believed to be a part of the visual cortical area, was traditionally viewed as 

being involved in visually guided decision making. A growing number of studies 

(Shadlen and Newsome, 1996; Platt and Glimcher, 1999; Freedman and Assad, 2006; 

Swaminathan and Freedman, 2012; de Lafuente et al., 2015; Goard et al., 2016) 

revealed that the neuronal activity in PPC correlates with sensory-guided decisions. The 

PPC represents not only sensory information but also motor-preparatory signals (Schall, 
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2001; Pho et al., 2018; Steinmetz et al., 2019), leading to speculation that PPC is 

involved in the decision process of the sensory to motor transformation. Direct 

inhibition of neuronal activity in the PPC impairs the motor aspects of decisions (Zhou 

and Freedman, 2019) (deciding where to move), evidence accumulated decision which 

restricted to the visual than auditory task (Licata et al., 2017), visual memory guided 

decision (Goard et al., 2016) (deciding action based on the memory), and virtual 

navigation decision (Harvey et al., 2012; Driscoll et al., 2017) (deciding action based on 

the cue in the virtual navigation environment) indicating that the PPC plays a causal 

role more specific in visually guided decision making. Furthermore, PPC neurons 

represent the history-dependent bias (Morcos and Harvey, 2016; Hwang et al., 2017, 

2019; Hattori et al., 2019) and task- and context-dependent sensory signals (Gail and 

Andersen, 2006; Pho et al., 2018). These findings lead the speculation that the PPC is 

involved in the decision making coupled with the sensory signals and internal states 

(e.g., reward bias and motivation). However, how internal factors are represented in the 

visual cortical areas and coded with sensory information simultaneously is still 

enigmatic.  

Studying the neuronal activity underlying visually guided decision behavior, 

however, requires careful psychophysical readouts that constrain task design. In 
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previous studies, visual detection tasks, in which subjects report whether or not a visual 

stimulus is presented, have historically been introduced to quantify the decision making. 

In particular, most of the task applied the Go/Nogo paradigm, in which subjects perform 

a specific action (e.g., pull a lever) when they detected a certain stimulus (Go action), 

while they are instructed to inhibit their habitual go action (e.g., still) if the stimulus was 

omitted (Nogo action). This paradigm is the simplest cognitive task to explore the brain 

mechanisms underlying inhibitory control, action selection, and more widely, cognitive 

control (Criaud and Boulinguez, 2013). However, the Go/Nogo task contains the 

problem that it cannot guarantee that the animals failed to detect the visual stimulus in 

the Nogo trials. The Nogo trials contain the following two distinct cognitive stages. 

First, animals actively suppress overt Go action based on visual perception. Second, 

they actually perceive the stimulus, but it was not substantial evidence to drive the Go 

action during the response timing. The difference between these two behavioral 

performances is whether they actually perceived the stimulus or not. Unless care is 

taken to explicitly control for this confound, a nontrivial misunderstanding of the 

neuronal mechanism of decision making may be drawn in comparison between 

Go/Nogo actions and neuronal activity. This potential confound is especially important 

because many of the visual cortical areas identified as playing a role in decision making 
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have also been implicated in visual perception. Regarding this background, it is 

essential to design the quantitative task to distinguish the different Nogo actions. 
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2. A novel perceptual decision-making task in rats 

 

2.1 Summary 

To study visually guided decision in the animals, appropriate method evaluating the 

decisions based on the perceptual judgement is required as described in the general 

introduction. In this section, I established a novel behavioral task for rats to test their 

spatial-visual cue detection ability, using a two alternative choice (2-AFC) task with and 

without a third choice option where animals get rewards only in the objective absence of 

a visual cue. In the trials without the third option, spatial choice accuracy decreased 

from near perfect to near chance levels as the visual cue brightness decreased. In 

contrast, with the third option, the rats exhibited >90% spatial choice accuracy 

regardless of the cue brightness. The rats chose the third choice option less frequently 

when the cue was brighter, suggesting that rats have a generalized strategy to make 

spatial choices only when their internal detection criterion is met. Interestingly, even 

when the animals chose the third option, they could still significantly and correctly 

choose the direction of the visual stimuli if they were forced. My data suggest that the 

rats’ variable detection performance with identical set of stimuli is derived from 
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stochastic processing of visual signals with a certain internal detection threshold rather 

than general motivational threshold. 

 

2.2 Introduction 

Subjective perception is often contrasted with objective perceptual performance 

(Kim and Blake, 2005; Kanai et al., 2010; Dehaene and Changeux, 2011), suggesting 

that perceptual awareness is not always an accurate monitoring process of one’s own 

capability. A striking example of this distinction is patients with damage to their primary 

visual cortex (V1) who have the capacity to detect or discriminate visual stimuli without 

conscious perception (Campion, 1983; Weiskrantz, 1986; Tong, 2003). This 

phenomenon is called “blindsight,” and the dissociation between conscious perception 

and behavioral performance suggests that humans process visual information without 

subjective visual awareness. Macaque monkeys with unilateral V1 lesions perform 

similarly to human blindsight subjects in various behavioral tasks (Humphrey, 1974; 

Cowey and Stoerig, 1995; Christopher and Sean, 2006; Yoshida et al., 2008, 2012, 

2017; Yoshida and Isa, 2015), suggesting the generality of the phenomenon across 

species. Clarifying the neural correlates of dissociation between subjective visibility and 

objective behavioral performance is key to understanding the neural mechanisms of 
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generating metacognition and consciousness (Ress et al., 2000; Goebel et al., 2001; 

Stoerig et al., 2002; Peter et al., 2005; Soma et al., 2014). To this end, establishing a 

rodent model for quantitative evaluation of dissociation between subjective and forced 

performances would be useful for extending research to the molecular and neural circuit 

levels. 

Recent behavioral studies have provided evidence for metacognition in rats (Foote 

and Crystal, 2007, 2012; Yuki and Okanoya, 2017). Foote and Crystal set up two types 

of trials in which rats could decline the test (choice trial) or were forced to take the test 

(forced trial) in a sound duration–discrimination task. Because rats in the choice trials 

could only take the test when they were confident of a correct choice, the accuracy in 

these trials was greater than in the forced trials. Indeed, the proportion of rats that 

declined the test in the choice trials increased with increasing difficulty of 

discrimination. They concluded that rats had the capacity to use their internal state for 

behavioral performance, which could be called metacognition. Kepecs et al. established 

a theoretical framework for estimating the degree of metacognition (i.e., decision 

confidence), and proposed a trial-by-trial instantaneous measurement of decision 

confidence in an odor mixture categorization task in rats (Kepecs et al., 2008; Kepecs 

and Mainen, 2012; Lak et al., 2014; Hangya et al., 2016). These studies demonstrated 
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the strength of quantitative measurement of metacognition for clarifying the neural 

correlates of such internal variables (Kepecs et al., 2008; Hirokawa et al., 2019). 

Although post-decision wagering – such as the waiting time paradigm – is useful for 

measuring metacognition as a quantitative variable (Persaud et al., 2007; Persaud and 

McLeod, 2008), awareness itself can be a binary phenomenon (Overgaard et al., 2006; 

Del Cul et al., 2007). The subjective presence of perception, i.e., awareness, is 

dynamically influenced in an all-or-nothing manner by experimental manipulations such 

as top-down attention (Koch and Ullman, 1985; Newby and Rock, 1998; Kanai et al., 

2006, 2008; Watanabe et al., 2011), multisensory integration (Geldard and Sherrick, 

1972; McGurk and MacDonald, 1976; Shams et al., 2002) and inter-hemispheric 

interactions (Walker and Powell, 1979; Blake and Logothetis, 2002; Tsuchiya and Koch, 

2005) despite the continuous physical presence of stimuli. This implies separable neural 

substrates of awareness and decision confidence. However, in rodents, it is not known 

whether they have an internal detection criterion dissociated from forced performance. 

In our previous studies using rats, we showed that visual detection performance is 

modulated by the animals’ internal states, such as top-down attention and multisensory 

integration (Sakata et al., 2002, 2004; Hirokawa et al., 2008, 2011). These studies raised 

the question of whether rats could reliably utilize internal visual information. To clarify 
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whether rats have internal criterion-based visual detections dissociated from criterion-

independent visual detections, I compared the detectability of identical sets of spatial 

visual stimuli with and without a third choice option, which affords animals the 

opportunity to report the subjective absence of a visual cue. Note that animals were 

rewarded by choosing the third choice option only when the visual cue was not actually 

emitted. Therefore, optimal strategy in this task is to make the peripheral choice as long 

as the rats detected a peripheral visual cue regardless of the availability of the third 

choice option. 

 

2.3 Experimental procedures 

Subjects 

Five male Long–Evans rats (Shimizu Laboratory Supplies, Kyoto, Japan) aged 12–

17 weeks and weighing 250–500 g at the beginning of the training were individually 

housed under standard laboratory conditions in a light and dark cycle (lights on at 8:00 

and off at 21:00) with food freely available. The rats were placed on a liquid restriction 

schedule with daily body weight monitoring to ensure that body mass remained within 

85% of prior mass before restriction. The rats received water during each behavioral 

session and ad libitum in the 10 min after the session in their home cage. Two out of 
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five rats were excluded from analysis because they could not achieve the training 

criterion in 3-choice training phase within our limited time. All experiments were 

performed in accordance with the guidelines for animal experiments at Doshisha 

University with the approval of the Animal Research Committee of Doshisha 

University. 

 

Apparatus 

The behavioral apparatus was assembled based on the previous works (Hirokawa et 

al., 2011) with modifications for the water reward using Bpod and PulsePal (Sanworks 

LLC, NY, USA)(Sanders and Kepecs, 2014), which are open source TTL event 

measurement and control devices designed for behavioral tasks. My system comprises 

identical operant chambers (O’Hara & Co., Tokyo, Japan), each located in a soundproof 

box (Brain Science Idea Co. Ltd., Osaka, Japan), with three nose poke ports in the front 

wall and a shutter door for the central port. The three ports were equipped with interior 

illumination (white light-emitting diode (LED)) and infrared photodiodes, and 

interruption of the infrared beam signaled port entry with a TTL pulse. A water reward 

could be delivered from the gravity-fed reservoirs, which were regulated by solenoid 

valves (The Lee Company, CT, USA). The reward amount, which was determined by 
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the solenoid valve opening duration, was set to 0.01 ml and regularly calibrated. The 

shutter door for the central port was controlled by Arduino Due (Italy). Visual stimuli 

were presented on either the left or right side where the rats’ eyes were directed when 

they poked the central port (Hirokawa et al., 2011). The visual stimulus was a white 

LED (4000 mcd; RS components, Japan) covered by a frosted plastic diffuser to 

generate homogenous illumination. 

 

Visual cue detection task 

The task design was based on the previous study (Hirokawa et al., 2011), with 

modification of the free choice and FC paradigms from (Foote and Crystal, 2007). The 

task was comprised of randomly interleaved three choice (3C) and forced-choice (FC) 

trials with equal probabilities in a session. The only difference between the trial types 

was that, in FC trials, the central port was shut with the shutter door to prevent the rat 

from continuing to central nose poke (Fig. 1). After a fixed 2.5 s inter-trial interval (ITI), 

the central port was illuminated by an interior LED of the central port signaling the 

ready state of a trial initiation. The rats initiated each trial by making nose pokes into 

the central port. After a 0.2–0.6 s random stimulus delay, the visual stimulus was 

presented from the left or right side for a duration of 0.2 s. Rats were allowed to make a 
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choice response after the end of the stimulus delay period. The trials where animals 

prematurely left the port before stimulus delay were canceled and they needed to re-

initiate the trials. I randomly provided one of three levels of visual brightness (difficult, 

normal, and easy) for each trial by modulating the voltage ranging 0.02–5.1 lx. Difficult, 

normal and easy stimuli were selected for each subject such that the subject detected the 

stimuli with respective accuracy of 55%–65%, 65–80% and >80%, respectively, in the 

forced-choice (FC) trials. The probabilities for left, right, or no visual stimulus were 

equal (33% per condition) in 3C and FC trials (Fig. 1A-B). The reward was given if rats 

chose the same side where the visual stimuli was emitted in the 3C and FC trials. If 

animals kept nose poke more than X s in the central port after the presentation of the 

visual stimuli, the trial was treated as miss error. X were drawn from the uniform 

distribution with a range of [0.5, 1]. Note that X is aligned with the expected timing of 

the reward delivery in no-signal trials so that animals cannot utilize the absence of 

reward delivery as indication of the presence of unnoticed visual stimuli. Failure of the 

peripheral choices within 5 s after nose withdrawal from the central port was also 

treated as miss error, though it occurred rarely (<5%). There was no punishment in any 

error trials and next trial was allowed to be initiated after ITI. In the no-signal trials, 

animals need to wait for 0.2–0.6 s without stimulus and another 0.5–1 s to get reward 
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from the central port. There was no cue to distinguish the initial delay (0.2–0.6 s) and 

reward delay (0.5–1 s). Thus, animals did not have any external clue to differentiate the 

signal trials from the no-signal trials, except for the presentation of the signal itself. In 

the FC trials, the shutter was closed 0.5 s~ after stimulus presentation onset, and the rats 

were forced to choose either the left or right port (Fig. 1A-B, Forced choice). In cases 

where no stimuli were presented in FC trials, the animals were never rewarded. After 

task training (see below in details) was complete, the visual detection task was tested for 

10 sessions for each rat. Each session was terminated when the rats completed more 

than 500 trials, which usually takes 2 hours. 

 

Training procedure 

Initial training 

On the first day of training, rats were acclimated to the operant chamber. A water 

reward was given in the central port illuminated by an interior LED light. On the 

following day, the interior LEDs for the left and right ports were illuminated 0.1 s after 

the center poke in, and nose poke into those peripheral ports was immediately rewarded 

in the same port. The initial delay for illumination of the peripheral ports was extended 

from 0.2 to 0.6 s over the subsequent 2–4 days. The initial training phase conditioned 
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the animals to poke the central port to initiate the trial (initial poke) and make a 

subsequent peripheral nose poke into the left or right port. 

 

3-choice training 

In the next step, the peripheral visual stimulus was presented using either the left or 

right LED apparatus for 0.2 s. Animals were rewarded if they poked their nose into the 

peripheral port on the same side as the visual stimulus. Once choice accuracy exceeded 

the criterion (>90%), the interior LEDs were turned off except for the LED in the 

central port. In the next step of this training phase, the peripheral visual stimuli were not 

presented and the rats were trained to maintain a central nose poke for 0.5–1.0 s for 

15 µl of water reward. In the last step, left, right, or no visual stimulus was presented 

with equal probability (33% per condition) in a pseudorandom order and animals were 

rewarded for making a left, right, or central choice, respectively. This procedure lasted 

10–20 days to meet the criterion (Choice accuracy >90% and the central poking 

accuracy >90%). 

 

Forced-choice training 
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In the next step of visual detection task training, FC trials were introduced. When 

the rats poked into the central port to initiate the trial, the shutter closed the central port 

0.5 s after stimulus presentation. Once the shutter closed the central port, the rats were 

forced to nose poke either the left or right port since they could not maintain the central 

poke. No reward was given when the visual stimulus was not presented in FC trials. 

When the animals met the criterion of 80% choice accuracy, they advanced to the last 

stage of visual detection task training. This procedure lasted 5–10 days to meet the 

above criterion. 

 

Mixed-choice training 

In the final step of visual detection task training, both 3-choice and forced-choice 

trials were interleaved in a single session. Once animals achieved 90% accuracy in 3-

choice trials and more than 80% accuracy in forced-choice trials, we introduced three 

grades of visual stimuli difficulty using different brightness levels. The brightness was 

modulated to be easy, normal, or difficult, as described above. This training lasted 10–

20 days. 

 

Behavioral data analysis 
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All statistical analysis of behavioral data was conducted using MATLAB 2017a 

(Mathworks). Hit, miss, and false alarm rates were defined in 3C trials. The miss rate 

was the percentage of central port choices in trials where visual stimuli were presented; 

the hit rate was the percentage of peripheral port choices where visual stimuli were 

presented, regardless of the correctness of the choice side; and the false alarm was the 

percentage of peripheral port choices in trials where no visual stimuli were presented. 

Reaction time was defined as the duration from stimulus presentation onset to nose 

withdrawal from the central hole. Trials with a reaction time of less than 130 ms was 

considered as invalid, which correspond to 2.75 ± 0.8% of the total number of trials, 

were excluded from the calculation of the spatial choice accuracy as they were too early 

to have been responses to the stimulus (Histed et al., 2012). For the analysis of data 

across the conditions, one-way ANOVA and Tukey’s test for post-hoc comparison were 

used. For analyzing the choice accuracy after shutter release in the FC trials (Fig. 5), the 

student’s t-test was used to compare chance levels (p = 0.5). All data are presented as 

mean ± SEM. 

 

2.4 Results 

Comparison between 3C and FC trials 
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The rats initiated each trial by making nose pokes into the central port and the visual 

stimulus was presented (or not presented) from the left or right side after a 0.2–0.6 s 

random delay (Fig. 1A-B). The task was comprised of randomly interleaved three 

choice (3C) and forced-choice (FC) trials with equal probabilities in a session. The only 

difference between the trial types was that, in FC trials, the central port was shut 0.5 s 

after the stimulus presentation timing with the shutter door to prevent the rat from 

continuing to central nose poke (Fig. 1). 

The choice accuracy in FC trials decreased from approximately 90% to 65% as the 

visual brightness decreased (Fig. 2A–C). By contrast, the choice accuracy was 

maintained at >90% regardless of the decrease in visual brightness in the 3C trials (Fig. 

2A–C), while the rats missed the visual stimuli more often (from 20% to 80%) as the 

visual brightness decreased (Fig. 2D–F). The false alarm rate in the 3C trials was less 

than 5% on average (mean ± SEM: 3.69% ± 0.89 (n = 3)) when the visual stimulus was 

not presented. These results indicate that the hit rate in 3C trials reflects the probability 

that the rats recognized the visual cue. 

 

Reaction time between 3C and FC trials 
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To understand detection performance relative to the shutter closure timing, the 

reaction times of the behavioral responses in the 3C and FC trials were analyzed along 

with detection accuracy. In 3C trials, the reaction times for correct choices have a sharp 

peak at around 0.2 s (Fig. 3), showing that highly stereotypic responses to visual stimuli 

are repeated when the rats make correct choices. The reaction time distribution was 

slightly shifted to earlier time points in easier trials. By contrast, reaction times in 

erroneous trials were scattered without a specific peak, suggesting that incorrect choices 

were made at random without a specific clue. The choice accuracy in the 3C trials 

reached 100% at around 0.2 s and was maintained near 100% by at least 0.5 s (Fig. 3. 

Upper, rat 1 and rat 2), whereas a prolonged tail of reaction time distribution (up to 1 s) 

was observed in rat3. Overall, more than 95% of correct-responses were made before 

0.5 s in 3C (rat1: 97.89%, rat2: 97.12%, rat3: 96.25%, Table 1 in detail). As expected, 

there were no significant differences between the 3C and FC trials before the expected 

time for the shutter closure for each stimulus condition (p > 0.05, Kolmogorov-Smirnov 

test, Fig. 3 and Fig. 4). The reaction time analysis shows that the degraded accuracy in 

FC trials is mostly derived from the forced choices after the shutter closure. 

 

Detection accuracy after the shutter closure 
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Next, we examined whether the forced choice after the shutter closure was by 

chance (50%) or above chance. Surprisingly, the rats still significantly chose the correct 

side in a visual difficulty-dependent manner; All three rats significantly chose the 

correct side in easy and normal conditions (Fig. 5, t-test from chance level); one animal 

(rat 3) performed above chance level in the difficult condition, while the others (rat 1 

and rat 2) performed at the chance level in the difficult condition (Fig. 5). In addition, 

the proportion of correct choices after 0.5 s of the stimulus onset in FC was much larger 

than those in 3C (insets in Figs 3 and 4), suggesting that the residual accuracy after the 

shutter closure in FC is not explained by the correct choices with slow reaction time 

observed in 3C. These results suggest that the animals sometimes failed to make hit-

responses even though they could choose the correct side if forced. We note that there is 

a weak trend of the decrease in choice accuracy before the shutter closure in FC in 

difficult trials (compare accuracies before the shutter closure in Fig. 5 and those in 3C in 

Fig. 2). However, the direct comparison between the accuracies between 3C and FC 

before the shutter closure were not significant (p > 0.05, one-way ANOVA and Tukey’s 

test for post-hoc comparison), except for one animal (rat1: p = 0.03 in difficult trials), 

suggesting the effect is due to subtle experimental fluctuation. We then asked if the 

failure of the hit-response before the shutter closure in eventually-correct trials was due 
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to general procrastination (including longer reaction time) or degraded visibility. If the 

former is the case, failed hit-responses should occur independently of the visual 

difficulty, and therefore the ratio of correct responses after the shutter closure relative to 

all correct responses should be constant across visual difficulty levels. Our data did not 

support this possibility. Instead, failed hit-responses significantly decreased with 

increasing visual difficulty (analyzed in a one-way ANOVA for each visual difficulty 

level and a post-hoc test adjusted for multiple comparisons), supporting the notion that 

animals stayed in the central port by the time the shutter closes due to degraded 

visibility. 

 

2.5 Discussion 

In this chapter, I developed a behavioral paradigm for rats to detect spatial visual 

cues with graded brightness and then examined how their detection performance with 

and without a third choice option were dissociated. My results demonstrated that rats 

have a generalized criterion in reliably detecting visual stimuli with different luminance 

and that it cannot be explained by general motivational threshold, arguing for the 

presence of visual awareness in rats. The results are generally consistent with previous 

findings in the sense that rats can utilize their internal state for subsequent decision-



23 

 

making (Foote and Crystal, 2007; Kepecs et al., 2008; Yuki and Okanoya, 2017). My 

behavioral task was also designed to be compatible with multiunit recordings and 

optogenetics with a complete experiment for each session with multiple randomly 

interleaved conditions, which is potentially useful in the search for neural correlates of 

visual awareness and visually guided decision making. 

Previous studies have demonstrated that rats have the ability to utilize decision 

confidence in sound (Foote and Crystal, 2007) and odor categorization (Kepecs et al., 

2008; Lak et al., 2014) tasks. However, a perceptual categorization task does not 

guarantee categorically distinct awareness because the decision boundary for the 

categorization is arbitrarily set by the experimenters regardless of the rats’ subjective 

perception. In addition, uncertain responses owing to “intermediate” stimuli are often 

confounded by reinforcement or economic strategies without requiring metacognition 

(Jozefowiez et al., 2009; Brown et al., 2017; Templer et al., 2017). In this study, we 

utilized a binary visual detection task where such “intermediate” cues were not 

available: rats were rewarded in peripheral ports when visual stimuli were actually 

emitted from either the left or right side, or they were rewarded in the central port when 

visual stimuli were not emitted. Thus, there was no ambiguity in stimulus-reward 

association unlike in the sensory categorization task described above. Indeed, the spatial 
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choice accuracy was consistently >90% regardless of the visual brightness in shorter 

reaction time trials (<0.5 s), whereas the overall accuracy decreased to 60% in low 

visual brightness in the FC trials (Figs 2, 3 and 4). This suggests that rats have a 

generalized strategy to choose the peripheral ports when their internal detection 

criterion is met. 

It has been shown that the difference in the performance between a yes-no detection 

task and a forced choice task disappears in human subjects when considering decision 

bias (with some exceptions such as the “blindsight” cases). Therefore, one may argue 

that the difference in accuracy between 3C and FC in our task may be also explained by 

decision bias rather than detectability difference. Consistent with this idea, our data 

suggest that the difference is mainly from conservative decision criterion in 3C. 

Because the 3C and FC are essentially indistinguishable for animals until the shutter 

closure as designed, the discriminability and the bias should be also same between 3C 

and FC at least by the time of 0.5 s after the stimulus onset. Therefore, the high accuracy 

in 3C reflect the above-criterion choice whereas the degraded choice accuracy in FC is 

sub-threshold forced choice. Though we observed a weak decrease of choice accuracy 

in difficult trials before the shutter closure in FC (Fig. 5), the significant effect was only 

found in one animal, likely due to a subtle conditional fluctuation such as unreliable 
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mechanical onset of the shutter closure. We think the effect (~5%) is negligible 

considering the large dissociation of the accuracy (~35%) observed in 3C and FC (Fig. 

2). In addition, it is unlikely that the minor decrease of the accuracy contributes to the 

increased accuracy after the shutter closure (Fig. 6). Therefore, I conclude that the 

difference in spatial accuracy in FC and 3C is simply derived from the conservative 

detection criterion in 3C.  

Though signal detection theory provides one of the solutions to disambiguate the 

effect of detectability and the response criterion in an objective way (Meier and 

Reinagel, 2011; Carandini and Churchland, 2013), it is hard to apply signal detection 

theory directly to our dataset because of the complexity of our task design. One 

drawback to applying signal detection theory to the study of awareness in animals is 

that it requires the experimenters to obtain multiple data points with different decision 

criteria. As a result, the animals might adaptively adjust their decision criterion based on 

their motivational state and therefore their subjective report may no longer reflect their 

sensory awareness. In this behavioral study, I trained animals to minimize their false 

alarm rates (i.e., go response without signal) by reinforcing them to maintain a central 

poke as the default state. As a result, I obtained reliable go-responses with high 

discrimination accuracy (~95%, Fig. 2) regardless of the stimulus intensity and a low 
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false alarm rate (<5%), demonstrating that rats are capable of a highly reliable 

subjective report of their visual detection across different signal levels. 

While animals could choose the correct side with near perfect accuracy (>90%) 

when they made a hit-response, they missed the same stimuli so often, especially for 

low brightness (60–80%). What causes this response variability? In my behavioral task 

setting, the animals maintained their heads in the central port while the visual stimuli 

were delivered from identical peripheral positions. Therefore, one possibility is that the 

missed trials may be due to decreased visual signals given a conservative threshold due 

to the animals’ fluctuating internal states (e.g., visibility, confidence) and/or physical 

changes in light reception on their retina. The alternative possibility is that it is due to a 

general conservativeness or bias to the central port unrelated to signal levels. To 

discriminate between these possibilities, I introduced trials where the animals were 

forced to choose the direction of the cue (i.e., FC trials) and analyzed a fraction of the 

choices where animals failed to make hit-responses by the time of the shutter closure. 

To our surprise, the rats could still make correct choices depending on the strength of 

the visual stimuli (Fig. 5). Importantly, the occurrence of correct choices after the 

shutter closure was not explained by randomly omitted/procrastinated hit-responses 

(i.e., center bias), but rather was anti-correlated with stimulus intensity (Fig. 6). The 
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results indicate that the variable detection performance to identical stimuli is derived 

from stochastic internal processing of visual signals with a certain internal threshold. 

Whether or not such an internal threshold is related to the decision itself (e.g., 

payoff (Carandini and Churchland, 2013; Berditchevskaia et al., 2016), confidence 

(Kepecs et al., 2008), expectation (Yoshida and Isa, 2015)) or to subjective visibility is 

not directly demonstrated in our experiments. For instance, it has been shown that 

frequent reward condition lowers the decision criterion of subjects, whereas difficult 

task increases the decision criterion (Niv et al., 2007). Thus, animals may adjust their 

decision criterion based on overall task difficulty rather than faithfully following their 

vision. Note that such internal threshold is different from the fluctuation of general 

motivation discussed (Fig. 6) because it depends on sensory evidence. In addition, it is 

also possible that the optimal threshold was adjusted by the tradeoff between reward 

values and the reward likelihood estimated trial-by-trial from internal visual signals 

regardless of the visual awareness. It is possible to differentiate these possibilities by 

systematically changing the center reward value and seeing how the spatial choice 

accuracy and false alarm rates for 3C would change. However, we emphasize that 

considering the fact that the rats were never rewarded by remaining in the central port in 

the presence of stimuli and there is no objective ambiguity in the stimulus-reward 
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association, there is little room for trading between detection confidence and the center 

reward value. Therefore, it is more plausible that the threshold is related to visibility 

rather than an adaptive decision criterion. 

Compared with the dissociation reported by Foote & Crystals (2007), the extent of 

dissociation in our study was larger and more robust (compare Fig. 2E,F, and G in Foote 

& Crystals (2007) and Fig. 2 in this behavioral study). The reason for this discrepancy 

can be largely explained by differences between awareness and confidence reports. 

Confidence reports for categorization rely on the degree of difference in the competing 

evidence, and the forced categorization may use the sign of the evidence. Therefore, 

confidence reports and forced performance are unavoidably correlated with each other. 

In contrast, awareness reports rely on the threshold of sensory evidence; subjects will 

report otherwise as long as the sensory evidence does not reach the threshold. Once the 

sensory evidence reaches the threshold, the report is reliable since it is supported by a 

high degree of sensory evidence. Therefore, the dissociation will be large in the 

perceptual awareness report task. 

It is intriguing to consider what neural mechanisms enable above-threshold vision to 

be dissociated from sub-threshold vision. It is advantageous to utilize rodents as model 

animals given the number of molecular biology tools available. I also note that our 
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behavioral setup utilizes a commercial standard operant box with nose pokes and an 

open-source behavioral control system, which is readily available to the community. On 

the other hand, a disadvantage of the current protocol is the lack of precise control of 

the visual stimuli on retina, which is a standard procedure in non-human primate 

studies. Random presentations of visual stimuli on the retina would inevitably cause 

random noise in the behavioral results, causing difficulty in the interpretation of neural 

correlates of subjectivity. One way to overcome this issue is to utilize head-fixed 

animals (Kimura et al., 2012), head-mounted goggles (Arens-Arad et al., 2016) or direct 

activation of sensory neurons (Yang et al., 2008). Next section, I recorded neuronal 

activities from the visual cortical area during this novel visual cue detection task. 
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3 Neural representation of internal states in the visual cortical area 

 

3.1 Summary 

It is widely assumed that trial-by-trial variability in visual detection performance is 

explained by the fidelity of visual responses in visual cortical areas influenced by 

fluctuations of internal states, such as vigilance and behavioral history. However, it is 

not clear which neuronal ensembles represent such different internal states. In this 

section, I utilized a visual detection task described in chapter 2, which distinguishes 

internal states in response to identical stimuli, while recording neurons simultaneously 

from the V1 and the PPC. I found that rats sometimes withheld their responses to visual 

stimuli despite the robust presence of visual responses in V1. My unsupervised analysis 

revealed distinct population dynamics segregating hit responses from misses, 

orthogonally embedded to visual response dynamics in both V1 and PPC. 

Heterogeneous non-sensory neurons in V1 and PPC significantly contributed to 

population-level encoding accompanied with the modulation of noise correlation only in 

V1. These results highlight the non-trivial contributions of non-sensory neurons in V1 

and PPC for population-level computations that reflect the animals’ internal states to 

drive behavioral responses to visual stimuli. 
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3.2 Introduction  

Identical sensory stimuli sometimes evoke different perceptual and behavioral 

responses. For instance, in a sensory detection task, human or animal subjects are 

instructed or well trained to reliably report the presence or absence of sensory stimuli to 

obtain rewards. When the sensory stimulus is near the threshold to prompt a decision, 

subjects’ responses vary across trials despite their best efforts to get the reward. 

Interestingly, even if they report absence of stimuli, it is sometimes possible for them to 

correctly guess above chance level if they are forced to answer (Kolb and Braun, 1995; 

Merikle et al., 2001; van Vugt et al., 2018). Revealing the neuronal mechanisms 

underlying such trial-by-trial variability of perceptual responses is crucial to understand 

how the brain exploits sensory information for optimal decision making. 

Trial-by-trial variance of responses to identical stimuli is believed to reflect noise in 

the conversion of sensory information into motor outputs (Osborne et al., 2007). It has 

been demonstrated that the variability of the firing rates of sensory neurons is 

responsible for the variable response to different choices (Tolhurst et al., 1983; Parker 

and Newsome, 1998). However, accumulating evidence suggests that perceptual 

decisions are also significantly affected by latent subjective states reflecting task 



32 

 

engagement (Busse et al., 2011). For instance, behavioral response variability is 

correlated with mind wandering in humans (Smallwood and Schooler, 2006) and 

fluctuations of physiological and behavioral states in animals (Critchley and Rolls, n.d.; 

Aston-Jones and Cohen, 2005; Harris and Thiele, 2011; Schriver et al., 2018). These 

subjective state drifts could be partially attributed to cortical activity fluctuation (Monto 

et al., 2008; Niell and Stryker, 2010; Harris and Thiele, 2011). The synchronization and 

desynchronization of many neurons in particular areas of the cortex could affect the 

efficiency of population coding (Shimaoka et al., 2019; Jacobs et al., 2020). 

Accordingly, shared response variability in pairs of sensory neurons (i.e., noise 

correlation), modulated by attention, arousal, and reward expectation, can affect 

efficient coding of stimulus features and sensory processing, resulting in behavioral 

variability in a sensory detection task. Moreover, task engagement is known to be 

modulated by the trial-by-trial experience of decision making and varying outcomes 

(Daw et al., 2006; Gold et al., 2008; Akaishi et al., 2014; Fritsche et al., 2017; Lak et al., 

2017, 2020; Fan et al., 2018), in turn regulated by distinct neuron populations in 

association areas (Hwang et al., 2017; Hirokawa et al., 2019; Masset et al., 2020).  

Furthermore, some studies have suggested that neurons that do not explicitly respond to 

a stimulus contribute to texture discrimination in the somatosensory cortex (Safaai et 
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al., 2013), working memory coding in the prefrontal cortex (Leavitt et al., 2017), 

stimulus/choice coding in the auditory cortex (Insanally et al., 2019), and category 

representation in the prefrontal cortex (Insanally et al., 2019). These studies highlight 

the potential contribution of non-sensory neurons to modulating sensory processing. 

However, how non-sensory neurons coordinate with sensory neurons to optimize 

sensory decisions is yet unknown. 

 

Numerous studies have revealed that neuronal activity in the primary visual cortex 

(V1) and posterior parietal cortex (PPC) plays a crucial role in visual detection (Silvanto 

et al., 2009; Goard et al., 2016). Patients with V1 lesions reported subjective blindness 

(Campion, 1983; Weiskrantz, 1986), and direct optogenetic inhibition of rodent V1 

impaired visual detection behavior (Glickfeld et al., 2013). On the other hand, the PPC 

is known to play essential roles in selective attention and reward-history bias (Hwang et 

al., 2017, 2019) and regulates the response properties of V1 neurons (Marques et al., 

2018; Hishida et al., 2019; Keller et al., 2020). Recent imaging studies have examined 

visual perceptual behavior during a go or no-go detection task and found that task 

requirements (Pho et al., 2018) heavily modulate visual responses in the PPC and that 

heterogeneous recruitment of V1 neurons plays an important role in visual detection 
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(Montijn et al., 2015; Pho et al., 2018). Together, these studies support the notion that 

the V1 and PPC create distinct cortical states at the population level that integrate task-

relevant external signals (Hanks et al., 2015) with internal states for subjective detection 

performance. 

 

Although neuronal imaging studies addressed population coding of sensory 

processing across different cortical areas, the go or no-go task paradigm, often used in 

experiments with head-fixed animals, is susceptible to subjective biases: go trials may 

contain false alarms and no-go trials may contain misses (Green et al., 1966) due to 

fluctuating internal states, as described above. To further classify such internal states 

during visual detection, I developed a spatial-visual cue detection task for free-moving 

rats in chapter 2. The task combines a two-alternative spatial choice with a third option 

for no stimulus, which allowed us to isolate the hit trials less contaminated with false 

alarms. Furthermore, we utilize a shutter for the central port that enables us to force rats 

to make spatial choices, even when they initially chose the central port. It separates the 

miss responses into two distinct categories: “missed responses with the capability to 

choose the correct side when forced (Miss+)” and “missed responses without the 

capability to choose the correct side when forced (Miss−).” This allows us to uniquely 
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interrogate how visual information in the visual cortex fails to drive correct choice 

behaviors by comparing “self-driven correct choice” and Miss+ conditions. By taking 

advantage of these relatively homogeneous trials with different behavioral responses to 

identical stimuli, we aimed to reveal the neural mechanisms underlying variable visual 

detection performance due to subjective biases. We recorded neuronal activity 

simultaneously from V1 and PPC to test how sensory and non-sensory neurons 

(hereafter defined as “stimulus non-preferring neurons”) in these cortical areas 

differently contribute to the population-level computation for visually guided decisions. 

 

3.3 Experimental procedures 

Subjects 

Seven male Long-Evans rats (Shimizu Laboratory Supplies, Kyoto, Japan) weighing 

200-268 g at the beginning of training were individually housed and maintained on a 

laboratory light/dark cycle (lights on 8:00 A.M. to 9:00 P.M.). Rats were placed on 

water restriction with ad libitum access to food. The animals were maintained at 80% of 

their baseline weight throughout the experiments. All experiments were implemented in 

accordance with the guidelines for the care and use of laboratory animals provided by 

the Animal Research Committee of Doshisha University. 
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Surgery 

Rats were anesthetized with 2.5% isoflurane before surgery, and anesthesia 

maintained throughout surgical procedures. I monitored body movements and hind leg 

reflex and adjusted the depth of anesthesia as needed. An eye ointment was used to keep 

the eyes moistened throughout the surgery. Subcutaneous scalp injection of a lidocaine 

1% solution provided local anesthesia before the incision. A craniotomy was performed 

over the anterior part of the right V1 (AP −6.36 to −7.32 mm, ML 3.2 mm relative to the 

bregma, 0.2 to 0.4 mm below the brain surface), and right PPC (AP −3.8 mm, ML: 2.5 

mm relative to the bregma, 0.2 to 0.4 mm below the brain surface), and a custom-

designed electrode was vertically implanted using a stereotactic manipulator. A 

stainless-steel screw was placed over the cerebellum and served as ground during 

recordings. The mean response of all electrodes was used as a reference. During a week 

of postsurgical recovery, I gradually lowered the tetrodes to detect unit activities in the 

V1 and PPC. Electrode placement was estimated based on depth and was histologically 

confirmed at the end of experiments. 

 

Histology 
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Once the experiments were completed, the rats were deeply anesthetized with 

sodium pentobarbital and then transcardially perfused with phosphate-buffered saline 

and 4% paraformaldehyde. The brains were removed and post-fixed in 4% 

paraformaldehyde, and 100 μm coronal brain sections were prepared to confirm the 

recording sites (Figure 7). 

 

Behavioral apparatus 

The behavioral apparatus has been previously described (Osako et al., 2018; Ohnuki 

et al., 2020). An operant chamber (O’Hara, Tokyo, Japan) with three ports in the front 

wall for nose-poke responses was enclosed in a soundproof box (Brain Science Idea, 

Osaka, Japan). Each port was equipped with an infrared sensor to detect the animals’ 

nose-poke responses. Visual cues were presented using white light-emitting diodes 

(LEDs) (4000 mcd; RS Components, Yokohama, Japan) placed on the left and right 

walls of the operant chamber, as shown in Figure 1. Water rewards were delivered from 

gravity-fed reservoirs regulated by solenoid valves (The Lee Company, Westbrook, CT) 

through stainless tubes placed inside the central, left and right target ports. Stimulus and 

reward deliveries were controlled with Pulse Pal(Sanders and Kepecs, 2014) and 

behavioral responses measured using Bpod (Sanworks, Stony Brook, NY). 
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Visual cue detection task 

The task design was based on (Hirokawa et al., 2011), with modification of the free 

choice and FC paradigms from (Foote and Crystal, 2007). The task was comprised of 

randomly interleaved three choice (3C) and forced-choice (FC) trials with equal 

probabilities in a session. The only difference between the trial types was that, in FC 

trials, the central port was shut with the shutter door to prevent the rat from continuing 

to central nose poke (Fig. 1). After a fixed 2.5 s inter-trial interval (ITI), the central port 

was illuminated by an interior LED of the central port signaling the ready state of a trial 

initiation. The rats initiated each trial by making nose pokes into the central port. After a 

0.2–0.6 s random stimulus delay, the visual stimulus was presented from the left or right 

side for a duration of 0.2 s. Rats were allowed to make a choice response after the end 

of the stimulus delay period. The trials where animals prematurely left the port before 

stimulus delay were canceled and they needed to re-initiate the trials. I randomly 

provided one of three levels of visual brightness (difficult, normal, and easy) for each 

trial by modulating the voltage ranging 0.02–5.1 lx. Medium stimuli were chosen for 

each subject such that the subject detected stimuli with medium accuracy between easy 

and difficult stimuli in forced-choice trials. The probabilities for left, right, or no visual 
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stimulus were equal (33% per condition) in 3C and FC trials (Fig. 1). The reward was 

given if rats chose the same side where the visual stimuli was emitted in the 3C and FC 

trials. If animals kept nose poke more than X s in the central port after the presentation 

of the visual stimuli, the trial was treated as miss error. X were drawn from the uniform 

distribution with a range of [0.5, 1]. Note that X is aligned with the expected timing of 

the reward delivery in no-signal trials so that animals cannot utilize the absence of 

reward delivery as indication of the presence of unnoticed visual stimuli. Failure of the 

peripheral choices within 5 s after nose withdrawal from the central port was also 

treated as miss error, though it occurred rarely (<5%). There was no punishment in any 

error trials and next trial was allowed to be initiated after ITI. In the no-signal trials, 

animals need to wait for 0.2–0.6 s without stimulus and another 0.5–1 s to get reward 

from the central port. There was no cue to distinguish the initial delay (0.2–0.6 s) and 

reward delay (0.5–1 s). Thus, animals did not have any external clue to differentiate the 

signal trials from the no-signal trials, except for the presentation of the signal itself. In 

the FC trials, the shutter was closed 0.5 s after stimulus presentation onset, and the rats 

were forced to choose either the left or right port (Fig. 1). In cases where no stimuli 

were presented in FC trials, the animals were never rewarded (Fig. 1B). After task 

training (see methods in chapter 2 in details) was complete, to confirm whether rats had 
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a steady choice criterion, I alternated probe sessions with graded stimulus strength 

(session A) and neuronal recording sessions with a constant near threshold stimulus 

strength (session B). Session B followed the same protocol as session A, except that 

only a single stimulus difficulty was used. I applied a medium stimulus contrast level in 

FC trials in session A. 

 

Electrophysiological recordings 

A custom-designed electrode composed of two eight-tetrodes (tungsten wire, 12.5 

μm, California Fine Wire, Grover Beach, CA) was used for the simultaneous recordings 

of V1 and PPC. The tetrodes were individually covered by a polyimide tube (A-M 

Systems, Sequim, WA), placed at a 100 μm separation, and typically had an impedance 

of 120–1000 kΩ at 1 kHz. The signals were recorded with Open Ephys (Cambridge, 

MA) at a sampling rate of 30 kHz and bandpass filtered between 0.3 and 6 kHz. The 

tetrodes were lowered approximately 40 μm after each recording session. 

 

Spike sorting and screening criteria of units 

All analyses were performed using MATLAB (MathWorks, Natick, MA, USA). To 

detect single-neuron responses, the spikes were manually clustered with MClust (A.D. 
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Redish, University of Minnesota) for MATLAB. Only neurons that met the following 

criteria were included for further analyses: (1) units with sufficient isolation quality 

(isolation distance ≥ 15, isolation distance is a measure of unit isolation quality in high 

dimensional feature space from tetrode recording);(Harris et al., 2001) (2) units with 

reliable refractory periods (violations < 1% of all spikes); and (3) units with sufficient 

mean firing rates in the −0.3 – 0.5 s after cue onset (> 1 Hz). 

 

Behavioral data analysis 

Spatial choice accuracy was defined as the percentage of correct port choices in 

trials where either outer port was chosen upon presentation of a peripheral stimulus 

(Figures 13A). The miss rate was the percentage of central port choices in trials where 

visual stimuli were presented in 3C trials (Figures 13B). The correct rejection rate was 

the percentage of central choices in trials where visual stimuli were omitted in 3C trials 

(Figures 13C). Reaction time was defined as the duration from stimulus presentation 

onset to nose withdrawal from the central hole. Trials with reaction times < 100 ms 

were considered invalid and excluded from the calculation of spatial choice accuracy as 

they were considered too soon to respond to the stimulus. All error bars are presented as 

mean ± SEM. All violin plots combine a boxplot with a kernel density estimation 
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procedure. The boxplot inside the violin shows the quartile, whisker, and median values 

as white dots (Figures 13G-H). 

I classified the following three choice types based on the subjects’ detection 

performance (Figures 1A–B): (1) Hit were trials when subjects successfully chose a left 

or right port in 3C or before shutter closure in FC. (2) Miss-correct (Miss+) were trials 

when the nose remained in the central port over 0.5 s and subjects chose the correct port 

after shutter closure. (3) Miss-incorrect (Miss-) were trials when the nose remained in 

the central port over 0.5 s and subjects chose the incorrect port after shutter closure. 

Trials with missing responses in 3C were excluded from the analysis of comparison 

across choice types because they could not be categorized into Miss+ or Miss-. I set a 

maximum time for peripheral choice of 0.5 s∼after the shutter closed in FC trials. 

However, in this dataset there was no single instance where rats did not choose the 

peripheral port after the shutter closed. 

To estimate the impact of task parameters on behavioral performance, I conducted a 

generalized linear model (GLM) analysis for spatial choice (left/right) and hit/miss 

choice (Figures 13E and 13F). In the models, I used the logit function as link function. 

For spatial choice GLM analysis, I prepared trials in which they performed peripheral 

choices. Task parameters included binary stimulus predictors (1 was stimulus presence, 
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and 0 otherwise), previous peripheral reward (1 was rewarded, 0 otherwise), and 

previous central reward (1 was rewarded, 0 otherwise). The model was fit with these 

predictors. For hit/miss choice GLM analysis, I first prepared trials in which stimulus 

was present. Task parameters included binary predictors of previous peripheral reward 

(1 was rewarded, 0 otherwise), previous central reward (1 was rewarded, 0 otherwise), 

and previous failure (1 failed, 0 otherwise). Then, I fitted the model to behavioral 

performance using the same procedure as the spatial choice GLM analysis. To quantify 

the impact of each task parameter, I calculated the difference between explained 

variance (𝑅2) of the full model and partial model. The partial model lacks a target task 

parameter. 

 

 

Time-locked kernel regression and visual sensitivity 

Identifying the task and behavioral variables of responsive neurons by comparing 

trial-by-trial firing patterns is challenging because some variables are presented or occur 

in a close time. For example, stimulus presentation and movement onset are sometimes 

intermingled with time (Figure 8). Suppose the neuron significantly responded to the 

intermingled time. In that case, it is difficult to identify the sensitivity of the neuron to 
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the stimulus, movement, or both using the mean firing rate of the interested epoch, such 

as the receiver operating characteristic (ROC) method. To overcome this difficulty, 

recent studies introduced a regression model for characterizing statistical dependency of 

firing rate to the task and behavioral variables (Pillow et al., 2008; Park et al., 2014; Aoi 

et al., 2020; Keeley et al., 2020). The basic idea is to fit the model that predicts neuronal 

activity using the task and behavioral variables. This considers the time-dependent 

firing rate with respect to the occurrence of the task and behavioral variables taking 

advantage of trial-by-trial variability of the timing of task and behavioral variables. 

To identify the task and behavioral variables of responsive neurons, I used a time-

locked kernel regression approach (Figures 9A-B) (Steinmetz et al., 2019). In this 

approach, the firing rate of recorded neurons is described as a linear sum of task 

predictors aligned to task events. In this study, I considered the stimulus onset and 

reaction timing as task events. According to this kernel, the predicted firing rate 𝑓𝑛(𝑡) 

for a neuron n is described as  

𝑓𝑛(𝑡) =  ∑ ∑ 𝐾𝑙,𝑛(𝑡 −  𝑡𝑠)

𝑡𝑠∈ 𝑆𝑙

+ ∑ 𝐾𝑀,𝑛(𝑡 −  𝑡𝑀)

𝑡𝑀 ∈ 𝑀

+  ∑ 𝐾𝐷,𝑛(𝑡 −  𝑡𝐷)

𝑡𝐷 ∈ 𝐷

+ ∑ ∑ 𝐾𝑟,𝑛(𝑡 −  𝑡𝑅)

𝑡𝑅∈ 𝑅𝑟

+  ∑ 𝐾𝐹,𝑛(𝑡 −  𝑡𝐹)

𝑡𝐹 ∈ 𝐹

+ ∑ 𝐾𝑤,𝑛(𝑡)

𝑤

+  𝜀 

where 𝑙 represents the stimulus direction (ipsi or contra), 𝑟 represents the previous 

reward direction (ipsi, contra, or center), 𝑤 represents the whole-trial kernel types 
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(reaction time; RT or moving time; MT) and 𝑆, 𝑀, 𝐷, 𝑅, 𝐹 represents the set of times to 

cover each predictor window. 𝐾𝑙,𝑛, 𝐾𝑀,𝑛, 𝐾𝐷,𝑛, 𝐾𝑟,𝑛, 𝐾𝐹,𝑛, 𝐾𝑤,𝑛 represents the stimulus, 

motor-preparation, choice preparation, previous reward, previous failure, and whole-

trial (RT or MT) kernels for neuron n. The stimulus kernels cover the window 0–0.3 s 

from stimulus onset, the motor preparation and choice preparation kernels cover the 

window -0.3–0 s from the reaction timing (central withdrawn timing), previous reward 

and previous failure kernels cover the window -0.1 – 0.1 s from stimulus onset. The 

motor preparation and the choice preparation kernels are identical except that the latter 

is designed to be sensitive to choice directions (ipsi-direction is a negative value). The 

stimulus, motor preparation, previous reward, and previous failure kernels coded as “1” 

or “0”, and the choice preparation kernel has a value of “-1,” “0,” and “1,” which 

negative and positive value indicated that ipsi- and contra-direction, zero indicated 

central-choice. The whole-trial kernels consist of the reaction time (RT) and moving 

time (MT), which has one value that remained constant for the entire trial. The values 

for RT and MT were min-max normalized to 0-1 range. To fit the firing rate to the 

model, the firing rate was binned into 0.01-s bins and then smoothed with a causal 

Gaussian filter with a standard deviation of 0.03 s. The stimulus (ipsi and contra) and 

preparation (motor and choice) kernels then contain 𝐿𝑆, 𝐿𝑀, 𝐿𝐷 = 30 time bins, the 
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previous reward (ipsi and contra) and failure kernels contain 𝐿𝑅 , 𝐿𝐹 = 20 time bins, 

and the whole-trial kernels (RT and MT) contain 𝐿𝑊 = 1 time bins. I therefore made 

the design matrix DM by concatenating parameterized kernel matrices for a subset of 

trials of size 𝐿 × 𝑇 (𝐿 = 2 × 𝐿𝑆 +  𝐿𝑀 +  𝐿𝐷 +  2 × 𝐿𝑅 + 𝐿𝐹 + 2 × 𝐿𝑊 = 162 time 

bins, and 𝑇 = 50 × 𝑁𝑡𝑟𝑖𝑎𝑙𝑠 time bins) (Figure 9A). 

To estimate the optimal weights for each neuron’s kernels without overfitting, I 

estimated a weight vector 𝑤𝑛 to solve the penalized residual sum of squares with 

elastic net regularization consisting of 99% L2 and 1% L1 methods during the time-

locked kernel regression (Banerjee et al., 2020) (using MATLAB package cvglmnet 

https://web.stanford.edu/~hastie/glmnet_matlab/intro.html). During weight estimation, I 

used the parameters in elastic net regularization 𝜆 which is calculated by minimizing 

cross-validated (3-fold) error within training dataset. The predicted firing rates were 

constructed as 𝑃𝑛 = 𝐷𝑀𝑇𝑤𝑛. 

To determine whether each neuron is sensitive to each task and behavioral kernels, I 

prepared a predictor matrix with full kernels (real design matrix) and a matrix in which 

the target kernel is set to zero within whole-time points (Partial model, Figure 9A right). 

I then fit the model with each design matrix to predict firing rates and calculated the 

explained variance (𝑅𝑓𝑢𝑙𝑙
2 , 𝑅𝑝𝑎𝑟𝑡𝑖𝑎𝑙

2 ) of the full and partial models, in either case with 
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tenfold cross-validation by leaving out a random 10% subset of trials to calculate the 

model performance. Each fold consisted of equal proportions of contra-stimulus, ipsi-

stimulus, and no stimulus emitted trials (Figure 9A bottom). The explained variance was 

calculated from model-predicted and actual neuronal activity in test trials. I used an 

elastic-net regularization consisting of 99% L2 and 1% L1 methods during the tame-

locked kernel regression to prevent over-fitting(Banerjee et al., 2020). If the explained 

variance of the partial model (𝑅𝑝𝑎𝑟𝑡𝑖𝑎𝑙
2 ) was significantly reduced compared to the full 

model (𝑅𝑓𝑢𝑙𝑙
2 ), the neuron was deemed selective for the target kernel (Figure 9B, paired 

t-test, Holm-Bonferroni correction for all comparison). Neurons selective to the 

stimulus contra kernel were labeled stimulus-preferring neurons, and the other neurons 

were labeled stimulus non-preferring neurons. Note that neurons selective to the 

stimulus ipsi kernel were excluded from the analyses in Figure 14-25. Nevertheless, 

those neurons were relatively few and their inclusion/exclusion did not affect my 

conclusion. 

 

Spike train analysis 

I recorded 951 neurons (V1: 515, PPC: 436 neurons) from 62 sessions in seven rats. 

Unless otherwise stated, the activity of each neuron was binned at 0.01 s and smoothed 
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with a causal Gaussian filter with a standard deviation of 0.03 s to obtain the temporal 

profile of each neuronal activity. 

For visualization (Figures 14C) and analysis, firing rates were z-scored relative to 

trial-by-trial baseline rates (from the window −0.5 to 0 s). 

 

Statistics 

I evaluated the statistical significance in the analysis using data resampling with a 

bootstrapping procedure.(Parthasarathy et al., 2017) I estimated the p value for the 

bootstrapping procedure by computing the ratio (1+X) / (N+1), where X indicates 

overlapping data points between the two distributions, and N indicates iterations. Since 

I used 1,000 bootstraps, two distributions with no overlap resulted in p < 0.001, and two 

distributions with x% overlap resulted in P »x/100 (Figure 10). 

 

State-space analysis 

For state-space analysis, I used neurons with ≥ 20 available trials for each Hit+ and 

Miss+ condition. To characterize the population structure and the temporal pattern 

among all neurons during the analysis window (-0.1 – 0.15 s from stimulus onset), z-

scored firing rates were formatted as 𝑋 ∈  ℝ𝑁 ×𝐶𝑇, where 𝑁 is the total number of 
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neurons, 𝐶 is the total number of conditions (choice types), and 𝑇 is the number of 

analyzed time points. Principal component analysis (PCA) was used to reduce the 

dimensionality of the population from the number of neurons to ten principal 

components (PCs). Each PC represents a weighted combination of individual neuronal 

activity, which summarizes population activity.  

To estimate the difference of each neural trajectory at each time point across choice 

types in the PC space, I prepared a dataset by bootstrapping 1,000 times with different 

subsets of twelve trials for each choice type. For the control dataset, trials were shuffled 

within Hit+ and Miss+ conditions. I then calculated the sensitivity index (𝑑’) for each 

PC as follows:  

𝑑′
𝑖

2

(𝑡) =  
(𝜇𝑖

𝐻𝑖𝑡+(𝑡) −  𝜇𝑖
𝑀𝑖𝑠𝑠+(𝑡))

2

1
2

((𝜎𝑖
𝐻𝑖𝑡+(𝑡))

2

+  (𝜎𝑖
𝑀𝑖𝑠𝑠+(𝑡))

2
)

, 𝑖 ∈ [3 (10)], 𝑡 ∈ [−0.5𝑠 1.0𝑠] 

where 𝜇𝑖
𝐻𝑖𝑡+(𝑡) and 𝜇𝑖

𝑀𝑖𝑠𝑠+(𝑡)  are the mean values of the i-th PC at time t in Hit+ 

and Miss+ trials, respectively, and 𝜎𝑖
𝐻𝑖𝑡+(𝑡) and 𝜎𝑖

𝑀𝑖𝑠𝑠+(𝑡) are the standard deviation 

of the 𝑖-th PC at time 𝑡 in Hit and Miss+ trials, respectively. I used the sensitivity in 

the first three or ten PCs subspace defined as the square root of 𝑑′
2

(𝑡) (Figure 18B), 

as follows:  

𝑑′
2

(𝑡) =  ∑ 𝑑′
𝑖

2

(𝑡)

3 (10)
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For statistical significance of the trajectories between Hit+ and Miss+ (Figure 18A), 

I calculated P-value as described in statistics section with the level of significance at 

0.05. 

 

State space analysis at each task and behavioral axis 

For the state-space analysis at a specific task and behavioral axis (Figures 11 and 

20), I applied a variant of the “Coding Direction” analysis (Li et al., 2016; Allen et al., 

2019). I first calculated the condition-averaged z-scored firing rate (Hit+/Miss+, or 

stimulus presence/absence) for each neuron for relevant epoch. To obtain the coding 

direction, I computed the difference of firing rates between conditions (Figure 11). 

Specifically, I defined the following four axes. The “state axis” was computed from the 

dissociation of neuronal activity between the Hit+ and Miss+ trials in the pre-stimulus 

window (-0.5 – 0 s from stimulus onset). The “movement axis” was computed from the 

dissociation of neuronal activity between the Hit+ and Miss+ trials in the movement 

window (0.3 – 0.5 s from stimulus onset). The rats moved to the contra-lateral port in 

the Hit+ trials because the Hit+ trials were defined as a peripheral choice before 0.5 s 

from stimulus onset; rather, the Miss+ trials consisted of only delayed response after 0.5 

s from stimulus onset. The “stimulus axis” was computed from the dissociation of 
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neuronal activity between stimulus presence and absence trials in the during-stimulus 

window (0 - 0.15 s from stimulus onset). Finally, the “decision axis” was computed 

from the dissociation of neuronal activity between the Hit+ and Miss+ trials in the same 

window (0 - 0.15 s from stimulus onset). The decision axis captures variable 

components such as decision formation, motor-preparation, and other subjective states. I 

prepared the four vectors, which are mean population activity 𝑤𝑎 of length 𝑁𝑢𝑛𝑖𝑡  × 1, 

indexed by the four axes. I then obtained the orthogonal axes by orthogonalizing the 

four vectors 𝑤𝑎 with the QR-decomposition: 

𝑊 = 𝑄𝑅 

where 𝑊 = [𝑤𝑆𝑡𝑎𝑡𝑒   𝑤𝑀𝑜𝑣𝑒𝑚𝑒𝑛𝑡  𝑤𝑆𝑡𝑖𝑚𝑢𝑙𝑢𝑠  𝑤𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛] is a matrix whose columns 

corresponding to the difference of firing rates of each axis. 𝑄 is an orthogonal matrix, 

and 𝑅 is an upper triangular matrix. I then obtained the orthogonalized axis vectors 

𝑤𝑎
⊥ by the first four columns of 𝑄. These vectors span the orthogonal subspace in 

neuronal population activity space.  

The projections of each axis were computed by dot product as 𝑤𝑎
⊥𝑥, where 𝑥 is an 

𝑁𝑢𝑛𝑖𝑡  × (2 × 𝑡𝑖𝑚𝑒) matrix of smoothed, trial-averaged firing rates across Hit+/Miss+ 

conditions.  
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For the statistical significance of the differences in choice-type projections for each 

axis, I computed the 𝑊 using a subset of trials (40%) in each condition and then 

projected the data from the remaining subset of trials (60%) onto each axis. The 

procedure was repeated 100 times with shuffling trials within each condition. The sign 

of the projection in Hit+ was aligned to be positive in each analysis epoch. I then 

compared the resampling distributions between Hit+ and Miss+ or distance and zero. If 

the distributions are not overlapped in 2SD range (95.5% data in this range), they are 

defined as significantly dissociated.  

To confirm whether the statistical significance of the resampling method described 

above is statistical noise, I conducted the simulation analysis using a noise dataset 

(Figure 21). I generated the random digits ranged -1 to 1 for 20-40 trials in arbitrary 

conditions 1 and 2 as the one noise dataset and prepared 266 simulated neurons, the 

same number of actual data in V1. Then, the same analysis described above was 

performed with 100 iterations. 

 

Classification (decoding) analysis 

For classifiers, I used support vector machines (SVM) with a linear kernel function 

implemented using the MATLAB fitcsvm library. All population classification was 
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analyzed on the concatenated neuronal activity of individual neurons. Because the 

number of simultaneously-recorded neurons was low in my dataset, I constructed 

“pseudo-trials” by randomly extracting trials from desired conditions for each 

neuron(Mante et al., 2013). For the training and testing dataset, the number of trials in 

each condition was matched to prevent bias for training classifiers. I used tenfold cross-

validation by leaving a 10% subset of trials for prediction to avoid overfitting. This 

procedure was repeated 100 times. Hyperparameter such as 𝐶 regularization weight 

was determined by optimization to minimize loss of validation dataset in a grid search 

manner (searched range 10−5 − 105)(Najafi et al., 2020). 

For two-class classification, such as stimulus classification (presence/absence) 

(Figure 14E) and choice type (Hit+/Miss+) (Figures 22A-22C, 23A, 23C, and 24A-

24B), I used the firing rate during stimulus window (0 – 0.15 s from stimulus onset) and 

pre-stimulus window (-0.2 – 0 s from stimulus onset) for each individual neuron, 

respectively. I then concatenated neuronal activity as described above and performed 

training and predictions. For classification metrics, I used classification improvement 

over shuffled (only in Hit+/Miss+ classification), which is calculated by classification 

accuracy in real data minus shuffled data. This ensures that high values represent the 

presence of neuronal information and minus low values its absence(Montijn et al., 



54 

 

2014). To test statistical significance, if the zero was < 2SDs (95.5% distribution) of the 

distribution of bootstrapped classification improvement, the data was deemed 

significantly informative.  

To classify the choice types with the simultaneously recorded population (Figures 

20A and 20B), I first extracted sessions with ≥5 neurons in each region and ≥20 trials in 

each condition (20 sessions). I trained the classifier using the same procedure described 

above and predicted the test data. In the de-correlated population in V1 and PPC (Figure 

24B), the trial order was shuffled within each choice type for each neuron. I then 

calculated the classification accuracy of real data and the de-correlated population using 

the procedure described above.  

To measure the contributions of each neuron for the choice types (Figure 22D), I 

compared weight distributions of the classifier for different neuronal types, that is, 

contra-stimulus selective neurons and the other selective neurons. The neuronal weight 

was normalized to unity length. For statistical significance, I performed a one-way 

ANOVA test with LSD post hoc comparisons. 

 

Stability (cross-temporal classification analysis) 
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To estimate the stability of population coding, I applied a cross-temporal 

classification analysis where the classifiers were trained and tested with unique time 

samples (Figure 23). Each classifier trained at time 𝑡𝑡𝑟𝑎𝑖𝑛𝑒𝑑 can also be tested on its 

classification ability to predict the choice outcome at time 𝑡𝑡𝑒𝑠𝑡𝑒𝑑. For visualization, I 

computed the classification improvement over shuffled data as described above (see 

classification analysis). The negative value was rounded to zero, and the above 0.5 

value was rounded to 0.5. When I test the statistical significance of predictability, I used 

the same metrics with the classification improvement described above using unrounded 

value.  

To estimate the stability of population coding, I calculated Pearson's correlation 

coefficients between the neuronal weights of each classifier at time 𝑡𝑡𝑟𝑎𝑖𝑛𝑒𝑑 and 

𝑡𝑡𝑒𝑠𝑡𝑒𝑑 (Figures 23A). To quantify the time-resolved decay of population activity 

pattern, I used Pearson's correlation coefficients 0 – 0.5 s from time 𝑡𝑡𝑟𝑎𝑖𝑛𝑒𝑑 (Figure 

23C) in -0.2 s–0 s training time. For comparison between populations, I used 

Kolmogorov–Smirnov test followed by post-hoc Tukey tests for subpopulations and 

regions (Figure 23D). 

 

Noise correlation 
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Noise is defined as the trial-to-trial variability of the neural response from the 

mean under a given choice type condition. Noise correlation was defined as the 

correlation coefficient between the noise of a given neuron pair within the same choice 

type conditions. I arranged the firing rates of single neurons in a trial-by-time matrix per 

choice type with a time resolution of 50ms spanning -0.4 – +0.4 s after the stimulus 

onset. The matrix was z-scored with the mean and the standard deviation of the trials at 

each time point for each choice type. Then, I calculated Pearson’s correlation 

coefficients of the z-scored firing rates (i.e., noise) for each pair of neurons at each time 

point (Figures 24C, 24D and 25). 

 

Cell-type classification 

To classify the putative fast-spiking (FS) interneuron and regular-spiking (RS) 

excitatory neurons, I calculated trough to late peak and firing rate for each recorded unit 

(Figures 12A and 12B). I then determined the cell types by clustering the units in the 

dimension of the parameters using the k-means algorithm (k = 2) with these two variables 

using the MATLAB kmeans function. After clustering units, I defined clusters that had a 

lower trough to late peak compared to the other cluster as putative FS interneurons and 

the other as RS excitatory neurons (Figure 12). 
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3.4 Results 

Rats performed visual detection task based on their internal threshold 

I trained seven rats to perform a spatial visual-cue detection task (Figures 1A–1B), 

which is essentially a three-alternative choice design that encourages animals to report 

the presence or absence of peripheral visual stimuli as described in my previous study. 

Briefly, the rats initiated a trial by poking their nose at the central port. They were 

rewarded by choosing outer ports (left or right) when a visual stimulus was presented or 

by keeping the nose in the central port when no peripheral stimulus was presented. In half 

of the trials, the central port was closed 0.5 s after stimulus presentation to force animals 

to choose one of the outer ports. To confirm whether rats had a steady choice criterion, I 

alternated probe sessions with graded stimulus strength (session A) and neuronal 

recording sessions with a constant near-threshold stimulus strength (session B). In session 

A, the peripheral choice accuracy in forced-choice (FC) trials decreased from 

approximately 80% to 65% as visual contrast decreased (Figures 13A, orange), and the 

accuracy was maintained at >90% regardless of visual contrast in the three-choice (3C) 

trials (Figures 13A, blue). Note that trials where rats chose to stay in the central port were 

excluded from calculating spatial choice accuracy in 3C trials. Rats missed the visual 
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stimuli more often (from 50% to 70%) as visual contrast decreased (Figures 13B). They 

also showed >90% correct rejection performance when the visual stimulus was omitted 

in 3C trials (Figures 13C). In 3C trials, the reaction times for correct choices have a sharp 

peak at around 0.2 s (Figures 13E and 13F), showing that highly stereotypic responses to 

visual stimuli are repeated when the rats make correct choices. The reaction time 

distribution was slightly shifted to earlier time points in easier trials. By contrast, reaction 

times in erroneous trials were scattered without a specific peak, suggesting that incorrect 

choices were made at random without a specific clue. These results confirmed that rats 

have a generalized strategy to choose the outer ports in response to peripheral stimuli only 

when their choice criterion is met. In addition, rats showed correct choices above the 

chance level when the shutter forced them to select one of the outer ports after first 

choosing to stay in the central port (Figures 13D, gray). Thus, the rats received visual 

information but did not always maximally exploit it. I labeled trials with different choice 

types as hit correct (Hit+), hit incorrect (Hit−), miss correct (Miss+), and miss incorrect 

(Miss−) according to choice performance (Figures 1A and 1B).  

To determine what drove the rat’s choice, I applied a generalized linear model (GLM) 

analysis to the behavioral data. I used multiple variables, such as current stimulus, 

previous reward positions, and previous failure (unrewarded), as independent variables 
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and predicted spatial choice direction and go or no-go responses to left and right stimuli 

(Figures 13E and 13F, respectively). I compared regression coefficients and uniquely 

explained variance by the variable (see Methods). Note that individual ∆𝑅2 does not add 

to the total 𝑅2 because some of the variance can be explained by multiple factors. In the 

Hit trials, the majority of the spatial choice variance (67%) was accounted by the stimulus 

direction alone with minimal contributions (2%) from previous reward positions (Figure 

13E). In contrast, although the total explained variance was much lower (∼30%) in the 

Miss trials, previous reward positions had a stronger effect on spatial choice (6%; Figure 

13E). I also confirmed mild contributions (about 10%) of previous reward positions in go 

or no-go decisions (Figure 13F). Together, spatial choices in the hit trials were 

predominantly driven by visual information with little influence of previous reward 

positions, although spatial choices in the miss trials were partially influenced by the 

incongruent previous reward positions to the stimuli. 

 

 

Stimulus-preferring neurons in V1 and PPC were activated regardless of choice types 

I recorded neurons simultaneously from the right V1 (NV1 = 515 neurons) and right 

PPC (NPPC = 436 neurons) using chronic tetrode implants during task performance 
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(Figure 7). To investigate how visual neuronal responses contribute to behavioral 

responses, I first identified stimulus-preferring neurons using time-locked kernel 

regression analysis with multiple task predictors, such as contra- and ipsi-lateral stimuli, 

motor preparation, and choice-preparation kernels (Figures 9 and 14; see Methods). 

Approximately 30%–40% of the neurons were defined as selective to visual stimulus in 

V1 (40%; N = 203) and PPC (27%; N = 116; Figures 14B and 15A). Based on the results, 

I classified the neurons as enhanced-type stimulus-preferring neurons and suppressed-

type stimulus-preferring neurons and the remainder as stimulus non-preferring neurons 

(Figure 14B-C). These subpopulations consisted of heterogeneous neurons with different 

selectivity (Figure 14D) and different spatial distribution (Figure 15C). Importantly, both 

V1 and PPC neurons showed stimulus-dependent activity (enhanced and suppressed from 

pre-stimulus baseline), regardless of choice types (Figures 14C and 15B). Furthermore, 

the stimulus non-preferring neurons in both V1 and PPC did not show apparent 

differences in the average temporal dynamics among choice types until 0.2 s after 

stimulus presentation, where behavioral responses occurred (Figure 14C). 

 

To further clarify whether the presence of visual information in V1 and PPC is important 

for hit and miss behaviors, I conducted a population-decoding analysis of the stimulus 
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(presence or absence). I found that the stimulus-preferring population decoded stimulus 

presence near perfectly in the Hit+ and Miss+ trials (Figure 14E), demonstrating the 

robust presence of visual information both in the Miss+ and Hit+ trials. This also indicated 

that the stimulus period’s activity was evoked by a visual stimulus, but not by stimulus 

expectations. I also confirmed that the stimulus non-preferring population could not 

predict the stimulus presence or absence even as an ensembled activity (Figures 14E and 

15D). Furthermore, the classification accuracy for the Miss− trials was relatively high (∼

80%) in V1 but was at chance level in PPC, indicating that the visual information in PPC 

was not as robust as V1 in the Miss− trials. These results indicate that, in contrast to the 

Miss− trials, the lack of go responses in the Miss+ trials is not explained by the robustness 

of visual information in the visual cortex. 

 

 

Significant contributions of non-sensory neurons in V1 and PPC for separating different 

choice types as population activity 

So far, I found no significant differences in neural activities in the Hit+ and Miss+ 

trials. However, the metric of mean activity is sometimes not the best way for seeking the 

neural population codes between conditions. For example, if we recorded three neurons 
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at the different conditions, even if the mean activity is similar between conditions (Figure 

16 right), the neural population geometry, which can be drawn in the high dimensional 

neural space, is sometimes embedded significantly different paths (Figure 16 left). Taking 

care of this neural dissociation between conditions in high dimensional space (refereed to 

population state) is important to address the population encoding of condition. Then, I 

wanted to address whether neuronal population states differentiate choice types (hereafter 

only referred to as Hit+ and Miss+ trials). To this end, principal component analysis 

(PCA) was applied to a population data consisting of trial-averaged choice-type neuronal 

activities ranging from −0.1 to 0.15 s after stimulus onset (see Methods for details). The 

PCA finds the axes optimized to capture the variance of neuronal activity across choice 

types and time. I identified three dimensions that captured 73% of the total variance for 

the whole population in both V1 and PPC (Figure 17A). The reconstructed population 

activities from those three PCs have distinct dynamics between the Hit+ and Miss+ trials 

in V1 and PPC (3D plots in Figure 17B and individual PCs in Figures 18A). I found a 

significant separation between choice types in the analysis window in both V1 and PPC 

(Figures 17B and 18), suggesting that separation of the Hit+ and Miss+ responses is the 

result of the coordinated activity of many neurons. The difference of neuronal activities 

between the Hit+ and Miss+ trials up to 0.15 s after stimulus onset is not likely to be 
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related to behavioral differences between Hit+ and Miss+ conditions because trials with 

reaction time <0.2 s were not included in the analysis (see Methods). On the other hand, 

the activity difference between Hit+ and Miss+ trials before 0.15 s after stimulus onset 

should reflect the difference in internal states for driving spontaneous choices in response 

to visual stimuli, given that rats can elicit correct spatial choices in both choice types. 

Interestingly, V1 and PPC population activities shared similar PCs that may reflect 

neural activities to different task events and background fluctuations. For instance, PC1 

shows distinct dynamics peaking around 100 ms after the onset of visual stimuli (Figures 

18A). In both V1 and PPC, PC1 discriminated Hit+ and Miss+, although the time course 

of this effect’s significance varied slightly between the two brain regions. PC2 sustained 

the separation of choice type information robustly before stimulus onset (Figures 18A). 

PC3 and others (Figure 18A) show oscillatory-like components with different frequencies, 

in which the phase separates choice types, suggesting a relative timing of global 

fluctuations across V1 and PPC to stimulus onset provides a significant influence on 

choice types. However, none of these components are dominated by neurons with 

particular selectivity (Figure 19), except for the PC1 for PPC, dominated by stimulus-

preferring neurons. In both V1 and PPC, I further confirmed a robust separative 

population-level activity between choice types in the stimulus non-preferring population 
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in V1 and PPC (Figures 18A, and 18B). Other than the presence of visual-response-like 

components in stimulus-preferring populations, major PCs were qualitatively similar 

between stimulus-preferring and stimulus non-preferring populations. These results 

indicate that Hit+ and Miss+ responses are mediated by multiple processing levels from 

a variety of neurons, including stimulus non-preferring neurons. 

 

Decomposing population dynamics showed distinct state dynamics across choice types 

The results above suggest the importance of non-sensory activities for separating 

choice types, but the association between the different task events and the population-

level components is not clear. In particular, though I identified PC1 as a visual-response-

like component in both V1 and PPC, it is still unclear whether other components are 

orthogonal to the visual-stimulus-evoked activity because the PC1 is a mixture of various 

neurons, including stimulus non-preferring neurons (Figure 18), and may contain the non-

stimulus factors (e.g., brain state). To further distinguish the source of non-sensory 

activities, I generated a neural state space spanned by orthogonalized axes that capture 

the population activities related to stimulus presence, internal states, decisions, and 

movement (Figures 11 and 20A; see Methods). I defined a “stimulus axis” by computing 

the maximally separated activity between stimulus-present and stimulus-absent trials 
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during stimulus window (0–0.15 s from stimulus onset), a “state axis” of activity by 

computing the maximally separated activities between the Hit+ and Miss+ trials during 

the pre-stimulus window (−0.5 to 0 s from stimulus onset), a “decision axis” of activity 

by computing the maximally separated activities between the Hit+ and Miss+ trials during 

the stimulus window (0–0.15 s from stimulus onset), and a “movement axis” by 

computing the maximally separated activity between the Hit+ and Miss+ trials during 

movement window (0.3–0.5 s from stimulus onset; Figures 11). Though the selection of 

the analysis windows is arbitrary, I wanted to address whether and how distinct population 

dynamics associated with different events can separate choice types beyond the analysis 

window. I projected the population activities from the Hit+ and Miss+ trials onto each 

axis, which captured 25%/21%, 66%/51%, 16%/15%, and 26%/30% explained variance 

in the state, movement, stimulus, and decision axes in V1 and PPC, respectively (Figure 

20B). I validated the separations of projections between the Hit+ and Miss+ trials using 

independent trials from train sets (see Methods; p < 0.05; Figure 20C). I found that the 

population activities projected onto the pre-stimulus state axis segregated choice types as 

sustained dynamics beyond stimulus onset in both V1 and PPC, whereas those projected 

onto the decision axis showed only minor differences. On the other hand, the population 

activities projected onto the movement axis were largely contained within movement 
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epoch (0.3 s after stimulus onset) without affecting stimulus epoch. Finally, I found that, 

consistent with decoding analysis, the stimulus-evoked population activities did not 

segregate choice types, at least before movement onset (<0.2 s; Figure 20C). As expected, 

control analysis with randomly generated data did not show such robust and unique 

population dynamics (Figure 21). These results suggest distinct population dynamics 

orthogonally embedded to stimulus-evoked activities for separating choice types in both 

V1 and PPC. 

 

 

The population representation of choice types is distributed across heterogeneous 

individual neurons 

The analysis so far revealed that choice types can be discriminated with trial-

averaged neuronal dynamics, but I wanted to examine whether that was the case on a 

single-trial basis. To this end, I applied a linear support vector machine (SVM) algorithm 

to predict the choice types (Hit+ and Miss+) of trials at each time point in V1 and PPC 

populations (Figure 22A). Compared with trial-label-shuffled control, I found significant 

improvements in the Hit+ and Miss+ classification at the time points during pre-stimulus, 

stimulus, and post-stimulus epochs. Note that the classification improvement in post-
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stimulus epoch (0.2–0.5 s from stimulus onset) simply reflects differences in behavior 

between the Hit+ and Miss+ trials. Next, I performed the same analysis dividing the 

population into stimulus-preferring and non-preferring neuronal subpopulations in V1 

and PPC (Figure 22B). Improved classification in the pre-stimulus period was observed 

in the non-preferring population in both V1 and PPC and stimulus-preferring neurons in 

PPC (Figures 22B and 22C). The non-preferring population showed a significant 

classification improvement in both epochs in V1 and PPC (Figure 22C), whereas the 

stimulus-preferring population did not show a robust improved classification during 

stimulus epoch in the PPC. These results confirmed the robust contributions of the non-

preferring population for separating choice types even on a trial basis throughout different 

time points prior to movement. Analysis of single neuronal contributions to the population 

decoder suggests widely distributed contributions of different neuron types in separating 

choice types during both pre-stimulus and stimulus epochs (Figure 22D). However, I also 

found biased contributions of neuron types depending on task epochs and areas: in the 

pre-stimulus epoch, the previous contralateral-reward-preferring neurons significantly 

contributed to choice-type coding compared to the stimulus-preferring neurons in PPC 

(Figure 22D; p < 0.05; one-way ANOVA followed by least significant difference LSD 

multiple comparisons), although, during-stimulus epoch, stimulus-preferring neurons 
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contributed to the coding compared with the previous ipsi-reward-preferring neurons in 

V1 (Figure 22D; p < 0.05; one-way ANOVA followed by LSD multiple comparisons). 

 

I next asked whether the population computation for choice types dynamically changed 

or was stable over time. A cross-temporal classification analysis was performed to probe 

the stability of neuronal population computation (Figures 23A and 23B). As expected, the 

highest stability of classifiers was found around the time where the behavioral differences 

between Hit+ and Miss+ trials occurred (0.2–0.5 s after stimulus onset). Other than that, 

pre-stimulus classifiers were relatively stable at least until 0.1 s from stimulus onset in all 

neurons and stimulus non-preferring neurons in PPC, whereas the stimulus-preferring 

population showed less stability in the cross-temporal classification (Figure 23B). To 

estimate the stability of neuron contributions for the classification of choice types across 

time, I calculated Pearson’s correlation coefficients of neuronal weights of pairs of 

classifiers at different times (Figures 23C and 23D). If the population computation is 

similar across time, the correlation coefficients will be tolerant to decaying. For a 

comparison between whole populations in V1 and PPC (Figure 23D, top; p < 0.01; 

Kruskal-Wallis test), V1 was relatively dynamic compared to PPC. Such a dynamic 

population computation was, in particular, evident in both stimulus-preferring and non-
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preferring neurons in V1 (Figure 23D, below), whereas the stability was relatively higher 

in non-preferring populations in the PPC than elsewhere (Figure 23D, below; p < 0.05; 

the Kruskal-Wallis test followed by post hoc Tukey’s tests for comparison). Together, 

these results suggest that choice information was stable over time, especially in stimulus 

non-preferring neurons, although population computation is dynamic, especially in V1. 

 

 

V1 noise correlation increased in forced detection performance before and after stimulus 

presentation 

Thus far, my results demonstrate that non-preferring neurons encode choice types in 

V1 and PPC. However, in these analyses, I used a “pseudo-population” that combined 

neuronal activity recorded in different trials. Therefore, my analysis did not consider the 

correlation structure of pairs of simultaneously recorded neurons within each trial (i.e., 

noise correlation). If the noise is closer to random across neurons (low noise correlation), 

information coding can be more reliable and efficient (Rumyantsev et al., 2020) (but see 

(Moreno-Bote et al., 2014)). I first examined classification accuracy in each session using 

a simultaneously recorded population. Both V1 and PPC populations showed a 

significantly higher classification than shuffled data (Figure 24A; p < 0.001 in V1 and 
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PPC). Next, I compared classification accuracy with a de-correlated population where 

each neuron in the same session was randomly selected from different trials within the 

same choice type (STAR Methods). Thus, the de-correlated population maintains the 

signal correlation while removing the noise correlation. Both V1 and PPC populations 

had significantly decreased classification accuracy in the de-correlated population (Figure 

24B), indicating that the correlation structure was crucial for population computation. 

To investigate the correlation structure in choice types, I calculated pairwise noise 

correlations separately for Hit+ and Miss+ conditions at each time bin (see Methods; 

Figure 24C). I found that noise correlation in Miss+ trials increased in pre-stimulus epoch 

and during stimulus epoch compared to Hit+ trials in V1 neuron pairs, although PPC 

neuron pairs did not differ in choice types (Figure 24C). Such a difference in noise 

correlation was mostly apparent in neuron pairs among regular-spiking neurons (Figure 

25). I next asked whether reduced noise correlation is associated with pairs of neuronal 

types (i.e., stimulus-preferring and non-preferring neurons). The increased noise 

correlation in Miss+ trials was most evident in pairwise interactions between stimulus 

preferring and non-preferring neurons and non-preferring and non-preferring neurons, 

especially during pre-stimulus epoch (Figure 24D). These results suggest that neuronal 

coupling associated with stimulus non-preferring neurons in V1 plays an important role 
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in separating choice types. 

 

 

 

 

 

 

 

3.5 Discussion 

It is widely believed that the fidelity of visual responses in sensory neurons explains 

the trial-by-trial variance of visual detection performance. My results demonstrated 

significant contributions of non-sensory neurons in V1 and PPC to reliable visual 

detection performance. The near-threshold stimuli used in my task induced trial-by-trial 

variability in visual detection performance, and I further classified those trials with 

identical stimuli into three choice types, which were not differentiated in previous studies. 

Surprisingly, the Hit+ and Miss+ trials showed no differences in population encoding of 

stimulus as well as mean temporal dynamics (Figures 14C and 15B, right). Instead, I 

found multiple lines of evidence for population-level computation contributing to the 
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optimal behavioral responses to visual stimuli (Hit+ and Miss+) in V1 and PPC. First, I 

found a specific divergence between choice types at multiple levels of population activity, 

particularly with the robust contribution from stimulus non-preferring neurons in both V1 

and PPC, which is orthogonally embedded to stimulus response dynamics (Figures 18, 

20). Second, during pre-stimulus and stimulus epochs, the choice types were decoded on 

a single-trial basis with contributions of a variety of neurons with different selectivity in 

both V1 and PPC (Figure 22). Third, V1 neuron pairs, but not PPC, showed increased 

noise correlation in the Miss+ trials compared to the Hit+ trials before and during visual 

stimulus presentation, which was most evident in pairwise interactions between non-

preferring neurons and others (Figures 24C and 24D). 

It has been postulated that stochastic behavioral responses to identical sensory stimuli 

are generated by fluctuations of background neuronal ensembles preceding external 

inputs(Speed et al., 2019). A recent study further demonstrated that a global slow 

oscillation correlates with the level of task engagement measured by miss rates (Jacobs 

et al., 2020). My unsupervised analysis revealed at least three major distinct population 

dynamics in V1 and PPC, respectively (Figures 17B and 18). First, I found temporal 

dynamics coinciding with the visual response peak in both V1 and PPC. Second, I found 

sustained dynamics, which significantly contributed to separating the choice types well 
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before stimulus onset (Figures 18). The choice type was orthogonally represented to the 

visual response dynamics with involvement of non-sensory neurons (Figure 20). Third, I 

found that oscillatory components, which were prominent in both stimulus-preferring and 

non-preferring neurons of both V1 and PPC, were significant factors to differentiate 

choice types (Figures 18). Accordingly, I have two non-exclusive hypotheses on how 

stimulus non-preferring neurons can influence this process. 

First, the extent of local interactions between stimulus non-preferring neurons and 

stimulus-preferring neurons may determine the deviation of choice between optimal (hit) 

and conservative (miss). Although my state space analyses (Figures 17 and 18) suggest 

that visual responses within stimulus-preferring population are orthogonally represented 

with the state signals, the mixed population of stimulus-preferring and non-preferring 

neurons in V1 represented visual responses with coherent modulation by state signals 

(PC1; Figure 18), suggesting significant interactions between stimulus-preferring and 

non-preferring neurons on a trial-by-trial basis that affect hit or miss behavior. Supporting 

this hypothesis, I found that the correlation structure among simultaneously recorded 

neurons around the stimulus presentation time can contribute to the separation of choice 

types (Figure 24B). Furthermore, I found an increased noise correlation in the Miss+ trials 

between stimulus non-preferring and others (Figures 24C and 24D), suggesting that the 
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relative timing of the visual stimulus with respect to the ongoing interactions among these 

neurons affects visual processing, resulting in biased decisions (i.e., Miss+ trials). Thus, 

I suggest proper interaction between stimulus-preferring and non-preferring neurons on a 

trial-by-trial basis underlies the optimal exploitation of visual information for behavior. 

However, I note that increased noise correlation is not necessarily harmful for information 

coding(Moreno-Bote et al., 2014; Montijn et al., 2016). Future studies will address 

whether and how downstream cortical areas exploit the integrated information for 

behavior. 

Second, global oscillatory activities, including stimulus non-preferring neurons, 

support visual information transmission to downstream cortical areas. I observed various 

subtle oscillatory components, where the phase separated the choice types relative to the 

stimulus onset, suggesting that visual inputs can be efficiently exploited for behavior 

when the ongoing fluctuation is in a particular phase. The finding is consistent with 

previous studies that proposed that sensory information is gated by ongoing neural 

activities(Zylberberg, 2018; Allen et al., 2019; Shin and Moore, 2019; Speed et al., 2019). 

However, I did not obtain direct evidence that local field potential (LFP) corresponds to 

those spike oscillations. It is possible that LFP oscillation and spike oscillation from a 

particular subpopulation can be controlled differently. For instance, a recent study 
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suggested that non-sensory-tuned fast-spiking neurons originate cortical rhythmicity, 

resulting in the direct influence on sensory information coding in the primary 

somatosensory cortex(Shin and Moore, 2019). Future work will address the possibility 

that supports the local network mechanism and directionality of information flow 

between stimulus-preferring and non-preferring neuronal coupling. 

The relatively weak contribution of visually evoked activities in V1 and PPC 

population coding could be a unique feature of my task design because animals had a 

third option, of which experienced reward value may suppress peripheral choices, even 

when the animals recognize the stimuli. It should be noted that ignoring the presence of 

stimuli is never rewarded in my task and, thus, is clearly suboptimal bias behavior. In 

addition, my data show that rewards in the previous trials only partially (about 10%) 

explain the behavioral variance in hit or miss choices (Figure 13F) as well as the variance 

of population neural coding in V1 and PPC (Figure 19). Therefore, I conclude that the 

previous rewards cannot solely explain the recruitment of non-sensory neurons in V1 and 

PPC. On the other hand, it is possible that task-irrelevant movements during task 

performance could have affected hit responses due to suboptimal head and body 

positions(Krumin et al., 2018; Musall et al., 2019). However, such behavioral 

misalignment does not explain the increased noise correlation in V1. This suggests that, 
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at least, the accurate performance in hit trials is due to an intrinsic population-level 

mechanism that can be related to sensory-motor transformation during the task(Pho et al., 

2018), while highlighting the non-trivial contribution of non-sensory neurons in the 

process. Although previous studies indicated the significant contributions of non-sensory 

neurons to perceptual decision making(Safaai et al., 2013; Leavitt et al., 2017; Insanally 

et al., 2019; Zuo and Diamond, 2019), most of them employed sensory categorization 

tasks in the forced-choice paradigm, which unavoidably suffers from stimulus uncertainty 

causing subjective biases due to value-based decisions. My data support and extend these 

findings by showing that, even in the simplest sensory detection task, lacking inherent 

stimulus uncertainty and being less contaminated by value-based decisions, non-sensory 

neurons in V1 and PPC play a significant role in sensory decisions at the population level. 
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4 General discussion 

 

Sensory guided decision making is the key aspect of animals’ cognitive function for 

adaptive action selection in various environments. I described that it is not only driven by 

the sensory information but also non-sensory factors such as subjects’ internal state (e.g., 

choice bias) in the general introduction. Furthermore, I emphasized that unless care is 

taken to the potential confound of behavioral readout of decision making in the simple 

Go/Nogo behavioral paradigm, it will lead to a nontrivial misunderstanding of the 

neuronal mechanism of sensory guided decision making. To overcome such limitations 

of the previous behavioral paradigm, I set out to introduce a novel visual cue detection 

task in rats with the aim of measuring neuronal activity correlated with their visually 

guided decision making coupled with sensory stimulus and internal state. The key 

innovations were enabling us to quantify the decisions whether a visual signal reached a 

certain internal detection threshold. This variable visual detection performance is due to 

the non-sensory factors such as subjective bias (i.e., internal state). By taking advantage 

of these relatively homogeneous trials with different behavioral responses to identical 

stimuli (i.e., Hit+ and Miss+), I investigated the neuronal representation of the stimulus 

and internal state by recording neuronal activities in two visual cortical areas: primary 
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visual cortex (V1) and posterior parietal cortex (PPC). The key findings of this research 

are the following: 1) rats often fail to respond to visual stimuli despite the V1 and PPC 

neurons significantly responded to the visual stimulus. 2) State fluctuation, but not visual 

responses, correlates with the visually guided decision. 3) Activity of stimulus non-

preferring neurons in V1 and PPC contribute to represent the state fluctuation. 4) Stimulus 

presentation timing relative to state fluctuations in V1 correlates with visually guided 

decision.  

 

Objective behavioral performance is often contrasted with the capability to use visual 

information  

My behavioral task allowed me to classify the erroneous “no” response to stimulus 

presence (Miss) as the following two behavior: missed responses with the capability to 

choose the correct side when forced (Miss+)” and “missed responses without the 

capability to choose the correct side when forced (Miss−). This behavioral dissection 

supports the notion that the classically defined miss response is not sufficient to a readout 

of animals’ visually guided decision making to the stimulus presence. Together, neural 

correlates of Go/Nogo behavior (see general introduction) may also lead the nontrivial 

confounds to the understanding of the neural mechanisms of decision making and visual 
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perception.  

Armed with an effective task, I was able to record neuronal activity from multiple 

visual cortical areas in freely moving rats during the task using the electrophysiological 

recording technique. Beyond demonstrating the classic visual response to task stimuli, 

my data provided the key findings and raised some important questions as follows. 

 

V1 neurons responded to the stimulus irrespective of either behavioral performance 

In my visual cue detection task, rats correctly and significantly guess the visual 

stimulus position even if they chose the third option (central choice, see chapter 2 in 

detail). In line with this behavioral result, population activity in V1 and PPC was 

significantly driven by visual stimulus by decoding the stimulus trials using a support 

vector machine (SVM) (see Appendix 7.3). This result suggests that not all visual 

information was being optimally exploited for visually guided decision making during 

the behavioral task. Interestingly, neuronal activity in V1 was relatively robust to the 

visual stimulus in Miss- but was at chance level in PPC (see chapter 3). Notably, these 

results were found only using my behavioral task and different from the results using 

Go/Nogo paradigm, in that there is no apparent difference between Hit+ and Miss+ in V1 

and PPC in my data. Together, the dissociation of firing rate and pattern in visual cortical 
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area between Hit and Miss reported in previous studies may derive from the neuronal 

responses in Miss- trials. Future works will need to address the neuronal dissociation 

between Hit+, Miss+, and Miss- behaviors. 

 

Internal state representation in V1 and PPC. 

In my results, even if the visual response is robust in V1 and PPC, behavioral 

response to the task stimuli fluctuated in trials. This result raised speculation that the non-

sensory factors override the visual information resulting in the trial-by-trial fluctuation of 

the visually guided decision making. These non-sensory factors may contain various 

internal fluctuations such as the choice bias (Treviño et al., 2020), recent reward history 

(Hwang et al., 2017, 2019; Hattori et al., 2019), stimulus history (Busse et al., 2011), 

motivation (Berditchevskaia et al., 2016; Ortiz et al., 2020), arousal (Schriver et al., 2018; 

de Gee et al., 2020) (see Appendix 7.4), and selective attention (Wimmer et al., 2015), 

which I define an ‘‘internal state’’ in this study. Supporting this idea, I made a 

mathematical model to the task performance and found a significant contribution of the 

previous reward history to explain their behavioral variability. Together, I used a support 

vector machine (SVM) to classify their behavioral performance (Hit+ vs Miss+) from the 

pre-stimulus neuronal firing data. I found the significant decoding accuracy of behavioral 



81 

 

performance in pre-stimulus timing, suggesting that non-visual factors including reward 

history influenced their visually guided decision making. Furthermore, I made a SVM to 

the visual sensitive neurons and non-sensitive neurons with same procedures respectively. 

Pre-stimulus decoding accuracy was relatively significant in non-sensitive neurons rather 

than sensitive neurons in both V1 and PPC, indicating that visual non-sensitive neuron 

contributes to the visually guided decision by modulating the internal state preceding the 

stimulus presentation. Future work will require to address what non-sensory factors 

comprise of this pre-stimulus neuronal dissociation and drive their behavioral variability.  

 

Future direction 

In this study, I examined the neuronal representation of the internal state in the visual 

cortical area and its correlation with visually guided decision making. I found that the 

visual cortical area represents the non-sensory factors that correlate with a visually guided 

decision prior to the sensory cue presentation. However, my data could not address what 

components of internal factors generate the dissociation of behavioral variability (Hit+ 

and Miss+). In my behavioral data, reward history is one of the significant factors to 

explain the behavioral variability, but it still lacks the full explanation of behavior. This 

suggests that various internal factors, including reward history, are mingled with each 
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other and integrated with external input, resulting in behavioral variability. Therefore, 

neuroscience will be required to assess the various internal factors that cannot be observed 

directly from behavioral actions. For example, behavioral strategy (e.g., exploration and 

exploitation) fluctuates in trial-by-trial, motivation to the task engagement might be 

changed with time and trials. These factors should be taken care of in the analysis of 

visually guided decision making. In this respect, a model-based approach might play a 

key role in analyzing such internal factors. Generalized linear model (GLM) and hidden 

Markov model (HMM) is one example to model the subject’s task strategy, and some 

studies have demonstrated that mathematically and accurately describe the subject’s 

behavior using a mixture of GLM and HMM (Calhoun et al., 2019; Ashwood et al., 2021; 

Bolkan et al., 2021). The key innovation of these works is to quantify the switching of 

the behavioral strategy to the trial-by-trial task engagement. Future works will need to 

classify more in-depth internal factors using the model or devising the quantitative 

innovative task design.  

Furthermore, it is essential to identify the neural source of internal factors. For 

example, arousal and motivation are slow drifted internal factors that covaried with pupil 

diameter (Bradley et al., 2008; Schriver et al., 2018; Wang et al., 2018; Cowley et al., 

2020; de Gee et al., 2020; Ortiz et al., 2020). This slow drift is thought to be derived from 
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the release of neuromodulators throughout the brain. Accumulating works reported that 

norepinephrine, the locus coeruleus (LC) released to many different brain areas (Aston-

Jones and Cohen, 2005; Sara, 2009; Sara and Bouret, 2012; Poe et al., 2020), and 

acetylcholine, the basal forebrain released to the multiple brain areas (Villano et al., 2017; 

Yüzgeç et al., 2018), are thought to be a strong candidate to manipulate the slow drifted 

internal state. Experimentally, optogenetic manipulation of the acetylcholine imposed the 

pupil diameter, which is correlated with the subject’s arousal. Future work will need to 

address the relationship between direct manipulation of these neuromodulators and 

visually guided decision making. 

On the other hand, it is essential to address how the internal state influences the 

neuronal processes that encode the external input and drive the behavioral variability. My 

data shows that population encoding of the visual stimulus is orthogonally embedded to 

the internal state fluctuations. This indicates that these two factors are not integrated 

directly, at least in the visual cortical area. In this view, the internal factor (observed in 

my study) does not function to manipulate the gain control of external input because the 

stimulus response was not different between Hit+ and Miss+. This leads to speculation 

that function of the internal factor to the decision making has two hypotheses; internal 

factor and external input are integrated with each other in higher cortical area than visual 
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cortical area, or the internal factor influenced directly to the decision process without the 

interruption of the encoding of external input. Future work will address the encoding 

architecture in the higher cortical area during the visually guided decision making and 

direct inhibition of the neuronal activity in the higher cortical area using optogenetic 

manipulation. 

In closing, the internal factor is the non-trivial information to our sensory guided 

decision making, and my study indicated that the visual cortical area represents it 

independent of the visual information and correlates with rat’s decision making. However, 

it is still enigmatic how the brain processes the internal factor and external input and 

drives the decision making. Discovering the mechanism of it will help the various aspect 

of our life, such as the development of therapeutic agents of addiction and the 

development of the machines that can make human-like judgments. A novel mathematical 

approach, behavioral paradigm, optogenetic manipulation, and mixed techniques may 

help us to take a fresh look at data, lead a novel notion, and generate a new general theory 

to explain how internal factors and external input give rise to our decision making. 
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6 Figures 

 

 

Figure.1 | Visual cue detection task 

(A and B) Schematics of the behavioral paradigm. Rats initiated a trial by nose poking into the 

central port and waited for 0.2–0.6 s to receive a peripheral stimulus. Rats were rewarded by 

poking into the corresponding port when the peripheral stimulus was presented (A) or into the 

central port when the stimulus was not presented (B) 
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Figure.2 | Behavioral performance in the visual cue detection task.  

(A–C) Choice accuracy is shown as mean ± SEM. (D–F) Proportion of misses is shown as 

mean ± SEM. 
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Figure.3 | Reaction time distribution and detection accuracy in the 3C trials.  

(A–C) The distributions of reaction times of the spatial choices for correct in three visual difficulty 

(Easy: purple, Normal: dark blue, Difficult: light blue) and error (red) trials for each subject 

(bottom). The inset shows the number of correct choices and miss trials with reaction time more 

than 0.5 s. Spatial choice accuracy for each reaction time bins is shown above (with minimum 

trial number of 10 trials). 
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Figure.4 | Reaction time distribution and detection accuracy in the FC trials.  

(A–C) The distributions of reaction times of the spatial choices for the correct in three visual 

difficulty (Easy: purple, Normal: dark blue, Difficult: light blue) and error (red) trials for each 

subject (bottom). The inset shows the number of correct and error choices after the shutter closure 

(0.5 s). Spatial choice accuracy for each reaction time bins is shown above (with minimum trial 

number of 10 trials). Note that only the reaction time before shutter release (<0.5 s) is shown. 
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Figure 5 | Choice accuracy of trials after the shutter closure.  

Choice accuracy before (green) and after (yellow) the shutter is closed as expressed as mean ±

 SEM. 

  



105 

 

 

 

Figure.6 | Proportion of the correct trials after the shutter closure in all the correct trials in FC 

trials.  

Proportion of correct trials after the shutter closure in all correct trials (before and after the shutter 

closure) is shown as mean ± SEM. For the analysis of data across conditions, one-way ANOVA 

and Tukey’s test for post-hoc comparison were used. *p < 0.05. 
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Figure.7 | Recording sites 

The coronal section indicating recording sites in V1 and PPC (arrow). We simultaneously 

recorded neuronal activity in V1 and PPC from seven rats. Each color corresponds to the subject 

identification number. 
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Figure.8 | Example neuron responds to the stimulus and movement 

The schematic of the firing rate of an example neuron. In this example, stimulus onset and 

movement onset are close with time, resulting in the possibility of intermingled neuronal activity 

based on these two variables. 
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Figure.9 | The procedures of time-locked kernel regression  

(A)Structure of predictors (kernels) design matrices. The rows in these matrices represent task 

variables (predictors), which can have a -1, 0, or 1 value for time points relative to the appropriate 

time offset from the specific task events. In the partial model design matrix, the values of the 

target predictor (for example, stimulus contra) were set to zero through the rows (time). Inset, 

example fit of individual neurons by using a full model design matrix (left) and a partial model 

design matrix where target kernel is contra stimulus (right). Blue and green lines show fitted and 

actual data by each model, respectively. (B) Variance explained (tested on held-out data with ten-

fold cross-validation) for each partial model in an example neuron. Partial models were compared 

to the full model to determine the selectivity of each kernel (P<0.05, two-sided t-test, Holm-

Bonferroni correction for all model comparison). 
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Figure.10 | Statistics 

The probability density function of example bootstrapped data (1000 bootstrapped). P-value was 

calculated from the percentile of the bootstrapped data. If the empirical data scores in the 97.5% 

percentile, the P-value was estimated at 0.05. 
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Figure.11 | Schematic of state space analysis at each task and behavioral axis 

We constructed the difference matrix W by concatenating the difference of firing rates between 

conditions for each epoch. We then obtained the orthogonal axes by orthogonalizing W with the 

QR-decomposition. Finally, we draw the population dynamics at each task and behavioral axes 

by the dot product of firing rates for each condition (Hit+ and Miss+) and the first four columns 

of Q. 
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Figure.12 | Cell-type classification 

(A) Scatter plot and histograms of the trough to (late) peak latency and firing rates in V1 and PPC. 

Each color corresponds to putative fast-spiking (FS) interneurons (pink) and regular-spiking (RS) 

neurons (blue). (B) Averaged waveforms of putative FS and RS neurons in V1 and PPC. Shaded 

areas show SEM 
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Figure.13 | Behavioral results 

(A) Spatial choice accuracy in 3C and FC trials with graded visual contrast in session A and a 

fixed contrast in session B. (B) Miss rate in 3C trials. (C) Correct rejection rate in 3C trials. (D) 

Spatial choice accuracy before and after shutter closure in FC trials. (E) Impact of task parameters 

on behavioral variability using GLM fitting to left or right choice in hit and miss conditions. 
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Model coefficients in the left panel and the ∆𝑅2 in the right panel are shown. (F) Impact of task 

parameters on behavioral variability using GLM fitting to Left/Right choices in Hit and Miss 

response. Model coefficients in the left panel and the ∆𝑅2 in the right panel. Error bars show 

SEM. (G) Distribution of reaction timing in 3C trials of all subjects in session A (left) and B 

(right). The colors correspond to visual contrast and error. The inset shows violin plots of reaction 

timing for each stimulus contrast. The white circles indicate the median value, and the end of the 

thick line quartiles. (H) Same as in G, but in FC trials. Because of shutter closure, reaction timing 

was not defined after 0.5 s from stimulus onset. 
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Figure.14 | Quantification of neuronal responses to the task and behavioral variables in V1 and 

PPC neurons 

(A) Schematic of the encoding model fitted to the neuronal responses to the task and behavioral 

variables (see Methods). Inset: real (green) and predicted (blue) firing rates in each cross-

validated dataset are shown. Each vertical line indicates stimulus onset timing. (B) Fraction of 

neurons encoding each task and behavioral variable in V1 (red) and PPC (blue). Inset: fraction of 

stimulus-preferring and non-preferring neurons in V1 and PPC is shown. (C) Trial-averaged 
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neuronal activity for each choice outcome in enhanced-type stimulus-preferring neurons (128 

V1/74 PPC neurons), suppressed-type stimulus preferring neurons (75 V1/42 PPC neurons), and 

stimulus non-preferring neurons (312 V1/320 PPC neurons). Firing rates of all neurons were z-

scored and sorted by max peak latency in Hit+ trials. Shaded area shows SEM. (D) Preferences 

of each neuron in V1 and PPC for task and behavioral variables (ordered within stimulus-

preferring and non-preferring neurons). (E) Classification accuracy of predicting the presence of 

a contralateral stimulus versus the absence of a stimulus in each choice outcome in stimulus-

preferring and non-preferring population in V1 (top) and PPC (bottom). Error bars show standard 

deviation (SD). 
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Figure.15 | Firing patterns and spatial distributions in V1 and PPC 

(A) Trial averaged firing rates of stimulus encoding (preferring) neurons defined by time-locked 

kernel regression (target kernel is stimulus contra) in V1 and PPC aligned to stimulus onset. The 

shaded areas show SEM. (B) Peak-latency (left) and firing rate (right) of stimulus preferring 

neurons in Enhanced and Suppressed types in each choice type shown as mean ± SEM. (C) Per-

subject recorded neurons in each relative depth (normalized to 0-1 from recording stating point 

to end point). The color indicates the subject number, and circle size corresponds to the number 
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of recorded neurons. The Kolmogorov-Smirnov test was used for statistical significance of 

distributions between all recorded neurons and neuronal subpopulation. (D), Same convention as 

Figure 5E with identical analysis except that the number of subsampled neurons in V1 was aligned 

to that of PPC. Error bars show standard deviation (STD). 
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Figure.16 | Difference between mean based and high dimensional metrics 

Left, the population activity projecting to the high dimensional neural space in example 

conditions 1 and 2. Each axis corresponds to each neural activity. Right, example neuronal 

activities in the neurons 1 – 3 in each condition. Mean activity is not different between 

conditions, but single neural activity is different between conditions. 



119 

 

 

 

Figure.17 | Explained variance and 3D plot of state space dynamics in V1 and PPC 

(A) Cumulative variance explained by the first 10 PCs calculated from the whole, stimulus 

preferring, and non-preferring population. The variance is calculated over choice types and times. 

(B) Population responses of the whole population projected onto three dimensions of the analysis 

window (-0.1 to 0.15 s from stimulus onset) in V1 and PPC. Each color corresponds to time 

relative to stimulus onset. 
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Figure.18 | Pre-stimulus population dynamics and stimulus subspaces in V1 and PPC 

(A) PC projections for each choice type in all neurons, stimulus preferring and non-preferring 

population in V1 and PPC. The thin lines show the 95% percentile. The numbers indicate the 

explained variances for each principal component. (B) Sensitivity index (d’) across choice types 

computed from the top 3 PCs (top) and top 10 PCs (bottom) in the different time windows for V1 

and PPC. 
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Figure.19 | Weight value in each PC in V1 and PPC 

Absolute weight value in each PC shown as mean ± SEM 
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Figure.20 | State dynamics regulation in V1 and PPC  

(A) Population dynamics encode the two task-related variables (e.g., state and stimulus) within 

the two-dimensional neuronal subspace. (B) Explained variance of each neuronal mode in original 

population dynamics in V1 and PPC. Note that the sign of the projections is arbitrary. The distance 

of projections is shown for comparison between V1 and PPC. (C) Neuronal projections in each 

mode individually in V1 and PPC. Right panels in each V1 and PPC show the distance between 

projections in Hit+ and Miss+ trials. Shaded area shows the SD 
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Figure.21 | State space analysis of the simulated dataset 

The projections of each orthogonal axis were dissociated in mean population dynamics using all 

trials (left column), but its dissociations were completely diminished in resampling dataset 

applying training-estimation split methods (see methods). The shaded area indicates SD. 
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Figure.22 | Predictability of distinct choice type in V1 and PPC 

(A) Classification improvement (real - shuffled classification accuracy) of classifiers trained by 

all neurons in V1 (left) and PPC (right) in each time bin. The classifiers were independently 

trained in each time bin. Shaded area shows SD. (B) Same as in (A), but each classifier trained 

by stimulus-preferring (left) or non-preferring neurons (right) in V1 (top) and PPC (bottom). (C) 

Classification improvement in pre-stimulus epoch (-0.2 to 0 s from stimulus onset) and during 

stimulus (0–0.15 s from stimulus onset) for each population type. Error bars show SD. *p < 0.05; 

mean ± 2SD > 0. (D) Absolute weight value for different neuron types in classifiers trained on all 

neurons for each epoch. Neuron types were defined based on GLM analysis as depicted in Figures 

8B and 8D except that the non-sensory neurons (e.g., prev. outcome, movement, etc.) here did not 
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include stimulus neurons (ipsi and contra). Only neuron types with >5% of the total number of 

neurons are displayed. Data represent mean ± SEM. *p < 0.05; one-way ANOVA followed by 

post hoc LSD tests. 
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Figure.23 | Time-varying classification performance and weight correlation 

(A) Classification improvement computed from classifiers for each pair of training/testing time 

points for all neurons, stimulus preferring, and non-preferring populations in V1 and PPC. (B) 

Significant classification improvement maps corresponding to A. Red indicates a classification 

improvement significantly above chance level (Mean – 2SD > 0). (C) Weight correlation of 

classifiers for each pair of training/testing time points for all neurons, stimulus preferring, and 

non-preferring populations in V1 and PPC. D, Time-varying correlation coefficients in all neurons 
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(top) and sub-populations (bottom). Shaded area indicates SEM. *p<0.05, **p<0.01, Kruskal-

Wallis test followed by post-hoc Tukey test for comparison. tests. 
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Figure.24 | Noise correlation in Miss+ trials increased around stimulus presentation in V1 

(A) Classification accuracy for real and shuffled populations in each session in V1 and PPC. ***p 

< 0.001 in V1; paired t test. (B) Classification accuracy for the real and de-correlated population 

in each session in V1 and PPC. **p < 0.01; ***p < 0.001; paired t test. (C) Mean noise correlation 

in each time epoch in V1 and PPC. The error bars show SEM. *p < 0.05; **p < 0.01; t test. (D) 

Mean noise correlation in each time epoch with different neuron type combinations in V1 and PC. 

*p < 0.05; paired t test. 
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Figure.25 | Noise correlation in each cell-type 

Mean noise correlation in each cell type pairs. Error bars show SEM. *p<0.05, ***p<0.001, t-test. 
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7 Appendix 

 

7.1 Internal factor 

Internal factor is a scientific term generally used in psychology and neuroscience, also called 

‘internal state’. Accumulating evidence of behavioral experiments indicates that our behavioral 

strategy and decision making is often fluctuated by our conditions, such as hunger, fatigue, satiety, 

and the other subjective aspects of our mind. These internally generated factors are examples of 

internal factors.  

 

7.2 Narrow-spiking neuron 

Cortical microcircuits are composed of neuron types with firing properties. In cortical neurons, 

two types of firing patterns were historically studied; broad waveform regular spiking (RS) and 

narrow waveform narrow spiking (NS) neuron (also called a fast-spiking neuron). These neurons 

are putatively thought of as excitatory and inhibitory neurons, respectively. 

 

7.3 Support vector machine (SVM) 

Support vector machine (SVM) is one of the machine learning algorithms to classify the 

category from a large dataset. The objective of the SVM is to find the hyperplane in the high-
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dimensional data space (dimension corresponds to each data feature) that is optimally 

classification between the different categorical data points. 

7.4 Arousal 

Arousal is often defined as the psychological and physiological state of awakening of sense 

organs.  


