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1.  Introduction 
Bioinformatics is a multidisciplinary field that spans medical, biological, 

pharmacological, and computational sciences [1]. Deciphering biological functions and 

exploring biomarkers are common research topics in this field [2][3]. Previously, only a 

single molecule or a select few molecules, such as tumor markers, have been used for 

disease diagnosis [4]. However, the advent of comprehensive molecular profiling 

techniques, such as those using the genome, transcriptome, proteome, and metabolome, 

has resulted in a paradigm shift in novel biomarker discovery. Conventional statistical 

approaches have limitations and suffer from the discovery of biomarker candidates in 

high-dimensional data [5]. Bioinformatics is a key technology for biomarker discovery in 

complicated and large-scale data. 

Biomarkers that exhibit practical utility are classified as pharmacodynamic, 

prognostic, or predictive markers [6]. Pharmacodynamic biomarkers are often used for 

the rational and efficient development of new molecular therapeutics [7], such as Histone 

γH2AX and Poly (ADP-Ribose) [8]. Prognostic biomarkers provide the outcome of 

patients who do not depend on the treatment received, such as recurrence, disease 

progression, and death [9]. As a recent example of a prognostic biomarker, the 

transcriptome was Oncotype DX™ (Genetic Health). Oncotype DX™ provides patients 

with breast cancer with a recurrence score calculated from the expression profiles of 21 

genes [10]. The predictive (or response) biomarkers evaluate whether patients benefit 

from a particular treatment [6]. One of the most well-known predictive biomarkers is PD-

L1 for cancer [11]. In patients with triple-negative breast cancer, measuring the gene 

expression level of PD-L1 makes it possible to predict which are sensitive or not sensitive 
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to immune checkpoint inhibitors [12]. As described, prognostic and predictive biomarkers 

obtained by measuring gene expression profiles have helped determine treatment 

strategies. 

The rapid development of transcriptome analysis in recent years has occurred owing 

to the evolution of measurement technology. One such technology is the deoxyribonucleic 

acid (DNA) microarray [13]. Microarrays use hybridization between fluorescent-labeled 

probes on glass substrates and samples to detect the fluorescent signals of ribonucleic 

acid (RNA) [14][15]. Because the microarray has thousands to millions of probes, it can 

comprehensively measure the expression profiles of large-scale genes in one experiment. 

However, microarrays have several limitations, including the high cost of measurement 

[16] and the small number of possible samples. Therefore, the main problem with 

microarray biomarker discovery was the discovery of some genes related to disease from 

a huge number of genes collected from small samples. 

Large-scale genes and small samples make it challenging to discover biomarkers 

from microarrays [17][18]. This is referred to as the 𝑝 ≫ 𝑛 problem (𝑝 is the number 

of genes in microarray; 𝑛 is the number of samples) [19]. There are statistical tests and 

machine learning as the methods for biomarker discovery, and, on both of those methods, 

the challenge for the 𝑝 ≫ 𝑛 problem persists. 

Statistical tests are widely used as biomarker discovery methods for selecting genes 

with different gene expression profiles between two groups, such as case and control 

[2][20][21]. The t-test is one of the most popular and typical statistical tests. For the t-test, 

a p-value that indicates the probability that the null hypothesis that the two groups do not 

have different gene expression profiles is true was used. For biomarker discovery, 



 

 

Prediction method for therapeutic response at multiple time points of gene expression profiles 

8 

 

millions of pairs were created from large numbers of genes to compare gene expression 

profiles, and t-tests were performed for all pairs. However, repeating t-tests for these, all 

pairs sometimes occurred as false positives, called type I errors [22]. To reduce false 

positives, some methods to control the family-wise error rate [23] and false discovery rate 

[24], which are indicators of type I error, have been developed. Examples of these 

methods include Bonferroni [25], Holm [26], and Benjamini-Hochberg [27] methods. 

However, these methods do not entirely prevent false positives from occurring. 

In the field of machine learning, the 𝑝 ≫ 𝑛 problem has an adverse effect called the 

curse of dimensionality [28][29]. A problem associated with dimensionality is that the 

number of samples required to construct a model without overfitting increases 

exponentially as the number of genes increases. However, increasing the number of 

samples is not easy because the cost of the microarray is too high to collect gene 

expression profiles from a large number of samples [30]. Therefore, to solve this problem 

using machine learning, a sparse modeling method such as the least absolute shrinkage 

and selection operator (lasso) approach has been utilized in many studies 

[31][32][33][34][35]. In sparse modeling methods, a model is constructed without over-

fitting by using the hypothesis that a few genes are associated with the target biological 

phenomenon (in other words, genes that should be selected as a biomarker are sparse in 

microarray data). This hypothesis is suitable for biomarker discovery because some 

studies have suggested that some genes are significant biomarkers [36][37]. Thus, sparse 

modeling is helpful for biomarker discovery as a method that can select related genes 

from many genes in microarray data while avoiding the curse of dimensionality. 
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Biomarker discovery using microarrays is another challenge. Gene expression 

profiles often exhibit a strong correlation called multicollinearity [38][39]. This 

correlation might lead to the construction of an erroneous model using machine learning 

[40][41][42]. The variance inflation factor (VIF) is an indicator of multicollinearity. A 

gene pair with a VIF value of more than ten might have multicollinearity [43][44]. Before 

constructing the models, genes expressing multicollinearity of expression profiles should 

be removed from the microarray data. However, it is not clear which genes should be 

excluded from the gene pair, because VIF is insufficient for determining which genes 

should be excluded. 

When there are gene expression profiles exhibiting multicollinearity, the lasso might 

fail to select genes. Lasso selects only one gene from a pair of genes with multicollinearity 

[45][46]. In sparse modeling, the elastic net is helpful for multicollinearity [47]. The 

elastic net is the method of the expanded the lasso to perform gene selection and 

simultaneously reduce the instability of multicollinearity. Therefore, the elastic net helps 

solve the 𝑝 ≫ 𝑛 problem (1) and address multicollinearity (2) for biomarker discovery. 

Generally, microarray data for biomarker discovery are categorized into two types 

based on the collection method: a single time point and multiple time points (time-course) 

[48][49]. Because the gene expression profiles during the biological principles and 

processes are changed dynamically through multiple time points [50][51], time-course 

microarray data are more beneficial than those collected at a single time point [49][52]. 

Thus, the number of time-course gene expression profiles increased exponentially in the 

2000s [53]. However, currently, the practical biomarker predicting the therapeutic 

response uses gene expression profiles at a single time point. For example, Oncotype 
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DX™ calculated the recurrence score of breast cancer using gene expression profiles at a 

single time point. Oncotype DX™ has the problem that the therapy decision for patients 

with a medium recurrence score is difficult [54][55], but this problem might be solved 

using time-course gene expression profiles. However, time-course gene expression 

profiles collected by microarray make biomarker discovery more complex and difficult 

than those of single-time points. 

Biomarker discovery using time-course microarray data is problematized when 

expanding the search space of genes in proportion to the number of time points. Using 

microarray data of the single-time point, the number of gene expression levels for analysis 

is 𝑝 × 𝑛. However, their number in the time-course microarray data is 𝑝 × 𝑛 × 𝑡 (𝑡 is 

the number of time points), and the search space of time-course microarray data is 𝑡 

times larger than the single time point. Therefore, the time course microarray data make 

biomarker discovery more complicated than when using data from a single time point. 

Another problem of biomarker discovery using time-course microarray data is that 

even in the same state of patients, the expression levels of genes as biomarkers continue 

to change dynamically in vivo [49]. For example, gene expression levels are different at 

each time point of observation by microarray, even though the patient state keeps to be 

diagnosed normal [56][57]. This problem prevents prognostic and predictive markers 

from spreading clinically because the dynamics of gene expression profiles reduce the 

accuracy of the markers. Therefore, prognostic and predictive markers need robustness to 

the dynamics of gene expression profiles. 

Many studies of biomarker discovery that challenge dynamics often identify different 

genes at different time points as markers to clarify biological processing. For example, 
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the dynamical network biomarker utilized the changes in expressed genes between before 

and after disease state is changed [56][57]. This marker could contribute to clarifying 

biological processing. However, it is necessary to observe many genes as biomarkers 

before the disease state changes. Another example, F-Logistics was developed to identify 

genes with different dynamic alterations between normal and diseased states [50]. 

However, genes identified by F-Logistics sometimes have the same expression levels 

between normal and disease at a single time point because F-Logistics focuses on the 

shape of data formed by time-course gene expression levels. Thus, to maintain the 

accuracy of prognostic and predictive markers through multiple time points, gene 

expression levels of biomarkers need to be different between the two states at any time 

point. 

To identify gene markers with high accuracy, we challenged the 𝑝 >> 𝑛 problem 

(1), multicollinearity (2), and identification of genes with different expression levels 

between the two states at any time point (3). We expanded the elastic net to solve problems 

(1) and (2) using time-course microarray data. To solve the problem (3), we developed 

two approaches for identifying genes as prognostic and predictive markers. 

First, we focused on genes exhibiting consistent gene expression levels between the 

two groups at all times. Studies have been conducted on time-course gene expression 

profiles [58][59][60][61], and most selected genes with time course patterns such as 

monotonous increase and decrease. However, these genes with different time-course 

patterns are sometimes unsuitable for biomarkers that are classified into two groups. 

There might be time points when gene expression levels are almost the same between the 

two groups at a certain point. Thus, we developed a new elastic net method called 
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“expanding elastic net for consistent differentiation” (eENCD) to select genes with 

consistent differentiation through time-course gene expression profiles to classify two 

groups at any time point. 

The eENCD was designed to select genes with consistent differentiation at all time 

points (Figure 1). The genes whose expression levels were the same in the two groups at 

some points, such as Figure 1 b, might not be selected. This result means that genes with 

a large difference in expression levels in the two groups may be missed by eENCD. This 

limitation helps select candidate prognostic and predictive markers for a large number of 

genes. However, the genes selected by eENCD sometimes evaluate the biological process 

for the clinical application complex because genes strongly affected by therapy might be 

excluded. Therefore, the concept of biomarker discovery is also required to select genes 

with significant differences in expression levels between the two groups (4). 

If the time-course gene expression profiles for prediction are used, many prediction 

results for as many time points will be derived. It is considered that this supports the 

decision of therapeutic strategy better than using a single time point because multiple 

predicted results provide more information about the target biological phenomenon. 

However, many prediction results make the decision difficult. Moreover, requiring many 

time points for prediction means that prediction in the early term becomes difficult. 

Therefore, the biomarkers must combine the results at multiple time points into one and 

predict the therapeutic response using a few time points (5). 
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Second, a new elastic net method was proposed to solve problems (1)–(5). With this 

new method, we solved the problem (4) using the gene expression levels from one point 

to another. Using the difference between time points made it possible to select genes with 

 

Figure 1 Expression levels of genes selected by each proposed 

method. (a) The eENCD selects genes showing consistent different gene 

expression levels between two groups, such as sensitive or not sensitive for 

therapy at all time points. (b) The eENCD does not select gene expression 

levels overlapping sensitive or not sensitive. (c) CPMTP selects genes with 

differently changed patterns of expression levels in the two groups at all time 

points. CPMTP can do gene expression levels that overlap between 

sensitive and not sensitive because CPMTP utilizes the difference between 

t and t-1 gene expression levels. 
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different patterns of expression levels because the difference became zero if the pattern 

of gene expression levels was changed, such as the same between the two groups. 

Moreover, to solve the problem (5), we utilized the Bayesian theorem to integrate 

predictive results into one, with the hypothesis that more time points were used and more 

accurate classification was performed. This is because other biomarkers that dynamically 

update predictive indicators with increasing time points accurately classify the two groups 

[62][63]. This new method, called “consolidating probabilities of multiple time points” 

(CPMTP), utilizes consolidating probabilities calculated with the difference of gene 

expression profiles and a model constructed using the elastic net at multiple time points. 

This study introduced and evaluated two approaches for biomarker discovery: 

eENCD and CPMTP (Table 1). The second section described the eENCD by providing 

details on the background and algorithm, and the method was evaluated using two 

datasets of gene expression profiles collected from multiple sclerosis patients at multiple 

time points. The third section described the CPMTP. Because CPMTP includes a gene 

selection method (CPMTPg) and a unique prediction method (CPMTPp), the algorithms 

associated with each were described separately. CPMTP was evaluated using two time-

course microarray datasets collected from patients with MS and hepatitis C virus (HCV). 

The fourth section discusses biomarkers in terms of accuracy and the genes selected by 

eENCD and CPMTPg. The final section presents the conclusion. 
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Table 1 Problems and solutions in eENCD and CPMTP 

No. Problem eENCD CPMTP 

(1) 𝑝 >> 𝑛 problem elastic net elastic net 

(2) multicollinearity elastic net elastic net 

(3) selection of genes 

having different gene 

expression levels at 

multiple time points 

utilization of the 

weights in elastic net 

for selecting the 

genes common to 

multiple time points. 

utilization of the 

optimization method 

(Ex. Genetic 

algorithm) for tuning 

the parameters in the 

prediction methods 

for the problem (5) 

(4) selection of genes 

overlapping gene 

expression levels 

between sensitive 

and not sensitive 

-- utilization of 

difference of gene 

expression levels 

between one and the 

next time points 

(5) integration of 

multiple results at 

each time point for 

prediction 

-- consolidating 

predicted results 

using Bayesian 

theory 

The eENCD challenged problems (1)–(3). However, eENCD did not solve 

problems (4) and (5). Therefore, we developed CPMTP to solve these 

problems. 



 

 

Prediction method for therapeutic response at multiple time points of gene expression profiles 

16 

 

2. Expanding elastic net for consistent 

differentiation: eENCD 
 

2.1. Background of eENCD 
MS is one of the most common neurological disabilities of the central nervous system 

[64]. The highest incidences of MS have been reported in North America and Europe 

(100/100,000), and the lowest in East Asia and sub-Saharan Africa (2/100,000) [65]. This 

disease is the second most common neurological disability in young adulthood [66]. 

Approximately 80–90% of MS patients initially suffer from relapsing-remitting MS 

(RRMS) in which MS repeatedly occurs with symptoms, including the stages of 

neurological disability (relapse) and recovery [64]. The disease gradually shifts to 

secondary progressive MS which is associated with frequent relapses. Therefore, a 

systematic treatment strategy to prevent and/or delay relapse is important for the 

improvement of the quality of life of MS patients. 

Interferon-β (INF-β) has been commonly used to prevent the relapse of MS [67][68]. 

However, INF-β treatment has two issues. First, the treatment only works for a limited 

number of patients, where approximately half of the patients relapse within two years 

despite treatment [69][70]. Second, this treatment can cause side effects, such as spasticity 

and dermal reaction [68]. Thus, effective surveillance and appropriate intervention over 

a long period post-treatment are required. Although the pathogenesis of MS has not yet 

been fully elucidated, various genetic factors involved in this disease have been reported 

[71]. Gene expression data have been intensively analyzed to predict INF-β treatment 
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response [67][68][71][72][73][74][75]. Hundreds of genes, such as Caspase2, Caspase10, 

and FLIP genes, showed promise in predicting the therapeutic response [68][74]. 

However, these genes were identified by the conventional statistical method which 

showed low prediction accuracies in some cases [74][75]. The MxA and ISG genes were 

reported to be predictive for IFN-β therapeutic response [71][72][73]. However, these 

gene expression levels were not consistently differentiated over all of the time-course, 

which means that the prediction would be accurate immediately after the observation of 

the gene expression levels, but the accuracy of prediction would be low for subsequent 

responses [72]. Therefore, the identification of genes showing highly accurate prediction 

abilities throughout all time-courses is needed. 

Generally, data analyses to identify biomarkers are categorized into the single-time 

point and time-course-based approaches. Prediction using only the currently observable 

data to predict an outcome of treatment is the most useful but challenging for optimizing 

patient treatment. However, single-time point-based analyses [48] (Figure 2 a) are a 

challenge since the gene expression levels during the progression of MS are dynamic 

[49][50][51]. Prediction using time-course data, that is multiple time point data, would 

result in more accurate predictions [50][58][59][61][60][76] by eliminating the selection 

of genes showing inconsistent differentiation over the observation period (Figure 2 b and 

c). There are several difficulties in microarray data analyses, including the problem of 

high-dimensionality (a higher number of genes compared to sample size). Sparse 

modeling methods have been commonly utilized to identify differentiated genes to 
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address this issue [50][77][78]. However, to our knowledge, these methods were designed 

to analyze single-time point data analyses and their application for time-course data 

analyses has not been reported. 

The purpose of this study was to develop a novel analytical method to efficiently 

identify genes showing consistent differentiation throughout the time-courses by 

modifying sparse modeling methods. As an application, two microarray time-course 

datasets collected from patients with MS were used for predictions of INF-β treatment 

responses, and the prediction accuracies of eENCD were evaluated using the conventional 

method. 

  

 

Figure 2 The concept of prediction using gene expression profiles. (a) 

Genes show the current expression levels at a single time point. (b) Genes 

show inconsistent differentiation between the current and the future time 

points. (c) Genes show consistent differentiation throughout the data at 

multiple time points. 
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2.2. Selecting method by eNCD 
The elastic net [47], a sparse modeling method, was modified to analyze time-course 

data. Our method was designed to find genes showing consistent differentiation between 

the two given groups throughout multiple time points. Here, we addressed the following 

problems: 

 

(1) High dimensionality. Microarray data include a larger number of genes compared to 

small sample size. 

(2) Multi-collinearity. Microarray data include many genes showing highly positive 

correlations. The use of these genes for a prediction model would deteriorate its 

generalization ability [35]. 

(3) Time-courses. Genes showing consistent differentiation throughout multiple time 

points should be identified. 

 

The elastic net was designed to analyze single-time point data for identifying 

differentiated genes by preventing multi-collinearity [47]. We modified this method for 

the time-course data analyses. 
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2.2.1. Background techniques of 

eENCD 
Sparse modeling is one of a variety of selection methods suitable for high-dimensional 

data analyses [47][79]. Among the different sparse modeling methods, the lasso has been 

commonly used in various studies [50][77][78][80]. However, the lasso has a limitation; 

this method selects only one variable from two variables showing a high correlation 

(multicollinearity), where the other variables are not selected despite being differentiated 

[47]. The ridge regression model is a method capable of solving this problem. This 

method can construct models with two variables showing a multi-collinearity: however, 

this method does not select genes. The elastic net is another sparse modeling method able 

to reduce those two limitations. The elastic net is comprised of the lasso and ridge [35], 

which selects variable sets, that is this method selects all variables, even those showing 

high multi-collinearities [47][81][82]. Here, we employed the elastic net rather than the 

lasso to select gene candidates showing predictive abilities for subsequent analyses. 

The eENCD used logistic regression (Eq. 1) to predict the INF-β treatment response 

based on differentiated genes [33][50][81]. 

 

Pr(𝐲 = 1|𝑿𝒕𝒓
) =

1

1 + 𝑒−(𝑿𝒕𝒓𝜷𝒕𝒓)
 

Eq. 1 

 

where 
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 𝐲 = {𝑦1, 𝑦2, … , 𝑦𝑛; 𝑦𝑖  ∈ {0,1}} : 𝑦𝑖  denotes the response variable which included 

sensitive responder (labeled as 1) or not sensitive responder (labeled as 0) for INF-β 

treatment, respectively. n denotes the sample size of MS patients. 

 𝑿𝒕𝒓
= {𝐱𝒕𝒓,𝟏, 𝐱𝒕𝒓,𝟐, … , 𝐱𝒕𝒓,𝒑; 𝐱𝒕𝒓,𝒋

⊤ = {𝑥𝑡𝑟,𝑗
(1)

  , 𝑥𝑡𝑟,𝑗
(2)

  , … , 𝑥𝑡𝑟,𝑗
(𝑛)

  ;  𝑗 = 1, … , 𝑝}} : 𝑿𝑡𝑟
 

denotes the explanatory variables of gene expression levels at time point 𝑡𝑟  (𝑟 = 0, … , 𝑅). 

𝑝 denotes the number of genes. 

𝜷𝒕𝒓 = {𝛽𝑡𝑟,1, 𝛽𝑡𝑟,2, … , 𝛽𝑡𝑟,𝑝}: 𝜷𝒕𝒓 denotes the regression coefficients at time point 𝑡𝑟. 

 

The regression coefficient 𝜷𝒕𝒓 in Eq. 1 indicates the degree of association between 

the response to INF-β treatment and each gene. Therefore, a gene with a high absolute 

value of a regression coefficient was selected as a gene bearing the predictive ability of 

the therapeutic response. However, regression coefficients were difficult to calculate by 

Ordinary Least Squares (OLS), which is a general method for calculation of the regression 

coefficients, because of the high dimensionality of the microarray data. Therefore, a small 

number of differentiated genes should be selected before the use of OLS. Sparse modeling 

had an assumption that only several regression coefficients were needed for the prediction 

model and that the others were not needed. This assumption meant that the regression 

coefficient values of several genes which were needed for the prediction model were non-

zero while the other values were zero. In short, genes with regression coefficients of non-

zero were selected as genes to predict the responses to INF-β treatment. With the use of 

the elastic net, regression coefficients were calculated by adding a penalty term to a least-

square loss function (Eq. 2). 
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argmin
𝜷𝒕𝒓

J(𝒚, 𝑿𝒕𝒓)  +  𝜆 ∑ 𝑤𝑡𝑟,𝑗

𝑝

𝑗=1

[(1 − 𝛼)
1

2
𝛽𝑡𝑟,𝑗

2 + 𝛼|𝛽𝑡𝑟,𝑗|] 

Eq. 2 

 

where 

J(𝒚, 𝑿𝒕𝒓
) denotes loss of function of OLS; λ denotes the hyper-parameter for the penalty 

term of the elastic net. The penalty term was given after the second term of the equation. 

Hyper-parameters were generally set by analysts. 

𝛼 (0 ≤ α ≤ 1) denotes the hyper-parameter that indicated the degree between the ridge 

(
1

2
𝛽𝑡𝑟,𝑗

2 ) and the lasso (|𝛽𝑡𝑟,𝑗|) terms. 

𝒘𝒕𝒓
= {𝑤𝑡𝑟,1, 𝑤𝑡𝑟,2, … , 𝑤𝑡𝑟,𝑝} ( 𝒘𝒕𝒓

∈  ℝ>0): 𝒘𝒕𝒓
 denote the weights of the elastic net as 

the selection bias of each gene at a time point 𝑡𝑟. Thus, a gene with a larger and a lower 

weight was selected in a lower and a higher probability, respectively. 

 

Cross-validation is commonly used for optimizing the λ value in Eq. 2. However, 

inconsistent genes are usually selected depending on the λ  value. To prevent this 

problem, the stability selection was used here instead [83]. The stability selection selects 

for genes according to the following procedures: 

 

(i) A subset of samples was yielded from the gene expression data by random sampling. 

(ii) An arbitrary λ value was given to the elastic net to select genes using the data of (i). 

(iii) (i) ~ (ii) were repeated with multiple subsets. 
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(iv) The frequency of selection with an arbitrary λ value was calculated for multiple 

subsets.  

(v) (i) ~ (iii) were repeated with multiple λ values. 

(vi) For each gene, the maximum probability calculated in (iv) among multiple λ values 

was regarded as the selection probability of the gene. 

(vii) Genes showing a selection probability (above the threshold θss) were selected. 
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2.2.2. Algorithm of eENCD 
The eENCD consisted of the following three procedures: 

 

(i) Screening of gene candidates (Figure 3). Due to the difficulties associated with high 

dimensional problems, the elastic net with SS was used for the screening of gene 

candidates, known as the gene pool, from the data at each time point. Only genes 

selected at least one time by the elastic net with the stability selection were selected 

in the gene pool and the rest were eliminated. 

 

 

Figure 3 The concept of eENCD: Screening step. The gene pool is 

created by stability selection (SS) using gene expression data at each time 

point. 𝑮𝑳𝒓 is the gene list selected by SS at the time point 𝑡𝑟. 
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(ii) Ranking genes showing consistent differentiation throughout multiple time points 

(Figure 4). Modified the elastic net was used to select genes showing consistent 

differentiation throughout multiple time points from the gene pool. Firstly, the 

elastic net with the stability selection selected predictive genes from the gene pool 

at the first time point. Secondly, at the next time point 𝑡𝑟, the elastic net (Eq. 2) 

with the stability selection was conducted with a higher selection bias to select genes 

that were selected at the previous time point 𝑟 − 1. Therefore, the elastic net sets 

the weights for which genes selected at 𝑟 − 1 were smaller than genes not selected 

(Eq. 3). This procedure was repeatedly performed at subsequent time points. 

 

Figure 4 The concept of eENCD: Gene selection (GS) by candidate 

genes and calculating selected probability (SP). Gene selection (GS) 

uses elastic net with stability selection assigning weights (𝒘𝟏~𝒘𝒓) to gene 

expression data at each time point. SP is a selected probability. 
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Consequently, genes showing consistent differentiation throughout multiple time 

points were identified: 

 

𝑤𝑡𝑟,𝑗 = {
1, if  𝑔𝑗    ∈     𝑮𝑳𝑡𝑟−1

γ, if  𝑔𝑗    ∉     𝑮𝑳𝑡𝑟−1

 

Eq. 3 

 

where 

𝑤𝑡𝑟,𝑗: the weight of the jth gene in the elastic net at a time point 𝑡𝑟 in Eq. 2. 

γ (γ ∈  ℝ>0;  γ >  1): the selection bias. 

𝑔𝑗 denotes the jth gene. 

𝑮𝑳𝒕𝒓−𝟏
: a gene list at 𝑡𝑟−1. The gene list was constructed with selected genes 

at 𝑡𝑟−1. 

 

The product 𝑆𝑃𝑓𝑖𝑛𝑎𝑙  denoted the probabilities based on the frequency of 

selection of each gene throughout all time points (Eq. 4). The product 𝑆𝑃𝑓𝑖𝑛𝑎𝑙 was 

ranked in descending order. According to this ranking, the gene list for the 

prediction model was created to be used for the model in the third step: 

 

𝑺𝑷𝒇𝒊𝒏𝒂𝒍 = {𝑆𝑃1, 𝑆𝑃2, … , 𝑆𝑃𝑝} 

𝑆𝑃𝑗 =  ∏ 𝑆𝑃𝑡𝑟,𝑗

𝑅

𝑟=1

 

Eq. 4 
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Where 

𝑺𝑷𝒇𝒊𝒏𝒂𝒍: the product was calculated by selection probability at each time point 

for each gene, and the genes were ranked in descending order of the selection 

probabilities. 

𝑆𝑃𝑡𝑟,𝑗: selection probability of the jth gene by the stability selection at a time 

point 𝑡𝑟. 

 

(iii) Construction of a prediction model using the ranked genes (Figure 5). Genes for the 

prediction model were identified based on the gene list ranked in the second step. 

The time point of data to be used for constructing the prediction model was also 

selected simultaneously. Here, prediction models of therapeutic response were 

constructed with combinations of various groups of genes and time points of gene 

expression data. To identify the genes and select a time point of data for the 

prediction model, these models were evaluated. An evaluation value was calculated 

by the one prediction model which was constructed by one group of genes using 

time point data. The genes in the group with the best evaluation value were 

identified as the genes showing consistent differentiation. These time point data 

were selected for the prediction model. The group of genes was created by adding 

one by one from the gene list of the second step in descending order. The prediction 

models of all gene groups were constructed and evaluated at each time point of the 

time-course data. 
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In this step, prediction accuracy, a ratio that the prediction model accurately predicted 

using the data which were not used for constructing the model, was used as an evaluation 

value. A prediction model was constructed by a group of genes using data at a time point, 

 

Figure 5 The concept of eENCD: Identifying the genes from gene lists 

with SP. In this step, prediction models are evaluated using leave-one-out 

cross-validation (time point for model construction =  time point for 

prediction) and utilizing different data (time point for model construction ≠ 

time point for prediction). 
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and the prediction accuracy was calculated. Prediction accuracies were calculated at each 

time point for model construction, as shown in the following two cases. 

 

Case 1: Time point for model construction = time point for prediction  

A constructed model was used for the prediction of the data at an identical time point. 

Leave-one-out was used to evaluate the prediction accuracy ACC𝑜. In the leave-one-out 

cross-validation, one sample of data was used as test data, and other data were used for 

model construction. The leave-one-out cross-validation was repeated until all the samples 

became test data.  

 

Case 2: Time point for model construction  time point for prediction 

A constructed model was used for the prediction of the data at a time point not used for 

the construction. The prediction accuracies ACC𝑅 were calculated using the data at time 

points for prediction.  

 

The mean of prediction accuracies ACC𝑚𝑒𝑎𝑛 were calculated for each group of genes 

and for each time point of model construction in Eq. 5. 

 

ACC𝑚𝑒𝑎𝑛  =  
1

𝑅
( ∑ 𝐴𝐶𝐶𝑅

(𝑑)

𝑑 ∈ 𝑫

+ 𝐴𝐶𝐶𝑜) 

Eq. 5 

 

where 
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ACC𝑚𝑒𝑎𝑛: the mean of the prediction accuracy for the prediction model constructed by a 

group of genes and a time point of data. 

𝑅: the length of all time points. 

𝐴𝐶𝐶𝑅
(𝑑)

: the prediction accuracy using data at time point d. 

𝑫 = {𝑡0, … , 𝑡𝑑, … , 𝑡𝑅}: the time points of 𝐴𝐶𝐶𝑅
(𝑑)

. 𝑡𝑑 was not included in the time point 

used for model construction. 

𝐴𝐶𝐶𝑜: the prediction accuracy using data at the time point used for model construction. 

 

The genes in the group with the best ACC𝑚𝑒𝑎𝑛 were identified as the selected genes. 

This model was constructed using the data of a time point. This time point was selected 

as the time point for model construction. 
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2.2.3. Numerical experiments for 

eENCD 
The prediction accuracies of the developed models were evaluated for the prediction 

of INF-β treatment responses. The prediction accuracies of eENCD and the conventional 

methods were compared.  

 

Material and pre-processing: 

The evaluated data consisted of the time-course gene expression data in two MS 

patients who underwent INF-β treatment. The two datasets of GSE19285 (dataset A) [84] 

and GSE24427 (dataset B) [85] were used. Table 2 shows the number of time-course 

points in each data platform, and the method of normalization. Log2-fold change and 

quantile normalization were performed as the pre-processing of gene expression data. 

Subsequently, the expression levels of each gene were converted to Z-scores. In this paper, 

a good response was treated as sensitive, and a poor response was treated as not sensitive. 

 

Conventional method: 

The conventional method used only the gene expression data at a single time point. 

elastic net with the stability selection using data at a single time point was used as the 

conventional method. Genes were ranked according to the selection probabilities by the 

stability selection. Finally, using the procedures of eENCD, ACC𝑚𝑒𝑎𝑛  was calculated 

using these selection probabilities. Thereafter, the genes in the group with the best 

ACC𝑚𝑒𝑎𝑛 were regarded as identified genes. These genes were regarded as genes with 
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the best performance throughout multiple time points in the conventional method using 

data at a single time point.  

Table 2 Summary of gene expression datasets of INF-β treatments for 

MS patients. 

Name of dataset Dataset A Dataset B 

GEO ID GSE19285 GSE24427 

Type of INF-β Intramuscular INF-β1a Subcutaneous INF-β1a 

Time points 
first (𝑡0), Second (𝑡1), 

fifth (𝑡2) 

first (𝑡0), Second (𝑡1), 1 

month (𝑡2), 12 month (𝑡4), 

24 month (𝑡4) 

Number of sensitive 

responders 
15 16 

Number of not sen

sitive responders 
9 9 

Number of genes 11220 13513 

Gene expression 
Peripheral blood 

mononuclear cells 

Peripheral blood 

mononuclear cells 

Platform 
Affymetrix Human 

Genome U133A Array 

Affymetrix Human 

Genome U133A Array 

Preprocessing for 

microarray 
MAS5.0 MAS5.0 

The symbols of time points are presented 𝑡0, 𝑡1, 𝑡2, etc. 
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Evaluation method: 

The prediction accuracies were calculated by Eq. 6. These were calculated using only 

test data which were not used for model construction. To evaluate the prediction 

accuracies using the data at the time point used for model construction, leave-one-out 

cross-validation was conducted. To evaluate the prediction accuracies using the data at 

the other time points, all available data were used. 

 

ACC [%] =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
∗ 100 

Eq. 6 

 

where 

𝑇𝑃: the number of true positives in the test data. 

𝐹𝑃: the number of false positives in the test data. 

𝐹𝑁: the number of false negatives in the test data. 

𝑇𝑁: the number of true negatives in the test data. 

 

First, the prediction accuracies of the construction models were evaluated. To compare 

the prediction model of eENCD and the conventional method, the mean prediction 

accuracy (ACC𝑚𝑒𝑎𝑛) throughout all time points was calculated using ACC𝑅 and ACC𝑜 

at each time point using Eq. 5. The lowest prediction accuracy, that is the minimum 

prediction accuracy (ACC𝑚𝑖𝑛) throughout all time points, was selected from ACC𝑅 and 

ACC𝑜 at each time point. To access the specificity and the sensitivity at each time point, 
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the receiver operating characteristic (ROC) curves, the area under the ROC curve (AUC), 

and the 95% confidence intervals were calculated. 

Secondly, bootstrap sampling was performed to evaluate the prediction accuracies of 

selected genes at time points that had not been selected for model construction [86]. 

Bootstrap sampling selected samples from all samples by random sampling with 

replacement. A prediction model was constructed using selected samples and selected 

genes by either eENCD or conventional method. Prediction accuracies were calculated 

by each data at different time points; this was then repeated. Finally, the mean and 

standard deviation were calculated using the prediction accuracies for each subset at 

different time points. The difference in the prediction accuracies between the 

conventional method and eENCD was tested using the Student's t-test. 

Thirdly, the differences between sensitive and not sensitive responders in the 

expression levels of the genes of eENCD were investigated. The expression levels of 

these genes at each time point were classified into two groups according to the therapeutic 

response, and the differences between the two groups were tested using the Wilcoxon 

rank-sum test. The p values in the Wilcoxon rank-sum test were adjusted by the 

Benjamini-Hochberg method (BH method). Furthermore, the median values of the 

expression levels of genes at each time point were compared between sensitive and not 

sensitive responders to assess whether the expression levels of the two groups were 

consistently different throughout all time points. The names of the selected genes were 

obtained from Gene Cards (http://www.genecards.org/). 

  

http://www.genecards.org/
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Parameter and implementation: 

The number of iterations for the stability selection was 500. Random sampling in the 

stability selection included 12 sensitive and 8 not sensitive responder samples, which 

were common to datasets A and B. The λ  values, a hyper-parameter of the stability 

selection, were changed from 0.01 to 1.00 in 0.01 increments. The threshold 𝜃𝑠𝑠 was 0.5. 

The hyper-parameter of the elastic net in Eq. 2 was α =  0.5, and the weight parameter 

in Eq. 3 was 𝛾 = 2. The parameters of the elastic net with the stability selection used in 

the conventional method were also the same as the parameters in eENCD. The responses 

at 24 months after INF-β treatment in datasets A and B (Table 2) were predicted. Bootstrap 

sampling in the evaluation was repeated 50 times per prediction model at a different time 

point, and the prediction accuracies were calculated. 

For the implementation of numerical experiments, R language (ver. 3.2.5; 

https://cran.r-project.org/bin/windows/base/old/3.2.5/) was used, wherein the “limma” 

and “glmnet (ver. 2.0-5)” packages were used for quantile normalization and the elastic 

net, respectively. 

  

https://cran.r-project.org/bin/windows/base/old/3.2.5/
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2.3. Results of eENCD 
The eENCD and conventional methods were evaluated by the analyses of datasets A 

and B. The genes showing the best ACCmean were identified for each dataset using both 

eENCD and the conventional method. The prediction accuracies at each time point and 

their mean in the first evaluation are listed in Table 3 and Table 4. 

As an analytical result of dataset A, eENCD identified 11 genes and constructed the 

prediction model using the 𝑡0 data. With the conventional method, prediction models 

were constructed using the 𝑡0, 𝑡1, and 𝑡2 data, from which 9, 8, and 21 genes were 

identified, respectively. 

Table 3 showed the prediction accuracies at each time point and their mean. The 

ACC𝑚𝑒𝑎𝑛 and ACC𝑚𝑖𝑛 values using eENCD were 86% and 79%, respectively. With the 

conventional method using 𝑡1 data, the ACC𝑚𝑒𝑎𝑛 was 86% and was comparable to that 

with eENCD. However, the ACC𝑚𝑖𝑛 by the conventional method using the 𝑡1 data was 

only 67% and was lower than that by eENCD. The ACC𝑚𝑒𝑎𝑛 by the conventional method 

using the 𝑡0 and 𝑡2 data was 83% and 79%, respectively. The ACC𝑚𝑒𝑎𝑛 by eENCD 

was higher than those of the conventional method. Here, we focus on the results at 

different time points in the first evaluation. The prediction accuracies by the proposed 

method were 92% at 𝑡1 and 79% at 𝑡2. The conventional method using 𝑡1 data could 

predict therapeutic responses at 𝑡2  with 92% accuracy; however, all the other results 

were lower than those of eENCD. 
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As a result of the use of dataset B, eENCD identified 8 genes and constructed the 

prediction model using the 𝑡0 data. The conventional method identified 5, 19, 7, 6, and 

Table 3 Accuracy of prediction models by eENCD and conventional 

methods with dataset A. 

Method 
Accuracy [%] 

𝑡0 𝑡1 𝑡2 Mean (ACCmean) 

eENCD (88) 92 79 86 

Conventional 

 method 

(100) 71 79 83 

67 (100) 92 86 

54 83 (100) 79 

 

Table 4 Accuracy of prediction models by eENCD and conventional 

methods with dataset B. 

Method 
Accuracy [%] 

𝑡0 𝑡1 𝑡2 𝑡3 𝑡4 Mean (ACCmean) 

eENCD (96) 72 92 84 76 84 

Conventional 

 method 

(92) 68 84 76 64 77 

72 (84) 76 60 64 71 

72 92 (96) 80 64 81 

72 64 68 (100) 40 69 

68 60 76 72 (96) 74 

The number in parentheses is calculated by leave-one-out at the time point 

of data used by the prediction model. Bold accuracy is a top accuracy of 

each time point, but the top accuracy of 𝑡0  is not presented since gene 

expression data at 𝑡0 is used data by the proposed method. An accuracy of 

under line is the minimum accuracy (ACCmin) of each method. 
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19 genes using 𝑡0, 𝑡1, 𝑡2, 𝑡3, and 𝑡4 data, respectively. 

Table 4 lists the prediction accuracies at each time point and the ACC𝑚𝑒𝑎𝑛 . The 

ACC𝑚𝑒𝑎𝑛  and ACC𝑚𝑖𝑛  of eENCD were 84% and 72%, respectively. The ACC𝑚𝑒𝑎𝑛 

values were 77%, 71%, 81%, 69%, and 74% using 𝑡0, 𝑡1, 𝑡2, 𝑡3, and 𝑡4 data for model 

construction by the conventional method, respectively. The ACC𝑚𝑖𝑛 values were 64%, 

60%, 64%, 40%, and 60% using 𝑡0, 𝑡1, 𝑡2, 𝑡3, and 𝑡4 data for model construction by 

the conventional method, respectively. The ACC𝑚𝑒𝑎𝑛  and ACC𝑚𝑖𝑛  values of eENCD 

were higher than those of the conventional method. We focus on the results at different 

time points in the first evaluation. The prediction accuracies of eENCD using 𝑡0 data 

were 92%, 84%, and 76% at time points 𝑡2 , 𝑡3 , and 𝑡4 , respectively. The prediction 

accuracy at 𝑡1 by the conventional method using 𝑡2 data was 92% and higher than that 

by eENCD. The other accuracies by eENCD were higher than those of the conventional 

method except for one case. 

Bootstrap sampling was performed to evaluate the prediction accuracies at different 

time points in the second evaluation. Figure 6 shows the mean and standard deviation of 

prediction accuracies by eENCD and conventional methods at different time points. As 

shown in Figure 6 a, in dataset A, the mean accuracy of the different time points (𝑡1 and 

𝑡2 ) was 81%. This prediction accuracy was significantly higher than 65% ( p =

2.06 × 10−23), 71% (p = 1.48 × 10−10), and 68% (p = 1.16 × 10−16) at 𝑡0, 𝑡1, and 

𝑡2 in the conventional method (p < 0.001), respectively. As shown in Figure 6 b, in dataset 

B, the mean accuracy of the different time points (𝑡1, 𝑡2, 𝑡3, and 𝑡4 by eENCD was 
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78%. The prediction accuracy by the conventional method at 𝑡0 , 𝑡1 , 𝑡2 , 𝑡3 , and 𝑡4 

were 64% (p = 2.41 × 10−40), 57% (p = 1.73 × 10−94), 73% (p = 8.70 × 10−11), 56% 

 

Figure 6 Prediction accuracies of eENCD by bootstrap sampling. The 

“***” means that the p-value of the student's t-test is less than 0.001. (a) 

Prediction accuracies for dataset A. The accuracies are the mean accuracies 

of different time points obtained without using the prediction model. (b) 

Prediction accuracies for dataset B. As with (a), the accuracies are the mean 

accuracies. 

0

20

40

60

80

100

t1 t2 t3 OM

A
c
c
u

ra
c
y
 (

%
)

a) ***
***

***

t0 t1 t2 eENCD

0

20

40

60

80

100

t1 t2 t3 t4 t5 OM

A
c
c
u

ra
c
y
 (

%
)

b) ***
***

***
***

***

PMt0 t1 t2 t3 t4 eENCD



 

 

Prediction method for therapeutic response at multiple time points of gene expression profiles 

40 

 

(p = 1.30 × 10−103), and 55% (p = 1.46 × 10−78), respectively. In dataset B, the mean 

accuracy of the different time points by eENCD was significantly higher than those by 

the conventional method (p < 0.001). Therefore, the prediction accuracies at different 

time points by eENCD were significantly higher than those by the conventional method. 

To assess the sensitivity and specificity of the prediction model by eENCD, ROC 

curves and AUCs in datasets A and B were measured, as shown in Figure 7 a and b. As 

shown in Figure 7 a, in dataset A, the AUCs at 𝑡0, 𝑡1, and 𝑡2 were 0.95, 0.94, and 0.90 

by eENCD, respectively, all of which were higher than or equal to 0.9. The lower limits 

of the 95% confidence interval were 0.88, 0.82, and 0.77 at 𝑡0, 𝑡1, and 𝑡2, respectively. 

As shown in Figure 7 b, in dataset B, the AUCs at 𝑡0, 𝑡1, 𝑡2, 𝑡3, and 𝑡4 were 0.99, 0.76, 

0.95, 0.89, and 0.93, respectively. The lower limits of the 95% confidence interval were 

0.97, 0.56, 0.87, 0.74, and 0.83 at 𝑡0, 𝑡1, 𝑡2, 𝑡3, and 𝑡4, respectively. In dataset B, the 

AUC and the lower limits of the 95% confidence interval of eENCD at 𝑡1 were 0.76 and 

0.56, which were lower than or equal to the other time points by the conventional method 

(Figure 8 and Figure 9). The AUCs and lower limits of the 95% confidence interval of 

eENCD were the highest in almost every case. 
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Figure 7 ROC curves of eENCD by bootstrap sampling. (a) ROC curve 

generated by eENCD at each time point of dataset A. The AUCs and 95% 

confidence interval are calculated by ROC curves at each time point. (b) 

ROC curve by eENCD at each time point of dataset B. As with (a), the AUCs 

and 95% confidence interval are calculated. 
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Figure 8 ROC of prediction model by the conventional method in 

dataset A. The AUCs and 95% confidence interval are calculated by ROC 

curves at each time point. Prediction model used 𝑡0 (a), 𝑡1 (b), and 𝑡2 (c) 

data. 
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Figure 9 ROC of prediction model by the conventional method in 

dataset B. The AUCs and 95% confidence interval are calculated by ROC 

curves at each time point. Prediction model used at 𝑡0 (a), 𝑡1 (b), 𝑡2 (c), 

𝑡3 (d), and 𝑡4 (e) data. 
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Eleven genes were identified in dataset A by eENCD (Table 5) and eight genes were 

identified in dataset B by eENCD (Table 6). These genes were expected to have 

consistently higher expression levels of either sensitive or not sensitive responders at each 

time point. The median levels of 9 genes in dataset A were consistently differentiated 

throughout all time points (Table 5). In particular, the expression levels of the HPS5 gene 

is not sensitive responders at 𝑡0 and 𝑡1 were significantly higher than those in sensitive 

responders (p < 0.05) (Figure 10 a). The median levels of 6 genes at each time point were 

consistently higher in either group in dataset B (Table 6). In particular, the expression 

levels of the CDH2 gene of sensitive responders at 𝑡0 and 𝑡2 were significantly higher 

than those in not sensitive responders (p < 0.05) (Figure 10 b). From the above, eENCD 

identified some genes of which the expression levels were always consistently different 

throughout all time points. 

 

  



 

 

Prediction method for therapeutic response at multiple time points of gene expression profiles 

45 

 

  

Table 5 Identified genes of dataset A by eENCD. 

Gene symbol 

P value Higher GE 

levels at all 

time points 
𝑡0 𝑡1 𝑡2 

ZBTB16 0.064  0.013  0.137  sensitive 

ZFP37 0.070  0.220  0.013  -- 

HPS5 0.013  0.013  0.084  
Not 

sensitive 

HOPX 0.105  0.005  0.090  sensitive 

ARFGAP3 0.013  0.162  0.105  sensitive 

CALML5 0.077  0.013  0.126  sensitive 

VPS26A 0.026  0.090  0.205  sensitive 

SLC5A4 0.190  0.022  0.190  sensitive 

MBL2 0.149  0.013  0.640  -- 

DLGAP4 0.007  0.115  0.390  sensitive 

CACNA1C 0.064  0.382  0.390  
Not 

sensitive 

The p values are adjusted by BH method, and Bold accuracy with 

underline has difference gene expression (GE) levels between sensitive 

and not sensitive responder significantly (p<0.05). If GE levels of sensitive 

responders at each gene are higher than one of not sensitive at all time 

points, the sensitive is represented in the final column. 
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Table 6 Identified genes of dataset B by eENCD. 

Gene 

symbol 

P value Higher 

GE 

levels of 

all TPs 

𝑡0 𝑡1 𝑡2 𝑡3 𝑡4 

SMA4 0.072  0.250  0.009  0.082  0.082  sensitive 

MIR7114_ 

NSMF 
0.072  0.082  0.005  0.130  0.314  sensitive 

LSM8 0.452  0.009  0.082  0.082  0.441  -- 

FLAD1 0.071  0.009  0.344  0.056  0.072  
Not 

sensitive 

RRN3P1 0.419  0.179  0.082  0.082  0.023  
Not 

sensitive 

RASL10A 0.033  0.334  0.344  0.452  0.314  -- 

IER3IP1 0.115  0.072  0.005  0.216  0.082  
Not 

sensitive 

CDH2 0.250  0.033  0.397  0.043  0.082  sensitive 

The p values are adjusted by BH method, and Bold accuracy with 

underline has difference gene expression (GE) levels between sensitive 

and not sensitive responder significantly (p<0.05). If GE levels of sensitive 

responders at each gene are higher than one of not sensitive at all time 

points (TPs), the sensitive is represented in the final column. 
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Figure 10 Gene expression levels of sensitive and not sensitive 

responders at each time point. Gene expression levels of the HPS5 gene 

in dataset A (a) and the CDH2 gene in dataset B (b). “*” is FDR-corrected p 

< 0.05 in the Wilcoxon rank-sum test. 
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2.4. Discussion of eENCD 
The genes identified by eENCD showed consistent differentiation throughout all time 

points and accurately predicted the responses of MS patients to INF-β treatment. 

The ACC𝑚𝑒𝑎𝑛  and ACC𝑚𝑖𝑛  values by eENCD in dataset A were 86% and 79%, 

respectively. The  ACC𝑚𝑒𝑎𝑛 value was equal to or higher than that by the conventional 

method (Table 3). The prediction model by the conventional method using 𝑡1 data had 

an almost same ACC𝑚𝑒𝑎𝑛 value as eENCD; however, the ACC𝑚𝑖𝑛 value of eENCD was 

higher than that of the conventional method. The ACC𝑚𝑒𝑎𝑛  and ACC𝑚𝑖𝑛  values of 

eENCD in dataset B were 84% and 72%, respectively (Table 4). These values were higher 

than those of the conventional method. Thus, eENCD yielded higher and more accurate 

predictions throughout most time points than the conventional method (Table 3 and Table 

4). In addition, the prediction accuracies at different time points were evaluated by 

bootstrap sampling. Figure 6 a and b show the mean and standard deviations of the 

prediction accuracies of different time points calculated by bootstrap sampling. The mean 

accuracy of different time points by eENCD was 81% and higher than those by the 

conventional method (Figure 6 a). This result indicates that eENCD could achieve 

significantly higher prediction accuracies than the conventional method at different time 

points. In dataset B, the mean accuracy of different time points was 78% and was 

significantly higher than those by the conventional method (Figure 6 b). Additionally, 

SES algorithm analysis of the static-longitudinal scenario is used as a conventional 

method [87], and this is compared with eENCD. The static-longitudinal scenario in this 

method is expected to identify genes showing consistent differentiation throughout all 

time points. Using the procedures of eENCD (Figure 6), the 𝐴𝐶𝐶𝑚𝑒𝑎𝑛  of the genes 
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identified by SES algorithm was calculated, and a prediction model was created. The 

prediction accuracies at different time points using SES algorithm were calculated by 

bootstrap sampling (Table 7). These mean accuracies obtained from our proposed method 

were higher than those given by this conventional method. Therefore, eENCD using time-

course gene expression data could achieve a high prediction accuracy compared with 

those provided by the conventional methods. Given this, eENCD provided higher 

accuracy throughout all time points. 

Figure 7 a and b show the sensitivity and specificity of eENCD; AUC was 

approximately 0.90 at most time points in both datasets A and B. However, the AUC at 

𝑡1 in dataset B by eENCD was 0.76, which was lower than the AUC at other time points 

and equivalent to the conventional method, as shown in Figure 8 and Figure 9. The results 

at each time point (Table 3, Table 4, Figure 11, and Figure 12) revealed that the prediction 

Table 7 Selected genes and accuracy by bootstrap sampling using SES 

algorithm. 

Dataset name Dataset A Dataset B 

Identify gene symbol BID CTDSPL 

time point of data for 

prediction model 
𝑡0 𝑡4 

Mean accuracy 

by bootstrap sampling [%] 
57 (p=2.32×10-64) 61 (p=2.92×10-32) 

The number in parentheses is a p-value of comparison between the SES 

algorithm and eENCD. For the implementation of the SES algorithm, MXM 

package was used in R. 
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accuracies did not depend on the order of the time-course and that the prediction 

accuracies by eENCD were high at most time points; however, there was a case where 

the prediction accuracy was lower than that of the conventional method.  

 

Figure 11 Prediction accuracies obtained using eENCD and 

conventional method at each time point using bootstrap sampling. The 

“*” and “***” mean that the p-values of the Wilcoxon rank-sum test are less 

than 0.05 and 0.001, respectively. Prediction accuracies of each model at 𝑡1 

(a) and 𝑡2 (b) data in dataset A. 
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Figure 12 Prediction accuracies by eENCD and conventional method 

at each time point using bootstrap sampling. The “**” and “***” mean that 

the p-values of the Wilcoxon rank-sum test are less than 0.01, and 0.001, 

respectively.Predicton accuracies of each model at t1  (a), t2  (b), t3  (c), 

and t4 (d) data in dataset B. 
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As shown in Table 5 and Table 6, most genes of eENCD showed different gene 

expression levels consistently throughout all time points. Changes in those levels 

differentiated sensitive and not sensitive responders consistently throughout the time-

courses significantly (Figure 10). From the above, eENCD identified genes showing 

consistent differentiation throughout multiple time points and could differentiate between 

sensitive and not sensitive responders. 

The eENCD did not identify identical genes between datasets A and B. Regarding 

dataset A, associations between MS and ZBTB16 and HOPX genes were reported [88]. 

Th17 cells are a subset of T helper cells involved in many immune diseases including MS. 

ZBTB16 gene was reported to activate differentiation of Th17 cells, which contributed to 

the maintenance of the phenotype of Th17 cells in the human body [88]. Regarding a 

relationship between the functional defect of T cells and autoimmune encephalomyelitis, 

many experiments and reviews reported the deletion of the HOPX gene for decreasing 

the suppressor ability of pTreg cells [89][90]. Regarding dataset B, there were reports on 

the CDH2 gene [91]. Microglia, a type of glial cell of the central nervous system, is known 

as central immunocompetent cells, and the CDH2 gene is involved therein [91]. Many 

genes in dataset A were related to cancer but their association with MS was unclear. 

The eENCD had several limitations. Firstly, there were time points where the 

prediction accuracy by eENCD was lower. Secondly, the γ value as the weights of the 

elastic net should be set adequately to ensure accurate prediction. Thirdly, we used genes 

as independent variables; however, the interactions of genes could also be considered as 

explanatory variables to obtain higher accurate predictions. 
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INF-β treatment is known to be effective in the prevention of relapses of MS; however, 

the accurate prediction of INF-β treatment responses is still necessary to solve the 

problem of individual variations and the side effects associated with treatment. 

Microarray has been used to identify genes for predicting therapeutic responses. 

However, there are several difficulties associated with microarray analysis, including high 

dimensionality and multicollinearity. In addition, the conventional method only allows an 

analysis of data at a single time point. Therefore, a novel method suitable for time-course 

data analysis should be developed. Here, we proposed eENCD to identify genes using the 

elastic net accommodating time-course data. The following are three features of eENCD: 

(1) sparse modeling was used to allow for the efficient identification of genes (gene 

numbers >> sample size); (2) the elastic net was used to prevent the multicollinearity of 

expression levels among genes; (3) the elastic net was modified to identify genes showing 

consistent differentiation throughout the time-course. 

Two publicly available datasets were used to evaluate this method. The mean prediction 

accuracies of different time points were compared by the proposed and conventional 

methods. The accuracies obtained using two datasets were 71% and 73% for the 

conventional method, and 81% and 78%, significantly higher, for eENCD. The eENCD 

identified 11 and 8 genes in the two datasets. Differences in the expression levels of 9 and 

6 genes between good and poor responders were consistent throughout the data at all time 

points. Therefore, the genes identified by eENCD were suggested to be capable of high-

accuracy prediction throughout multiple time points. In addition, these genes included the 

genes reported to be related to MS by previous studies. The eENCD for the time-course 

data analyses was used to identify genes showing consistent differentiation between two 
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outcome groups throughout time-courses. Here, we demonstrated the use of this modified 

elastic net for the prediction of INF-β treatment responses in patients with MS. Moreover, 

this method could also be used for microarray time-course data analyses. 
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3. Consolidating probabilities of 

multiple time points: CPMTP 
 

3.1. Background of CPMTP 
Predicting a patient’s response to therapy using various types of information is essential 

for designing systematic treatments [92][93]. HCV infection and MS are representative 

diseases showing individual variations that require personalized therapy. Systematic 

therapies utilizing pegylated interferon-alpha and ribavirin are recommended for the 

treatment of HCV infection [58]. However, only about half of all cases displayed a 

sustained response to this therapy [94]. Patients with HCV infection have reportedly 

exhibited serious neuropsychiatric side effects such as severe depression and psychosis 

[95]. INF-β is the most widely used MS therapy to control disease symptoms [69]. 

However, this therapy did not prevent almost half of all patients from relapsing and even 

developing symptoms of brain disease, as observed in some cases [68]. To make 

appropriate decisions regarding therapeutic strategies, such as cancellation or fixation of 

long-term therapy, the therapeutic response associated with these diseases must be 

accurately predicted via time-course monitoring [96][97]. Therefore, developing methods 

and markers that accurately predict individual therapeutic response is crucial for 

establishing successful long-term therapy. 

Time-course gene expression profiling has advanced rapidly on account of time-course 

gene expression profiles collected from the same patient being more beneficial than those 

collected from the patient at a single time point [49][52]. Methods that determine gene 
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markers using time-course gene expression profiles are classified into two categories: 

statistical methods such as analysis of variance (ANOVA) [87][98] and machine learning 

such as sparse modeling [50], decision trees [58], clustering [34][99] and deep learning 

[100]. Many of these use standard problem settings to identify gene markers showing 

different time-course patterns between two groups, such as cases vs. control. Detecting 

different patterns in time-course gene expression profiles is extremely beneficial for 

clarifying the biological processes involved. However, sometimes it may cause 

difficulties in predicting therapeutic response. For example, gene markers indicating a 

massive change between two late-term therapy groups may pose a challenge when it 

comes to making an accurate prediction for the first term. Conversely, gene markers that 

indicate significant early-term changes in treatment may make accurate late-term 

prediction difficult. Therefore, gene markers that accurately predict response to therapy 

at each observed time point are preferable for predictive purposes. 

In predicting a long-term therapeutic response, prediction accuracy may be improved 

by incorporating patient information, which is repeatedly observed for a marker over time 

[62][63][101]. Rizopoulos et al. [62] and Li et al. [63] proposed a new method that 

dynamically updates predictive indicators as time points increase; they suggested that 

their method may improve prediction accuracy. However, these markers were not gene 

markers but aortic gradient levels [62] and brain imaging indices [63], which were also 

clarified as being useful by other studies. Therefore, the current study assumed that using 

more time points to profile a gene marker would lead to more accurate therapeutic 

response predictions. 
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Here, we propose a new prediction model and a gene selection method using time-

course gene expression profiles. This method is based on the hypothesis that improving 

the accuracy of predictions requires more information obtained from gene markers at 

multiple time points. Therefore, our prediction model was designed to consolidate 

information from multiple time points, and our gene selection method was designed to 

identify gene subsets as markers that predict therapeutic responses more accurately with 

increasing time points. Time-course microarray datasets collected from HCV and MS 

patients were used to evaluate the proposed method. In this evaluation, three types of 

experiments were performed as follows: (1) comparison with our proposed method and 

the conventional method; (2) hypothesis verification; and (3) function analysis of the gene 

subset selected by the proposed method. 
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3.2. Method of CPMTP 
Our proposed method was designed to predict therapeutic response using multiple 

time-point data that would expectedly yield a higher level of accuracy than a prediction 

based on single-point data. Our method is termed the consolidating probabilities of 

multiple time points method. CPMTP consists of a prediction procedure and gene 

selection procedure. Sections 3.2.1 introduced the theory of CPMTPp and CPMTPg. 

Section 3.2.2 described the numerical experiments. 

 

3.2.1. Theory for CPMTP 
This section described CPMTPp and CPMTPg. Briefly, CPMTPp is the procedure for 

predicting therapeutic response using a model. CPMTPg is the procedure for selecting 

genes. 

 

Concept of CPMTPp: 

The CPMTPp design was based on the hypothesis that prediction accuracy is improved 

by consolidating information on the states of a patient at multiple time points. The general 

problem setting for the prediction in which the response at future time point T𝑓𝑖𝑛𝑎𝑙 was 

estimated as either sensitive or not sensitive using gene expression profiles is shown 

(Figure 13). “Sensitive” meant that the patients responded well to therapy and recovered 

from the disease, and “not sensitive” meant that patients could not recover from the 

disease with the therapy. The time points corresponding to gene expression profiles used 

for prediction by CPMTPp and conventional methods were different. In this paper, the 
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time points used in each method are termed checkpoint (CP). The CP of conventional 

methods was a single-time point 𝑡𝑟 (𝑟 = 0, … , 𝑅) or the difference between the one-time 

 

Figure 13 The concept of predicting therapeutic response using the 

conventional method and our proposed method. (a) The conventional 

method uses single gene expression levels or differential gene expression 

levels between two time points. (b) CPMTP uses time-course gene 

expression profiles according to consolidated probabilities of multiple time 

points. 
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point 𝑡𝑟 (𝑡𝑟 ≤  T𝑓𝑖𝑛𝑎𝑙)  and the previous time point 𝑡𝑟−1  (Figure 13 a); it was, thus, 

mostly confined to two-time points. Meanwhile, the CPMTPp used the gene expression 

profiles corresponding to the first time point 𝑡0 to a time point 𝑡𝑟 (Figure 13 b); here, 

more than two time points were used for predictive purposes. In this manner, the 

hypothesis was implemented using CPMTPp by consolidating the probabilities of 

therapeutic response using gene expression profiles collected from multiple time points. 

CPMTPp was used to calculate one probability of therapeutic response using time-

course microarray data (Figure 14). Firstly, CPMTPp was used to calculate a probability 

using the gene expression profile at a time point, 𝑡𝑟. Secondly, the probability at 𝑡𝑟 and 

the prior probability from 𝑡0  to 𝑡𝑟−1  was consolidated to calculate a more accurate 

probability. By repeating these two steps until r = 𝑅, the probabilities at multiple time 

points were aggregated into one probability (where 𝑇 was the final time point that can 

be used for prediction). 

Similar to the Bayesian model [102][103] and neural network [104], multiple logistic 

regression (MLR) models have been widely used to predict the response to therapy based 

on probability. This probability did not present a p-value in statistical tests but present 

how likely the patient is likely sensitive (or not sensitive). The probability at the first step 

P𝑙𝑜𝑔𝑖𝑡
(𝑡𝑟)

 was calculated through MLR, like Eq. 7, using the difference of gene expression 

profile between 𝑡𝑟 and 𝑡𝑟−1 (Eq. 8). However, these models used single or two time 

points to calculate the probability and did not use time-course data. 
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P𝑙𝑜𝑔𝑖𝑡
(𝑡𝑟)

=
1

1 + 𝑒−(𝑤0
(𝑡𝑟)

+𝑤1
(𝑡𝑟)

∗𝑑1
(𝑡𝑟)

+⋯+𝑤
𝑙
(𝑡𝑟)

∗𝑑
𝑙
(𝑡𝑟)

)
 

Eq. 7 

 

where 

 

Figure 14 The flow of CPMTPp. CPMTPp is based on the hypothesis that 

information at multiple time points improves prediction accuracy. 
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𝑑𝑗
(𝑡𝑟)

 (𝑗 = 1, … , 𝑙): different expression levels of the j𝑡ℎ gene between two-time points 

𝑡𝑟 and 𝑡𝑟−1. 𝑙 is the number of genes in a gene subset of logistic regression. The gene 

subset was selected from all the genes collected by microarray using CPMTPg. 

𝑤𝑗
(𝑡)

 (𝑗 = 0, … , 𝑙) : the weight of j𝑡ℎ  gene as a feature in a gene subset. 𝑤0
(𝑡𝑟)

  is a 

constant term at time point 𝑡𝑟. 

 

𝑑𝑗
(𝑡𝑟)

= 𝑥𝑗
(𝑡𝑟)

− 𝑥𝑗
(𝑡𝑟−1)

 

Eq. 8 

 

where 

𝑥𝑗
(𝑡𝑟)

 : j𝑡ℎ  gene expression levels at time point 𝑡𝑟 . 𝑥𝑗
(𝑡𝑟−1)

  is the j𝑡ℎ  gene expression 

level at time point 𝑡𝑟−1. 

 

In CPMTPp, the Bayesian theory was used to consolidate probabilities based on time-

course data [68]. The probability P𝑡0~𝑡1
 was calculated by combining the probability at 

time point P𝑙𝑜𝑔𝑖𝑡
(𝑡𝑟)

  and the probability at previous time points P𝑡0~𝑡𝑟−1
  (Eq. 9). As the 

previous time point did not exist (𝑟 = 1), P𝑡0~𝑡1
= P𝑙𝑜𝑔𝑖𝑡

(𝑡1)
 was defined. P𝑡0~𝑡𝑟

  0.5 and 

P𝑡0~𝑡𝑟
< 0.5 indicate sensitive and not sensitive responses, respectively (Eq. 10). From 

the above, CPMTPp could be used to predict response to therapy based on gene 

expression profiles at multiple time points. 
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P𝑡0~𝑡𝑟
=

P𝑙𝑜𝑔𝑖𝑡
(𝑡𝑟)

∗ P𝑡0~𝑡𝑟−1

P𝑙𝑜𝑔𝑖𝑡
(𝑡𝑟)

∗ P𝑡0~𝑡𝑟−1
+ (1 − P𝑙𝑜𝑔𝑖𝑡

(𝑡𝑟)
) ∗ (1 − P𝑡0~𝑡𝑟−1

)
  

Eq. 9 

 

where 

P𝑙𝑜𝑔𝑖𝑡
(𝑡𝑟)

 (𝑡𝑟 = 𝑡0, … , 𝑡𝑅): A probability of sensitive (or not sensitive) response to therapy 

using gene expression profile at time point 𝑡𝑟. 

 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑡ℎ𝑒𝑟𝑎𝑝𝑒𝑢𝑡𝑖𝑐 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 ≔ {
𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒         (P𝑡0~𝑡𝑟

 ≥  0.5)

𝑛𝑜𝑡 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒         (P𝑡0~𝑡𝑟
<  0.5)

 

Eq. 10 

 

where 

P𝑡0~𝑡𝑟
 (𝑡𝑟 = 𝑡0, … , 𝑡𝑅): A probability of sensitive (or not sensitive) response to therapy 

using gene expression profile at time points 𝑡0~𝑡𝑅. 

 

Algorithm of CPMTPg: 

CPMTPg were used to select the gene subset of CPMTPp best suited for accurate 

prediction using time-course microarray data. CPMTPg was used to decide the gene 

subset by optimizing the fitness function based on the probability P𝑡0~𝑡𝑟
  used in 

CPMTPp. This function was designed with negative penalties for incorrect predictions. 

The CPMTPg flowchart, which consists of gene screening (step 1) and deciding on a gene 

subset (step 2), is shown (Figure 15). 
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Step 1: The elastic net with the stability selection eliminated genes with low impact on 

therapeutic responses, yielding a gene pool. 

Step 2: The gene subset was selected from the gene pool via an optimization method. 

 

Here, the gene expression profiles were composed as a data matrix (𝑝  genes × 𝑛 

subjects × 𝑅 time points). Each subject was labeled as sensitive or not sensitive based 

on therapeutic responses. 

 

[Step1: Screening step] 

Gene selection based on microarray data frequently suffers from the 𝑛 >>  𝑝 

problem, i.e., a large number of genes (𝑝) compared to the small number of samples 

( 𝑛 ) [105]. Gene selection using univariate analyses causes an α-error by 

independent multiple tests. These p-values should be corrected via adjusting using 

methods such as the Bonferroni correction [106], Holm method, or Dunnett’s 

method [98]. However, sparse modeling enables the selection of genes without p-

values. 
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The sparse modeling solved the 𝑝 >>  𝑛 problem by considering a condition 

where only a few genes affect the phenomenon under focus [34][50][107]. We 

employed the elastic net, a sparse modeling method [47]. The elastic net selects a 

subset effectively from features with high multicollinearity. To eliminate genes 

with minimal impact on therapeutic responses, the elastic net was applied to gene 

expression data at each time point. 

 

Figure 15 The flow of CPMTPg. CPMTPg selects a gene subset used by 

the CPMTPp model. 
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The elastic net was used to select genes with non-zero weights, 𝑤𝑗
(𝑡𝑟)

, which 

are used for an MLR model according to Eq. 11. The genes with zero weights 

indicate that these genes were not selected as a gene subset for the MLR model. 

The elastic net equation added regularized terms (the second and third terms of Eq. 

11) to the general loss function, such as the least-squares method (the first term of 

Eq. 11) to optimize the weights. The second term prevents multicollinearity, and 

the third term selected features. Because the genes selected by the elastic net 

depended on the value of lambda in Eq. 11, deciding lambda was important to 

predict the response to therapy accurately. 

 

argmin
𝒘(𝑡)

𝐽(𝑿(𝑡𝑟), 𝒚) + 𝜆 (∑(1 − 𝛼)
1

2
|𝑤𝑗

(𝑡𝑟)
|

2

+

𝑙

𝑗=1

∑ 𝛼 |𝑤𝑗
(𝑡𝑟)

|

𝑙

𝑗=1

) 

Eq. 11 

 

where 

𝒘(𝑡𝑟) = (𝑤1
(𝑡𝑟)

, … , 𝑤𝑙
(𝑡𝑟)

)⊤ : the weights of a logistic regression model at a time 

point  𝑡𝑟 in Eq. 10. 

𝑿(𝑡𝑟) = (𝒙1
(𝑡𝑟)

, … , 𝒙𝑝
(𝑡𝑟)

) ; 𝒙𝑗
(𝑡𝑟)

= (𝑥𝑗
(1,𝑡𝑟)

, … , 𝑥𝑗
(𝑁,𝑡𝑟)

)
⊤

:  the difference in j𝑡ℎ 

gene expression levels at a time point between 𝑡𝑟 and 𝑡𝑟−1. 

𝒚 = (𝑦1, … , 𝑦𝑛); 𝑦𝑖  ∈  {0,1}: Therapeutic response of i𝑡ℎ patient at time point 

𝑡. If 𝑦𝑖 = 1, the therapeutic response presents “sensitive.” If not, the therapeutic 

response presents “not sensitive.” 
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𝐽(𝑿(𝑡𝑟), 𝒚): Loss function of a logistic regression model using 𝑿(𝑡𝑟) and 𝒚. 

𝜆: A hyper-parameter that represents the weight of the regularized terms in Elastic 

Net. 

α (0 <  α <  1): A hyper-parameter that decides the assignment of the second and 

third terms. 

 

The stability selection was used to reduce the effect of lambda on feature 

selection [33][83]. The stability selection performed the elastic net many times 

with various lambda values to sub-sample sets via random sampling. A gene pool 

at each time point (𝑮(𝑡𝑟) in Figure 15) was created based on the selected rate in 

repeated times at a lambda value. At step 1, the gene list (𝑮 in Figure 15) consisted 

of genes belonging to gene pools at any of the time points {𝑮(𝑡0), … , 𝑮(𝑡𝑅)}. In this 

step, some genes that affected prediction at each time point could be selected from 

a huge number of genes in the microarray data. 

 

[Step2: Selecting a gene subset] 

In step 2 of CPMTPg, the gene subset for the CPMTPp model was selected from 

the gene pool 𝑮 via optimization. For CPMTPg, the gene list (𝑳(𝑡0~𝑡𝑟) in Figure 

15) was created by combinatorial optimization method. 

This step was performed as follows: 

 

(i) The gene list (𝑳(𝑡0~𝑡𝑟) in Figure 15) was selected from gene expression 

profiles at time points from 𝑡0 to 𝑡𝑟 via the optimization method. 
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(ii) The subjects in the gene expression data were separated into two blocks. 

(iii) The CPMTPp model was constructed based on one block of data using the 

gene list 𝑳(𝑡0~𝑡𝑟). 

(iv) The accurate rate of the model (𝑎𝑐𝑐(𝑡0~𝑡𝑟) in Figure 15) was calculated 

using the other block of data. 

(v) (ii) and (iv) were repeated for 𝑟 =R.  

(vi) The gene list showing the best accuracy rate was determined as the gene 

subset of CPMTPp. 

 

The fitness function of the optimization method was designed via probability 

consolidated at multiple time points (Eq. 12). Eq. 12 used the probability, 𝑃𝑡0~𝑡𝑟

(𝑠)
, 

and the number of accurate predictions in patients, 𝑁𝑡𝑟𝑢𝑒, as a reward, and the 

probability, 𝑃𝑡0~𝑡𝑟

(𝑞)
 , and the number of patients with no incorrect predictions, 

𝑁𝐹𝑎𝑙𝑠𝑒, as a penalty. The absolute value of the difference between probabilities and 

0.5 (|𝑃𝑡0~𝑡𝑟

(𝑠)
− 0.5| and |𝑃𝑡0~𝑡𝑟

(𝑞)
− 0.5| in Eq. 12) presented a confidence level of 

the predicted therapeutic response. If probabilities 𝑃𝑡0~𝑡𝑟

(𝑠)
 and 𝑃𝑡0~𝑡𝑟

(𝑞)
 were closer 

to 0 or 1, respectively, these values were higher. However, if these probabilities 

were closer to 0.5, these values were lower. Therefore, the first and second terms 

of Eq. 12 are the mean values of the confidence levels of accurate and incorrect 

predicted therapeutic responses, respectively. The optimization method selects the 

gene subsets with a CPMTPp that can accurately predict and display high 

confidence levels for the predicted response to therapy by maximizing the fitness 
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function of Eq. 12. 

 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 ≔
1

𝑁𝑡𝑟𝑢𝑒
∑ |𝑃𝑡0~𝑡𝑟

(𝑠)
− 0.5|

𝑁𝑡𝑟𝑢𝑒

𝑠=1

−
1

𝑁𝑓𝑎𝑙𝑠𝑒
∑ |𝑃𝑡0~𝑡𝑟

(𝑞)
− 0.5|

𝑁𝑓𝑎𝑙𝑠𝑒

𝑞=1

 

Eq. 12 

 

where 

𝑁𝑡𝑟𝑢𝑒: Number of patients in whom the actual therapeutic response equaled the 

predicted one. 

𝑁𝑓𝑎𝑙𝑠𝑒: Number of patients in whom the actual therapeutic response did not equal 

the predicted one. 

𝑃𝑡0~𝑡𝑟

(𝑠)
 (s = 1, … , 𝑁𝑡𝑟𝑢𝑒) : Probability of 𝑠𝑡ℎ  patients that the actual therapeutic 

response equaled the predicted one. 

𝑃𝑡0~𝑡𝑟

(𝑞)
  (q = 1, … , 𝑁𝑓𝑎𝑙𝑠𝑒): Probability of 𝑞𝑡ℎ patients that the actual therapeutic 

response did not equal the predicted one. 

 

To determine the gene subset of CPMTPp from gene lists {𝑳(𝑡0~𝑡1), . . . , 𝑳(𝑡0~𝑡𝑅)}, 

the accurate rate 𝑎𝑐𝑐(𝑡0~𝑡𝑟) was calculated by the (ii)–(iv) flows. In these flows, 

leave-one-out cross-validation was used. The number of patients in two blocks of 

data by this cross-validation was 1 for evaluation and 𝑁 − 1 for the construction 

of the model. The accuracy rate was shown as the proportion of patients whose 

predicted therapeutic responses were accurate for evaluating the cross-validation. 
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CPMTPg made it possible to construct a CPMTPp model that enabled accurate 

prediction at multiple time points using the gene list with the highest accuracy rate 

as the gene subset in CPMTPp. 

Note that this step used the ridge as an optimization method for weights 𝑤(𝑡𝑟) 

in an MLR model (Eq. 7) to calculate 𝑃𝑡0~𝑡𝑟

(𝑠)
 and 𝑃𝑡0~𝑡𝑟

(𝑞)
 inEq. 9. The ridge does 

not select genes and constructs the model to avoid multicollinearity. At 𝛼 = 0 of 

Eq. 11, this equation is not the elastic net, but the ridge. 
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3.2.2. Numerical Experiments for 

CPMTP 
Three experiments were performed: (1) comparison with CPMTP 

(CPMTPp+CPMTPg) and a conventional method, (2) verification of our hypothesis, and 

(3) analysis of the gene subset selected by CPMTPg. This section describes the material, 

preprocessing, evaluation method, parameters, and implementation. 

 

Material and Preprocessing: 

Two sets of time-course microarray data were used for this evaluation. One dataset was 

collected from HCV patients treated with antiviral therapies, peginterferon, and ribavirin 

(HCV dataset) [108]. The other was collected from MS patients treated with INF-β (MS 

dataset) [71]. These datasets (GSE7123 and GSE24427) were opened on the GEO website 

(https://www.ncbi.nlm.nih.gov/geo/).  

The details of these datasets are shown (Table 8). The number of time points in the 

HCV dataset was six (𝑡0  to 𝑡5 ), and the difference in CP between CPMTPp and a 

conventional method is shown (Table 9). There were five MS datasets (𝑡0 to 𝑡4), and the 

difference in CP between CPMTP and a conventional method is shown (Table 10). Gene 

expression profiles were collected using the Affymetrix Human Genome U133A Array 

from peripheral blood mononuclear cells of patients, where the patients used for this 

evaluation were limited to those who could provide these at all time points. 

  

https://www.ncbi.nlm.nih.gov/geo/
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Table 8 Summary of microarray data collected from HCV and MS 

patients. 

Dataset name HCV dataset MS dataset 

Number of genes 13513 13513 

Number of time 

points 

0 day(𝑡0), 1 day(𝑡1), 2 

days(𝑡2), 7 days(𝑡3), 14 

days(𝑡4), 28 days(𝑡5) 

first(𝑡0), second(𝑡1), 

 1 month(𝑡2), 12 

months(𝑡3), 

24months(𝑡4) 

Number of 

sensitive/not 

sensitive responders 

sensitive: 36 

not sensitive: 22 

sensitive: 16 

not sensitive: 9 

Number of 

sensitive/not 

sensitive responders 

for stability selection 

sensitive: 28 

not sensitive: 17 

sensitive: 12 

not sensitive: 7 

Number of 

sensitive/not 

sensitive responders 

for k-fold cross-

validation 

sensitive: 12 

not sensitive: 7~8 

sensitive: 10~11 

not sensitive: 6 

The number of genes of both HCV and MS is 13513, but the types of genes 

are different from them. In this paper, symbols of time points are presented 

as 𝑡0, 𝑡1, 𝑡2 etc. 
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Table 9 The difference in CPs between the conventional method and 

CPMTP in the HCV dataset. 

Time point CP1 CP2 CP3 CP4 CP5 

𝑡0 # *  *  *  *  * 

𝑡1 # * # *  *  *  * 

𝑡2  # * # *  *  * 

𝑡3   # * # *  * 

𝑡4    # * # * 

𝑡5         # * 

 

Table 10 The difference in CPs between the conventional method and 

CPMTP in the MS dataset. 

Time point CP1 CP2 CP3 CP4 

𝑡0 # *  *  *  * 

𝑡1 # * # *  *  * 

𝑡2  # * # *  * 

𝑡3   # * # * 

𝑡4       # * 

“#” and “*” are the time points of microarray data used by the conventional 

method and CPMTP, respectively. 
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Three steps were performed to preprocess gene expression data. Several probes were 

removed from the two datasets. As the probes had duplicate gene symbols in one dataset, 

one probe was selected by comparing median gene expression levels, and the other probes 

were removed. Probes with a gene symbol indicating a non-coding region or no gene 

symbol were also removed. After removing these probes, log2 fold-change and quantile 

normalization were performed on each dataset. 

 

Conventional method: 

The MLR model was used as the prediction model for the conventional method. The 

features of the MLR model were based on the difference in gene expression profiles 

between 𝑡𝑟 and 𝑡𝑟−1. The CPs of the MLR model for the HCV and MS datasets are 

shown in Table 9 and Table 10, respectively. 

Next, maSigPro was used for gene selection in the conventional method, which is 

frequently used for time-course microarray data analysis [106][109][110]. This method 

selects the gene subset which shows a time-course difference in gene expression profiles 

between two groups via p-values of a statistical test with the significant level of 

𝑠𝑚𝑎𝑆𝑖𝑔𝑃𝑟𝑜. This p-value was associated with F-statistic and was corrected by the linear 

step-up false discovery rate procedure. When the number of genes selected by maSigPro 

was over 𝑙𝑚𝑎𝑥, 𝑙𝑚𝑎𝑥 genes were selected in ascending order of p-values. 

 

Evaluation method: 

To compare CPMTPp+CPMTPg and MLR+maSigPro as the conventional method, the 

AUC and accuracy were calculated using HCV and MS datasets. For this, k-fold cross-
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validation was performed. This method splits patients in the dataset into 𝑘 blocks. The 

k-1 blocks were used for the model training, and the remaining 1 block was used for 

evaluation. This procedure was repeated k times, and all data were used for evaluation at 

one time. 

The ROCs for each CP, which were calculated based on probabilities of 

CPMTPp+CPMTPg and MLR+maSigPro that were obtained via k-fold cross-validation, 

are depicted. The AUCs were calculated using these ROC curves. The difference between 

AUCs corresponding to CPMTPp+CPMTPg and MLR+maSigPro at each CP were 

compared using the DeLong test with significance levels 𝑠𝐴𝑈𝐶. 

To compare with CPMTP and previous studies based on therapeutic responses 

estimated via k-fold cross-validation, the accuracies of CPMTPp+CPMTPg and 

MLR+maSigPro were calculated. The accuracies were calculated for each CP and each 

block for evaluation in k-fold cross-validation. Based on the mean, maximum, and 

minimum values of these accuracies, CPMTPp+CPMTPg and MLR+maSigPro were 

compared. 

In CPMTPp, it was assumed that the accuracy of the prediction model was improved 

as time points increased. The accuracies of the CPMTPp and MLR models were 

compared to verify this hypothesis. The gene selection methods of these models were 

CPMTPg. The mean, maximum, and minimum values of accuracies in 

CPMTPp+CPMTPg and MLR+CPMTPg were calculated using k-fold cross-validation 

using HCV and MS datasets. 

The gene subset selected by CPMTPg was analyzed by ontology to research the 

function of genes in the biological process. DAVID (https://david.ncifcrf.gov/home.jsp) 

https://david.ncifcrf.gov/home.jsp
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was used as an ontology analysis tool. Common terms (GO terms) that were associated 

with the genes of CPMTPg were decided using DAVID based on p-values below the 

significance level 𝑠𝐷𝐴𝑉𝐼𝐷 . This p-value was a modified Fisher exact p-value. Also, 

previous studies were investigated using GO terms as keywords. 

 

Parameters and Implementation: 

The therapeutic responses of patients were decided at the final time point of the datasets. 

The final time point in the HCV dataset was 28 days (𝑡5) after the first therapy. In the 

HCV dataset, the types of therapeutic responses were categorized as "marked,” 

“intermediate,” and “poor”. The marked response was defined as 

“decreasing RNA levels of HCV >  3.5 log10 IU/ml” or no detected levels on day 28. 

The intermediate response was defined as “decreasing 1.4 ≤  RNA levels of HCV ≤

 3.5 log10 IU/ml ” on day 28. The poor response was defined as 

“ decreasing RNA levels of HCV < 1.4 log10 IU/ml ” on day 28. However, for this 

evaluation, the marked and intermediate responses were considered as good results, as in 

previous studies [58]. Responses to therapy based on the MS dataset were decided by the 

occurrence of relapse up to 24 months (𝑡4) after first therapy, and they were considered 

“good” or “poor”. In this paper, a “good” response was treated as “sensitive,” and a “poor” 

response was treated as “not sensitive.” 

The parameters of Step 1 in the CPMTPg are as follows. The stability selection was 

repeated 100 times. The stability selection selected 80% of patients from each sensitive 

and not sensitive category as the sub-sample set (Table 8). Lambda values corresponding 
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to repetition were created based on the exponential function from 𝑙𝑜𝑔10−3 to 𝑙𝑜𝑔3. The 

alpha value of the elastic net in the stability selection was 0.5. 

The parameters of Step 2 in the CPMTPg were as follows. A genetic algorithm (GA) 

was utilized as the optimization method. GA is a heuristic optimization method that has 

been frequently utilized as a gene selection method for microarray data [105][111][112]. 

GA repeats single-point crossover, ranking selection, and mutation at each generation. 

The number of generations was 50, and the population size of each generation was 20. 

The phenotype of GA is a binary presented as either to select or not select gene candidates. 

Note that the maximum number of genes selected for each population was 10 and that the 

population for the first generation was created by random sampling. To create the next 

generation, a single-point crossover was generated twice in the population, and mutation 

was performed on 20% of the population. The mutation reversed the select or not select 

process at a randomly chosen locus in the population. Based on the fitness values in Eq. 

6, ranking selection identified the top 40% and the bottom 10% of the total population as 

the next generation. 

The parameters of the numeric experiment are as follows: 𝑘 = 3  in k-fold cross-

validation, and the rate of patients whose therapeutic responses were sensitive or not 

sensitive was the same for all blocks (Table 8). The parameters of maSigpro were 

𝑠𝑚𝑎𝑆𝑖𝑔𝑃𝑟𝑜 = 0.05  and 𝑙𝑚𝑎𝑥 = 10.  The significance level of the DeLong test and 

DAVID were 𝑠𝐴𝑈𝐶 = 0.05 and 𝑠𝐷𝐴𝑉𝐼𝐷 = 0.05, respectively. 

The implementation language was R-Language (ver. 3.6.0). Quantile normalization, 

the elastic net, and maSigPro were used by “limma (ver. 3.40.6),” “glmnet (ver. 2.0-18),” 

and “maSigPro (ver. 1.56.0)” packages, respectively. The stability selection and GA were 
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implemented by the authors. The source codes used in this paper will be made available 

upon request. The pseudo-code of CPMTP was added in Figure 16, Figure 17, and Figure 

18. 
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Figure 16 The pseudo-code of CPMTPp. This code predicts a therapeutic 

response of a patient. 𝒙(𝒕𝒓) = (𝑥1
(𝑡𝑟)

, … , 𝑥𝑙
(𝑡𝑟)

) (𝑟 = 1, … , 𝑅): gene expression 

levels collected by the patient at time point 𝑡𝑟. 𝑙 is the number of genes in 

the gene subset. 𝒘(𝒕𝒓) = (𝑤1
(𝑡𝑟)

, … , 𝑤𝑙
(𝑡𝑟)

)⊤: wights of the logistic regression 

at time point 𝑡𝑟. 𝑤0
𝑡𝑟 is a constant term. 𝑦̂ is the predicted sensitive or not 

sensitive of the patient. 

Algorithm: CPMTPp

Input:

Output:

01: for r = 2,…,R do

02: Calculate using (Eq.2)

03: Calculate using and (Eq.1)

04: if r==2 do

05:

06: else then

07: Calculate using and (Eq. 3)

08: end if

09: end for

10: Decide  using (Eq. 4)
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Figure 17 The pseudo-code of CPMTPg: step1. This code creates a gene 

pool by step1 of CPMTPg. 𝑿(𝑡𝑟) = (𝒙1
(𝑡𝑟)

, … , 𝒙𝑙
(𝑡𝑟)

) ; 𝒙𝑗
(𝑡𝑟)

=

(𝑥𝑗
(1,𝑡𝑟)

, … , 𝑥𝑗
(𝑁,𝑡𝑟)

)
⊤

 (𝑗 = 1, … , 𝑝) : gene expression levels of 𝑝  genes × 𝑛 

subjects at time point 𝑡𝑟. 𝑦(𝑖) (𝑖 = 1, … , 𝑛): the therapeutic response of the 

𝑖𝑡ℎ  patient. 𝜆(𝑘) (𝑘 = 1, … , 𝐾) : the 𝑘𝑡ℎ  values of lambda in elastic net in 

stability selection. 𝑮 is the gene pool having genes selected by step1 of 

CPMTPg. 

Algorithm: CPMTPg: Screening

Input:

Output: Gene pool 

01: for r = 1,…,R do

02: for k= 1,…,K do

03: for s = 1,…, do

04: Create a sub-sample set from 

05: Create and from and by selecting samples in the sub-sample set

06:

07: Optimize using , , and (the elastic Net: Eq. 5)

08: Calculate using 

09: for end

10: Calculate using 

11: for end

12: Calculate by select genes whose maximum value of  is more than 0.5.

13: for end

14: Create by taking the union 
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Figure 18 The pseudo-code of CPMTPg: step2. This code creates a gene 

subset by step2 of CPMTPg. 𝑿(𝑡𝑟) = (𝒙1
(𝑡𝑟)

, … , 𝒙𝑙
(𝑡𝑟)

) ; 𝒙𝑗
(𝑡𝑟)

=

(𝑥𝑗
(1,𝑡𝑟)

, … , 𝑥𝑗
(𝑁,𝑡𝑟)

)
⊤

 (𝑗 = 1, … , 𝑝) : gene expression levels of 𝑝  genes × 𝑁 

subjects at time point 𝑡𝑟. 𝑦(𝑖) (𝑖 = 1, … , 𝑁): the therapeutic response of the 

𝑖𝑡ℎ  patient. 𝜆(𝑘) (𝑘 = 1, … , 𝐾) : the 𝑘𝑡ℎ  values of lambda in elastic net in 

stability selection. 𝑮 is the gene pool having genes selected by step1 of 

CPMTPg. 𝑮𝑠𝑢𝑏𝑠𝑒𝑡 is the gene subset of CPMTPp. 

 

Algorithm: CPMTPg: Selecting a gene subset

Input:

Output: Gene subset

01: Create by selecting genes of from

02: for r = 1,…,R do

03:

04: Optimize using and (The fitness function: Eq. 6)

05: for i=1,…,n do

06: Create and from , and by selecting patients except the patient

07: Create and from , and by selecting the patient

08: Optimize using , , and (The elastic Net: Eq. 5)

09: Estimate using  and 

10: Calculate 

11: for end

12: Calculate 

13: for end

14: Select from { } using having the maximum value of  { } 
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3.3. Results of CPMTP 
The three-fold cross-validation was performed for each HCV and MS dataset. In 

MLR+maSigPro and CPMTPp+CPMTPg, AUCs, as well as mean maximum and 

minimum values of accuracies, were calculated based on the results of cross-validation. 

The mean, maximum, and minimum values of accuracies for MLR+CPMTPg were 

calculated. Moreover, genes selected via the CPMTPg were analyzed. 

The ROC curves and AUCs of MLR+maSigPro and CPMTPp+CPMTPg generated 

using the HCV dataset are shown (Figure 19). Accordingly, the AUCs of MLR+maSigPro 

were 0.71 (𝐶𝑃1), 0.75 (𝐶𝑃2), 0.76 (𝐶𝑃3), 0.75 (𝐶𝑃4), and 0.76 (𝐶𝑃5), respectively. The 

AUCs of CPMTPp+CPMTPg were 0.89 (𝐶𝑃1), 0.90 (𝐶𝑃2), 0.90 (𝐶𝑃3), 0.90 (𝐶𝑃4), and 

0.90 (𝐶𝑃5), respectively. The p-values of the DeLong test were 0.03 (𝐶𝑃1), 0.06 (𝐶𝑃2), 

0.07 (𝐶𝑃3), 0.05 (𝐶𝑃4), and 0.06 (𝐶𝑃5), respectively. The AUCs of CPMTPp+CPMTPg 

at all CPs were higher than the AUCs of MLR+maSigPro, and several time points showed 

a significant difference between these AUC values. 

ROC curves and AUCs of MLR+maSigPro and CPMTPp+CPMTPg generated using 

the MS dataset are shown (Figure 20). The AUCs of MLR+maSigPro from 𝐶𝑃1 to 𝐶𝑃4 

were 0.76, 0.78, 0.79, and 0.79, while those of CPMTPp+CPMTPg were 0.94, 0.85, 0.91, 

and 0.93, respectively. The p-values of the DeLong test from 𝐶𝑃1 to 𝐶𝑃4 were 0.14, 

0.68, 0.38, and 0.30. All AUCs of CPMTPp+CPMTPg were not significantly higher than 

those of MLR+maSigPro. 
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Figure 19 ROC curves of MLR+maSigPro vs. CPMTPp+CPMTPg in HCV 

dataset. The CP of MLR+maSigPro presents two time points from 𝒕𝒓−𝟏 to 

𝒕𝒓. The CP of CPMTPp+CPMTPg presents multiple time points from 𝒕𝟎 to 

𝒕𝒓 . “*” means that the difference of AUCs between MLR+maSigPro and 

CPMTPp+CPMTPg is significant. (a) The case of 𝐶𝑃1. (b) The case of 𝐶𝑃2. 

(c) The case of 𝐶𝑃3. (d) The case of 𝐶𝑃4. (e) The case of 𝐶𝑃5. 
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Figure 20 ROC curves of MLR+maSigPro vs. CPMTPp+CPMTPg in MS 

dataset. The CP of MLR+maSigPro presents two time points from 𝒕𝒓−𝟏 to 

𝒕𝒓. The CP of CPMTPp+CPMTPg presents multiple time points from 𝒕𝟎 to 

𝒕𝒓 . “*” means that the difference of AUCs between MLR+maSigPro and 

CPMTPp+CPMTPg is significant. (a) The case of 𝐶𝑃1. (b) The case of 𝐶𝑃2. 

(c) The case of 𝐶𝑃3. (d) The case of 𝐶𝑃4. 
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The accuracies calculated by MLR+maSigPro and CPMTPp+CPMTPg using the HCV 

dataset are shown (Figure 21 a). The mean accuracies of MLR+maSigPro from 𝐶𝑃1 to 

𝐶𝑃5 were 74.4%, 63.7%, 61.9%, 62.0%, and 72.5%, respectively. The mean accuracies 

of the CPMTPp+CPMTPg were 82.8%, 82.8%, 82.8%, 82.8%, and 82.8%, respectively. 

The minimum and maximum values for the accuracies of MLR+maSigPro from 𝐶𝑃1 to 

𝐶𝑃5 were 55.0% and 89.4%, 63.1% and 65.0%, 52.6% and 70.0%, 57.8% and 65.0%, 

and 65.0%, and 84.2%, respectively. The minimum and maximum accuracies of 

CPMTPp+CPMTPg from 𝐶𝑃1  to 𝐶𝑃5  were 80.0% and 84.2%, 75.0% and 89.4%, 

75.0% and 89.4%, 75.0% and 89.4%, and 75.0% and 89.4%, respectively. The mean 

values of CPMTPp+CPMTPg were higher than those of MLR+maSigPro for all CPs. The 

maximum values for CPMTPp+CPMTPg, with the exception of 𝐶𝑃1, were higher than 

those for MLR+maSigPro, while the minimum values at CPs were higher than those for 

MLR+maSigPro. 

The accuracies of MLR+maSigPro and CPMTPp+CPMTPg for the MS dataset are 

shown (Figure 21 b). The mean accuracies of MLR+maSigPro from 𝐶𝑃1 to 𝐶𝑃4 were 

75.4%, 68.5%, 71.7%, and 83.3%, respectively. The mean accuracies of 

CPMTPp+CPMTPg were 83.7%, 83.7%, 87.9%, and 87.9%, respectively. The minimum 

and maximum accuracies of MLR+maSigPro from 𝐶𝑃1  to 𝐶𝑃4  were 62.5% and 

88.8%, 55.5% and 75.0%, 62.5% and 77.7%, and 75.0%, and 100.0%, respectively. The 

minimum and maximum accuracies of the CPMTPp+CPMTPg were 75.0% and 88.8%, 

75.0% and 88.8%, 87.5%, and 88.8%, and 87.5% and 88.8%, respectively. The mean 

values of CPMTPp+CPMTPg were higher than those of MLR+maSigPro for all CPs. The 
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CPs with maximum values for CPMTPp+CPMTPg that were higher than those of 

MLR+maSigPro were 𝐶𝑃2  and 𝐶𝑃3 ; however, the minimum values of 

CPMTPp+CPMTPg at all CPs were higher than those of MLR+maSigPro. 

 

Figure 21 Accuracies of MLR+maSigPro vs. CPMTPp+CPMTPg. The 

bars, top whisker, and bottom whisker are mean, maximum, and minimum 

values of accuracies by the three-fold cross-validation, respectively. (a) HCV 

dataset. (b) MS dataset. 
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The accuracies of MLR and CPMTPp estimated using the gene subset selected from 

the HCV dataset via CPMTPg are shown (Figure 22 a). The mean values of accuracies 

estimated by MLR+CPMTPg were 82.8 (𝐶𝑃1), 60.3 (𝐶𝑃2), 63.8 (𝐶𝑃3), 62.1 (𝐶𝑃4), and 

62.1 (𝐶𝑃5), respectively. The minimum and maximum values of accuracies estimated by 

MLR+ CPMTPg were 80.0% and 84.4% (𝐶𝑃1), 57.8% and 63.1% (𝐶𝑃2), 60.0% and 

68.4% (𝐶𝑃3), 60.0% and 63.1% (𝐶𝑃4), and 60.0% and 63.1% (𝐶𝑃5), respectively. The 

mean, maximum, and minimum values of accuracies estimated by CPMTPp+ CPMTPg 

were the same as those shown in Figure 22 a. The accuracy of MLR+CPMTPg at 𝐶𝑃1 

was highest, while the accuracies for the other CPs decreased. On the other hand, the 

accuracy of CPMTPp+CPMTPg did not change with the increase in CPs. 

MLR and CPMTPp were compared for accuracy using the MS subset (Figure 22 b). 

The gene subsets of MLR and CPMTPp were common. The mean values of the accuracies 

of MLR+CPMTPg were 83.7 ( 𝐶𝑃1 ), 72.2 ( 𝐶𝑃2 ), 84.2 ( 𝐶𝑃3 ), and 67.5 ( 𝐶𝑃4 ), 

respectively. The minimum and maximum values of accuracies of MLR+ CPMTPg were 

75.0% and 88.8% (𝐶𝑃1), 66.6% and 75.0% (𝐶𝑃2), 75.5% and 100.0% (𝐶𝑃3), and 62.5% 

and 77.7% (𝐶𝑃4), respectively. The mean, maximum, and minimum values of accuracies 

of CPMTPp+CPMTPg were the same as those shown in Figure 22 b. The accuracy of 

MLR+ CPMTPg at 𝐶𝑃1 were different at each CP. The accuracy of CPMTPp+ CPMTPg 

slightly improved as CPs increased. 
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The mean accuracies of CPMTPp+CPMTPg using the HCV dataset were not changed 

as time progressed (Figure 22 a). However, the mean accuracies of the MS dataset 

improved slightly with increasing time (Figure 22 b). Further, the maximum and 

 

Figure 22 Accuracies of MLR+CPMTPg vs. CPMTPp+CPMTPg. The 

bars, top whisker, and bottom whisker are mean, maximum, and minimum 

values of accuracies by the three-fold cross-validation, respectively. (a) HCV 

dataset. (b) MS dataset. 
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minimum values either did not change or improved slightly. Thus, in contrast to our 

hypothesis, the accuracies estimated using the two datasets either did not change or 

improved slightly with increasing time. 

In the HCV dataset, 30 genes were selected by CPMTPg as the gene subset for the 

logistic regression model from the learning data on the three-fold cross-validation. The 

GO terms of the HCV dataset, which were determined by these genes, generated 4 clusters. 

The 10 GO terms had significant p-values (Table 11). “Repeat: 1”, “Repeat: 2”, and 

“Repeat: 3”, which belonged to the same cluster and were selected by the same genes, 

were not terms associated with gene function. “Proteinaceous extracellular matrix,” 

“Disulfide bond,” and “Extracellular matrix” belonged to the same cluster, which was not 

the top cluster. “Disease mutation,” “Polymorphism,” “Visual perception,” and “Positive 

regulation of transcription, DNA-templated” did not belong to any cluster. 

Twenty-six genes were selected by CPMTPg using the MS dataset, where 4 were 

selected twice in the three-fold cross-validation. The GO terms of the MS dataset were 

decided according to these genes, and 3 clusters were constructed (Table 12). The GO 

terms with significant p-values are shown. “Fatty acid metabolism” belonged to the 

cluster, while “Nucleus” and “protein binding” did not belong to any cluster. 
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GO term  Genes Count 
p-

value 
Cluster 

Repeat:3 ADAM30, GFRA1, PSRC1 3 0.036 #1 

Repeat:1 ADAM30, GFRA1, PSRC1 3 0.046 #1 

Repeat:2 ADAM30, GFRA1, PSRC1 3 0.047 #1 

Proteinaceous 

extracellular 

matrix 

EFEMP1, WNT5A, KERA, 

OLFML2B 
4 0.007  #2 

Disulfide bond 

ADAM3, EFEMP1, GFRA1, 

KLRC4-KLRK1, WNT5A, 

CACNA1A, IGLL1, KERA, 

OLFML2B, PRPH2 

10 0.026  #2 

Extracellular 

matrix 
EFEMP1, WNT5A, KERA 3 0.045  #2 

Disease 

mutation 

EFEMP1, WNT5A, ACAT1, 

CACNA1A, CCND2, IGLL1, 

KERA, PRPH2, KCNK3, 

SRD5A2 

10 0.039  
Not 

belong 

Polymorphism 

AKAP5, ADAM30, EFEMP1, 

GFRA1, KLRC4-KLRK1, 

MAGEA10, ACAT1, 

CACNA1A, CAMTA1, 

22 0.030  
Not 

belong 

Table 11 Selected GO terms in the HCV dataset. 
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CCND2, EIF3F, IGLL1, 

MED24, OLFML2B, OGDHL, 

PRPH2, PSRC1, PCDHGA3, 

SRD5A2, ZNF43, ZNF512B, 

ZNF711 

Visual 

perception 
EFEMP1, KERA, PRPH2 3 0.036  

Not 

belong 

Positive 

Regulation of 

transcription, 

DNA-templated 

WNT5A, MED24, PSRC1, 

ZNF711 
4 0.040  

Not 

belong 

  
These terms have lower p-values than 0.05 (significance level). Thirty-one GO 

terms belong to four clusters. On the other hand, 13 GO terms do not belong 

to any cluster. The clusters were generated during the GO analysis. 
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Table 12 Selected GO terms for the MS dataset. 

GO term  Genes Count 
p-

value 
Cluster 

Fatty acid 

metabolism 
NDUFAB, ACAA2, ALOX15 3 0.008  #1 

Nucleus 

LARP6, RBM47, CENPO, 

ESRRA, MTDH, MORF4L1, 

PA2G4, RSL24D1, ZBED1, 

ZNF516, ZNF614 

11 0.033  
Not 

belong 

Protein binding 

NDUFAB1, ACAA2, 

ALOX15, CENPO, ESRRA, 

MTDH, 

MAT2A, MORF4L1, 

PA2G4, RSL24D1, 

SERPINA5, TRPC3, 

TRPM8, ZBED1, ZNF614 

15 0.047  
Not 

belong 

These terms have lower p-values than 0.05 (significance level). Twenty-eight 

GO terms belong to three clusters. On the other hand, 21 GO terms do not 

belong to any cluster. The clusters were generated during the GO analysis. 



 

 

Prediction method for therapeutic response at multiple time points of gene expression profiles 

93 

 

3.4. Discussion of CPMTP 
AUCs and accuracies calculated using our proposed method (CPMTPp+CPMTPg) 

were compared with those calculated using the conventional method (MLR+maSigPro) 

via the three-fold cross-validation. The results of both AUCs (Figure 19 and Figure 20) 

and accuracies (Figure 21) suggested that our method could predict response to therapy 

accurately at multiple time points compared to the conventional method. 

The AUCs of CPMTPp+CPMTPg were higher than those of MLR+ maSigPro for all 

CPs in both the HCV and MS datasets (Figure 19 and Figure 20). However, CPs that 

showed significant differences were 𝐶𝑃1  and 𝐶𝑃4  in the HCV dataset, while the 

differences in the MS dataset were not significant for any CP. This is due to the 

insufficient number of patients to perform the DeLong test, especially in the MS dataset, 

where the patient number was 25. Almost all CPs did not show a significant difference; 

however, a common trend in both HCV and MS datasets was that the AUCs of 

CPMTPp+CPMTPg were higher than those of MLR+ maSigPro at all CPs. 

According to Figure 21, the mean accuracies of CPMTPp+CPMTPg were higher than 

those of MLR+maSigPro at all CPs, an observation common to both datasets. Moreover, 

the mean accuracies of CPMTPp+CPMTPg at each CPs were higher than the 72.4% 

cited in the reference [58] using the same HCV dataset. In the MS dataset, the mean 

accuracies of CPMTPp+CPMTPg at all CPs were also higher than the 78.0% cited in 

the reference [34].  

In addition, the accuracies of CPMTPp+CPMTPg were confirmed for the artificial data 

(Figure 23). The results are shown in. The mean accuracies were more than 90.0% at all 

CPs.  
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Figure 23 Results of CPMTPp+CPMTPg using artificial data. The 

artificial gene expression data (1000 genes × 40 subjects × 5 time points; 

“#” in this figure means “number”) were created. These data subjects are 20 

sensitive and 20 not sensitive responders. Gene expression levels of Gene1, 

Gene2, and Gene3 were created by adding noise following a normal 

distribution (center:0; standard deviation:0.5) to each baseline. The baseline 

of Gene1 has the different rising/ falling trends of gene expression levels 

between sensitive and not sensitive responders at all time points, while the 

baseline of Gene2 and Gene3 had it at a part of time points. Gene 

expression levels of the other genes were created by uniform distribution 

(maximum:1; minimum:5). To evaluate CPMTPp+CPMTPg, the three-fold 

cross-validation was performed using the artificial data. As a result, CPMTPg 

selected “Gene1” from all genes as the gene subsets at all validation. These 

mean accuracies were 92.8% (𝑪𝑷𝟏 :𝒕𝟎~𝒕𝟏 )  97.6% (𝑪𝑷𝟐 :𝒕𝟎~𝒕𝟐 )  100% 

(𝑪𝑷𝟑:𝒕𝟎~𝒕𝟑)  and 100% (𝑪𝑷𝟒:𝒕𝟎~𝒕𝟒)  respectively. The accuracy at the 

early term was higher than 90%  and this value increased along with 

the time progressing. Similar trends were observed using actual 

Artificial data
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CPMTPp was designed based on the hypothesis that more accurate prediction was 

dependent on data from more time points. However, the results of the comparison 

between MLR and CPMTPp (Figure 22) did not support this hypothesis, although it 

indicated that CPMTPp continued to maintain accuracies as time points increased. 

The accuracies of MLR, which did not consolidate the probabilities at multiple time 

points in the HCV and MS datasets, are shown (Figure 22). In the HCV dataset, the top 

CP, which corresponded to the highest mean accuracy of MLR+CPMTPg, was 𝐶𝑃1, after 

which the mean values corresponding to 𝐶𝑃2~𝐶𝑃5 decreased (Figure 22 a). The mean 

accuracies of MLR+CPMTPg for various CPs of the MS dataset appeared to be 

uncorrelated (Figure 22 b). The trends were also different regarding the maximum and 

minimum values. When the probabilities at multiple time points were not used for 

prediction as time points increased, the accuracies did not change or improve as in 

CPMTPp but were reduced or disjointed. 

The above results indicated that prediction using more time points (CPMTPp) did not 

contribute to improved accuracy. However, MLR, which did not consolidate the 

probabilities of multiple time points, used the same subset of genes as CPMTPp, and its 

accuracy tended to decrease or fluctuate overtime points. This trend was not changed by 

the gene selection method for maSigPro (Figure 24). Therefore, it was found that the 

these mean accuracies were 92.8% (𝐶𝑃1:𝑡0~𝑡1), 97.6% (𝐶𝑃2:𝑡0~𝑡2), 100% 

(𝐶𝑃3:𝑡0~𝑡3), and 100% (𝐶𝑃4:𝑡0~𝑡4), respectively. The accuracy at the early 

term was higher than 90%, and this value increased along with the time 

progressing. Similar trends were observed using actual datasets in this 

paper. 
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accuracies of CPMTPp contributed to maintaining accuracies as time points were 

processed, in contrast to MLR. 

 

Figure 24 Accuracies of MLR+maSigPro vs. CPMTPp+maSigPro. The 

bars, top whisker, and bottom whisker presents mean, maximum, and 

minimum values of accuracies by three-fold cross-validation, respectively. 

(a) HCV dataset. (b) MS dataset. 
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The gene subsets selected by CPMTPg were analyzed, and GO terms were extracted 

from the DAVID database (Table 11 and Table 12). Genes associated with terms that 

reportedly played an important role in diseases were discovered by reviewing previous 

studies that cited significant GO terms. 

The GO terms (Table 11) included those that were reportedly associated with HCV 

infection. The extracellular matrix has been reported to develop progressive hepatic 

fibrosis and cirrhosis in 20% to 30% of HCV patients [113]. Previous studies have 

suggested that angiotensin II [113] and fibrogenic cytokines [114] contributed to the 

production of extracellular matrix in the liver. It was reported that excessive accumulation 

of extracellular matrix components, such as fibrillar type I and III collagens, fibronectin, 

and laminin, is a feature of liver fibrosis [115][116]. Another study reported that the 

accumulation of extracellular matrix in liver fibrosis might impair the signaling of 

interferon used as therapy [115]. Regarding disulfide bonds, it was reported that a 

disulfide bond core protein complex might constitute the nucleocapsid-like particle of 

HCV [117]. 

The GO terms (Table 12) included those reported to be related to MS. It was suggested 

that “Fatty acid metabolism” may be a target for MS therapy since inhibition of carnitine 

palmitoyltransferase 1 (CPT-1), which is the rate-limiting enzyme in the beta-oxidation 

of fatty acids, contributes to a reduction in disease severity [118]. Especially, it was 

reported that when the ALOX15 gene, which encodes a fatty acid metabolizing enzyme, 

became functionally inactive, MS patients experienced more severe symptoms than when 

the ALOX15 gene was active [119][120]. 
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The results of these numerical experiments using HCV and MS datasets suggested that 

CPMTP, our proposed method, may predict responses to therapy more accurately than the 

conventional method at multiple time points. Besides, CPMTP was able to select genes 

with functions associated with diseases from time-series microarray data. 

CPMTP could be applied to gene expression data with arbitrarily selected multiple time 

points, and increasing time points did not affect the prediction model of CPMTP. CPMTP 

could be performed beyond the last time-point of treatment; however, it required 

validation. Moreover, CPMTP could be applied to RNA-seq data and other gene 

expression data, which used a normalization similar to log2 fold-change and quantile 

normalization. When the proposed method is applied to the relatively large database, 

parameters and optimization methods, such as number of genes, number of samples, and 

number of time points, should be carefully considered. 

In individual patients showing specific therapeutic effects or occasional side effects, it 

is essential to accurately predict response to therapy using gene markers to determine a 

therapeutic strategy, such as changing or stopping therapy. Here, we propose a new 

prediction model and gene selection method termed CPMTP, which comprises a 

prediction component and selection component. CPMTP was based on the hypothesis that 

more information related to time points provided a more accurate therapeutic response 

prediction. To enable CPMTPp to incorporate more information from multiple time 

points, an overall probability of deciding a therapeutic response was estimated by 

consolidating the probabilities calculated at each time point, using the Bayesian theorem. 

CPMTPg selected the gene subset for use in the CPMTPp model via the optimization 

method, which was set as the fitness function of the consolidated probability. 
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CPMTP was evaluated using time-course gene expression profiles from HCV and MS 

patients in terms of accurate prediction, validation of the hypothesis, and gene function. 

These results suggested that CPMTP predicted response to therapy accurately at all 

observed points compared to the conventional method. However, as opposed to our 

hypothesis, the predicted accuracy of CPMTPp was not improved but only retained as 

time points increased. Further, the gene subset selected by CPMTPg may be related to 

HCV and MS, according to analyses conducted by previous studies investigating the key 

GO terms associated with the gene subsets. 

The above findings indicated that CPMTP might enhance long-term therapeutic 

procedures by accurately predicting response to therapy at multiple time points. Moreover, 

gene subsets identified by CPMTP may be useful as gene markers of disease progression. 

Thus, CPMTP may not only resolve difficulties associated with predicting response to 

therapy in HCV and MS patients but may also apply to the resolution of other clinical 

issues of a similar nature.  
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4. Comparison of eENCD and CPMTP 
The present study introduced two new methods, eENCD and CPMTP, for biomarker 

discovery. Both methods challenged the problems of (1) the 𝑝 ≫ 𝑛  problem, (2) 

multicollinearity, and (3) accurate prediction at multiple time points. These methods 

selected genes with different patterns of time-course gene expression profiles. The 

eENCD selected genes showing consistent differentiation between the two groups at all 

time points. However, CPMTP was designed to select genes that always showed a 

difference in gene expression level between the two groups, and predicted the therapeutic 

response using the predicted results of multiple time points. In this section, eENCD and 

CPMTP are compared from the point of view of predictive performance and gene function. 

In the first evaluation, the predicted accuracies and AUCs for the predictive 

performance of eENCD and CPMTP were compared using the GEO dataset ID of 

GSE24427. The predicted accuracies of eENCD shown in Figure 12 were 70.4% 

(𝐶𝑃1: 𝑡1), 82.8% (𝐶𝑃2: 𝑡2), 80.8% (𝐶𝑃3: 𝑡3), and 78.3% (𝐶𝑃4: 𝑡4). As shown in Figure 

21, the predicted accuracies of CPMTP were 83% (𝐶𝑃1), 83% (𝐶𝑃2), 87% (𝐶𝑃3), and 

87% (𝐶𝑃4). The predicted accuracies at all time points from the CPMTP method were 

higher than those predicted using the eENCD method. In addition, eENCD maintained 

the predicted accuracies at all time points, whereas the CPMTP accuracies improved a bit 

with an increasing number of time points. 

The AUCs of eENCD and CPMTP were compared using the same dataset to evaluate 

the predicted accuracies. As shown in Figure 7 b, the AUCs of eENCD were 0.76 

(𝐶𝑃1: 𝑡1), 0.95 (𝐶𝑃2: 𝑡2), 0.89 (𝐶𝑃3: 𝑡3), and 0.95 (𝐶𝑃4: 𝑡4). The AUCs of CPMTP from 

Figure 20 were 0.94 (𝐶𝑃1 ), 0.85 (𝐶𝑃2 ), 0.91 (𝐶𝑃3 ), and 0.93 (𝐶𝑃4 ). The AUCs of 
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CPMTP were equal to and lower than those of eENCD for almost all CPs. As the number 

of time points increased, the AUCs of eENCD varied regardless of CP, whereas those of 

CPMTP increased at multiple CPs, except for 𝐶𝑃2. 

Therefore, the predicted accuracies and AUCs of CPMTP were higher than those of 

eENCD for almost all time points. As the number of time points increased, the prediction 

accuracies and AUCs of CPMTP improved a bit. Therefore, the predictive performance 

of CPMTP was greater than that of eENCD. 

In the second evaluation, the genes selected using the CPMTP and eENCD methods 

were compared based on the gene expression level patterns and functions, using the same 

dataset as the first evaluation. As shown in Figure 10 b, the gene expression levels of the 

CDH2 gene selected with the eENCD method showed consistent differentiation between 

sensitive and non-sensitive responders for all time points. The gene expression levels of 

the ACAA2, PA2G4, SERPINA5, and MORF4L1 genes selected by CPMTP are shown in 

Figure 25, Figure 26, Figure 28, and Figure 27, respectively. These genes showed that 

different gene expression levels at the early time points differed significantly between 

sensitive and non-sensitive responders. These results did not support the hypothesis of 

CPMTP that more accurate prediction requires more time points and revealed that gene 

expression levels at an early time point strongly affected the therapeutic response decision. 

Thus, the collection of gene expression profiles at early time points is very important for 

the predictive performance of prognostic and predictive biomarkers. 
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Figure 25 Gene expression profiles of the ACAA2 in the MS dataset. 

 

Figure 26 Gene expression profiles of the PA2G4 in the MS dataset. 

This gene was selected by CPMTP twice in the three-fold cross-validation. 

The p-values at each CP were calculated with the Wilcoxon sum-rank test. 

The “**” means that the p-value was less than 0.01. The “*” means that the 

p-value was less than 0.05. 
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Figure 27 Gene expression profiles of the SERPINA5 in the MS dataset. 

 

Figure 28 Gene expression profiles of the MORF4L1 in the MS dataset. 

This gene was selected by CPMTP twice in the three-fold cross-validation. 

The p-values at each CP were calculated with the Wilcoxon sum-rank test. 

The “**” means that the p-value was less than 0.01. The “*” means that the 

p-value was less than 0.05. 
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 The 27 genes selected by CPMTP and eENCD in Table 6 and Table 12 were analyzed 

with gene ontology (GO) using the DAVID tool. Genes with similar GO terms were 

classified into the same cluster, and the number of clusters was six. In these clusters, there 

was one cluster whose enrichment score was over 1.3, which was significant. The GO 

terms belonging to this cluster are shown in Table 13. The p-value of fatty acid 

metabolism was 0.008, which was lower than the 0.05 significance level, whereas the p-

values of metabolic pathways and lipid metabolism were not lower than the significance 

level. However, these GO terms were related to metabolism. In Table 13, FLAD1, 

NDUFAB1, ACAA2, ALOX15, and MAT2A genes, which were related to the metabolic 

pathways of the GO term, were analyzed using KEGG (https://www.genome.jp/kegg/). 

The FLAD1 gene was selected with eENCD, and the other genes were selected using 

CPMTP. In the metabolic pathway whose ID was “hsa01100,” the pathways related to 

FLAD1, NDUFAB1, ACAA2, ALOX15, and MAT2A genes were “riboflavin metabolism” 

(Figure 29), “oxidative phosphorylation” (Figure 30), “fatty acid degradation” (Figure 

Table 13 GO terms in the cluster with a significant enrichment score using 

genes selected by eENCD and CPMTP. 

GO term 
Genes of 

eENCD 
Genes of CPMTP p-value 

Fatty acid 

metabolism 
 NDUFAB1, ACAA2, 

ALOX15 
0.009 

Metabolic 

pathways 
FLAD1 

NDUFAB1, ACAA2, 

ALOX15, MAT2A 
0.059 

Lipid metabolism  NDUFAB1, ACAA2, 

ALOX15 
0.084 

 

https://www.genome.jp/kegg/
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31), “linoleic acid metabolism” (Figure 32), and “cysteine and methionine metabolism” 

(Figure 33), respectively. 
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Figure 31 Fatty acid degradation pathway related to the ACAA2  

(Source: KEGG  https://www.genome.jp/kegg/). The black-colored box 

means the relationship of the ACAA2 gene in this pathway. 

 

 

https://www.genome.jp/kegg/
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Figure 32 Linoleic acid metabolism pathway related to the ALOX15 

(Source: KEGG  https://www.genome.jp/kegg/). The black-colored box 

means the relationship of the ALOX15 gene in this pathway. 

 

https://www.genome.jp/kegg/
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Figure 33 Cysteine and methionine metabolism pathway related to the 

MAT2A (Source: KEGG  https://www.genome.jp/kegg/). The black-colored 

box means the relationship of the MAT2A gene in this pathway. 

 

 

https://www.genome.jp/kegg/
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Riboflavin metabolism, oxidative phosphorylation, fatty acid degradation, linoleic acid 

metabolism, and cysteine and methionine metabolism were investigated for their 

association with MS in ID GSE24427. Riboflavin is associated with several neurological 

disorders due to mitochondrial dysfunction, and MS is one such disorder [121]. In an 

experiment using rat livers, riboflavin deficiency caused disruption of the myelin lamellae, 

and the mitochondrial fatty acid oxidation was suppressed and restored after supplying 

with riboflavin [122]. Because of this deficiency, the dehydrogenation of fatty acids is 

reduced, resulting in linoleic, linolenic, and arachidonic acid reduction [123]. Oxidative 

phosphorylation is a reaction catalyzed by multiprotein complexes encoded by the 

nucleus and mitochondria [124], and improves the decrease in muscle strength and 

exercise tolerance in patients with defects in oxidative phosphorylation [125][126][127]. 

Duatte et al. reported that transcripts related to oxidative phosphorylation were altered in 

the motor cortex of patients with MS [124]. Linoleic acid is significantly lower in 

erythrocyte ghosts in patients with MS [128]. Low glucose in fatty acid metabolism 

promotes fatty acid degradation into acetyl-CoA (beta-oxidation), which inhibits axon 

myelination, leading to the destruction of the central nervous system [129]. Homocysteine 

is associated with various neurological disorders [130], and Monti et al. reported that the 

administration of homocysteine had a positive effect on glucose metabolism in the brain 

of patients with MS [131]. 

Thus, riboflavin metabolism, oxidative phosphorylation, fatty acid degradation, 

linoleic acid metabolism, and cysteine and methionine metabolism were related to FLAD1, 

NDUFAB1, ACAA2, ALOX15, and MAT2A genes, respectively, associated with the 

biological process of MS. The number of genes selected with CPMTP, which were related 
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to MS, was higher than the number of genes selected with eENCD. In particular, fatty 

acid degradation related to the ACCA2 gene selected by CPMTP might be a potential 

therapeutic target for MS [132]. Therefore, CPMTP selected genes that provided more 

beneficial information about MS than eENCD. 

The predictive performance and function of genes selected by eENCD and CPMTP 

were compared using time-course gene expression profiles of MS. The predictive 

performance of CPMTP was higher than that of eENCD for almost all time points. 

CPMTP selected more genes reporting a relationship with MS than eENCD. Therefore, 

CPMTP might be better than eENCD as a biomarker discovery method. Gene expression 

levels at early time points are very important for accurate predictive performance because 

of breaking the hypothesis with CPMTP that more time points used in prediction 

improved the predictive performance. 
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5. Conclusion 
Time-course gene expression profiles using microarrays are more valuable than those 

collected at a single time point. Therefore, it is considered that biomarkers using time-

course gene expression profiles can predict therapeutic responses more accurately. 

However, biomarker discovery using time-course gene expression profiles is complex and 

challenging for three reasons: (1) the 𝑝 >> 𝑛  problem, (2) multicollinearity, and (3) 

accurate prediction at multiple time points. In this study, we challenged these problems 

and introduced two new methods for biomarker discovery: eENCD and CPMTP. 

In eENCD, the elastic net is expanded to select genes showing consistently distinct 

gene expression levels between the two groups at all time points for the problem (3). The 

elastic net is a type of sparse modeling method that solves problems (1) and (2). 

Evaluating eENCD with the two datasets collected from MS patients, the predictive 

performance of genes selected by eENCD was higher than that selected by the 

conventional method. These genes are related to MS, according to previous studies. 

However, eENCD has two problems: (4) genes with overlapping gene expression levels 

at some time points cannot be selected, and (5) using multiple prediction results at each 

time point is difficult. 

To solve the problem of eENCD, we developed a CPMTP. CPMTP uses the difference 

in gene expression levels between one and the subsequent time points. Thus, CPMTP can 

select genes with different time-course gene expression levels overlapping at some time 

points between the two groups. Another point of CPMTP was that Bayesian theory was 

used to integrate multiple prediction results at each time point. This integration makes a 

prediction using time-course gene expression profiles easy. According to previous studies, 



 

 

Prediction method for therapeutic response at multiple time points of gene expression profiles 

114 

 

in HCV and MS datasets, CPMTP could predict therapeutic response with higher 

predictive performance than the conventional method and select the genes related to HCV 

and MS. Moreover, it was found that an early prediction point was essential for accurate 

prediction. 

The eENCD and CPMTP were compared based on the predictive performance and 

function of genes selected by each method. This evaluation used time-course gene 

expression profiles of patients with MS. The results showed that the predictive 

performance of CPMTP was higher than that of eENCD. In addition, CPMTP could select 

more genes related to MS than eENCD. Thus, CPMTP was considered superior to 

eENCD. 

The eENCD and CPMTP exhibit potential as useful biomarker discovery methods. 

Future work should validate these methods using data from more patients and other 

diseases. Validation with cancer data for which several biomarkers have been identified 

is helpful for accurately evaluating the performance of genes selected by eENCD and 

CPMTP as biomarkers. Another direction for future work is establishing a pre-processing 

method for microarray data, such as normalization. Variations in gene expression levels 

across microarrays can affect the performance of biomarkers, but variations in 

microarrays are one of the main issues that are difficult to solve. Moreover, to allow the 

genes to be selected by eENCD or CPMTP as clinical biomarkers, a biomarker discovery 

method using computers and experiments both in vivo and in vitro is essential. 

In this study, eENCD and CPMTP were developed and evaluated. The proposed 

methods were found to predict therapeutic responses accurately and select genes related 

to the target of diseases from a massive gene in time-course expression profiles. Although 
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many validations are required for these genes to become clinical biomarkers, eENCD and 

CPMTP help develop new therapeutic strategies quickly and help reduce costs and time 

for development by providing candidate biomarker genes. In addition, it was suggested 

that early time points were essential for the accurate prediction of therapeutic responses 

through the evaluation of CPMTP. This suggestion helps develop clinical biomarkers 

from the perspective of determining time points used in in vivo/in vitro experiments. 

Therefore, eENCD and CPMTP can contribute to the development of new therapeutic 

strategies, such as personalized medicine using biomarkers. 
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