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This paper presents a method for tracking (estimation of position, velocity and size) of moving objects, such as cars, 
motorcycles, and pedestrians, in global navigation satellite systems (GNSS)-denied environments using light detection 
and ranging (LiDAR) mounted on motorcycle. 3D-point cloud environmental map is assumed to be acquired in advance. 
Distortion in scan data from the scanning LiDAR is corrected by estimating the pose (3D positions and attitude angles) 
of the motorcycle in a period shorter than the LiDAR scan period using normal distribution transforms (NDT) based map 
matching and the information from inertial measurement unit (IMU) via the extended Kalman filter (EKF). The corrected 
LiDAR scan data are compared with environmental map, and the LiDAR scan data of interest are extracted from the 
current LiDAR scan data based on map-subtraction method. The extracted scan data are mapped onto an elevation map, 
and moving objects are detected based on an occupancy grid method. Finally, detected moving objects are tracked based 
on the Bayesian Filter. Experimental results obtained in public road and university-campus road environments validate 
the effectiveness of the proposed method. 
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1. Introduction 

In mobile robotics and vehicle automation domains, 

tracking (estimation of position, velocity, and size) of 

moving objects, such as cars, motorcycles, and 

pedestrians, is an important technology to achieve the 

advanced driver assistant system (ADAS) and 

autonomous driving. A lot of studies of moving-object 

tracking using cameras, light detection and rangings 

(LiDARs), and radars have been actively conducted 1-3).  

When compared with camera-based tracking, 

LiDAR-based tracking is robust to lighting conditions 

and require less computational time. Furthermore, 

LiDAR-based tracking provides tracking accuracy better 

than radar-based tracking due to higher spatial resolution 

of LiDAR. From these reasons, we have presented a 

LiDAR-based tracking of moving objects 4, 5) . 

Most methods of moving-object tracking have 

been applied to ADAS and autonomous driving for cars 

and trucks (four-wheeled vehicles) traveling on flat road 

surfaces. Although moving-object tracking is required for 

advanced rider assist systems (ARAS) for motorcycles, 

there are few studies on moving-object tracking with 

motorcycle-mounted sensors 6-9).  

This paper presents a method of moving-object 

tracking using a scanning LiDAR mounted on a 

motorcycle. Moving-object tracking by a motorcycle-

mounted LiDAR is more difficult than that by a four-

wheeled vehicle-mounted LiDAR. Because the attitude 

of a motorcycle changes more drastically than that of a 

four-wheeled vehicle, the sensing accuracy deteriorates.  

The occupancy grid method 10) , in which the grid 

map is represented in the world coordinate frame, is 

usually applied to moving-object detection and tracking. 
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In order to perform accurate moving-object detection, it 

is necessary to accurately map LiDAR scan data obtained 

in the sensor coordinate frame onto a grid map using a 

vehicle's pose (position and attitude angle). Since the 

LiDAR obtains data by the laser scanning, all scan data 

within one scan cannot be obtained at the same time when 

the vehicle is moving or changing its own attitude. 

Therefore, if all scan data within one scan are mapped 

onto the world coordinate frame using the pose of the 

vehicle at a single time, distortion in the LiDAR scan data 

occurs 11). In addition, when the LiDAR is mounted on a 

motorcycle, the mapping accuracy deteriorates due to the 

large swing motion of the LiDAR. As a result, 

undetection and false detection of moving objects 

increase.  

In order to address these problems, our previous 

work 12) presented a moving-object tracking using a 

bicycle-mounted scanning LiDAR in open-sky 

environments. The self-pose of the bicycle was estimated 

every shorter period than LiDAR scan period using the 

pose information from global navigation satellite systems 

(GNSS)/inertial navigation system (INS) unit, and then 

using the pose estimates, the distortion in LiDAR scan 

data was corrected.  

Furthermore, the differences (subtracted scan data) 

were extracted between the current LiDAR scan data and 

the 3D-point cloud environment map, and only the 

subtracted scan data were mapped onto the grid map to 

accurately perform moving-object detection and tracking. 

The 3D-point cloud environment map were acquired in 

advance by our LiDAR-based simultaneous localization 

and mapping (SLAM)13,14). The effectiveness of the 

method was validated through experimental results 

obtained in open-sky environments. 

However, further improvement to our tracking 

system is needed. Although our previous work utilized 

the self-pose information from GNSS, the accuracy of 

GNSS positioning was decreased in urban and 

mountainous areas due to the blockage, reflection, and 

diffraction caused by buildings and mountains. To work 

well our moving-object tracking in GNSS-denied 

environments, in this paper, distortion in LiDAR scan 

data is corrected using normal distribution transforms 

(NDT) based map matching and the information from 

inertial measurement unit (IMU) via the extended 

Kalman filter (EKF) 15). In addition, this paper presents a 

moving-object tracking using motorcycle-mounted 

scanning LiDAR. Thus, this paper is an extension of our 

previous work 12) on map-subtraction based moving-

object tracking, which used a bicycle-mounted scanning 

LiDAR in GNSS environments. 

The rest of this paper is organized as follows. In 

Section 2, an overview of the experimental system is 

given. In Section 3, the method of distortion correction is 

described. In Section 4, method of detecting and tracking 

moving objects is described. In Section 5, experimental 

results are presented, followed by conclusions and future 

works in Section 6. 

 

2. Experimental System 
 

Fig. 1 shows an overview of our experimental 

motorcycle (Honda, Gyro Canopy). The top part of the 

motorcycle is equipped with a 32-layer LiDAR 

(Velodyne, HDL-32E) and an IMU (Xsens, MTi-300). 

The maximum range of the LiDAR is 70 m, the horizontal 

viewing angle is 360° with a resolution of 0.16°, and the 

vertical viewing angle is 41.34° with a resolution of 1.33°. 

LiDAR acquires 384 measurements (the 3D position of 

the object and reflection intensity) every 0.55 ms (at 2° 

horizontal angle increments). The period for the LiDAR 

beam to complete one rotation (360°) in the horizontal 

direction is 100 ms, and 70,000 measurements are then 

acquired in one rotation. 

The IMU outputs the attitude angle (roll and pitch 

angles) and angular velocity (roll, pitch, and yaw angular 

velocities) every 10 ms. The error in attitude angle and 

the angular velocity are less than +-0.3° and +-0.2°/s, 

respectively. 
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Fig. 1. Experimental system. 
 

3. Distortion Correction of LiDAR scan data 
 

3.1 NDT map matching 

Fig. 2 shows the flow of moving-object tracking. 

For moving-object tracking, the LiDAR scan data are 

mapped from the sensor coordinate frame onto the world 

coordinate frame using the self-pose (3D position and 

attitude angle) information of the motorcycle. For this, the 

accurate self-pose of the motorcycle is required. 3D point-

cloud environmental map acquired in advance by our 

LiDAR-based SLAM 13,14) is implemented on the 

motorcycle, and NDT map matching 16) is then used to 

estimate the self-pose in GNSS-denied environments as 

follows. 

For the i-th (i = 1, 2, …, n) measurement in the scan 

data, the position vector in the sensor coordinate frame is 

defined as ( , , )T
bi bi bi bix y zp  , and that in the world 

coordinate frame as ( , , )T
i i i ix y zp  . The following 

relation is then given: 

( )
1 1

i bip p
X                   (1)                            

where ( , , , , , )Tx y zX  is the pose of the motorcycle. 

(x, y,z)T  and T),,(  are the 3D position and attitude 

angle (roll, pitch, and yaw angles), respectively, of the 

motorcycle in the world coordinate frame. T(X) is the 

homogenous transformation matrix as follows: 
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Fig. 2. Flow of moving-object tracking. 

 
NDT map matching matches the current scan data 

that are obtained at the current time with the environment 

map using NDT scan matching. NDT scan matching 

conducts a normal distribution transformation for the 

LiDAR measurements (3D positions) in each voxel of the 

environmental map. It calculates the mean and covariance 

of LiDAR measurements of the environmental map. The 

pose of the motorcycle, X, can be calculated by 

maximizing the following likelihood function: 

n

i
iii

T
ii tt

1

1 ))('())('(
2
1exp qpΩqp    (2) 

where qi and Ωi are the mean and covariance, respectively, 

of the LiDAR measurement positions in the i-th voxel of 

the environmental map. pi’(t) is the current scan data in the 

i-th voxel. 

Since the environmental map and the current scan 

data contain a lot of scan data, it takes much computational 

cost for the NDT map matching. Therefore, to reduce the 

computational cost, a voxel grid filter 17) is applied to 

downsize scan data related to the environment map and 

current scan data. Thereafter, scan data are mapped onto 

the 3D grid map (voxel map). Here, the voxel used for the 

voxel grid filter is a cube with a side length of 0.2 m, 

whereas the voxel for the voxel map is a cube with a side 

length of 0.6 m. 

3.2 Distortion correction 

The self-pose of the motorcycle is calculated every 

100 ms (LiDAR scan period) based on NDT map 
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matching. The scan data is acquired 180 times every 0.55 

ms during LiDAR scanning. During LiDAR scanning, all 

the scan data within one scan cannot be obtained at the 

same time when the motorcycle is moving or changing its 

attitude. Therefore, if entire scan data within one scan are 

mapped onto the world coordinate frame based on the 

pose of the motorcycle at a single time, distortion arises 

in the mapping.  

Therefore, the distortion in the scan data is 

corrected by EKF 15). Fig. 3 shows the flow of distortion 

correction of LiDAR scan data. The LiDAR scan period 

(100 ms) is denoted as τ, the IMU observation period (10 

ms) as ΔτIMU, and the scan data observation period (0.55 

ms) as Δτ. The method of correcting distortion in the scan 

data obtained from time ( 1)t   to 

( 1) 180t (= t ) is hereby described.  

Using the information from the pose of the 

motorcycle obtained by NDT map matching every τ and 

the IMU information obtained every ΔτIMU, the EKF 

estimates the poses ( 1)ˆ ( 1)k tX  at the time

( 1) ( 1) IMUt k   and ( )ˆ ( 1)k tX   at )1(t  +

IMUk  (= ( 1) ( 1) IMUt k  +18Δτ), where k = 1–

10.  

From these estimates, the self-pose ( 1)ˆ ( 1, )k t jX  

at )1(t  + ( 1) IMUk  jΔτ (where j = 1–17) is 

interpolated. The scan data ( 1)( 1, )k
bi t jp  (where i = 1, 2, 

…, n) obtained at )1(t  + ( 1) IMUk  jΔτ is 

transformed to ( 1)( 1, )k
i t jp  as follows: 

( 1) ( 1)
( 1)( 1, ) ( 1, )ˆ( ( 1, ))

1 1

k k
ki bit j t j

t j
p p

X  (3) 

 

 
Fig. 3.  Flow of distortion correction. 

 
Fig. 4.  Map-subtraction method. 

 

Using the pose estimate (10)ˆ ( 1)tX   at t   (=

( 1) 10 )IMUt  , the scan data ( 1)( 1, )k
i t jp   in the 

world coordinate frame is again transformed to the scan 

data  in the sensor coordinate frame at t by 

* ( 1)
(10 ) 1( ) ( 1, )ˆ( ( 1))

1 1

k
bi it t j

t
p p

X       (4) 

  obtained by Eq. (4) is the scan data, in 

which distortion is corrected. For the EKF, a constant 

velocity model is used as the motion of the motorcycle 15). 
 

4. Moving-Object Detection and Tracking 

 

Fig. 4 shows the flow of map-subtraction method. 

The scan data corrected by Eq. (4) at the current scan 

(current scan data) are matched with the environment map 

using NDT map matching, and the scan data is subtracted 

by comparing the current scan data with the environmental 

map. 

An elevation map is applied to detect moving 

objects; the scan data extracted based on map-subtraction 

are mapped onto the elevation map represented in the 

world coordinate frame. In this study, the cell of the 

elevation map is a square with a side length of 0.3 m. 

A cell in which scan data exist is called an occupied 

cell. For scan data related to moving objects (moving scan 

data), the time to occupy the same cell is short, whereas 

for scan data related to static objects (static scan data), the 

)(* tbip

)(* tbip
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time is long. Therefore, by using the occupancy grid 

method based on the cell occupancy time 4), cells that are 

occupied by the moving scan data are detected (moving 

cells) and clustered (moving-cell group).  

When moving-object detection is completed, 

tracking (estimating position, velocity, and size) of 

moving objects is performed5). In this paper, the shape of 

a tracked object is represented by a cuboid with a width 

W, a length L, and a height H as shown in Fig. 5.  

As shown in Fig. 6, an XvYv-coordinate frame, on 

which the Yv-axis aligns with the heading of a tracked 

object is defined. From clustered moving cells, the width 

Wmeas and length Lmeas are measured. 

When a moving object is perfectly visible, its size 

can accurately be estimated from the measurements Wmeas 

and Lmeas. In contrast, when it is partially occluded by 

other objects, its size is incorrectly estimated. Therefore, 

the size of a partially visible object is estimated using the 

following equation: 

( ) ( 1) ( ( 1))
( ) ( 1) ( ( 1))

meas

meas

W t W t G W W t
L t L t G L L t

          (5)  

where t and t-1 are time steps. G is the filter gain. The 

height of the moving-cell group uses as the height 

estimate H. 

 

 
Fig. 5.  Cuboid around the tracked object (car). 

 

 
Fig. 6. Estimated size. Squares and arrow indicate 
moving cells and vehicle heading direction, respectively. 
Rectangle and circle indicate estimated size and centroid. 

The centroid position of the rectangle estimated 

from Eq. (5) is define by ),( yx  in the world coordinate 

frame. From the centroid position, the position and 

velocity of the object are estimated in the world 

coordinate frame using the Kalman filter under the 

assumption that the object is moving at an almost 

constant velocity 5).  

To track objects in crowded environments, data 

association (i.e., one-to-one or one-to-many matching of 

tracked objects and moving-cell groups) is needed. The 

global-nearest-neighbor (GNN) based and rule-based 

data association are utilized to accurately perform data 

association 5).  

 
5. Experimental Results 

 

Two experiments are conducted using sensor data 

sets in ref. 18) to validate the effectiveness of the 

proposed method. The first experiment (experiment 1) is 

conducted on a public road, as shown in Fig. 7 (a). The 

maximum speed of the motorcycle is 40 km/h, and the 

distance traveled is 1200 m. On the road, there are 18 

pedestrians, 15 two-wheeled vehicles, and 38 cars. 

Fig. 8 shows the tracking results of moving objects 

in the intersection shown in Fig. 7 (b). The rectangle 

indicates the estimated size of the moving object, and the 

stick at the rectangle indicates the moving direction of the 

moving object obtained from the velocity estimate. The 

black dots indicate the LiDAR scan data Fig. 9 shows the 

attitude angles and angular velocities of the motorcycle 

moving in the intersection. 

When the motorcycle turns left at the intersection, 

the maximum roll angle is 10°, and the maximum roll 

angular velocity is 14.5°/s. It is clear from Fig. 8 that even 

when the motorcycle attitude changes significantly by 

turning left, static data originating from building walls 

and stopped car are removed, and the moving objects are  

tracked. 

The motorcycle was moved three times on the road 

shown in Fig. 7 (a). Total number of moving objects are  
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(a) Overall 

 

 
(b) Intersection 

 
Fig. 7. Photo (top view) of the environment (experiment 
1). The white line indicates the movement path of the ego-
vehicle (motorcycle). 

 

 

Fig. 8. Estimated track and size of the moving objects (top 
view). 
 
211 (133 cars, 28 two-wheeled vehicles, and 50 

pedestrians). We compare the tracking performance in the 

following cases. 

Case 1: Tracking with distortion correction and 

map subtraction (proposed method),  

Case 2: Tracking with distortion correction and 

without map subtraction,  

Case 3: Tracking with map subtraction and  

 
(a) Roll (bold line) and pitch (dashed line) angles 

 
(b) Roll (bold line), pitch (dashed line), and yaw (dotted 
line) angular velocities 

Fig. 9. Attitude angle and angular velocity of the ego-
vehicle (experiment 1). 

 
Table 1. Total number of correct and incorrect tracking 
(experiment 1). 

 Correct 
tracking Untracking False 

tracking 
Case 1 210 1 18 
Case 2 210 1 34 
Case 3 208 3 153 
Case 4 209 2 40 

 

without distortion correction, and  

Case 4: Tracking without either method. 

Table 1 shows the tracking result, where untracking 

means that tracking of moving objects fails, and false 

tracking means that static objects are tracked. It is clear 

from the table that the proposed method (case 1) provides 

the tracking performance better than the other cases. 

Since experiment 1 is conducted on a public road, 

the motorcycle attitude is significantly changed only 

when turning at intersection shown in Fig. 7 (b). 

Therefore, to investigate tracking performance when the 

motorcycle experiences a large attitude change, another  
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Fig. 10. Photo (bird’s-eye view) of the environment 
(experiment 2). The white line indicates the movement 
path of the ego-vehicle (motorcycle). 
 

 
(a) Roll (bold line) and pitch (dashed line) angles 

 

 
(b) Roll (bold line), pitch (dashed line), and yaw (dotted 
line) angular velocities 

Fig. 11. Attitude angle and angular velocity of the ego-
vehicle (experiment 2). 
 

Table 2. Total number of correct and incorrect tracking 
(experiment 2). 

 Correct 
tracking Untracking False 

tracking 
Case 1 236 1 3 
Case 2 235 2 8 
Case 3 232 5 51 
Case 4 232 5 25 
 

 

experiment (experiment 2) is conducted on our university 

campus, where the motorcycle is frequently ridden in 

zigzag paths. Fig. 10 shows the movement path of the 

motorcycle. The distance traveled by the motorcycle is 

500 m, and the maximum speed is 25 km/h. The attitude 

angle and angular velocity of the motorcycle are shown 

in Fig. 11. The motorcycle was moved five times on the 

road. Total number of moving objects are 237 (10 cars 

and 227 pedestrians). 

Table 2 shows the tracking result. From this table, 

it can be seen that our proposed method (case 1) can 

reduce the amount of false tracking even when large 

swing motion of motorcycle. 
 

6. Conclusions and Future Works 
 

This paper presented a moving-object tracking 

method with the motorcycle-mounted scanning LiDAR 

in GNSS-denied environments. The distortion in scan 

data from the scanning LiDAR was corrected by 

estimating the pose of the motorcycle in a period shorter 

than the LiDAR scan period using NDT based map 

matching and the IMU information via EKF.  

By comparing the corrected LiDAR scan data with 

the environment map via the NDT scan matching, the 

scan data of interest were extracted and mapped onto the 

elevation map to detect and track moving objects. 

Experimental results obtained in public road and 

university-campus road environments by a 32-layer 

LiDAR mounted on a motorcycle showed that the 

distortion correction in LiDAR scan data and map 

subtraction could provide the tracking accuracy better 

than conventional methods. 

Although the map-subtraction method can improve 

the tracking performance, it requires an environment map 

in advance. To enable the accurate tracking of moving 

objects in first-visit environments, we presented a 

dynamic background subtraction (DBS)-based extraction 

method18), where a local map was sequentially built using 

NDT-based SLAM, and the scan data of interest were 
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extracted by subtracting the local map from the current 

LiDAR scan data. As a further work on moving-object 

tracking, we need to compare the tracking performance 

of the map-subtraction based method proposed in this 

paper and the DBS-based extraction method through 

detailed experiments under various traffic environments.  

Our contribution of this paper is also the accurate 

tracking of moving objects even in large swing motion of 

the LiDAR. As future works, we will thus extend the 

proposed method to moving-object tracking using 

LiDAR mounted on vehicles and robots that swing 

motion frequently occurs, such as narrow tilting vehicles, 

uneven terrain vehicles, walking robots, and drones. 
This study was partially supported by the KAKENHI 

Grant #18K04062, the Japan Society for the Promotion of 

Science (JSPS). 
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