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Many physical, chemical and biological systems exhibit a cooperative or sigmoidal

response with respect to the input. In biochemistry, such behavior is called an allosteric

effect. Here we demonstrate that a system with such properties can be used to discrimin-

ate the amplitude or frequency of an external periodic perturbation or input. Numerical

simulations performed for a model sigmoidal kinetics illustrate that there exists a nar-

row range of frequencies and amplitudes within which the system evolves toward sig-

nificantly different states. Therefore, observation of system evolution should provide

information about the characteristics of the perturbation. The discrimination properties

for periodic perturbation are generic. They can be observed in various dynamical sys-

tems and for different types of periodic perturbation.

Functionality of living organisms is based on decision making. Chemical reactions

stand behind information processing in biological systems. Therefore, it is interesting

to consider reaction models that show ability to make decisions by evolving towards

significantly different states, depending on conditions at which those reactions proceed.

It has been recently demonstrated that a system exhibiting cooperative or sigmoidal re-

sponse with respect to the input can be used as a discriminator of the amplitude or the

frequency of its external periodic perturbation. Here we consider a few models of al-

losteric enzymatic reactions and discuss their applicability for sensing the frequency or

the amplitude of the reagent inflow. On the basis of numerical simulations we compare

results for a full reaction model with its reduced, easier to analyze version.



Drying of an aqueous suspension containing fine granules leads to the formation of

a circular pattern, i.e., the coffee-ring effect. Here, we report the effect of mechanical

rotation with drying of an aqueous suspension containing a large amount of granular

particles as in the Turkish coffee. It was found that wavy fragmented stripes, or a “wag-

gly pattern”, appear in the early stage of the drying process and a “polka-dot pattern”

with many small circles is generated in the late stage. We discuss the mechanism of

these patterns in terms of the kinetic effect on micro phase-segregation. We suggest that

the waggly pattern is induced through a mechanism similar to spinodal decomposition,

whereas polka-dot formation is accompanied by the enhanced segregation of a water-

rich phase under mechanical rotation.
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Chapter 1

General Introduction

Moreover this investigation seems likely to make a substantial contribution to

the whole body of truth, and particularly to the study of nature; for the soul is in

a sense the principle of animal life. – Aristoteles[1, 2]

1.1 Introduction

1.1.1 Perspectives

Rhythm is ubiquitous in nature. Living system, even a living cell, has daily activities

while the Sun revolves. These diurnal cycles are considered to be supported by circa-

dian rhythm. Living organisms have adapted to rotation of the Earth, whereby they can

predict its changing of environments. Moreover there are annual changes by revolution

of the Earth round the Sun. Several flowers such as cherry blossom bloom once a year

in Spring, perceiving the gradual changing of environment, for example the length of

day time, although it can be cloudy or rainy. Time events surrounding living matter are

not only year-to-year or day-to-day but also more frequent or could be sudden or with

fluctuations. What does enable living organism to perceive the essential information of

time events? This dissertation will propose its possibilities.

What is the first life form on the Earth with rhythm? Cyanobacteria have been found in
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the oldest known fossils in Western Australia, which are around 3.5 billion years old[3],

whereas the Earth is estimated to be circa 4.5 billion years old[4–7].

Cyanobacteria are considered not only as the possible first photosynthetic organism

but also as the oldest life form having circadian clock. Cyanobacteria such as Syne-

chococcus elongatus PCC 7942 exhibit 24-h rhythms of gene expression that are con-

trolled by an endogenous circadian clock that is mechanistically distinct from those de-

scribed for diverse eukaryotes[8].

‘The lock-and-key theory’ is a commonly accepted model in cell biology that cells

receive external information on cell membrane and then maintain the dynamic functions

by networks of enzyme and substrate alike lock and key[9]. In differentiation of cell

or cancelation, however, it has been revealed that cell responses are observed to be all-

or-none, and activities of hundreds of genes are considered to be controlled ON/OFF

like.

The theoretical approach to the entropy of non-equilibrium open systems is difficult

because it is difficult to count the number of microscopic states when the system is mov-

ing or flowing. However, a typical example of a system that maintains spatio-temporal

order not by its own autonomous nature but by interaction with the outside is the living

organism on the earth, which lives in homeostasis under the time changes of day and

night and seasons caused by the rotation and revolution of the earth. If it were not for

the changes of day and night and the seasons, would we have the creatures we have

today? How can we maintain ourselves as a non-equilibrium open system in a changing

environment? Against the background of these questions, the following studies, which

constitute this dissertation, set up specific problems for systems that are given a period

from the outside, and tackled them by combining theory and experiment as a challenge

to the problems described above. The following three chapters give an overview of these

studies.

Spontaneous emergence of spatio-temporal order is a phenomenon specific to non-

equilibrium open systems, i.e. systems that exchange energy and matter with the outside
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world. Herein, Spontaneous refers not only to the autonomous production of an object

without external forces but also to the process by which an object progresses naturally,

i.e. to a more stable state, over time even under fluctuations[10–13] or periodic envir-

onmental changes.

1.1.2 Organisation of the thesis

The remainder of this dissertation is organised into a section hereof for backgrounds and

four chapters as follows.

Chapter 2 presents the results of mathematical modelling and numerical simulations

of the emergence of temporal order (rhythm) under periodic environmental changes and

discrimination of its periodical parameters as ON/OFF switching.

Chapter 3 considers a few models of allosteric enzymatic reactions and discuss their

applicability for sensing the frequency or the amplitude of the reagent inflow.

In Chapter 4, the spontaneous emergence of a spatio-temporal order (pattern) during

the drying of a suspension on an inclined turntable is shown employing experiments and

theoretical analysis.

Finally, chapter 5 concludes these chapters above and provides an outlook for the

future.

1.2 Backgrounds

What is Life?, written by an Austrian-Irish physicist Ervin Schrödinger, said that “what

an organism feeds upon is negative entropy”[14, 15].Plants have their nutrition as the

most potent supply of ‘negative entropy’ in the sunlight.

The notion of entropy S was introduced into science by Rudolf Clausius (1822–1888)

in 1850–1865. The change of entropy can be written as:

dS = δQ

T
(1.1)
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where δQ is the heat obtained by the system at the absolute temperature T in the

quasi-equilibrium process. Entropy measures irreversible dissipation of energy per unit

temperature.

Ludwig Boltzmann (1844–1906) first stated the possible relationship between ther-

modynamic entropy and the microscopic properties of matter in his kinetic theory of

gases:

S = kB ln W (1.2)

where kB is Boltzmann’s constant, and W is the number of possible microstates cor-

responding to the macroscopic state of the system.

In an isolated system having no interaction with the environment, the entropy produc-

tion in a body is always above zero (the second law of thermodynamics), and eventually

equilibrium will be reached and no macroscopic spatio-temporal structure will emerge.

In contrast, in order to maintain temporal and spatial order, energy must be taken in from

the outside and entropy must be disposed of outwards. Let us quote [14], “New laws

to be expected in the Organism”. Such a system was named a “dissipative structure”

by the Nobel laureate in chemistry, Prigogine. This is also known as a nonequillibrium

open system. Beyond Schlödinger’s predictions for living organisms, examples of self-

organisation in non-living systems have been reported since the middle of the twentieth

century. In non-equilibrium open systems, spatio-temporal patterns are generated spon-

taneously because a uniformly stationary state is unstable. So far, linear non-equilibrium

thermodynamics and statistical mechanics have been established for equilibrium and

near-equilibrium systems, such as the free energy minimization principle and the ex-

tremal principles of entropy production rate (Lars Onsager[16, 17], Ilya Prigogine[18–

20], Hans Ziegler[21] et al.). However, the “far-from-equilibrium system” has not yet

been systematised, and researchers in various fields are actively working on this problem

system by theoretical, experimental, and numerical simulations, and by using various

phenomena as subjects.
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Chapter 2

Discrimination of time-dependent

inflow properties with a cooperative

dynamical system

2.1 Introduction

Bistability and hysteresis are commonly observed in physics, chemistry and biology [1–

6]. Let us assume that a system has two stable states S1 and S2 and that an increase in the

value of control parameter λ above the threshold λ1 triggers the transition from S1 to S2,

whereas the reverse transition from S2 to S1 occurs if the value of the control parameter

drops below λ2. Such a system can obviously be used as a discriminator of the control

parameter value. For example, if the initial state isS1 and after some timewe observe the

system in S2, then at some point the value of the control parameter necessarily exceeded

λ1. However, if only time-monotonic changes in the value of the control parameter are

considered, then the system discrimination ability is reduced to just two values ; λ1 and

λ2.

In this paper we demonstrate the suitability of a dynamical system characterized by
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sigmoidal kinetics for discrimination-oriented applications, under a new strategy of im-

posing a periodic perturbation or input on a cooperative system. It has been reported

[7–9] that periodic perturbations can significantly change the time evolution of a non-

linear system. As a discriminator prototype, we consider a two-variable system in which

the inflow of one of the variables is a control parameter. Numerical simulations reveal

a non-trivial property of such a system: a marginal change in the inflow parameters

(amplitude or frequency) can switch the response of a cooperative system between dif-

ferent branches in the stage diagram. The frequency at which such switching occurs is a

monotonic function of the inflow amplitude. Therefore, at a fixed amplitude of periodic

inflow, the observation of a transition between different types of oscillatory evolution of

the system provides information which allows us to discriminate the inflow frequency.

The above discussion does not necessarily limit the range of frequencies that can be

discriminated by the observation of transitions between different types of oscillations

Similarly, for a fixed frequency of periodic inflow, transitions between different types

of system oscillations occur within a narrow range of amplitudes. The transition can be

used to discriminate the inflow amplitude, but for the model considered here, the useful

range of such discrimination is rather limited.

In numerical simulations, we consider simple system dynamics defined by a single

sigmoidal term expressed by a rational function, which is typical for enzymatic reac-

tions [10–14]. In such reactions the appearance of sigmoidal kinetic behavior is usually

interpreted to be the result of the interaction of substrates with enzymes through positive

cooperative binding. Modeling of cooperative binding leads to the Hill equation [10]:

θ = [L]n

Kd + [L]n (2.1)

where θ is the fraction of ligand binding sites filled, [L] is the ligand concentration, Kd

is the apparent dissociation constant derived from the mass action law, and n is the Hill

coefficient which represents the degree of cooperativity. If n = 1, there is no cooper-

ativity; for n > 1, the cooperativity is positive. Kinetics with sigmoidal behavior are

not limited to enzymatic reactions. This also describes the response of various biological
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systems to external stimuli, including the effect of drug delivery, which is an interest-

ing topic in pharmacology. Among the many experimental studies that have reported

sigmoidal behavior, the Hill coefficient n usually has a value between 2 and 4 [10–20].

Here we selected n = 3 for the numerical simulations presented below.

The paper is organized as follows. In the next section, we consider a bistable model

and study its time evolution as a function of the amplitude and frequency of periodic

inflow. We demonstrate how the system can be used as a discriminator and discuss

the sources of discrimination errors. In the final section we argue that the observed

phenomenon is generic and discuss its potential applications.
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2.2 The response of a model dynamical system to

periodic perturbations

Let us consider a dynamical system of two variables (x(t), y(t)) defined by a set of

differential equations:

dx

dt
= g(x, y, t) = −αx + y + A · (sin(2πft + φ0) + 1) · Θ(t) (2.2)

dy

dt
= h(x, y) = 1

ε
· ( x3

1 + x3 − y) (2.3)

In Eq.(2.2), the last term I(t) = A · (sin(2πft + φ0) + 1) · Θ(t) describes a periodic

inflow of x with frequency f and initial (for t = 0) phase φ0. Θ(t) is the Heaviside step

function. We assume that the there is no inflow for t < 0, and it is switched on at t = 0.

If φ0 = 3 · π/2, then I(t) is a continuous function. In this case, I(t = 0) = 0. It then

increases and finally oscillates. For any other phase, the inflow term is not continuous

at t = 0; for example, if φ0 = π/2 and then I(t = 0) = 2 · A. I(t) then decreases and

finally oscillates. The inflow term is always non-negative. For t > 0 the time average

of I(t) equals A and is independent of the frequency and the initial phase. If the inflow

amplitude A = 0, then (x = 0, y = 0) is the only steady state of Eqs.(2.2,2.3) and is

stable. In the following analysis, we assume that the stable state of the system without

flow is the initial state for the simulated evolution.

Initially, let us consider the time evolution of the system for a constant inflow I(t) =

A > 0 for t ≥ 0 (thus, f = 0 and φ0 = 0). The characteristics of the time evolution de-

pend on the amplitude of the inflow term and on the initial state. In this case, the nullcline

g(x, y, t) = 0 is the time-independent line with a definite slope determined by the value

of α and a shift which depends on the inflow amplitudeA. Figure 2.1 shows the location

of nullclines, calculated for ε = 1, α = 0.55 and a few different values of the inflow. Let

us assume that A1 and A2 are the amplitudes for which the BN g(x, y) = 0 nullcline is

tangential to the sigmoidal-shaped nullcline h(x, y) = 0. The stable stationary states of
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the system can be located on two branches on the h(x, y) = 0 nullcline. One contains all

of the points of the h(x, y) = 0 nullcline located between point (0, 0) and the tangency

point (x1, y1). We will call it the lower stable branch (LSB). The other is the upper

stable branch (USB), and is formed by all of the points of the h(x, y) = 0 nullcline loc-

ated above (x2, y2). The stationary states located on the nullcline between (x1, y1) and

(x2, y2) are unstable. In the case when A < A2, the only stationary state is located on

the lower stable branch, so the system converges to the stable state y∞ = limt→∞ y(t)

such that y∞ ≤ y1 regardless of the initial state. Similarly, for A > A1, the single BN

stationary state is located on the upper stable branch, and for all initial states the system

converges to the stable state y∞ ≥ y2. For A2 ≤ A ≤ A1, the stationary state that is

approached for t → ∞ depends on the initial state and on the partition of the phase space

determined by the separatrices of the saddle point which is located on the middle branch

of the h nullcline. This analysis also applies when the frequency of inflow oscillations

is very high. In such a case, the flow oscillations are much faster than both the system

dynamics and the system responses to the time-averaged value of the inflow A.

For sufficiently slow oscillations of the inflow ( 0 < f � 1), the system can follow

the slowly relocating stable state, the position of which varies according to the instant-

aneous value of the inflow. If the initial state of the system is (x(0) = 0, y(0) = 0)

and 2 · A ≤ A1, then y(t) ≤ y1 for all t. Therefore, the system state oscillates along

the lower stable branch of the h(x, y) = 0 nullcline with the period defined by the fre-

quency of inflow oscillations. If 2 · A > A1, then there are intervals of time within

which the system has a single stationary state located on the upper stable branch. Dur-

ing a single oscillation cycle, there are moments of time t1 and t2 at which y(t1) ≤ y1

and y(t2) ≥ y2, and thus oscillations that extend over both stable branches are expected.

For moderate values of f , the system dynamics are too slow to closely follow the

changes in the inflow value. In such a case, oscillations around a stable state located in

the lower stable branch that extend to the unstable branch, as well as oscillations around

a stable state located in the upper stable branch that extend to the unstable branch, should
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be observed. This is confirmed by numerical simulations.

The complexity of oscillations observed for a constant inflow amplitude A = 0.12

(thus A > A1/2 but A < A1 ) as a function of flow frequency is illustrated in Fig. 2.2.

As discussed above, for the selected amplitude and a low frequency of inflow oscilla-

tions, the system dynamics follow the time-dependent stationary state and oscillations

of y(t) extend over both stable branches of the h(x, y) = 0 nullcline. For interme-

diate frequencies, oscillations accumulate on the upper stable branch of the nullcline

and the minimum value of y(t) increases with frequency. Then, at a certain frequency

fc ( for the selected amplitude of oscillations, fc ≈ 0.0312 ), the oscillations switch

from the upper to the lower stable branch of the h(x, y) = 0 nullcline. The trans-

ition between oscillations located on different stable branches is quite pronounced and

should be easily detected in experiments with a system exhibiting hysteresis. Therefore,

it becomes apparent that a cooperative system can discriminate the frequency of a per-

turbation if its amplitude remains fixed. Numerical simulations have also demonstrated

that the frequency of the transition between oscillations on the USB and LSB depends

on the phase φ0. The right upper corner of Fig. 2.2 shows two types of oscillations

that are observed for f = 0.031. If φ0 = 0, the system oscillates at the upper stable

branch, but if φ0 = 3π
2 , oscillations around the lower stable branch are seen. Fortu-

nately for the application of this approach to discrimination, the interval of frequencies

within which phase-dependent evolution is observed is very narrow. For A = 0.12, it

is [0.0306, 0.0312]. The width of this interval (∆f ∼ 0.0006) defines the precision in

frequency discrimination.

The dynamical system considered here can also be used to discriminate the amplitude

of an applied perturbation. Figure 2.3 shows the time evolution of y(t) for a few values

of perturbation amplitude A and a fixed inflow frequency (f = 0.05). As expected, for

small amplitudes (A ≤ 0.1122) the oscillations of y(t) are limited to the LSB. For larger

amplitudes (0.1122 < A < 0.1361), the range of observed values of y(t) increases, but

the oscillations are still anchored on the LSB. Finally, if 0.13617 ≤ A, the oscillations
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move onto the USB. The transition between the different types of oscillation is quite

pronounced and can be used to discriminate the value of amplitude. Here, similar to the

cases illustrated in Fig. 2.2, we observe a narrow interval of amplitudes (∆A ∼ 0.0001)

within which the type of oscillation depends on the initial phase.
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Figure2.1 Positions of nullclines for the dynamical system defined by Eqs.(2.2,2.3).

The model parameters are: ε = 1, α = 0.55, f = 0 and φ0 = 0. The nullcline

h(x, y) = 0 is plotted with a solid line. The nullcline g(x, y, t) = 0 is shown for

a few cases: A = 0 ( dotted line), A = A2 = 0.02603 ( short-dashed line), A =

A1 = 0.16445 ( long-dashed line). For the selected parameters of the model, the

variables at tangential points are (x1, y1) = (0.47368, 0.09607) and (x2, y2) =

(1.23531, 0.65339).
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Figure2.2 Time evolution of the dynamical system described by Eqs.(2.2,2.3) as

a function of the inflow frequency f for a fixed amplitude A = 0.12. The model

parameters are: ε = 1, α = 0.55. Tics and numbers on the frequency scale mark

transitions between different types of oscillation. The initial phase is φ0 = 3π/2 for

all cases except on the left in the upper row, for which φ0 = 0. The horizontal dashed

lines mark the values of y1 and y2.
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Figure2.3 Time evolution of the dynamical system described by Eqs.(2.2,2.3) as a

function of the inflow amplitudeA for a fixed frequency f = 0.05. Tics and numbers

on the frequency scale mark transitions between different types of oscillation. The

initial phase is φ0 = 3π/2 for all cases except at the top in the right column, for

which φ0 = 0. The horizontal dashed lines mark the values of y1 and y2.
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To give amore precise description of system evolution, let us introduce a classification

of oscillations based on the minimum and maximum values of y(t) observed over a long

time interval for which the evolution has reached a stationary state. We define:

ymin = mint∈[tmin,tmax] y(t) (2.4)

and

ymax = maxt∈[tmin,tmax] y(t) (2.5)

Initially, we used tmin = 1000, where tmax = tmin + 1000. Next we repeated the

calculations for tmin = 2000. If there is a significant discrepancy in ymin, ymax ob-

tained for these time intervals, then the procedure is repeated with tmin increased by an

additional 1000 time units until agreement is attained.

The type of oscillation is classified through the comparison of ymin and ymax with

the values of y1 and y2, as illustrated in Fig. 2.4. The classification of oscillations is

summarized in Table2.2.

Table2.1 The classification of oscillations

oscillation class condition

(I)-1 LSB ymin ≤ ymax < y1 (oscillations limited to LSB)

(I)-2 ymin < y1, y1 ≤ ymax < y2

(III) ymin < y1, ymax ≥ y2

(II)-2 y1 ≤ ymin < y2, ymax ≥ y2

(II)-1 USB ymax ≥ ymin > y2 (oscillations limited to USB)

(IV) y1 ≤ ymin < y2, y1 ≤ ymax < y2

As shown in Fig. 2.4, the transitions between oscillation types (I)−1LSB ↔ (I)−2
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and (I) − 2 ↔ (III) are continuous because they result from an increase or decrease in

the ymax value. Similarly, the transitions between oscillation types (III) ↔ (II) − 2

and (II) − 2 ↔ (II) − 1USB are continous because they are related to an increase or

decrease in the ymin value. In actual experiments, these transitions are difficult to detect

because they require highly accurate data acquisition. On the other hand, the transition

(I) − 2 ↔ (II) − 1USB, on which the discrimination is based, can be easily detected

because it is related to a discontinuous jump between ymax < y2 and ymin > y2.
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Figure2.4 Geometrical illustration of types of oscillation in the classification based

on ymin and ymax. The dotted lines mark y1 = 0.09607 and y2 = 0.65338.
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Figure 2.5 illustrates the regions of parameters (f, A) for which a given oscillation

pattern is observed in a model characterized by α = 0.55 and ε = 1. The thick line

separates the region of the phase space (f, A) in which class (I)-2 oscillations are ob-

served, from the region where class (II)-1 USB oscillations appear. Let us denote points

on this line as (fc, Ac). The amplitude Ac, when treated as a function of fc, is a continu-

ous, monotonically increasing function Ac = G(fc). Therefore, the inverse function

fc = G−1(Ac) exists. Our discrimination method is based on the determination of con-

ditions in which a small change in fc or Ac qualitatively changes the character of the

time evolution to force a transition between (I) − 2 and (II) − 1USB type oscillations.

Let us assume that we want to measure the unknown inflow frequency and that we can

regulate the inflow amplitude. The following procedure can be applied. Initially, we set

a low amplitude so the system oscillates on the LSB (type (II) − 1 oscillations). Next,

the amplitude is increased up to the moment Az when oscillations of type (II)−1USB

are detected. The frequency of inflow fz can be estimated as fz = G−1(Az). This

method works for all frequencies greater than f0, which corresponds to the tip of the

(II) − 1USB region ((f0, A0)). The accuracy of the estimation depends on the fre-

quency and is high where the amplitude Ac is a rapidly increasing function of fc, here

for 0.02 ≤ fc ≤ 0.1. This system can also be used to determine the amplitude of inflow

when we can control the frequency. Now we set a low frequency and the system exhib-

its type (III) oscillations. Next, the frequency is increased up to the moment fy when

oscillations of type (I)−2 are detected. The amplitude of the inflowAy isAy = G(fy).

Unlike for frequency, the range of discriminated amplitudes does not extend outside the

interval [A0, A1].

The phase diagrams, similar to that in Fig. 2.5 but for ε = 1/5 and ε = 5, are shown in

Fig. 2.6 and 2.7 respectively. The results are qualitatively identical to those in Fig. 2.5,

suggesting that the described changes in the system oscillations are generic and should

also apply to other systems with hysteresis influenced by a periodic perturbation.
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Figure2.5 Phase diagram showing the type of oscillation as a function of inflow

parameters (f, A). The horizontal lines indicate A1 = 0.16445 and A1/2 . The

model parameters are ε = 1 and α = 0.55. The thick solid line marks the boundary

between oscillation classes (I) − 2 and (II) − 1USB. The transition between these

oscillations is used to determine the parameters of inflow.
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Figure2.6 Phase diagram showing the type of oscillation as a function of inflow

parameters (f, A). The horizontal lines indicate A1 = 0.16445 and A1/2 . The

model parameters are ε = 1/5 and α = 0.55.
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Figure2.7 Phase diagram showing the type of oscillation as a function of inflow

parameters (f, A). The horizontal lines indicate A1 = 0.16445 and A1/2 . The

model parameters are ε = 5 and α = 0.55.
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2.3 Conclusions

We have described how the time evolution of a cooperative system is dependent on the

frequency and amplitude of a periodic stimulus. There is a narrow range of these para-

meters within which the characteristics of this evolution change in a qualitative manner:

oscillations around one stable branch change into oscillations on another branch. This

phenomenon can be used to determine the amplitude or frequency of an applied perturb-

ation. As for the numerical framework, we evaluated the effect of the rhythmicity of

substrate input in a model biochemical system with sigmoidal kinetics, i.e. n = 3 in

the Hill equation. Using numerical simulations, we separated the phase space of inflow

parameters (amplitude and frequency) into regions where specific types of oscillation

are observed. The boundary line separating oscillations with significantly different be-

haviors (type (I)−2 and type (II)−1USB oscillations) was identified. The frequency

that causes a transition appears in a monotonic function of the inflow amplitude. The

system can be used to determine the inflow frequency if we can control the inflow amp-

litude. It can also be used to determine the inflow amplitude when we can control the

frequency. In other words, sigmoidal kinetics with the Hill equation can act as an inflow

discriminator.

This paper describes a system in which the nonlinear term in the kinetic equation for

the y(t) variable is described by x3

1+x3 term (cf. Eq.(2.3)) and the periodic inflow is

described by a trigonometric function. We believe that these results are general, and

qualitatively similar behavior can be expected in other systems with cooperative charac-

teristics. We performed numerical simulations for a model based on Eqs.( 2.2,2.3) but

with the inflow term in the form J(t) = A · (tanh (γ · sin(2πft + φ0)) + 1) · Θ(t) for

different values of γ. Such periodic inflow becomes a square-like wave for large γ. The

phase diagrams that illustrate the type of oscillation as a function of f and A are qual-

itatively the same, as presented in Figs. ??. We also considered other nonlinear terms

in the kinetic equation for y(t), like tanh (x − x0) or 1/(1 + exp (−δ · (x − x0)), and
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obtained similar results. Therefore, we believe that real systems of chemical reactions

with hysteresis can be used as discriminators in the manner described above.

The present results can be regarded as a solution to the problem of the optimum sta-

bilization of a system in an unstable state. Let us assume that Eqs.( 2.2,2.3) describe the

time-dependent progress of a medical treatment where the variable y(t) represents the

condition of a patient. The variable x(t) describes the time-dependent concentration of

the curing drug. The states on the LSB and USB correspond to an ill and healthy patient,

respectively. This simple model seems to realistically describe the basic features of drug

therapy. It predicts that if the inflow of the drug is small, then the patient remains ill.

Only a dose higher than a critical dose allows for successful treatment. However, some

drugs are toxic ( such as those used in chemotherapy) and the total dose should be as

small as possible. An analysis of the dynamical system presented in Fig. 2.5 can provide

a solution: if we consider the periodic inflow of a drug in the form of Eq.(1), then the

minimum amount of drug required to stabilize the patient in a healthy state corresponds

to the bottom corner of the type (II) − 1USB oscillation region - here A0 ∼= 0.1 and

f0 ∼= 0.015.

Our results are expected to be applicable not only to natural sciences but also to social

sciences too. Let us imagine a country with the two-party system in which the party N is

naturally favored by the voters, and the result of party Y (the y variable) depends on its

image generated by media (the x variable). The model based on Eqs.(2.2, 2.3) reflects

realistic behavior of society. Equation (2.3) says that the support for party Y decreases in

time because people prefer the party N and that irrespectively on high media pressure it

saturates at a flat level. Equation (2.2) describes the decline of propaganda effect in time

(−αx term) and the influence of news (the inflow term). It also says that the support for

party Y increases its media image. Our analysis indicates that the success of party Y (

(II) − 1USB oscillations ) can be achieved with the minimum effort if the propaganda

is periodically applied.

The properties of considered system represented by a thick solid line on Figs. ??
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can be also interpreted withinthe binary logic. For a fixed inflow frequency f we can

say, that (II) − 1USB class oscillations represent the logic (TRUE) state and the oscil-

lations of (I) classes correspond to the logic 0 (FALSE). Now the amplitude discrim-

inator described in the paper can be regarded as the simplest analog (amplitude) to

1-bit digital converter with the threshold amplitude G(f). If just two values of amp-

litude (AT , AF ; AF < G(f) < AT ) are considered then the system operates as the

identity gate or as a negation gate depending on which logic states are associated with

these values. More complex logic functions can be also executed by the medium if

the inflow term is a function of a few parameters, for example, in the form I(t) =

(Aa · (sin(2πfat + φ0) + 1) + Ab · (sin(2πfbt + φ0) + 1)) · Θ(t). Folloing the idea

of Ref. [21] the implementation of basic logic gate can be introduced in the considered

system.
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Chapter 3

Sensing time dependent inflow

parameters with an enzymatic

reaction

3.1 Introduction

The field of unconventional computation is concerned with investigation of computing

media as alternatives to the standard semiconductor based electronics. The progress of

silicon microprocessor technology, measured by the Moore law, is unprecedented in the

history of civilization. However, it is anticipated that this trend should finally termin-

ate. New computational strategies, new types of computing substrates and methods of

information coding are needed to ensure the present rate of progress in construction of

information processing devices[1–6].

Studies on information processing based on chemical reactions bring a significant

contribution to unconventional computations. Some of chemical processes considered

for information processing operations involve a fewmolecules only [7, 8]. This observa-

tion is promising because it shows that the future computing devices, based on chemical
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reactions, can be reduced to the molecular scale.

Many chemical processes with potential applications to computationally oriented

tasks can be found in Nature. Among them there are reactions leading to spatial

structures formed by replicable molecules like RNA or DNA[9–12] and enzymatic

processes characterized by complex, nonlinear chemical kinetics and exhibiting a rich

variety of stationary spatio-temporal structures. Studies aimed on integration of these

both approaches, for example: an interface that enables communication of otherwise in-

compatible nucleic-acid and enzyme computational systems, has been recently reported

[13].

The enzymatic systems, we are concerned with accept and transform information in

the form of chemical substrates with particular properties that meet the binding spe-

cificity criteria of a selected enzyme in a lock and key fashion. Enzymatic reactions can

process information, coded in concentrations of specific molecules, catalyzing reactions

and producing reaction products with different properties than the input reagents. The

output information is coded in concentrations of products. The products can then parti-

cipate in further chemical reactions. The transformations of products into yet other mo-

lecules can be regarded as following information processing steps. Studies on networks

of connected enzyme-catalyzed reactions, with added chemical and enzymatic processes

that incorporate the filtering steps into the functioning of this biocatalytic cascades have

been recently published ( see [14]). It has been demonstrated that scaled logic variables

for the inputs, output, and some intermediate products can be useful in describing en-

zyme cascade behavior by identifying quantities that offer the most direct control of the

network properties. Therefore, using enzymatic reactions we can design information

processing cascades, feedback loops, and other complex sequences of operations.

Studies on applications of chemical computing have a long history. It has been noticed

that within theMichaelis−Menten kinetics model the shape of the convex line represent-

ing the rate of product production as the function of substrate concentration is similar to

the relationship between the collector-emitter voltage and collector current in a bipolar
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transistor. Using this analogy the concepts of transistor based information processing

devices can be re-formulated in the language of chemical reactions and reagent flows.

The theoretical background to chemistry based logic was presented in a number of pub-

lications Hjelmfelt and Ross and their co-workers [15–18]. They considered a perfectly

stirred system and assumed that binary information is coded in stationary concentrations

of reagents involved. In the proposed models of chemical neurons the stationary out-

put concentration rapidly switches from low to high values if the concentration of the

input reagent exceeds a specific value. In such case the relationship between reagent

concentrations and binary logic values is straightforward, high concentrations repres-

ent the logic TRUE state, the low ones are interpreted as the logic FALSE. Simulation

studies demonstrated how to implement the basic logic operations within the model of

a chemical neuron [18, 19].

A convex line representing the relationship between the substrate concentration and

the rate of product generation is typical for enzymatic reactions. For such relationship

there is an identifiable linear regime, typically near the physical zero concentrations, as

well as the saturation regime for larger concentrations. Most experimental studies on

(bio)chemical information processing have been focused on the binary logic [20]. Low

and high concentrations of selected reagents are interpreted as the logic variables. In

this respect, a sigmoid, filter-like relationship between the substrate concentration and

the product generation rate seems to be more suited for information processing applica-

tions, because it gives a better balance between low and high values of concentrations.

Moreover, for information coded in stationary values of concentrations the sigmoidal

response has advantage over the convex one because it allows to reduce noise of the

output element important for noise-tolerant networking for chemical information pro-

cessing [21].

It has been observed that sigmoidal kinetics can appear for properly chained enzymatic

reactions [22]. Therefore such kinetics can be designed on demand by coupling an en-

zymatic process characterized by a convex kinetics with other reactions [23]. Different
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physical or chemical stimuli can be applied to impact enzymatic processes. For ex-

ample it was demonstrated that in enzymatic reaction involving glucose oxidase system

response depends on initial concentration of hexokinase and ATP [23]. Even more in-

teresting it has been observed that the transition between convex and sigmoidal kinetics

can be achieved by system illumination [24].

The sigmoidal kinetics can be also expected for allosteric enzymatic reactions[25–27].

Allosteric regulation is one of many ways in which enzyme activity can be controlled.

Enzyme activity is regulated by its conformational dynamics [28]. A typical enzyme

contains binding sites where substrate molecules can be attached and the catalytic site

where the activation energy is reduced and the reaction, specific for a given enzyme,

proceeds . The allosteric enzymes contain another region, separated from the substrate

binding site, to which small, regulatory molecules can attach to and and thereby control

the catalytic activity. The allosteric regulatory molecules change the conformation or

dynamics of the enzyme that is transduced to the active site and thus affect the reaction

rate of the enzyme. In this way, allosteric interactions can either inhibit or activate

enzymes. As we demonstrate below, the regulating reactions can couple with the main

enzymatic process. If the rates fo these processes are properly selected then the resulting

kinetics of an enzymatic reaction has a sigmoidal form.

The recent studies on applications of enzymatic reactions for computing oriented tasks

match experiments with numerical simulations. It has been demonstrated that the simple

information processing devices can be constructed with properly selected enzymatic re-

actions. Biocatalytic system with a double-sigmoid filter (sigmoid with respect to two

types of molecules) are especially interesting because they can directly operate on two

input signals [28–30]. Enzymatic reactions capable of recognaizing two specific mo-

lecules or ions in the solution (for example Mg+
2 and Ca+

2 [28, 31] ) were identified

and their applications for construction of the logic gates ( the AND binary gate [32],

the OR binary gate [33]) have been reported. Enzymatic systems capable of more com-

plex computational tasks like three-input logic gates or molecular full adders were also
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reported [34, 35].

The studies discussed above were based on information coded in time-independent,

stationary concentrations of selected reagents. Here we present a new approach to chem-

ical sensing based on enzymatic reaction with information coded in time dependent evol-

ution of the medium. We discuss an application of chemical computing to time depend-

ent phenomena considering the problem of discrimination of the parameters describing

periodic perturbations of a computing medium.

Living organisms have to process information in order to find the optimum environ-

ment for their existence under time-dependent environmental change. A significant part

of their computational activity is focused on decision making. In a highly organized

society life of its members is determined by the choices they make. Some of decision

making problems require a binary (YES or NO) answer. Having in mind that inform-

ation processing activity of living organisms is based on (bio-)chemical reactions we

search for and identify chemical reaction models that can be applied for decision mak-

ing problems in which the input information is coded in periodically changing inflow of

reagents. Such inflow can be related to a periodic stimulus forced by cycling change in

environment, like the circadian rhythm.

Rational decision making is based on time−dependent information about the prob-

lem. Information can be collected by chemical reactions showing different behaviour

depending on the conditions they proceeds in. A number of information processing

strategies, operating on time dependent inputs have been reported in the literature [1–4].

An answer coming from a chemical sensor can be continuous or discrete. For example,

one can get information on the distance to a source of excitations by comparing the fre-

quency of pulses excited in a few identical excitable channels [36, 37]. An excitable

chemical medium can be also applied as a sensor of critical changes in time dependent

medium parameters. It has been demonstrated [38] that an excitation pulse can propagate

in the medium with a slowly decreasing excitability level. On the other hand if exactly

the same decrease in system excitability occurs rapidly then the excitation pulse van-
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ishes. Therefore, by observing a distance propagated by a pulse in an excitable medium

we are able to determine the rate of temporal changes in the medium excitability. The

simplest sensors are binary discriminators (or binary classifiers). They are capable of

distinguishing if the conditions at which reactions proceed belong to a given class or

not. For example, an excitable medium with a propagating pulse can be regarded as a

discriminator if the temporal changes in its exciatbility are larger than a given value.

The examples presented above illustrate sensing potential of a spatially distributed

medium. However, there are reactions that proceeds in a homogeneous medium that can

be used as discriminators of the conditions in which it proceeds. In the previous chapter

[39] we considered a dynamical system with hysteresis as a prototype of a decision mak-

ing automaton. Systems with hysteresis, commonly observed in physics, chemistry and

biology [40–42], are natural candidates for binary classifiers. In a systems with hyster-

esis one can distinguish two different classes of stable statesS1 andS2. System evolution

towards a state from a particular class is determined by the value of control parameter

λ and the initial condition. Let us assume that the increase in control parameter λ value

above the threshold λ1 triggers the transition from S1 to S2. The reverse transition from

S2 to S1 occurs if the value of control parameter drops below λ2 . Such system can be

obviously used as a discriminator of the control parameter. For example, if the initial

state belongs to S1 and if after some time we observe the system in a state belonging to

S2 then it means that at certain moment of time the value of control parameter neces-

sarily exceeded λ1 . However, if only time monotonic changes in the value of control

parameter are considered then the system discrimination ability is reduced to just two

values λ1 and λ2 .

We have recently demonstrated [39] that the applicability of a dynamical system char-

acterized by a sigmoidal kinetics for discrimination oriented tasks increases if a periodic

perturbation of inflow is imposed. Periodically perturbed bistable system oscillates. The

location of system oscillations in the phase space and the oscillation amplitude depend

on the amplitude and frequency of perturbation. In particular we can distinguish os-
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cillations between states in the class S1 and oscillations between states in the class S2.

The numerical simulations for reaction kinetics defined by a third order rational function

revealed a non-trivial property of such system: a marginal change of inflow paramet-

ers (amplitude or frequency) can force a sharp transition between oscillations belonging

to different classes. The transition occurs in a narrow range of perturbation paramet-

ers. The change between oscillation types can be easily distinguished and therefore a

chemical reaction exhibiting hysteresis can be used as a discriminator of perturbation

properties.

In this report we concentrate on realistic models of enzymatic reactions that can be

applied as discriminators of periodically changing stimuli. All models are analyzed as-

suming that the reaction kinetics follows the mass action law. We consider model en-

zymatic reactions in which an enzyme is activated by one, two or three identical control

molecules. The applicability of such models as sensors of inflow parameters is invest-

igated. We start with the simplest reaction model in which an enzyme is activated by

binding with a single molecule and demonstrate that such reaction model does not work

as a discriminator of inflow. However, enzymatic reactions involving allosteric activ-

ation by two or three control molecules lead to a medium exhibiting bistability if the

reaction rates are properly selected. These models lead to kinetic term in a Hill-like

form with the Hill coefficient equal to 2 and 3, whichvalue is typical for allosteric reac-

tions characterized by a positive cooperativity [26, 43]. For both reaction models there

is a sharp transition in the character of oscillations in product concentration in the phase

space of parameters describing amplitude and frequency of periodic inflow of control

molecules. Therefore, these enzymatic reactions can be used as binary discriminators of

the periodic inflow parameters.

For sigmoidal kinetic we are able to stabilize oscillations in different regions of the

phase space and we observe a sharp transition between oscillations of different classes.

As discussed in this chapter such effect is absent for the case of convex kinetics.
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3.2 Determination of inflow properties with enzymatic

reactions

In this Section we consider three models of an enzymatic reaction and estimate their ap-

plicability for sensing oriented applications. In all models the enzymeE has to bind with

a number of control moleculesX to perform its function. The complex of enzyme andX

transforms the reactant B into the product Y . We assume that the complex disintegrates

after the reaction and all molecules of X are detached at the same time.

3.2.1 Enzyme activation with a single control molecule

At the beginning we consider a model in which a single molecule of X activates the

enzyme:

E + X
k1⇀↽

k−1
EX

B + EX
kp−→ X + Y + E

It is easy to notice that the sum of concentration ofE (e) and ofEX (f) does not change

in time.

In all models discussed in this Section we assume that reagents X and Y are involved

in the following processes:

transformation of product Y into reactant X:

C + Y
kc−→ X + productsC

and

the decomposition of reactant X:

D + X
kd−→ productsD

We assume that productsC and productsD are inert for all reactions listed above, so

there is no need to specify them. The last of listed reactions removesX from the system,

so the concentration of X (x) tends to zero at long times. In order to have other, more
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interesting behaviour of the system we assume that there is a time dependent inflow of

the reagent X to the system described by a time dependent function I(t):

inflow
I(t)−→ X

For the following analysis we assume that concentrations of reagents B,C and D (de-

noted as b, c and d, respectively) are much larger than of the other reagents and we can

assume that they remain constant in time. Therefore, the complete description of the

system is given by three kinetic equations describing the time evolution of the concen-

trations of EX (f(t)), X (x(t)) and Y (y(t)) read:

dx(t)
dt

= −k1ex(t) + k−1f(t) + kpbf(t) − kddx(t) + kccy(t) + I(t) (3.1)

df(t)
dt

= k1ex(t) − k−1f(t) − kpbf(t) (3.2)

dy(t)
dt

= kpbf(t) − kccy(t) (3.3)

If we assume that the reactions involving enzyme and its complex are fast, and those

leading to productsC and productsD are slow then the concentration of EX complex

can be regarded as quasistationary one. In such case the system time evolution descrip-

tion reduces to two kinetic equations for x(t) and y(t):

dx(t)
dt

= −kddx(t) + kccy(t) + I(t) (3.4)

dy(t)
dt

= k1kpbe0x(t)
k−1 + kpb + k1x(t) − kccy(t) (3.5)

Here the symbol e0 denotes the total concentration of enzyme in its free E and com-

plexed forms EX (e0 = e(t) + f(t) = const.).
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If the inflow is constant I(t) = A0 then the analysis of nullclines for the dynamical

system (4-5) shows that for each set of model parameters (rate constants and concentra-

tions of reagents that do not change in time) the system has a single, stable, stationary

state. Therefore, the enzymatic reaction with activation by a single control molecule

does not function as a discriminator of time dependent inflow parameters according to

the strategy described in [39].
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3.2.2 Enzyme activation with two control molecules

Hysteresis is observed in a slightly more complex reaction model in which the enzyme

molecule E has to combine with two molecules of reagent X in order to transform the

reactant B into the final product Y :

E + X
k1⇀↽

k−1
EX

EX + X
k2⇀↽

k−2
EX2

B + EX2
kp−→ 2X + Y + E

As in the previous model we consider the transformation of product Y into reactant

X:

C + Y
kc−→ X + productsC

and the decomposition of reactant X:

D + X
kd−→ productsD

The complete description of such reaction model is given by four kinetic equations

describing the time evolution of f(t), x(t), y(t) and the concentrations of EX2 (g(t)):

dx(t)
dt

= −k1e(t)x(t)+k−1f(t)−k2f(t)x(t)+k−2g(t)+2kpbg(t)−kddx(t)+kccy(t)+I(t)

(3.6)

df(t)
dt

= k1e(t)x(t) − k−1f(t) − k2f(t)x(t) + k−2g(t) (3.7)

dg(t)
dt

= k2f(t)x(t) − k−2g(t) − kpbg(t) (3.8)

dy(t)
dt

= kpbg(t) − kccy(t) (3.9)
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If we assume that the reactions involving enzyme and its complexes are faster than those

leading to productsC and productsD then the concentrations of complexes EX and

EX2 can be regarded as quasistationary ones. In such case the time evolution of the

system is described by two kinetic equations for x(t) and y(t):

dx(t)
dt

= Q(x(t), y(t), t)

= −kddx(t) + kccy(t) + I(t) (3.10)

dy(t)
dt

= R(x(t), y(t))

= k1k2kpbe0x2(t)
k−1k−2 + k1kpb + k1k−2x(t) + k1kpbx(t) + k2kpbx(t) + k1k2x2(t)
−kccy(t) (3.11)

where e0 denotes the total concentration of enzyme in its free and all complexed forms

(e0 = e(t) + f(t) + g(t) = const.).

For this reaction model one can select the values of parameters such that the nullcline

of Eq.(11) has a sigmoidal form, so the system exhibits hysteresis. For example, such

behaviour is observed when b = c = d = e0 = 1, the rate constants for fast reactions are

k1 = 10, k−1 = 200, k2 = 20, k−2 = 160, kp = 40 and the rate constants for the slow

reactions leading to products are kc = 0.1, kd = 1. Figure 1 illustrates the nullclines

for these values of parameters. The nullcline Q(x, y, t) = 0 is shown or a few values of

inflow: I(t) ≡ 0 (no inflow of X), I(t) ≡ 0.731284 and I(t) ≡ 1.64789 = A1. The

last two values of inflow correspond to cases when the nullcline Q(x, y, t) is tangential

to the nullcline R(x, y). At the beginning we consider an inflow that remains constant

after it is switched on at t = 0, ie.: I(t) = I0 · Θ(t), where Θ(t) is the Heaviside step

function. If the inflow I0 < 0.731284 then the system has a single, stable stationary

state (xs, ys) for which xs < 4.12112 and ys < 24.7323. For I0 > 1.64789 the system

has a single, stable stationary state (xs, ys) for which xs > 12.928 and ys > 121.968. If

51



x

y

Figure3.1 Positions of nullclines for the dynamical system defined by

Eqs.(3.10,3.11) in the phase space (x, y). The nullcline R(x, y) = 0 is plot-

ted with the blue line. The nullcline Q(x, y, t) = 0 is shown for a few cases:

I(t) ≡ 0 (the orange line), I(t) ≡ 0.731284 (the green line) and I(t) ≡ 1.64789 (

the red line). For the selected parameters of the model, the concentrations at tangential

points are (x1, y1) = (4.12112, 24.7323) and (x2, y2) = (12.9281, 121.968)

0.731284 < I0 < 1.64789 then the system is bistable and shows hysteresis. Having in

mind results of the previous chapter and the article [39] it is expected that a reaction in

which an enzyme is activated by two control molecules can function as a discriminator

of frequency and amplitude of a time dependent inflow.
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In the following we consider periodic inflow described by the formula I(t) = A ·

(sin(2πνt + φ0) + 1) · Θ(t). It is characterized by frequency ν and the initial (for

t = 0) phase φ0. Such inflow term is always non-negative. The Heaviside step function

describes the case where there is no inflow for t < 0 and it is switched on at t = 0.

If φ0 = 3 · π/2 then I(t) is a continuous function. In this case I(t = 0) = 0, next it

increases and finally oscillates. For any other phase the inflow term is not continuous

at t = 0; for example if φ0 = π/2 then I(t = 0) = 2 · A, next I(t) decreases and

oscillates later. For t > 0 the time average of I(t) equals to A and it is independent of

the frequency and the initial phase. If the inflow amplitude A = 0 than (x = 0, y = 0)

is a only steady state of Eqs.(3.10,3.11) and it is stable. We assume that this stable state

is the initial state for the system evolution studied in numerical simulations.

Observations of changes in the character of oscillations in concentrations of reagents

can be used to determine the frequency and amplitude of the inflow. Figure 2 illustrates

the time evolution of concentration of Y for the fixed amplitude A = 1.2 and a few

different frequencies ν = 0.0022, 0.00306, 0.00307, 0.00309, 0.0031. The solid line

shows the time evolution calculated from the full reaction model described by Eqs.(6-9).

The blue dashed line plots the time evolution for the reduced, two-variable model based

on Eqs.(10,11). The full model of reaction and the reduced model are in a full agreement

for low and high frequencies. Like in the previous chapter, for the lowest input frequency

the oscillations of y(t) extend over a large range of concentrations. For high inflow

frequencies the system oscillates below the tangential value y2 = 121.968. In a narrow

interval of frequencies the character of evolution significantly changes. Oscillations

observed in y(t) switch from large values exceeding y2 to oscillations below this value.

For the considered amplitude the full model predicts such transition for frequencies in

the interval [0.00307, 0.00309]. The reduced model predicts that this transition occurs

at slightly higher frequencies, in the interval [0.00309, 0.0031]. Therefore, as concluded

in the previous chapter, from the observation of time evolution of concentration in the

considered enzymatic system one can discriminate the frequency of the inflow, it the
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amplitude of inflow is known.

Results shown in Fig. 2 illustrate that around the frequency that separates different

oscillation types the medium needs some time before it reaches the steady form of os-

cillations. For the enzyme activation with two molecules we apply classification of the

oscillation type is based on the minimum and maximum of y(t) observed in a long time

interval for which the evolution has presumably reached its stationary character. Here

we use tmin = 8000 and tmax = tmin + 2000 We introduce:

ymin = mint∈[tmin,tmax] y(t) (3.12)

and

ymax = maxt∈[tmin,tmax] y(t) (3.13)

We distinguish oscilations on the upper stable branch (USB) of R(x, y) = 0 nullcline

if ymin > y1 = 24.7323 and ymax > y2 from oscillations on the lower stable branch

(LSB). For those ymin < y1 and ymax < y2.

The line separating USB from LSB oscillations in the phase space ν, A is shown in

Fig 3. The solid line corresponds to the full model, whereas symbols give results of the

reduced model. For the selected values of reaction parameters the agreement between

both models is very good. Our discrimination method is based on location of a given

oscillation type with respect to the line separating USB for LSB oscillations. Let us

denote points on this line as (νc, Ac). The frequency νc treated as a function of Ac is an

increasing function νc = Z(Ac). For example if we like to determine if the frequency

of inflow ν is higher than ν0 then we should select the inflow amplitude equal to A =

Z−1(ν0) and observe the character of oscillations. If we observe USB oscillations then

ν < ν0. Observation of LSB oscillations indicates that ν > ν0. The sensitivity of

the method changes with the frequency ν0. In order to detect a high frequency inflow,

the inflow amplitude should be selected with much higher precision than for 0.005 ≤

νc ≤ 0.01. One can also use the transition between class LSB and USB oscillations

to determine the inflow amplitude. Unlike for frequency, the range of discriminated
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amplitudes does not extend outside the interval [A1/2, A1]. If the amplitude A > A1

than, at a high frequency ν the inflow of control molecules is close to the average inflow

A. For such inflow the steady state of the system is located at USB and no transition

between oscillation character is expected.
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Figure3.2 The concentration of Y as a function of time for the

fixed amplitude A = 1.2 and a few different frequencies (ν =

0.0022, 0.00306, 0.00307, 0.00309, 0.0031). The solid line shows the time

evolution calculated from the full reaction model ( Eqs.(6-9)). The blue dashed line

plots the time evolution for the reduced, two-variable model based on Eqs.(3.10,3.11).
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Figure3.3 The phase diagram showing the oscillation type as a function of inflow

parameters (ν, A). The solid line corresponds to the full model, symbols give results

of the reduced model. The horizontal dashed lines mark positions of A1/2 and A1.
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3.2.3 Enzyme activation with three control molecules

Finally, let us consider yet more complex reaction model in which the enzyme molecule

E has to combine with three molecules of reagent X in order to transform the reactant

B into the final product Y :

E + X
k1⇀↽

k−1
EX

EX + X
k2⇀↽

k−2
EX2

EX2 + X
k3⇀↽

k−3
EX3

B + EX3
kp−→ 3X + Y + E

As in the previous case we assume that these reactions involving the enzyme E and

its complexes are fast and lead to quasistationary concentrations of E, EX, EX2 and

of EX3 (denoted as h(t)). Moreover, like in the cases discussed before these reactions

combine with slow processes:

C + Y
kc−→ X + productsC

and

D + X
kd−→ productsD

Now the complete description of the system is given by five kinetic equations describ-

ing the time evolution of f(t), g(t), h(t), x(t) and y(t):

dx(t)
dt

= −k1e(t)x(t) + k−1f(t) − k2f(t)x(t) + k−2g(t) − k3g(t)x(t) +

k−3h(t) + 3kpbh(t) − kddx(t) + kccy(t) + I(t) (3.14)

df(t)
dt

= k1ex(t) − k−1f(t) − k2f(t)x(t) + k−2g(t) (3.15)

dg(t)
dt

= k2ex(t) − k−2g(t) − k3g(t)x(t) + k−3h(t) (3.16)
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dh(t)
dt

= k3g(t)x(t) − k−3h(t) − kpbh(t) (3.17)

dy(t)
dt

= kpbh(t) − kccy(t) (3.18)

If we assume that concentrations of EX , EX2 and EX3 complexes can be regarded

as quasistationary ones then the model can be reduced to two kinetic equations for the

time evolution of x(t) and y(t):

dx(t)
dt

= Q(x(t), y(t), t)

= −kddx(t) + kccy(t) + I(t) (3.19)

dy(t)
dt

= S(x(t), y(t))

= kpbh(t) − kccy(t)

= −kccy(t) + k1k2k3kpb2e0x3(t)/

(k−1k−2k−3 + k−1k−2kpb + k1k−2k−3bx(t) + k−1k3kpbx(t) + k1k−2kpb2x(t)

+k1k2k−3x2(t) + k1k2kpb2x2(t) + k1k3kpb2x2(t) + k2k3kpbx2(t)

+k1k2k3bx3(t)) (3.20)

where e0 denotes the total concentration of enzyme in its free and all complexed forms

(e0 = e(t) + f(t) + g(t) + h(t) = const.).

For the full reaction model it seems difficult to guess the values of parameters for

which the model exhibits hysteresis and can be used to discriminate the amplitude or

frequency of the inflow. It is easier to consider the reduced model and find reaction

parameters leading to the sigmoidal shape of S(x, y) = 0 nullcline. For example, such

behaviour is observed when b = c = d = e0 = 1, the rate constants for fast reactions

are k1 = 10, k−1 = 20, k2 = 10, k−2 = 40, k3 = 10, k−2 = 20, kp = 15 and the rate
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constants for the slow reactions leading to products kc = 1, kd = 1. Figure 4 illustrates

the nullclines for these values of parameters. The nullcline Q(x, y, t) = 0 is shown or

a few values of inflow: I(t) ≡ 0, I(t) ≡ 0.583234 and I(t) ≡ 0.914414 = A2. The

last two values of inflow correspond to cases when the nullcline Q(x, y, t) is tangential

to the nullcline S(x, y). If the inflow I(t) < 0.583234 then the system has a single,

stable stationary state (xs, ys) for which xs < 1.71818 and ys < 0.803767. If the

inflow I(t) > 0.914414 then the system has a single, stable stationary state (xs, ys) for

which xs > 4.39961 and ys > 3.81637. If the inflow does not depend on time after

it is switched on (I(t) = I0 · Θ(t) and 0.583234 < I0 < 0.914414 then the system

is bistable and shows hysteresis effect. Therefore, the reaction in which the enzyme is

activated by three molecules can also function as a discriminator of inflow parameters.
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Figure3.4 Positions of nullclines for the dynamical system defined by

Eqs.(3.19,3.20) in the phase space (x, y). The nullcline S(x, y) = 0 is plot-

ted with the blue line. The nullcline Q(x, y, t) = 0 is shown for a few cases:

I(t) ≡ 0 (the red line), I(t) ≡ 0.583234 (the green line) and I(t) ≡ 0.914414 ( the

orange line). For the selected parameters of themodel, the concentrations at tangential

points are (x1, y1) = (1.71818, 0.803767) and (x2, y2) = (4.39961, 3.81637).
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Like in the previous case we consider the periodic inflow of X with the frequency ν

and the initial phase φ0 described by the expression: I(t) = A · (sin(2πνt + φ0) + 1) ·

Θ(t). The the initial state for numerical simulations is always (x = 0, y = 0), because

it is the only stable state when I(t) ≡ 0. In order to classify oscillations we calculate

ymin and ymax according to Eqs.(3.12,3.13) for tmin = 1000 and tmax = 2000. Yet

again we distinguish states on the upper stable branch (USB) of S(x, y) = 0 nullcline

if ymin > y2 = 3.81637 and oscillations on the lower stable branch (LSB) for which

ymax < y2.

Figure 5 illustrates the time evolution of concentration of Y for the fixed amplitude

A = 0.8 and six different frequencies ν = 0.01, 0.015, 0.023, 0.024, 0.0282 and 0.0284.

Like in Fig. 2 for low frequencies the oscillations of y(t) extend over a large interval

of concentrations. For higher frequencies the system exhibit USB oscillations. If the

frequency of inflow ν exceeds a critical value LSB oscillations appear. The LSB os-

cillations remain stable at high frequencies. Qualitatively the same scenario is seen for

both full and the reduced model. The fact that transition between two types of oscilla-

tions occurs in a narrow range of frequencies indicates that the considered enzymatic

reaction can be also applied for discrimination of the inflow parameters.

Unlike for the enzyme activated by two molecules ofX we observe significant quant-

itative differences between the full and the reduced models. ForA = 0.8 the time evolu-

tions predicted by both models are in perfect agreement for ν = 0.01, however at higher

frequencies results differ. The full model predicts the transition between USB and LSB

oscillations in the interval [0.023, 0.24], whereas the reduced models places this trans-

ition at higher frequencies in the interval [0.0282, 0.284]. We believe that the difference

comes from a high inflow frequency for which quaisistationariy of the enzyme com-

plexes does not hold.
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Figure3.5 The concentration of Y as a function of time for the model in which the

enzyme molecule is activated by three molecules of reagent. Results are presented

for a fixed amplitude A = 0.8 and a few selected inflow frequencies ν, given above

corresponding figures. The initial phase is φ0 = 3π/2 for all cases. The red solid line

shows the time evolution calculated from the full reaction model ( Eqs.(3.14-3.18)).

The blue dashed line plots the time evolution for the reduced, two-variable model

based on Eqs.(3.19,3.20)
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f

A

Figure3.6 The phase diagram showing the oscillation type a the function of inflow

parameters (ν, A). The solid line corresponds to the full model; the symbols give

results of the reduced model. The horizontal dashed lines mark positions of A1/2

and A1.

Fig.6 illustrates the regions of parameters (ν, A) for which a given oscillation pattern

is observed. The solid line corresponds to the full model and symbols give results of the

reducedmodel. The agreement betweenmodels at low frequencies is good but the results

diverge when ν increases. Therefore, the reduced model can be used for qualitative

studies of transition between different oscillation types and the full reaction model has

to be used to calculate the line separating different oscillation types. Like in the previous

case the accuracy of frequency determination decreases as a function of frequency.
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3.3 Conclusions

In this report we presented two models of an enzymatic reaction that can be applied

for unconventional information processing as discriminators of input parameters. We

have demonstrated that reaction models in which the enzyme is activated by two or

three control molecules show hysteresis if the model parameters are properly selected.

Therefore, the reactions can be used for a novel discrimination strategy described in

[39]. This discrimination strategy has been originally introduced for a formal model of

dynamical system. According to it the information about the amplitude and frequency

of the inflow can be obtained by observation of oscillations in reagent concentration.

Here we confirmed that the strategy applies to realistic models of chemical reactions.

There are many parameters (rate constants, concentrations of reagents in excess) in

the considered reaction models. Depending on the model a state of system is described

by concentrations of 4 or 5 reagents. Therefore, a straightforward identification of para-

meter values, at which the reaction can be used as a discriminator seems difficult. Here

we restricted our attention to the cases in which reactions involving the enzyme and

its complexes are faster than the other processes. We reduced the full reaction model

to two kinetic equations. In the reduced model one of the nullclines has a sigmoidal

form. Using the arguments given in [39] one can easily estimate the range of input fre-

quency or amplitude in which a sharp transition between different forms of oscillations,

necessary for discrimination, is observed. The comparison of results shows a qualitaitve

agreement between the full reaction model and the reduced one. For the reaction with

enzyme activation by two control molecules we have also found a good quantitative

agreement between the models. In the other case ( enzyme activation by three control

molecules) we observed significant differences in the inflow amplitude and frequency at

which the transition between different forms of oscillations occurs. Therefore, although

the strategy of discrimination can be easily explained for two-variable model with a sig-

moidal nullcline, precise calculations of discriminator characteristics should be based on
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the detailed reaction model. which provides more realistic interpretation to the dynamic

response.
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Chapter 4

Emergence of Many Mini-Circles

from a Coffee Suspension with

Mechanical Rotation

4.1 Introduction

The formation of a deposition pattern with the evaporation of a liquid containing non-

volatile particles has attracted considerable interest not only from a fundamental sci-

entific aspects perspective [1–3], but also from an engineering point of viewwith respect

to coating and patterning processes [4, 5]. As a typical pattern, a so-called coffee-ring

is caused by the transportation of solute particles toward a pinned contact line driven by

Marangoni effect, or spatial gradient of the surface tension, under a differential evapor-

ation rate over the liquid/air surface [6–11]. In addition to the formation of a ring-like

pattern [12], the generation of various kinds of morphologies, such as fractures, cracks,

straight lines, spiral and dry parch, have been reported in the drying of droplets contain-

ing micro or nanoparticles [13–22]. Smart control of the positioning of nanoparticles

by using photo-sensitive surfactant in drying droplets was also reported [23]. It has
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been shown that particles can be concentrated at the center of a droplet through spot-

irradiation of its apex with a heating laser, by dismissing the coffee-ring pattern, which

phenomenon was interpreted in terms of the reversal of intra-droplet flow induced by a

thermal Marangoni effect [24, 25]. A similar manner of particle deposition at the cen-

ter of a droplet was observed when the solvent was changed from water to octane [26].

To suppress the coffee-ring effect, or the heterogeneous deposition of particles, various

methodologies have been proposed, including the application of a surface acoustic wave

[27], the imposition of electronic fields [28, 29], heating of the solid substrate [30], and

the addition of a surfactant [31, 32]. In the present study, we performed a drying exper-

iment by adopting an aqueous suspension containing fine coffee powder/granules, i.e.,

Turkish coffee, which is usually served without filtering and thus contains a relatively

large amount of micro-particles. Drying this solution under a horizontal static condi-

tion results in the formation of a homogeneous granular layer without the formation of

a coffee-ring. Interestingly, characteristic patterns of drying granules, such as multiple

wavy segments and several mini-circles, are generated using a rotating dish under a tilt-

ing condition.

4.2 Materials and Methods

Roasted coffee beans were ground with a conical burr coffee grinder (product MSCS-

2B, Hario Co. Ltd., Tokyo, Japan). Larger particles were sieved out of the ground

powder with a sifter (grid size of 250 µm, Tokyo Screen Co., Ltd., Tokyo, Japan).In

Figure 1, the experimental procedure in a schematic manner is shown, together with the

photograph of the coffee powder (average diameter of 68 µm, and standard deviation of

23 µm). Aqueous solution was prepared by mixing 900 mg of ground coffee beans with

3 mL of ultrapure water (produced with Milli-Q water purification system, Millipore,

Merck). The mixed solution was transferred onto a paper dish, of which the surface

laminated with polyethylene terephthalate is hydrophobic and the diameter of the bottom

planar part is 140 mm (RS-362, Dixie Japan Ltd., Tokyo, Japan). Then, the solution
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was mechanically homogenized with a vortex mixer (SI-0286, Scientific Industries Inc.,

Bohemia, NY, USA). In the present Communication, we report the experimental results

under the conditions that the paper dish was fixed to a rotating dish with a tilting angle

of θ = 45◦ and was rotated at 60 rpm by a direct current motor (mini-motor multi-ratio

gearbox (12-speed), item 70190, Tamiya Ltd., Tokyo, Japan). As for the effect of tilting,

we found that the coffee solution tends to flow out from the dish when θ is larger than

60◦, whereas contrast of the generating pattern becomes relatively unclear when θ is

smaller than 30◦. Thus, we have carried out the experiment by taking the tilting angle

as 45◦. Under the condition θ = 45◦, when the rotation rate is smaller than 30 rpm,

the solution tends to flow downward outside the dish. When the rotation rate is larger

than 100 rpm, the generated pattern tends to be inhomogeneous between the inner and

outer regions of the dish, because of the relatively large magnitude of the oscillation on

the centrifugal force. Based on the results of these preliminary experiments, we report

the experimental results at the fixed values of the tilting angle at 45◦ and rotational rate

at 60 rpm, in order to reveal the representable transition of the drying patters between

wavy fragmented stripes and many mini-circles.

4.3 Results and Discussion

Figure4.3 shows the drying patterns obtained from the coffee solution, by adopting (a–d)

a solution containing coffee powder (see Figure 4.2a) and (e) filtered solution without

powder. All of the pictures were taken for the completely dried states after standing

still for 24 h with horizontal positioning. For the experiments shown in (a–d), we used

a suspension with the solution of coffee powder on a paper dish, of which the surface

is hydrophobic. Figure 2a shows the appearance of a pattern with many wavy shapes,

which was obtained by fixing the solution on the tilted plate for 10 s in a stationary

manner and then rotating it for 1 min. Hereafter, we call this morphology a“waggly”

pattern. Figure 2b shows the drying pattern after 10 s of stationary tilting and then

20 min of plate rotation. The appearance of many mini-circles with a diameter of ~1
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Figure4.1 Experimental scheme. (a) Roasted coffee beans were ground with a con-

ical burr grinder. Larger particles were sieved out of the ground powder with a sifter

(grid size: 250 µm). The ground coffee was mixed with pure water on a paper dish

(diameter of the horizontal circular area: 140 mm), and the solution was spread over

the whole dish by vibration with a vortex mixer. (b) Experimental apparatus to rotate

the tilted dish with the solution containing the coffee particles. The paper dish with

the coffee solution was fixed to a rotating dish with a tilting angle of θ = 45◦. The

dish was rotated at 60 rpm. During rotation, the whole experimental apparatus was

situated inside a control box with constant humidity (60%) and temperature (20◦C).

mm is observed, which we call“polka-dot”in this article. Here, it is to be noted that

the waggly and polka-dot patterns appeared for the same experimental solution with

different time-period of the dish rotation. Figure 2c shows a tree-like pattern which

was generated under the stationary tilt condition for 1 min without rotation. Figure 2d

shows a homogeneous layer of powder obtained by drying the coffee suspension under a

horizontal arrangement. For comparison, Figure 2e shows a so-called coffee-ring, which

was generated under hori-zontal drying of a droplet of coffee solution prepared through

filtration. In both Figure 2d,e, 0.1 mL of coffee solution was deposited on the paper

plate.
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Figure4.2 Generation of various characteristic patterns from a drying solution con-

taining coffee powder under different conditions. The scale bars are 10 mm. (a) A

waggly pattern with many wavy shapes formed when the paper dish was tilted while

stationary for 10 s and then rotated for 1 min at a fixed angle of 45◦ (see Figure 1b).

After the rotation, the dish was stood still horizontally for 24 h. The light brown

and dark brown parts indicate water-rich and powder-rich regions, respectively. (b)

Polka-dot pattern with many mini-circles generated from the coffee solution, with tilt-

ing without rotation for 10 s and then rotation for 20 min. After the rotation, the dish

was stood still horizontally for 24 h. (c) Tree-like pattern caused by the downward

flow of coffee solution when the plate was tilted at a fixed angle of 45◦ for 1 min

without rotation, the dish was stood still horizontally for 24 h. (d) Homogeneous pat-

tern formed by drying the coffee solution containing the powder, i.e., essentially the

same solution as in a–c. (e) Usual so-called coffee-ring formed by drying the filtered

coffee solution with almost no grained powder.
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As shown in the experimental observations (Figure 2), it has become clear that drying

under tilted rotation strongly affects the outcome; a waggly pattern appears first and

then a polka-dot pattern develops. Next, we discuss the mechanism of the occurrence of

the characteristic patterns. Under dish rotation, the coffee suspension is segregated into

grain-rich and water-rich solutions as revealed in Figure 2. It would be expected that

the underlying mechanism of the pattern formation observed for the suspension could

be interpreted in terms of a kinetic effect in the first-order phase-transition. Thus, we

will consider the appearance of the waggly and polka-dot patterns by adopting Cahn–

Hilliard-type simple model equations [33–39]:

∂η

∂t
= ∇

(
Mc∇δF

δη

)
, (4.1)

where the free energy F exhibits two different contributions: bimodality with the

order parameter and the interfacial energy. Here, Mc is a parameter of diffusivity and t

is time.

F =
∫ (

Lη(1 − η) + α

2 |∇η|2
)

dv, (4.2)

whereL, α and dv are interaction parameter, gradient energy coefficient and differen-

tial volume, respectively. For simplicity, we chose the bimodal profile of the interaction

energy as a function of η, corresponding to the water content in the solution containing

coffee grains; η = 1 corresponds to pure water. We also neglected the contribution from

the mixing entropy, since we are considering the segregation of relatively large particles

of coffee grains. For the calculation of Equation (2), we tentatively adopted the paramet-

ers L = 6.4 × 103 J/mol and α = 3.0 × 10−3 Jm2/mol, so as to obtain the pattern with

usual spinodal decomposition. We may regard that η = 0, 1 correspond to the dense

coffee grains and the clear solution, respectively. Strictly speaking, our experimental

system is non-conservative, because of the evaporation of water to cause the spatial pat-

tern. Thus, the usual Cahn–Hilliard equation does not hold in a strict manner for our

experiments, especially for the experimental conditions with relatively large effect of
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the evaporation. However, the numerical results can still be expected to provide useful

insight into the mechanism of pattern formation. Actually, for the initial stage of the

drying process when the water content does not decrease so much, the kinetic equation

based on Cahn–Hilliard model would represent the essential feature of the segregation.

Since the order parameter η is dependent primarily on the relative concentration of the

coffee grains, we may need to considerthat the diffusivity Mc is sensitively dependent

on η, in addition to the bimodal dependence (the term η(1 − η)),

Mc =
[

D0

RT
η + D1

RT
(1 − η)

]
η(1 − η), (4.3)

where D0 and D1 are the diffusion constants for the states withη = 0 and 1, respect-

ively. In the following simulation, we used the universal gas constant R = 8.31J/mol ·

K. We adopted the apparent diffusion constants D0 = 4.0 × 10−10 m2/s and D1 =

4.0 × 10−8 m2/s, by taking into account the effect of the smaller diffusivity of the grain

rich solution. We adapted one-order larger value for the apparent diffusivity of water,

D1, as that of the pure water with stationary standing state [40], by considering the effect

owe to the rhythmic change in gravitational field induced by the dish rotation. As for the

diffusivity of the grain powder (the diameter is ca. 40 µm as estimated from the average

diameter of 68 µm, as mentioned in Materials and Methods), it is expected that its dif-

fusion constant is on the order of 10−5 − 10−6 comparted to that of water for the usual

Brownian motion under thermal equilibrium, as estimated from the Stokes–Einstein re-

lationship. In addition, with the decrease of the water content, the diffusion of the coffee

grain should becomemuch lower. Thus, it is noted that the adapted value forD1 is rather

large compared to the intrinsic diffusivity under the fluctuation-dispersion relationship

near thermal equilibricity. In other words, we perform the numerical modeling with the

consideration of the effect induced by the external agitation, i.e., the periodic change

of the gravitational field accompanied by the rotation of the tilted dish. Through such

simple assumptions, we performed a numerical simulation using a two-dimensional sys-

tem to shed light on the essential mechanism on the time-development of the generated
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pattern. It may be possible to include the effect of the periodic acceleration during dish

rotation by tuning the effective temperature in the simulation. However, in the present

study, for simplicity we used room temperature, T = 293 K. We carried out the numer-

ical simulation by modifying the source code of Python available from the open access

version[41], provided by the “Yamanaka Laboratoty” at Tokyo University of Agricul-

ture and Technology, Japan. The grid spacing in the computation is taken as 1.0 × 10−3

m. The time width and step number are 0.01 s and 13,000, respectively; corresponding

to a time-period of 130 s. Figure 3 exemplifies the segregation pattern generated after

130 s from the start of the segregation in the simulation. Figure 3a shows the appearance

of wavy short-fragmented stripes, where the coloring of the segregation pattern is carried

out with a threshold value of η = 0.53. This wavy pattern is familiar for phase segreg-

ation with spinodal decomposition[42] and apparently is similar to the waggly pattern

observed in the early state (1 min rotation) of the drying process with vessel rotation as

in Figure 2a. In contrast, Figure 3b shows the appearance of many mini-circles when the

threshold is η = 0.56, corresponding to the polka-dot pattern observed in the late stage

with rotation as in Figure 2b. Here, note that the apparent patterns change markedly

depending on the threshold value for the same stage of the phase segregation kinetics.

Figure 3c shows the spatial profile of the order parameter for the same region as in Fig-

ure 3a,b, revealing the existence of multiple domains with a larger η value along a wavy

stripe. The appearance of multiple spots implies the occurrence of mini water-rich spots

and such water-rich regions would prefer the formation of round shaped domain owe

to the effect of surface tension. Thus, it is expected that such water-rich mini-domains

tend to develop circular aqueous droplets during the longer drying process with rotation

under tilting. The rate of water evaporation is expected to be faster in the grain-rich re-

gion (corresponding to the domain with smaller parameter η) compared to that from the

relatively smooth surface of the mini water-rich region, which may induce the formation

of mini water droplets with circular shapes by causing the polka-dot pattern.
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Figure4.3 Segregation pattern obtained from numerical simulation for phase-

segregation with the simple model equations (Equations (1)–(3)). The scale bars

are 10 mm. (a,b): Spatial patterns with different threshold values of the parameter,

η = 0.53 and 0.56, respectively, both of which correspond to the pattern generated

after 130 s from the start of segregation. The bright parts in (b) show the region that

is more water-rich than that in (a). (c): Order parameter along a section as indicated

by a green bar in (a) and a red bar in (b), which are chosen from the spatial patterns

in (a,b). (d): Artificial 3D color image on the same numerical simulation as in (a,b),

revealing the existence of mini water-rich spots on the upper part (larger eta value)

of the waggly pattern.
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4.4 Conclusions

We have reported the formation of waggly and polka-dot patterns for a drying solution

containing fine coffee granules under tilted rotation. The results showed that mm-sized

phase-segregation between the powder-rich and water-rich phases occurs for the drying

solution with dish-rotation, whereas a homogeneous drying layer is generated without

rotation. In relation to our observation, the appearance of various unique patterns from

a coffee solution with a large amount of grain powder is known as a “fortune telling”

pattern with Turkish coffee [43]. Inspired by such interesting pattern formation, we have

performed the present study by introducing the effect of mechanical rotation of the plate.

The appearance of the polka-dot pattern implies the realization of a uniform pattern with

many mini-circles. It is noted that the time-development from waggly onto polka-dot

pattern implies a kind of reverse process of coarse-graining. On the other hand, it is

well known that coarsening or Ostwald ripening is the usual scenario in spinodal de-

composition. Recently, it has been suggested that assemblies of self-propelled particles

can cause reverse Ostwald ripening, i.e., reverse process of coarsening [44]. As sim-

ilar phenomenon, the formation of spherical domains through the kinetics of spinodal

decomposition was observed for a rubber-modified epoxy resin accompanied by a chem-

ical reaction [45–48]. It is also noted that, from theoretical considerations, self-propelled

particles are expected to undergo phase-separation [49–51], suggesting the occurrence

of reverse process of coarsening during the development of phases separation. Thus,

it is expected that the occurrence of the reverse-coarsening is generated under the far-

equilibrium conditions through the violation of the fluctuation-dissipation relationship,

or caused by the external mechanical agitation. In our experiment, the periodic change

of the gravitational field should cause fluctuating translational motion of the segregating

domains and such forcing effect may concern with the underlyingmechanism on the spe-

cific phase-segregation of self-propelled particles under the violation of the fluctuation-

dissipation relationship. The results of the present study as in Figure 2 suggest that the
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formation of many mini-circular pattern from waggly pattern, or reverse Ostwald ripen-

ing, can be generated for passive particles under external agitation of the mechanical

dish rotation with a tilted state. Here, it is to be noted that, for the transition of the

patterns, surface tension should play an important role in the formation of the circular

domain as in the Polka-dot pattern through the decrease of the droplet surface area in the

water-rich domains. In our 2D model simulation, we have not adapted these important

effects in an apparent manner. It is highly expected that our results will stimulate exper-

imental studies to examine the possible appearance of unique drying-induced patterns

for solutions under various types of external mechanical agitation and also theoretical

studies to clarify the detailed mechanism of the time-development from waggly pattern

onto polka-dot pattern.
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Chapter 5

General Conclusion

5.1 Overview

Hereby was investigated the spontaneous emergence of spatio-temporal order affected

by rhythmic environmental change.

(1) We tackled with problems about transitions between different oscillating modes

that are triggered and stabilised by periodic perturbations. In a bistable system there

exists a narrow range of frequencies and amplitudes within which a sharp transition

between significantly different oscillation modes occurs.

(2) We performed a novel phenomenon of pattern formation processes consequently

under mechanical rotation with drying of an aqueous suspension containing a large

amont of granular particles. It was found that ‘waggly pattern’ appear in the early stage

of the drying process can be considered as reverse Ostwald ripening.

Each study can be understand by nonlinear dynamics in a nonequillibrium open sys-

tem, and has potentialities to predict some rhythmic phenomena in living system.

5.2 Open questions and Future problems

In proceeding these studies, a lot of problems to be unvailed and difficulties have been

recognised. An interesting path to explore is experimental investigation of those phena.
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Another is analyses nonlinardynamial or thermodynamical for their grounds. The fol-

lowings are some of the future problems.

(1) Bifurcation analyses of the periodical nonautonomous system by stability analysis

of Poincaré maps. And also application to the real-world model such as biological exper-

iment such as caltivation of cells or plants with periodical changes of light environment.

These modes can be easily distinguished so such system can be used as a discriminator

of perturbation properties in natural computation. It is also demonstrated that stabil-

isation of an unstable state with periodic inflow is more efficient than that with a time

independent stimulus, and can be applied to optimise a drug therapy in medicine.

(2) Our results will stimulate experimental studies to examine the possible appear-

ance of unique drying-induced patterns for solutions under various types of external

mechanical agitation and also theoretical studies to clarify the detailed mechanism of

the time-development from waggly pattern onto polka-dot pattern.
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