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1 Introduction

The max-plus algebra R ∪ {−∞} is a semiring with addition a ⊕ b :=
max{a, b} and multiplication a ⊗ b := a + b. The study of the max-plus
algebra was originated in 1960s with applications to steelworks [20, 21]. Af-
ter that, the max-plus algebra and similar algebraic structures have been
developed under many variant names, such as min-plus algebra, dioid [39],
path algebra [38], extremal algebra [79] and tropical semiring [66]. The
word tropical was introduced in honor of the work by a Brazilian mathe-
matician Imre Simon [70]; Europeans associated Brazil with tropical. Now,
rich amount of textbooks [9, 13, 22, 40, 42, 43, 57] and surveys [1, 12, 36, 68]
on the max-plus algebra are published.

The max-plus algebra has provided powerful tools to the analysis of
discrete event systems, which are sometimes represented by Petri nets [61]
or heap models [35] and are applied to, e.g., manufacturing [19], rail sys-
tems [29] and network calculus [55]. The max-plus algebraic approach to
discrete event systems succeeded in evaluating the worst, optimal or aver-
age performance [34], computing the invariant space [52], solving the model
predictive control problem [28], and so on. A bibliography for applications
of the max-plus algebra is found in [53].

For the last two decades, the max-plus algebra has been developed with
the connection to the algebraic geometry over fields with valuations. The so
called tropical algebraic geometry was motivated in [68, 71, 72] by the theory
of Gröbner complexes of ideals and in [31, 59] by the characterization of non-
archimedean amoebas. In the tropical geometry, a hypersurface is not the
zero set of a max-plus polynomial but the set of the points where the max-
imum of the polynomial is attained with at least two different terms. This
type of solution plays a crucial role if we try to obtain max-plus analogues
of theories on the conventional algebra.

Another aspect of the max-plus algebra appears in the language of ul-
tradiscrete integrable systems. Integrable systems are special types of dif-
ferential or difference equations that can be solved exactly and posse a lot
of characteristic features: admitting a wide class of symmetries and conser-
vation laws. Ultradiscretization is a kind of limiting process for dependent
variables of integrable systems, resulting the systems described by max-plus
operations [75]. For example, the box-ball system [74], which is a kind of
cellular automata, can be obtained by such process from the Lotka-Volterra
equation [75] or the Toda lattice equation [58]. An application of the max-
plus eigenvalue problem to these equations is found in [69]. Recently, char-
acterizations of eigenvalues of max-plus tridiagonal matrices via conserved
quantities of ultradiscrete integrable systems are derived in [33, 78].

Attempts at overcoming inability of subtraction operation in the max-
plus algebra have been made by some researchers. The most familiar one is
the symmetrized max-plus algebra [67]. The procedure of symmetrization is
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analogous to the classical axiomatic construction of negative numbers, that
is, every number in the symmetrized max-plus algebra is represented by a
pair of two max-plus numbers. Equalities are replaced with the so called
balance relations. There is another kind of extension of the max-plus algebra
called the supertropical algebra [44, 45, 46, 47, 48, 49, 65]. In this algebra,
the concept of the tropical geometry is adopted and special numbers, called
ghosts, are introduced so that the sum of two identical numbers behaves as
if it were zero. These kinds of extensions were unified into the theory of
semirings with symmetry [2, 4]. Some kind of problems concerning max-
plus matrix computations are solved in the above frameworks. However,
many of the problems related to linear spaces over these algebras, such as
independence of vectors or spanning sets of linear spaces, seem to be difficult
and remain unsolved.

In the present thesis, the author develops the theory of the max-plus
linear algebra, especially the problem for solving linear systems and the
eigenvalue problem. As it is mentioned above, solutions of linear systems
over the max-plus algebra are sometimes considered in the sense of the tropi-
cal geometry. The author gives a combinatorial characterization of solutions
of linear systems in terms of the max-plus Cramer’s rule [63]. For the eigen-
value problem, analogies to that over the conventional linear algebra have
partially been exploited since max-plus square matrices have a very few
eigenvalues and/or eigenvectors in general. The author solves this problem
by introducing two new concepts that generalize the definition of eigenvec-
tors in some sense. The first ones are generalized eigenvectors with respect
to eigenvalues, which lead to Jordan canonical forms of max-plus matri-
ces as in the conventional linear algebra [62]. The other concept, algebraic
eigenvectors, is defined with respect to roots of the max-plus characteristic
polynomials of matrices that do not have corresponding eigenvectors [64].
This enables one to deal with those roots, which are as many as the sizes of
matrices, as substitutes for eigenvalues.

Section 2 and Section 3 are devoted to give basic definitions and facts on
the max-plus linear algebra. A graph theoretic interpretation of a max-plus
square matrix is known to be useful for the matrix analysis, especially for
the eigenvalue problem. A max-plus square matrix associates the weighted
directed graph where the vertices are the row or column indices of the matrix
and the edges and their weights correspond to the finite entries. Then, the
distance matrix of the corresponding graph coincides with the matrix power
series called the Kleene star. In Section 3, it will be observed that a quite
different aspect of the max-plus linear space theory to the conventional one.
Linear spaces are defined to be sets of vectors that are closed with respect to
addition and scalar multiplication in the max-plus algebraic sense. Here, it is
notable that positive scalars and negative ones cannot be distinguished in the
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max-plus algebra because addition is not invertible and all real numbers are
greater than the zero element, −∞. Hence, linear spaces and convex cones
over the max-plus algebra become identical. This yields a fundamental result
in [16] that the basis, which is the minimal spanning set, if any, of every
linear space is unique up to scalar multiples. Further, max-plus analogies of
the conventional convex cone theory are studied in [5, 7, 37].

In Section 4, linear systems over the max-plus algebra are discussed.
Studies on max-plus linear systems date back to the origin of the max-plus
algebra [20], where one-sided systems A⊗ x = b were considered. Another
special system x = A ⊗ x ⊕ b appeared in 1970s with the relationship to
the shortest path problem [38]. Both systems can be solved exactly and
numerically in polynomial-time. However, solving general max-plus linear
systems is still a hard problem because above two cover quite limited types
of systems. For example, since subtraction is not defined in the max-plus
algebra, a two-sided linear system A⊗ x⊕ b = C ⊗ x⊕ d is not equivalent
to a one-sided system. The first algorithm for two-sided systems was given
in [15], which was based on the successive elimination of inequalities. A
pseudopolynomial-time algorithm, called the alternating method, was pro-
posed in [25]. Despite many efforts [8, 10, 17, 50, 56], polynomial-time
algorithms for general two-sided systems have not been invented. On the
other hand, a homogeneous linear system A⊗x = t(−∞, . . . ,−∞) only has
the trivial solution x = t(−∞, . . . ,−∞) in general. Thus, homogeneous sys-
tems in the tropical geometric sense are considered instead, i.e., a solution
is a vector x such that the maximum of each row of A ⊗ x is attained at
least twice. Homogeneous systems in the tropical geometric sense can be
reduced to two-sided systems. However, the reduction process is compli-
cated and the number of equations becomes much greater. Hence, these two
kinds of systems are often investigated separately. The Carmer’s rule for
homogeneous systems was derived in [68], which is applicable to matrices
having one more columns than rows. Recently, it is extended for matrices
of arbitrary sizes in [27]. Pseudopolynomial-time algorithms for matrices of
arbitrary sizes have been developed in [3, 26, 41]. These methods compute
one of the solution of the system, but not all.

A characterization of all solutions of homogeneous systems is one main
issue of the present thesis. The set of solutions of a homogeneous system
defined by a matrix is called the kernel of the matrix. Since the kernel
of every matrix is a max-plus algebraic subspace, it has the unique basis.
In the paper [63], the author showed that each vector in the basis of the
kernel of a matrix can be computed by applying the tropical analogue of
the Cramer’s rule to a suitable submatrix of the original matrix. The proof
is given by presenting an algorithm for choosing such submatrix, where
an analogue of a linkage tree [73] plays an important role. This result is
presented in Theorem 4.10 of the thesis. In comparison to the inductive
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algorithm for computing the basis, e.g., the double description method [5],
the contribution of this characterization is to obtain an explicit formula
of the vectors in the basis. This analytical expression of the basis will
be helpful to reveal properties of solutions of homogeneous linear systems.
Similar characterization is found in [5], but it is restricted to matrices whose
all square submatrices are nonsingular in the max-algebraic sense, which is
often violated. The author succeeded in a characterization of the basis of
the kernel of every matrix; the size is arbitrary and the singularities of
submatrices are allowable.

Sections 5 is an introduction to the eigenvalue problem over the max-
plus algebra. The most fundamental fact is that the maximum eigenvalue
of every square matrix is identical to the maximum value of average weights
of all circuits in the associated graph. This was already shown in 1960s [21].
The maximum eigenvalue is computed in polynomial-time using the Karp’s
algorithm [51]. The power algorithm [11], which is also a polynomial-time
algorithm, computes the maximum eigenvalue together with a corresponding
eigenvector. In the max-plus algebra, it is notable that every irreducible
matrix has exactly one eigenvalue, although reducible matrices may have
two or more. Basic facts on all eigenvalues and eigenvectors of reducible
matrices are summarized in [14]. On the other hand, as in the conventional
linear algebra, the characteristic polynomial of a matrix plays an important
role in the eigenvalue problem. Every eigenvalue of a matrix is a root of
the characteristic polynomial of the matrix, where roots of polynomials are
defined in the sense of tropical geometry. In particular, the maximum root
coincides with the maximum eigenvalue [23]. However, not all roots of the
characteristic polynomial are eigenvalues of the matrix. The meaning of
these roots will be given in Section 7.

Section 6 consists of the author’s results on the block diagonalization
of max-plus matrices. Attempt at diagonalization is investigated in the
context of supertropical algebra [47], but there are few research in the max-
algebra itself. In general, a max-plus matrix has a few, sometimes just one,
eigenvalues and eigenvectors. Hence, it seems difficult to diagonalize max-
plus matrices using their eigenvalues and eigenvectors. In the conventional
linear algebra, each matrix A can be transformed into a block diagonal
matrix, called a Jordan canonical form, even if A is not diagonalizable. If
J = P−1AP is a Jordan canonical form of A, the transformation matrix P
consists of the basis of the generalized eigenspace of A.

In the paper [62], the author has applied this approach to max-plus
matrices. In the max-plus algebra, only generalized permutation matrices
have their inverse matrices. Hence, the equality A⊗P = P ⊗J is considered
instead, where P is a nonsingular matrix and J is a block diagonal matrix.
The proposed block diagonal matrix is an analogue of a Jordan canonical
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form in the sense that the corresponding transformation matrix P consists
of max-plus generalized eigenvectors. The definition of Jordan canonical
forms in Section 6.2 raises two questions: whether a given matrix has a
Jordan canonical form, and if it does, how a transformation matrix can be
computed. As an answer to the first one, it is shown that a matrix has a
Jordan canonical form if and only if each vertex is contained in exactly one
spectral circuit in the associated graph. Here, spectral circuits mean the
circuits contributing to eigenvalues of the matrix. The proof of this fact
also leads to a computational method for a transformation matrix. Further,
the obtained transformation matrix has the column space that is identical
to the sum of the generalized eigenspaces. This is not an obvious fact in
the max-plus algebra because it may be happened that a max-plus subspace
is strictly contained into another one with the same dimension. Thus, the
result in [62] can be said to specify the best choice of a transformation
matrix.

A relationship between eigenvalues of matrices and roots of character-
istic polynomials of them is described in Section 7. As in the conventional
linear algebra, the characteristic polynomial of an n × n max-plus matrix
admits exactly n root (counting multiplicities). However, the number of
eigenvalues of a matrix is at most the number of strongly connected com-
ponents of the associated graph, which is much smaller than the size of the
matrix in general. Hence, many roots of the characteristic polynomial are
not eigenvalues of the matrix. Then, the significance of the roots of charac-
teristic polynomials have been clarified by the author in [64]. It is observed
that coefficients of the characteristic polynomial of a matrix come from the
weights of multi-circuits in the associated graph, where a multi-circuit is
the union of disjoint elementary circuits in the graph. So multi-circuits play
crucial roles in the study of roots of characteristic polynomials.

Generalizing the equation A ⊗ u = λ ⊗ u for eigenvectors with respect
to an eigenvalue λ, the author has introduced the equation

(A\C ⊕ λ⊗ EC)⊗ u = (AC ⊕ λ⊗ E\C)⊗ u (1.1)

for a scalar λ and a multi-circuit C, where matrices AC , A\C , EC , and E\C are
determined by C and defined in Section 7.2. A vector u satisfying (1.1) is
called an algebraic eigenvector of A with respect to λ. The adjective algebraic
is taken from Akian et al. [1], in which roots of characteristic polynomials
are called algebraic eigenvalues. To confirm the validity of the definition of
algebraic eigenvectors, it is proved that there exists an algebraic eigenvector
with respect to λ if and only if λ is a root of the characteristic polynomial.
This holds under the condition that every essential term of the characteristic
polynomial is attained with exactly one permutation. This condition is not
so strong that it is satisfied by generic matrices, and is also considered in
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the settings of the supertropical algebra [48]. Further, it is proved that
the definition of algebraic eigenvectors does not depend on the choice of a
multi-circuit C whenever it represents the coefficient of the term attaining
the maximum in the characteristic polynomial. This leads to the fact that
the set of all algebraic eigenvectors with respect to λ is a max-plus subspace,
which is called the algebraic eigenspace.

Compared to similar approach in the supertropical eigenvalue prob-
lem [47, 48], the contribution of the work [64] is an analysis on dimensions
of algebraic eigenspaces. Indeed, the definition of supertropical eigenvector,
which exploits the tropical geometry, would produce more “eigenvectors”
than expected, that is, the number of independent eigenvectors could ex-
ceed the multiplicity of the corresponding root. On the other hand, under
the condition above and the definition (1.1) of algebraic eigenvectors, the
dimension of the algebraic eigenspace is at most the multiplicity of the cor-
responding root of the characteristic polynomial. This means that algebraic
eigenvectors introduced in [64] inherit an important result in the conven-
tional linear algebra.
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2 The max-plus algebra

Let Rmax = R∪{ε} be the set of the real numbers R together with an extra
element ε := −∞. We define addition ⊕ and multiplication ⊗ on Rmax in
terms of conventional operations by

a⊕ b = max{a, b}, a⊗ b = a+ b, a, b ∈ Rmax.

These operations satisfy the following properties.

(1) Both ⊕ and ⊗ are associative: for a, b, c ∈ Rmax,

(a⊕ b)⊕ c = a⊕ (b⊕ c), (a⊗ b)⊗ c = a⊗ (b⊗ c).

(2) Both ⊕ and ⊗ are commutative: for a, b ∈ Rmax,

a⊕ b = b⊕ a, a⊗ b = b⊗ a.

(3) ε is the neutral element for addition: for a ∈ Rmax,

a⊕ ε = ε⊕ a = a.

(4) 0 is the unit element for multiplication: for a ∈ Rmax,

a⊗ 0 = 0⊗ a = a.

(5) −a is the inverse of a ∈ R for multiplication:

a⊗ (−a) = (−a)⊗ a = 0.

(6) ε is the absorbing element: for a ∈ Rmax,

a⊗ ε = ε⊗ a = ε.

(7) Multiplication ⊗ is distributive over addition ⊕: for a, b, c ∈ Rmax,

(a⊕ b)⊗ c = (a⊗ c)⊕ (b⊗ c)

Then, (Rmax,⊕,⊗) is a commutative semiring called the max-plus algebra
or the tropical semiring. For details about the max-plus algebra, or the
min-plus algebra, we refer to textbooks [9, 13, 22, 40, 42, 57].

Let Rm×n
max be the set of m× n matrices whose entries are in Rmax. The

set Rn×1
max of column vectors is abbreviated as Rn

max. We sometimes denote
the (i, j) entry of a matrix A and the ith entry of a vector u by [A]ij and
[u]i, respectively. The arithmetic operations on vectors and matrices are
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defined as those in the conventional linear algebra. For max-plus matrices
A,B ∈ Rm×n

max , we define the matrix sum A⊕B ∈ Rm×n
max by

[A⊕B]ij = [A]ij ⊕ [B]ij .

For max-plus matrices A ∈ Rl×m
max and B ∈ Rm×n

max , we define the matrix
product A⊗B ∈ Rl×n

max by

[A⊗B]ij =
m⊕
k=1

[A]ik ⊗ [B]kj .

For a max-plus matrix A ∈ Rm×n
max and a scalar α ∈ Rmax, we define the

scalar multiplication α⊗A ∈ Rm×n
max by

[α⊗A]ij = α⊗ [A]ij .

The matrix

E =

ε · · · ε
...

. . .
...

ε · · · ε

 ∈ Rm×n
max

is the zero matrix, or the zero vector if n = 1, and the matrix

En =


0 ε · · · ε

ε 0
. . .

...
...

. . .
. . . ε

ε · · · ε 0

 ∈ Rn×n
max

is the identity matrix.
We define the determinant of A = (aij) ∈ Rn×n

max by

detA =
⊕
π∈Sn

n⊗
i=1

aiπ(i), (2.1)

where Sn denotes the symmetric group of order n. A matrix A ∈ Rn×n
max

is called singular if the maximum in detA is attained with at least two
permutations; otherwise it is called nonsingular.

Example 2.1. Consider a matrix

A =

9 8 1
6 5 3
0 2 7

 .

Since

9⊗ 5⊗ 7 = 21, 8⊗ 3⊗ 0 = 11, 1⊗ 6⊗ 2 = 9,
8⊗ 6⊗ 7 = 21, 1⊗ 5⊗ 0 = 6, 9⊗ 3⊗ 2 = 14,

we see that detA = 21. This value is attained with two permutations: the
identity permutation and transposition (1 2). Hence, A is singular.

8



The inverse of A ∈ Rn×n
max is the matrix B ∈ Rn×n

max satisfying A ⊗ B =
B ⊗ A = En. In the max-plus algebra, only square matrices in a very
restricted class have their inverses. A permutation matrix associated with a
permutation π ∈ Sn is a matrix whose (i, π(i)) entry is 0 for i = 1, 2, . . . , n
and all other entries are ε. A generalized permutation matrix is the product
of a permutation matrix and a diagonal matrix with finite diagonal entries.

Proposition 2.2. A matrix A = (aij) ∈ Rn×n
max has the inverse matrix A−1

if and only if it is a generalized permutation matrix.

Proof. If A is a generalized permutation matrix, i.e., aij is finite if and only
if j = π(i), π ∈ Sn, then we can easily check that

A−1 = (a′ij), a′ij =

{
−aji if i = π(j),

ε otherwise.

Conversely, suppose B = (bij) satisfies A⊗B = B⊗A = En. Then, both A
and B have finite entries in every row and in every column. Suppose bjk ̸= ε.
Then, aij = ε for i ̸= k by comparing the (i, k) entries of A ⊗ B and En.
Similarly, akℓ = ε for ℓ ̸= j by comparing the (j, ℓ) entries of B⊗A and En.
Thus, A contains exactly one finite entry in each row and in each column.
This implies that A is a generalized permutation matrix.

For a matrix A = (aij) ∈ Rn×n
max , we define a weighted digraph G(A) =

(V,E,w) as follows. The vertex set and the edge set are V = {1, 2, . . . , n}
and E = {(i, j) | aij ̸= ε}, respectively, and the weight function w : E → R
is defined by w((i, j)) = aij for (i, j) ∈ E. A sequence P = (i0, i2, . . . , iℓ)
of vertices is called an i0-iℓ path if (is, is+1) ∈ E for s = 0, 1, . . . , ℓ − 1.
The number ℓ(P ) := ℓ is called the length of P and w(P ) := w((i0, i1)) +
w((i1, i2)) + · · ·+w((iℓ−1, iℓ)) is called the weight of P . The vertices i0 and
iℓ are called the initial and the terminal vertices of P , respectively. A path
is called a circuit if its initial and terminal vertices are identical. A circuit
(i0, i1, . . . , iℓ−1, iℓ = i0) is called elementary if ir ̸= is for 0 ≤ r < s ≤ ℓ− 1.
The average weight of a circuit C is defined by ave(C) = w(C)/ℓ(C).

Proposition 2.3. Let A = (aij) ∈ Rn×n
max . The (i, j) entry of A⊗m is iden-

tical to the maximum weight of all i-j paths with lengths m. If there is no
such path, the (i, j) entry of A⊗m is ε.

Proof. We prove by the induction on m. The case m = 1 is trivial. Suppose
that the assertion is true for m−1. Let P be an i-j path with length m and
k be the next vertex of i on P . Since the k-j subpath P ′ of P has length
m− 1, we have

w(P ) = w((i, k)) + w(P ′) ≤ aik + [A⊗m−1]kj .
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Hence, taking the maximum weight i-j path P̃ with length m, we get

w(P̃ ) = max
P

w(P ) ≤
n⊕

k=1

aik ⊗ [A⊗m−1]kj ,

where the maximum in the middle is taken over all i-j paths with lengths m.
Since there exists an i-j path with length m attaining the most right-hand
side as its weight, we have

w(P̃ ) =
n⊕

k=1

aik ⊗ [A⊗m−1]kj = [A⊗m]ij ,

proving the assertion for m.

For A = (aij) ∈ Rn×n
max , we consider the matrix power series of the form

A∗ := En ⊕A⊕A⊗2 ⊕ · · · ,

which is called the Kleene star of A. If G(A) has no circuit with positive
weight, this infinite sum terminates as

A∗ = En ⊕A⊕A⊗2 ⊕ · · · ⊕A⊗n−1

since i-j paths attaining the maximum weight can be assumed to have at
most n − 1 edges for any i, j. In this case, (i, j) entry of A∗ is the maxi-
mum weight of all i-j paths with any lengths. Similarly, the matrix power
series A+ := A ⊕ A⊗2 ⊕ · · · , called the Kleene plus of A, terminates as
A+ = A⊕A⊗2⊕· · ·A⊗n ifG(A) has no circuit with positive weight. The com-
putational complexities of A∗ and A+ are O(n3) due to the Floyd-Warshall
algorithm [32, 77].

Figure 1: Graph associated with the matrix A in Example 2.4

Example 2.4. Consider a matrix

A =

−2 −1 3
−2 ε 0
ε −1 −3

 .
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Figure 1 shows the associated graph G(A). Since G(A) has no circuit with
positive weight, we compute A⊗2 and A∗ as

A⊗2 = A⊗A =

−3 2 1
−4 −1 1
−3 −4 −1

 ,

A∗ = E3 ⊕A⊕A⊗2 =

 0 2 3
−2 0 1
−3 −1 0

 .
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3 Linear spaces over the max-plus algebra

In this section, we summarize the theory of max-plus linear spaces mainly
presented in the book [13].

A subset U ⊂ Rn
max is called a subspace if it satisfies

(1) u⊕ v ∈ U for u,v ∈ U , and

(2) c⊗ u ∈ U for u ∈ U and c ∈ Rmax.

For a subspace U ⊂ Rn
max, a subset F ⊂ U spans U if for all u ∈ U there

exists a finite subset F ′ of F and scalars cv,v ∈ F ′, such that

u =
⊕
v∈F ′

cv ⊗ v.

The subspace spanned by F ⊂ Rn
max is denoted by span(F ). A subset F is

called dependent if there exist a vector u ∈ F such that u ∈ span(F \ {u});
otherwise it is called independent. The independent spanning subset of a
subspace is called a basis of it.

Let F ⊂ Rn
max. A vector u ∈ F is called an extreme vector of F if

u = v ⊕w for v,w ∈ F implies u = v or u = w. A vector is called scaled
if its maximum entry is 0. A subset is also called scaled if all vectors in it
are scaled.

Lemma 3.1. Let U ⊂ Rn
max be a subspace and F be a scaled spanning set

of U . If u ∈ U is a scaled extreme vector of U , then u ∈ F .

Proof. Since F is a spanning set of U , there exists a finite subset F ′ of F
and scalars cv,v ∈ F ′ such that

u =
⊕
v∈F ′

cv ⊗ v.

As u is an extreme vector, u = cui ⊗ui for some i. Thus, u = ui ∈ F since
both u and ui are scaled.

Lemma 3.2. The set of all scaled extreme vectors of a subspace U ⊂ Rn
max

is independent.

Proof. Let F be the set of all scaled extreme vectors of U . On the contrary,
suppose that F ̸= ∅ is dependent. Then, there is a vector u ∈ F such that
u ∈ span(F \ {u}). Since span(F \ {u}) ⊂ U , u is also an extreme vector
of span(F \ {u}). From Lemma 3.1, u ∈ F \ {u}, which is a contradiction.
Thus, F is an independent set.

We define the support of a vector u = t(u1, u2, . . . , un) ∈ Rn
max by

supp(u) = {i | ui ̸= ε}.
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Lemma 3.3. For any subset F ⊂ Rn
max, (1) and (2) are equivalent.

(1) u = t(u1, u2, . . . , un) ∈ span(F ).

(2) For all j ∈ supp(u), there exist vectors vj ∈ F such that (uj − [vj ]j)⊗
vj ≤ u.

Proof. (1) ⇒ (2): Suppose u ∈ span(F ). Then, there is a finite subset F ′

of F and scalars cv,v ∈ F ′ such that

u =
⊕
v∈F ′

cv ⊗ v.

We have u ≥ cv ⊗ v for v ∈ F ′. For any j ∈ supp(u), there is at least
one v ∈ F ′ such that uj = cv ⊗ [v]j . We set vj = v. Then, we have
(uj − [vj ]j)⊗ vj ≤ u.

(2)⇒ (1): Taking such vj ∈ F for j ∈ supp(u), we have

u =
⊕

j∈supp(u)

(uj − [vj ]j)⊗ vj ∈ span(F ).

Lemma 3.4. Let U ⊂ Rn
max be a subspace and F be a subset of U . If u is

not an extreme vector of u, then F \ {u} spans U .

Proof. Suppose u = t(u1, u2, . . . , un) ∈ F is not an extreme vector of u. For
all j ∈ supp(u), there exists a vector vj ∈ U such that (uj − [vj ]j) ⊗ vj ≤
u and (uj − [vj ]j) ⊗ vj ̸= u. Indeed, if (uj − [vj ]j) ⊗ v ≤ u implied
(uj − [vj ]j) ⊗ v = u for some j ∈ supp(u), u would be an extreme vector
of U , leading to a contradiction. Since (uj − [vj ]j) ⊗ vj ∈ span(F ), there
is a vector wj ∈ F such that (uj − [wj ]j) ⊗wj ≤ (uj − [vj ]j) ⊗ vj ≤ u by
Lemma 3.3. From the proof of the same lemma,

u =
⊕

j∈supp(u)

(uj − [wj ]j)⊗wj .

Since (uj − [wj ]j)⊗wj ̸= u for j ∈ supp(u) from our construction, we see
that u ∈ span(F \ {u}). Thus, F \ {u} spans U .

Theorem 3.5 ([16]). Let U ⊂ Rn
max be a subspace and F be the set of all

scaled extreme vectors of U . For a scaled subset F ′ of U , the followings are
equivalent.

(1) F ′ is a minimal spanning set of U .

(2) F ′ = F and F ′ spans U .

(3) F ′ is a basis of U .
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Proof. (1) ⇒ (2): If F ′ ̸= F , there would be a vector u ∈ F ′ \ F . From
above lemma, F ′ \ {u} would also be a spanning set of U , contradicting the
minimality of F ′.

(2)⇒ (3): This follows from the independence of F , which is proved in
Lemma 3.2.

(3)⇒ (1): An independent spanning set must be minimal.

If a subspace U ⊂ Rn
max is spanned by a finite subset of U , it has a

minimal spanning set. Hence, U has a basis consisting of all scaled extreme
vectors of U . In particular, a basis of U is uniquely determined up to scalar
multiples. We call the number of vectors in a basis the dimension of U .
Once a finite spanning set F of subspace U is given, the extreme vectors of
U can be easily detected.

Proposition 3.6. Let F = {u1,u2, . . . ,um} ⊂ Rn
max be a spanning set of a

subspace U , no vector of which is a scalar multiple of another one. Fix any
vector uk ∈ F and let cj be the maximum value such that cj ⊗ uj ≤ uk for
j ̸= k. Then, uk is an extreme vector of U if and only if

uk ̸=
⊕
j ̸=k

cj ⊗ uj .

In the end of this section, we mention ranks of matrices. The column
space of a matrix is the subspace spanned by the columns of that matrix.
The dimension of the column space is called the column rank of the matrix.
The next proposition can be derived from the inequality for various kinds
of ranks of matrices [2, Section 8], but we give a self-contained proof. We
also refer to [30] for details about ranks of matrices.

Proposition 3.7. Let A ∈ Rn×n
max . If the column rank of A is less than n,

then A is singular.

Proof. We first note that a matrix is singular if it has two identical columns
up to scalar multiples. Indeed, if the ith column is a scalar multiple of
the jth column, then π and π ◦ (ij) attain the same values in (2.1) for any
π ∈ Sn. Suppose the ith column Ai of A is expressed as

Ai = ci1 ⊗ u1 ⊕ ci2 ⊗ u2 ⊕ · · · ⊕ cir ⊗ ur, i = 1, 2, . . . , n,

where r is the dimension of the column space of A. Then, the determinant
of A is computed as

detA =

r⊕
i1,i2,...,in=1

det(c1i1 ⊗ ui1 , c2i2 ⊗ ui2 , . . . , cnin ⊗ uin).

Since r < n from the assumption, each determinant in the right-hand side
is attained with at least two permutations, and hence so detA is. Thus, we
conclude that A is singular.
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Example 3.8. Consider the matrix

A =


−1 −2 4 1
−2 0 −1 −1
3 −2 −5 1
0 −3 −2 −2

 .

Fixing the fourth column t(1,−1, 1, 2), we have c1 = −2, c2 = −1 and c3 =
−3 in Proposition 3.6. Since

(−2)⊗


−1
−2
3
0

⊕ (−1)⊗


−2
0
−2
−3

⊕ (−3)⊗


4
−1
−5
−2

 =


1
−1
1
−2

 ,

the columns of A are dependent. Indeed, detA = −2 is attained with several
permutations, such as (1234), (14)(23), and so on.
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4 Linear systems and their solutions

In this section, we discuss linear systems over the max-plus algebra. We will
see in Section 4.1 that two-sided nonhomogeneous systems x = A⊗x⊕b can
be solved in terms of Kleene stars of matrices. The method is an analogue of
the Jacobi iterative method in the (conventional) numerical linear algebra,
but in the case of the max-plus algebra, the iteration terminates in finite
steps, giving an exact solution. In Section 4.2, we give a brief introduction
to tropical linear systems. In particular, kernels of matrices are defined
as the solutions of homogeneous tropical linear systems. For (n − 1) × n
matrices, a solution of a tropical linear system can be found by using the
max-plus analogue of the Cramer’s rule. The Cramer’s rule was first proved
in [68] using the knowledge of the tropical algebraic geometry. In Secttion
4.3, however, we will present a self-contained proof. Section 4.4 is the first
main result of the present thesis, which is shown in [63]. We focus on not
one of the solutions but all solutions of tropical linear systems. For each
vector of the basis of the kernel of a matrix, we give a characterization in
terms of the Cramer’s rule. This characterization also suggests the way to
compute the basis of the kernel.

4.1 A classical two-sided system: x = A⊗ x⊕ b

For A ∈ Rn×n
max and b ∈ Rn

max, we consider the system of the form

x = A⊗ x⊕ b. (4.1)

This is easily solved by iteration.

Proposition 4.1 ([38]). Let A ∈ Rn×n
max and b ∈ Rn

max. If the graph G(A)
has no circuit with positive weight, then x = A∗ ⊗ b is a solution of (4.1).
Further, if all circuits in G(A) have negative weights, then the solution is
unique.

Proof. If the graph G(A) has no circuit with positive weight, then both A∗

and A+ converge to matrices in Rn×n
max . We compute

A⊗ (A∗ ⊗ b)⊕ b = A+ ⊗ b⊕ b

= A∗ ⊗ b,

which proves the first statement of the proposition.
Next, assume that all circuits in G(A) have negative weights. If x∗ is a

solution, then we have

x∗ = A⊗m ⊗ x∗ ⊕A∗ ⊗ b

for all m ≥ n by iterative substitution. Taking the limit m → ∞, we see
that all entires of A⊗m go to ε since these entires express the maximum
weights of paths with lengths m. Thus, we have x∗ = A∗ ⊗ b.
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This is easily extended to the following case.

Corollary 4.2. Let P ∈ Rn×n
max be a generalized permutation matrix, Q ∈

Rn×n
max and b ∈ Rn

max. Then the system

P ⊗ x = Q⊗ x⊕ b

has a solution x = (P−1 ⊗ Q)∗ ⊗ (P−1 ⊗ b) if G(P−1 ⊗ Q) has no circuit
with positive weight. If all circuits in G(P−1⊗Q) has negative weights, then
the solution is unique.

4.2 Tropical linear systems

We consider a linear form of the variables x1, x2, . . . , xn of the form

f = a1 ⊗ x1 ⊕ a2 ⊗ x2 ⊕ · · · ⊕ an ⊗ xn. (4.2)

The tropical hyperplane defined by a linear form f , denoted by T (f), is the
set of all vectors x = t(x1, x2, . . . , xn) ∈ Rn

max such that the maximum of the
terms on the right-hand side of (4.2) is attained at least twice. A vector
in T (f) is also called a solution of f . You may feel that the word solution
is strange since f is not an equality. This is understood by the following
observation: x is a solution of f if and only if there exist an index k such
that x satisfies ⊕

j ̸=k

aj ⊗ xj = aik ⊗ xk,

which means x is a solution if we transpose some term in f = ε. The word
solution also deserves a description in terms of a valuation on a field K.
A function val : K → R ∪ {∞} satisfying the following three properties is
called a valuation on K:

(1) val(a) =∞ if and only if a = 0,

(2) val(ab) = val(a) + val(b) for a, b ∈ R, and

(3) val(a+ b) ≥ min{val(a), val(b)} for a, b ∈ R.

If t(X1, X2, . . . , Xn) ∈ Kn is a solution of the usual equation A1X1+A2X2+
· · · + AnXn = 0, then t(x1, x2, . . . , xn) ∈ Rn

max is a solution of a max-plus
linear form (4.2) where ai = −val(Ai) and xi = −val(Xi) for i = 1, 2, . . . , n.
Otherwise, −val(A1X1+A2X2+· · ·+AnXn) = a1⊗x1⊕a2⊗x2⊕· · ·⊕an⊗xn.

Example 4.3. Let f = 4⊗ x⊕ 0⊗ y⊕ 5⊗ z. The hyperplane defined by f
is

T (f) ={t(x, y, z) ∈ R3
max| 4 + x = 5 + z, y ≤ 5 + z}

∪ {t(x, y, z) ∈ R3
max| y = 5 + z, 4 + x ≤ 5 + z}

∪ {t(x, y, z) ∈ R3
max| 4 + x = y, 4 + x ≥ 5 + z}.
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The projection of T (f) onto the plane z = 0 is a union of three rays, see
Figure 2.

Figure 2: Tropical hyperplane of Example 4.3 projected onto z = 0.

Given a set of linear forms {f1, f2, . . . , fm}, the intersection of the tropi-
cal hyperplanes T (f1), T (f2), . . . , T (fm) is called a tropical linear prevariety.
For A = (aij) ∈ Rm×n

max , let T (A) denote the intersection of m hyperplanes
T (ai1 ⊗ x1 ⊕ ai2 ⊗ x2 ⊕ · · · ⊕ ain ⊗ xn), i.e.,

T (A) =
m∩
i=1

T (ai1 ⊗ x1 ⊕ ai2 ⊗ x2 ⊕ · · · ⊕ ain ⊗ xn).

The tropical linear prevariety T (A) is also called the kernel of A. From
the viewpoint of linear systems, vectors in kernel T (A) are called solutions
of the tropical linear system A ⊗ x. We can easily verify that the kernel of
every matrix is a subspace of Rn

max. As in the conventional linear algebra, the
triviality of the kernel of a square matrices is equivalent to the nonsingularity
of the matrix.

Proposition 4.4 ([3]). A square matrix A = (aij) ∈ Rn×n
max is nonsingular

if and only if T (A) = {E}.

For a square matrix A = (aij) ∈ Rn×n
max and b ∈ Rn

max, let us consider the
tropical linear system

(A b)⊗ x̃, (4.3)

where x̃ =

(
x
y

)
= t(x1, x2, . . . , xn, y). If detA ̸= ε, fix a permutation πA ∈

Sn attaining the maximum of detA. We define two matrices PA, QA ∈ Rn×n
max

by

[PA]ij =

{
aij if j = πA(i),

ε otherwise,
[QA]ij =

{
ε if j = πA(i),

aij otherwise,
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We can easily prove that a vector x ∈ Rn
max is a solution of

PA ⊗ x = QA ⊗ x⊕ b (4.4)

if and only if x̃ =

(
x
0

)
is a solutions of (4.3). The following lemma shows

that the system (4.4) can be solved using the technique in Section 4.1.

Lemma 4.5. With the above notations, the graph G(P−1
A ⊗ QA) has no

circuit with positive weight.

Proof. Let [P−1
A ⊗QA]ij be the (i, j) entry of P−1

A ⊗QA. We compute

[P−1
A ⊗QA]ij =

{
ε if i = j,

aπ−1
A (i)j − aπ−1

A (i)i otherwise.

Take an elementary circuit (i0, i1, . . . , iℓ−1, iℓ = i0) in G(P−1
A ⊗ QA) and

let σ ∈ Sn be a cyclic permutation (i0i1 · · · iℓ−1). Since σ(j) = j for j ̸∈
{i0, i1, . . . , iℓ−1}, the weight of this circuit is

ℓ−1∑
k=0

[P−1
A ⊗QA]ikik+1

=
ℓ−1∑
k=0

(aπ−1
A (ik)ik+1

− aπ−1
A (ik)ik

)

=
n∑

j=1

(aπ−1
A (j)σ(j) − aπ−1

A (j)j)

=
n∑

j=1

(ajσ(πA(j)) − ajπA(j))

=

n∑
j=1

ajσ(πA(j)) − detA

≤0.

This holds for any elementary circuit, which proves the lemma.

Theorem 4.6. Let A ∈ Rn×n
max and b ∈ Rn

max and suppose detA ̸= ε. Then,
the vector

x =

(
(P−1

A ⊗QA)
∗ ⊗ (P−1

A ⊗ b)
0

)
is a solution of the tropical linear system (4.3).

Proof. This follows from Corollary 4.2 and Lemma 4.5.
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4.3 The Cramer’s rule

We describe the max-plus analogue of the Cramer’s rule. For a matrix

A ∈ Rm×n
max , let A(i) ∈ Rm×(n−1)

max denote the matrix obtained from A by

removing the ith column. We define the Cramer vector of A ∈ Rn×(n+1)
max by

xCram,A = t
(
det(A(1)), det(A(2)), . . . , det(A(n+1))

)
.

The Cramer’s rule for tropical linear systems is stated as follows.

Theorem 4.7 ([68]). Let A = (aij) ∈ Rn×(n+1)
max . Then, the Cramer vector

of A is a solution of the tropical linear system A⊗ x.

Proof. Let us consider the ith row of A⊗ xCram,A:

ai1 ⊗ det(A(1))⊕ ai2 ⊗ det(A(2))⊕ · · · ⊕ ai n+1 ⊗ det(A(n+1)). (4.5)

If (4.5) is ε for i = 1, 2, . . . , n, the assertion of the theorem immediately
follows. For any index i such that (4.5) is finite, assume that the maximum
in (4.5) is attained with aik ⊗ det(A(k)) and

det(A(k)) = a1σ(1) ⊗ a2σ(2) ⊗ · · · ⊗ anσ(n),

where σ : {1, 2, . . . , n} → {1, 2, . . . , n+1}\{k} is a bijection. Then, we have

aik ⊗ det(A(k)) = aik ⊗
(
a1σ(1) ⊗ a2σ(2) ⊗ · · · ⊗ anσ(n)

)
= aiσ(i) ⊗

(
a1σ(1) ⊗ a2σ(2) ⊗ · · · ⊗ aik ⊗ · · · ⊗ anσ(n)

)
≤ aiσ(i) ⊗ det(A(σ(i)))

≤ aik ⊗ det(A(k)).

Hence, the maximum in (4.5) is also attained with aiσ(i)⊗det(A(σ(i))), which

means xCram,A ∈ T (A).

Example 4.8. For a matrix A =

(
4 0 5
5 6 2

)
, we consider the tropical linear

system A ⊗ x. Then T (A) is the intersection of two tropical hyperplanes
defined by f = 4⊗x⊕ 0⊗ y⊕ 5⊗ z and g = 5⊗x⊕ 6⊗ y⊕ 2⊗ z. It consists
of a line {c⊗ t(1, 0, 0) | c ∈ Rmax}, see Figure 3. This is also obtained from
the Cramer’s rule:

t(det(A(1)), det(A(2)),det(A(3)))

=t

(
det

(
0 5
6 2

)
,det

(
4 5
5 2

)
, det

(
4 0
5 6

))
=t(11, 10, 10)

=10⊗ t(1, 0, 0).
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Figure 3: The intersection of two tropical hyperplanes of Example 4.8 pro-
jected onto z = 0.

4.4 Characterization of kernels of matrices

We first see that the kernel of every matrix is a subspace spanned by a finite
set of vectors.

Proposition 4.9. The kernel T (A) of A ∈ Rm×n
max is a subspace of Rn

max that
has a finite spanning set.

Proof. For the proof, we refer to the tropical double description method
in [5]. Since Rn

max is spanned by n standard basis vectors, it suffices, by
induction, to show that if U is spanned by a finite set, then so T (f) ∩ U is
for any linear form f(x) = a1 ⊗ x1 ⊕ a2 ⊗ x2 ⊕ · · · ⊕ an ⊗ xn. Suppose U is
spanned by F = {u1,u2, . . . ,ur}. We will see that T (f) ∩ U is spanned by

(T (f) ∩ F )

∪ {f(uk)⊗ uj ⊕ f(uj)⊗ uk | uj ∈ F ∩ T (f),uk ∈ F \ T (f)}

∪

f(uk)⊗ uj ⊕ f(uj)⊗ uk

∣∣∣∣∣
uj ,uk ∈ F \ T (f),
the maximums of f(uj) and f(uk)
are attained with different indices

 .

(4.6)

The last two sets in (4.6) are contained in T (f). Indeed, since we have

f(f(uk)⊗ uj) = f(f(uj)⊗ uk) = f(uj)⊗ f(uk),

the maximum f(f(uk) ⊗ uj ⊕ f(uj) ⊗ uk) is attained at least twice. So
it remains to show that all vectors in T (f) ∩ U are represented by linear
combinations of vectors in (4.6).

Take any vector v ∈ T (f) ∩ U . Then, it is expressed as

v =

r⊕
i=1

ci ⊗ ui.
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Let I1 and I2 be the sets of indices such that ui ∈ T (f) for all i ∈ I1
and ui ̸∈ T (f) for all i ∈ I2. If f(v) = ε, then ci must be ε for i ∈ I2
because f(ui) ̸= ε for those i. Hence, v is a linear combinations of vectors
in T (f) ∩ F . Next, assume that f(v) ̸= ε. If there is an index i0 ∈ I1 such
that f(v) = ci0 ⊗ f(ui0), then

⊕
i∈I1

ci ⊗ ui =
⊕
i∈I1

ci ⊗ ui ⊕ (−f(v))⊗

⊕
i∈I2

ci ⊗ f(ui)

⊗ ci0 ⊗ ui0

and ⊕
i∈I2

ci ⊗ ui = (−f(v))⊗ ci0 ⊗ f(ui0)⊗
⊕
i∈I2

ci ⊗ ui.

Hence, we have

v =
⊕
i∈I1

ci ⊗ ui ⊕
⊕
i∈I2

ci ⊗ ui

=
⊕
i∈I1

ci ⊗ ui ⊕
⊕
i∈I2

((−f(v))⊗ ci0 ⊗ ci)⊗ (f(ui)⊗ ui0 ⊕ f(ui0)⊗ ui).

In the other case, there exist two distinct indices i1, i2 ∈ I2 such that f(v) =
ci1 ⊗ f(ui1) = ci2 ⊗ f(ui2). Then, we similarly compute

v =
⊕
i∈I1

ci ⊗ ui ⊕
⊕
i∈I2

ci ⊗ ui

=
⊕
i∈I1

ci ⊗ ui ⊕
⊕
i∈I21

((−f(v))⊗ ci1 ⊗ ci)⊗ (f(ui)⊗ ui1 ⊕ f(ui1)⊗ ui)

⊕
⊕
i∈I22

((−f(v))⊗ ci2 ⊗ ci)⊗ (f(ui)⊗ ui2 ⊕ f(ui2)⊗ ui),

where I2p, p = 1, 2, are the sets of i ∈ I2 such that the maximums of f(uip)
and f(ui) are attained with distinct indices.

Thus, we conclude that (4.6) spans T (f) ∩ U .

We remark that tropical linear systems A ⊗ x can be expressed by the
following two-sided systems:

n⊕
j=1

aij ⊗ xj =
⊕
j ̸=k

aij ⊗ xj , 1 ≤ i ≤ m, 1 ≤ k ≤ n.

Thus, the proposition above is also proved by using the fact that the solution
set of any two-sided system has a finite spanning set [15].

Now, we present our first main result, which characterizes vectors in a
basis of the kernel of a max-plus matrix. We start with a characterization
of finite vectors in a basis.
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Theorem 4.10 ([63]). Let A = (aij) ∈ Rm×n
max , m ≥ n − 1, and B be a

basis of T (A). Then, for each finite vector u ∈ B ∩Rn, there exists a subset
I ⊂ {1, . . . ,m} of size n − 1 such that u = c ⊗ xCram,AI for some c ∈ R.
Here, AI is the (n− 1)× n submatrix of A with rows indexed by I.

We first reduce the proof of this theorem to a simple case. Suppose u =
t(u1, u2, . . . , un) is a finite vector in the basis B. Without loss of generality,
we may assume that u = t(0, 0, . . . , 0) and the maximum of each row of A
is 0. Indeed, if we replace A with A by adding uj to each entry of the jth
column of A for j = 1, 2, . . . , n, then x ∈ T (A) if and only if x− u ∈ T (A).
This implies that u is an extreme vector of T (A) if and only if t(0, 0, . . . , 0)
is an extreme vector of T (A). On the other hand, since

det(A
(j)
I ) = det(A

(j)
I )⊗

⊗
k ̸=j

uk

for any j = 1, 2, . . . , n and any subset I ⊂ {1, . . . ,m} of size n− 1, we have

xCram,AI = (u1 ⊗ u2 ⊗ · · · ⊗ un)⊗
(
xCram,AI − u

)
.

Hence, c⊗ xCram,AI = t(0, 0, . . . , 0) if and only if (c⊗ u1 ⊗ u2 ⊗ · · · ⊗ un)⊗
xCram,AI = u. Moreover, since the kernel is invariant under the addition
of the same scalar to each entry of a single row, we may add (−maxj aij)
to each entry of the ith row of A = (aij) for all i = 1, 2, . . . ,m so that the
maximum of each row becomes 0. Note that the above action multiplies the
vector xCram,AI by a scalar.

Since u = t(0, 0, . . . , 0) ∈ T (A), at least two entries are 0 for each row
of A. We fix a positive number δ such that −δ is greater than any negative
entry of A. For a subset J ⊂ {1, 2, . . . , n}, we define the vector vJ by

[vJ ]j =

{
−δ if j ∈ J,

0 if j ̸∈ J.

Lemma 4.11. Let J1 and J2 be nonempty subsets of {1, 2, . . . , n}. If vJp ∈
T (A) for p = 1, 2, then vJ1∩J2 ∈ T (A).

Proof. This easily follows from the fact that T (A) is a subspace.

Proof of Theorem 4.10. We assume that u = t(0, 0, . . . , 0) ∈ B and the
maximum of each row of A is 0. Let J be a minimal nonempty subset
of {1, 2, . . . , n} such that vJ ∈ T (A). Such J always exists since v{1,2,...,n} ∈
T (A). Starting with an index j ∈ J , we construct a set I of indices of size
n− 1 such that xCram,AI = t(0, 0, . . . , 0) as follows.

(1) Let I := ∅, I ′ := {i | aij = 0} and K := {j}.

(2) Choose an index i ∈ I ′.
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(a) If there exists at least one k ̸∈ K such that aik = 0, choose one
of such k. Then, we set

I := I ∪ {i},
I ′ := (I ′ ∪ {i′ | ai′k = 0}) \ I,
K := K ∪ {k}.

(b) If aik ̸= 0 for all k ̸∈ K, then we set I ′ := I ′ \ {i}.

(3) If we have I ′ = ∅, then we finish. Otherwise, we return to (2).

Now we give an intuitive explanation of the above procedure. Starting with
a single column j, we extend the column set K connected by 0-edges. A
0-edges means a pair {k, k′} where aik = aik′ = 0 for some row i. The set I ′

is the rows that have at least one 0 in K. Hence, if a row i ∈ I ′ has another
0 outside K, we extend K by connecting 0s inside and outside of K. The
rows we used in the process are stored in I. However, if all 0s in the row
i ∈ I ′ are contained in K, such row i will not be used any longer, so it is
removed.

First, we show that K = {1, 2, . . . , n} when the procedure is finished.
To prove this, let L = {1, 2, . . . , n} \ K and show L = ∅. It follows from
the construction of K that one of the following two cases occurs for each
row index i = 1, 2, . . . ,m : (i) aik ̸= 0 for all k ∈ K, (ii) there exist at least
two k ∈ K such that aik = 0. In case (i), there exist k1, k2 ∈ L such that
aik1 = aik2 = 0 and we have

n⊕
k=1

aik ⊗ [vL]k = aik1 ⊗ [vL]k1 = aik2 ⊗ [vL]k2 = −δ,

because aik ⊗ [vL]k < −δ for k ̸∈ L. In case (ii), there exist k1, k2 ̸∈ L such
that aik1 = aik2 = 0 and we obtain

n⊕
k=1

aik ⊗ [vL]k = aik1 ⊗ [vL]k1 = aik2 ⊗ [vL]k2 = 0.

In either case, we have vL ∈ T (A) and so vJ∩L ∈ T (A) by Lemma 4.11.
Since we have J ∩ L ⊊ J from the condition j ̸∈ L, we see that J ∩ L = ∅
by using the minimality of J , which implies vJ ⊕ vL = t(0, 0, . . . , 0). Since
t(0, 0, . . . , 0) is an extreme vector of T (A), we have vJ = t(0, 0, . . . , 0) or
vL = t(0, 0, . . . , 0). Thus, the assumption J ̸= ∅ leads to L = ∅.

Next, we show that xCram,AI = t(0, 0, . . . , 0) for the index set I obtained
in the above construction. This follows from the fact that we have a bijection
τk : I → {1, 2, . . . , n} \ {k} such that aiτk(i) = 0 for any column k. To make
such a bijection, let p(i), i ∈ I, be the column number k when i is last
augmented to I ′ and let q(i), i ∈ I, be the column number k when i is
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augmented to I. Note that q is a bijection I → {1, 2, . . . , n} \ {j}, where j
is the column we first chose in the procedure. We set τk(i) := p(i) if the row
i is in the unique “path” from k to j, and otherwise τk(i) := q(i). Here the
“path” is the sequence of rows (i1, i2, . . . , ir) satisfying q(i1) = k, p(ir) = j
and q(il+1) = p(il) for l = 1, 2, . . . , r − 1, see Figure 4. Now, we see that⊗

i∈I
aiτk(i) = 0

and this appears among the terms of det(A
(k)
I ). Noting that all entries of

A
(k)
I are nonpositive, we find det(A

(k)
I ) = 0. Since this holds for arbitrary

column k, we have xCram,AI = t(0, 0, . . . , 0). This completes the proof of the
theorem.

Figure 4: Each vertex represents a column and each edge represents a row
i ∈ I. The left and the right endpoints of edges are p(i) and q(i), respectively.
The arrows are pointing to τk(i).

Theorem 4.10 is easily extended to vectors that may contain ε.

Corollary 4.12 ([63]). Let A = (aij) ∈ Rm×n
max and B be a basis of T (A).

We define the matrix Ã ∈ R(m+n)×n
max by

(
A
En

)
. Then, for each vector u =

t(u1, u2, . . . , un) ∈ B, there exists a subset I ⊂ {1, . . . ,m + n} of size n − 1

such that u = c⊗ xCram,ÃI for some c ∈ R.

Proof. Without loss of generality, assume the first d entries of u are finite.
Let u′ = t(u1, u2 . . . , ud) and A′ be the first d columns of A. Then, u′

is an extreme vector of T (A′). By Theorem 4.10, there exists a subset
J ⊂ {1, . . . ,m} of size d − 1 such that u′ = c ⊗ xCram,A′

J for some c ∈ R.
Let I = J ∪ {m+ d+ 1, . . . ,m+ n} and consider the matrix

ÃI =

(
A′

J ∗
E En−d

)
∈ R(n−1)×n

max .

If 1 ≤ j ≤ d, then

det(Ã
(j)
I ) = det((A′)

(j)
J )⊗ det(En−d) = (−c)⊗ uj .

25



If d+ 1 ≤ j ≤ n, then all entries of the (j − 1)th row of Ã
(j)
I are ε. Hence,

det(Ã
(j)
I ) = ε. Thus,

u = c⊗ xCram,ÃI .

Recall that the dimension of T (A) is the number of vectors in its basis.
Surprisingly, it may exceed n for A ∈ Rm×n

max though it is a subspace of
Rn
max. Corollary 4.12 gives an upper bound for the dimension of T (A). It

is presented in [6] that a similar bound for the case of solutions of linear
inequalities.

Corollary 4.13. For A ∈ Rm×n
max , an upper bound for the dimension of T (A)

is

(
m+ n

n− 1

)
.

Example 4.14. Let us consider the matrix

A =

(
4 0 5
1 6 2

)
.

Applying Cramer’s rule for every 2× 3 submatrix of

(
A
E3

)
=


4 0 5
1 6 2
0 ε ε
ε 0 ε
ε ε 0

 ,

we obtain the following ten vectors11
6
10

 ,

ε
5
0

 ,

5
ε
4

 ,

0
4
ε

 ,

ε
2
6

 ,

2
ε
1

 ,

6
1
ε

 ,

0
ε
ε

 ,

ε
0
ε

 ,

ε
ε
0

 .

By Corollary 4.12, a basis of T (A) is comprised of some of these vectors.
First, we exclude the vectors that are not in T (A), leaving the following
candidates: 11

6
10

 ,

5
ε
4

 ,

2
ε
1

 .

We can easily verify that these are extreme vectors of T (A) using Proposition
3.6. Since the third vector is a scalar multiple of the second one, a basis of
T (A) is 

11
6
10

 ,

5
ε
4

 .
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5 Eigenvalue problem

In this section, we summarize results for the max-plus eigenvalue problem
presented in, e.g., [9, 13, 42].

5.1 Basic properties

Let A ∈ Rn×n
max . A scalar λ ∈ Rmax is called an eigenvalue of A if there exists

a vector u ∈ Rn
max \ {E} such that

A⊗ u = λ⊗ u.

This nontrivial vector u is called an eigenvector of A with respect to λ. For
A ∈ Rn×n

max , let Λ(A) be the set of all eigenvalues of A. We define the set of
vectors

U(A, λ) = {u ∈ Rn
max | A⊗ u = λ⊗ u}.

Then, we have the following proposition.

Proposition 5.1. For A ∈ Rn×n
max and c, λ ∈ Rmax,

(1) λ ∈ Λ(A)⇐⇒ c⊗ λ ∈ Λ(c⊗A),

(2) U(A, λ) ⊂ U(A⊗k, λ⊗k) for k = 1, 2, . . . ,

(3) u ∈ U(A, λ) =⇒ c⊗ u ∈ U(A, λ),

(4) u,v ∈ U(A, λ) =⇒ u⊕ v ∈ U(A, λ).

From properties (3) and (4), we see that U(A, λ) is a subspace of Rn
max.

We call this subspace the eigenspace of A with respect to λ.

5.2 The maximum eigenvalue

The following classical result is fundamental to the max-plus eigenvalue
problem.

Proposition 5.2. Let A ∈ Rn×n
max . The maximum value of average weights

of circuits in G(A) is an eigenvalue of A.

Proof. Let C be an elementary circuit in G(A) with the maximum average
weight, λ = ave(C) and B = (−λ) ⊗ A. Then, the graph G(B) has no
circuit with positive weight. If i is a vertex in C, then the ith column of
B∗, denoted by µi, is identical to that of B+. Since B ⊗B∗ = B+, we have
B ⊗ µi = µi. This implies A ⊗ µi = λ ⊗ µi. Thus, λ is an eigenvalue of A
and µi is an eigenvector of A with respect to λ.

Proposition 5.3. Let A ∈ Rn×n
max . If there is no circuit in G(A), ε is an

eigenvalue of A.
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Proof. Since there is no circuit in G(A), A has a column, say i, whose all
entries are ε. Then, the vector ei, whose entries are ε except for the ith
entry, is an eigenvector of A with respect to ε.

Proposition 5.4. Let λ ̸= ε be an eigenvalue of A = (aij) ∈ Rn×n
max . Then,

there is a circuit in G(A) whose average weight is λ.

Proof. Let u = t(u1, u2, . . . , un) be an eigenvector of A with respect to λ.
Take an index i1 with ui1 ̸= ε. Since A ⊗ u = λ ⊗ u, there exists an index
i2 such that

ai1i2 ⊗ ui2 = λ⊗ ui1 .

Since λ and ui1 are finite, ai1i2 and ui2 are also finite. Similarly, there exists
an index i3 such that

ai2i3 ⊗ ui3 = λ⊗ ui2 ,

where ai2i3 and ui3 are finite. In this way, we find i4, i5, . . . . Then, we
obtain an elementary circuit C = (ir, ir+1, . . . , is, is+1 = ir). Summing up
the equalities

aikik+1
⊗ uik+1

= λ⊗ uik

for k = r, r + 1, . . . , s, we have

s∑
k=r

aikik+1
+

s∑
k=r

uik = (s− r)λ+

s∑
k=r

uik .

This leads to the conclusion ave(C) = λ.

For a matrix A ∈ Rn×n
max , if G(A) has a circuit, then let λ(A) denote the

maximum value of average weights of circuits in G(A); otherwise λ(A) := ε.
From Proposition 5.2, 5.3 and 5.4, we have the following result.

Theorem 5.5. The maximum eigenvalue of A ∈ Rn×n
max is λ(A).

In the proof of Proposition 5.2 and 5.3, an eigenvector with respect to
the maximum eigenvalue is provided. We next characterize a basis of the
eigenspace U(A, λ(A)). Circuits in G(A) with average weights λ(A) are
called critical. The subgraph Gc(A) of G(A) induced by edges in critical
circuits is called the critical graph of A. The vertex set of the critical graph
is denoted by Vc(A). Note that all circuits in the critical graph have the same
average weights λ(A). In Proposition 5.6, Proposition 5.7 and Theorem 5.8,
we denote −λ(A) ⊗ A by B and the ith column of B∗ by µi. Note that
u ∈ U(A, λ(A)) if and only if u ∈ U(B, 0), and Vc(A) = Vc(B).

Proposition 5.6. For A ∈ Rn×n
max , assume that λ(A) ̸= ε. Then, the set

{µi | i ∈ Vc(A)} spans the eigenspace U(A, λ(A)).
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Proof. Suppose u = t(u1, u2, . . . , un) is an eigenvector of A with respect to
λ(A). We will show that

u =
⊕

i∈Vc(A)

ui ⊗ µi.

Since the eigenvector u ∈ U(B, 0) satisfies

B∗ ⊗ u = u,

the inequality

u =

n⊕
i=1

ui ⊗ µi ≥
⊕

i∈Vc(A)

ui ⊗ µi

holds. For the reverse inequality, it suffices to prove that there exists a
vertex j ∈ Vc(A) such that

ui ≤ uj ⊗ [µj ]i

for i = 1, 2, . . . , n. The case ui = ε is trivial. Assume that ui ̸= ε By the
iterative use of the equality B⊗u = u, there exists a path (i = i0, i1, . . . , iℓ =
j), j ∈ Vc(A), such that

ui =
ℓ−1⊗
k=0

[B]ikik+1
⊗ uj .

Indeed, if there were no such path, then there would be a circuit C disjoint
from Vc(A) such that ui = w(C)⊗ ui, which would lead to a contradiction.
Since [µj ]i is the maximum weight of all i-j paths, we have

ℓ−1⊗
k=0

[B]ikik+1
≤ [µj ]i,

which leads to the desired inequality.

Proposition 5.7. For A ∈ Rn×n
max , assume that λ(A) ̸= ε. Let i and j are

distinct vertices of the critical graph. Then, µi and µj are identical up to
scalar if and only if i and j are in the same connected component of the
critical graph.

Proof. Suppose i and j are in the same connected component. For each
k, the (k, j) entry of B∗ is the maximum weight of all k-j paths in G(B).
We may assume that the k-j path with the maximum weight ends on the
i-j path with weight [B∗]ij by appending a critical circuit of G(B) passing
through i and j to the end of it. This implies µj = [B∗]ij ⊗ µi.
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Conversely, assume that µj = c ⊗ µi for some c ∈ R. Then, we have
[B∗]ij = c⊗ [B∗]ii = c and [B∗]ji = (−c)⊗ [B∗]jj = −c. Hence, there exists
a circuit passing through i and j with weight c + (−c) = 0 in G(B). This
circuit corresponds to the critical circuit of A. Thus, i and j are in the same
connected component of the critical graph.

Let N(A) be the system of representatives of Vc(A), that is, the set of
vertices taken exactly one vertex from each connected component of the
critical graph of A.

Theorem 5.8. For A ∈ Rn×n
max , assume that λ(A) ̸= ε. Then, {µi | i ∈

N(A)} is a basis of the eigenspace U(A, λ(A)).

Proof. From Proposition 5.6 and 5.7, the set {µi | i ∈ N(A)} spans the
eigenspace. It suffices to show that µi is an extreme vector of U(A, λ(A))
for i ∈ N(A). Assume that µi = u⊕ v, where u,v ∈ U(A, λ(A)). Then, we
can express u and v as

u =
⊕

i∈N(A)

ci ⊗ µi, v =
⊕

i∈N(A)

di ⊗ µi, ci, di ∈ Rmax.

Without loss of generality, there exists a vertex j ∈ N(A) such that cj ⊗
[µj ]i = [µi]i = 0. Then, we have

[µi]j ≥ [u]j ≥ cj ⊗ [µj ]j = cj .

This means that vertices i and j are in the same circuit in G(B) whose
weight is greater than or equal to

[µj ]i + [µi]j ≥ (−cj) + cj = 0.

Hence, i and j must be in the same critical circuit of G(A), which implies
i = j, and hence u = µi. Thus, µi is an extreme vector of U(A, λ(A)).

We close this subsection by introducing the irreducibility of max-plus
square matrices. In a graph G, a vertex j is said to be reachable from vertex
i if there is an i-j path. A graph is called strongly connected if any two
vertices are reachable from each other. A matrix A ∈ Rn×n

max is irreducible if
the graph G(A) is strongly connected, and otherwise is reducible. We use
the convention that 1 × 1 matrix (ε) is irreducible. Any matrix A ∈ Rn×n

max

can be rewritten as 
A1,1 E · · · E

A2,1 A2,2
. . .

...
...

. . .
. . . E

Aq,1 · · · Aq,q−1 Aq,q

 , (5.1)
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where Ai,i, i = 1, 2, . . . , q, are irreducible, by renumbering the vertices of
G(A) so that vertices of G(Aj,j) are not reachable from those in G(Ai,i) if
i < j. The matrix (5.1) is called a Frobenius normal form of A. Note that
a Frobenius normal form of A is given by P−1 ⊗ A ⊗ P for some permuta-
tion matrix P . Hence, we may only consider matrices in Frobenius normal
forms. Indeed, if A ∈ Rn×n

max , λ and u be an eigenvalue and a corresponding
eigenvector of A, respectively, and P be a permutation matrix, then

(P−1 ⊗A⊗ P )⊗ (P−1 ⊗ u) = P−1 ⊗ (A⊗ u) = λ⊗ (P−1 ⊗ u).

This means that λ is an eigenvalue of P−1 ⊗ A ⊗ P and P−1 ⊗ u is a
corresponding eigenvector.

Proposition 5.9. If A = (aij) ∈ Rn×n
max is irreducible, then A has exactly

one eigenvalue λ(A) and corresponding eigenvectors have only finite entries.

Proof. If ε is an eigenvalue of A, then there is a column in A whose all entries
are ε. This contradicts the irreducibility of A. Let u = t(u1, u2, . . . , un) be
an eigenvector of A with respect to eigenvalue λ ̸= ε. Suppose uj ̸= ε. Take
an i-j path (i = i0, i1, . . . , iℓ = j). Then, we have

λ⊗ℓ ⊗ ui ≥
ℓ⊗

k=1

aik−1,ik ⊗ uj .

This implies ui ̸= ε. Since i-j paths exist for all i by the irreducibility of A,
the eigenvector u must be in Rn. Let (j0, j1, . . . , jℓ′ = j0) be a circuit whose
average weight is λ(A). Then, we have

λ⊗ℓ′ ⊗ uj0 ≥
ℓ′⊗

k=1

aik−1,ik ⊗ uj0 = λ(A)⊗ℓ′ ⊗ uj0 .

Since the above argument ensures that uj0 ̸= ε, we have λ ≥ λ(A). Thus,
from Theorem 5.5, we conclude λ = λ(A).

Example 5.10. Consider the matrix

A =


ε −2 ε −5
0 −2 2 ε
ε ε −1 −6
1 ε ε ε

 .

The associated graph G(A) is shown in Figure 5. Since G(A) is strongly
connected, A is irreducible and has exactly one eigenvalue λ(A) = −1. The
critical graph of G(A) consists of two circuits (1, 2, 1) and (3, 3). Since

(1⊗A)∗ =


0 −1 2 −3
1 0 3 −2
−3 −4 0 −5
2 1 4 0

 ,
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the basis of the eigenspace U(A,−1) is


0
1
−3
2

 ,


2
3
0
4


 .

Figure 5: The associated graph for Example 5.10

5.3 All eigenvalues

In this subsection, we focus on all eigenvalues of max-plus matrices. A
circuit C is said to be spectral if vertices in C are not reachable from any
vertices in another circuit C ′ such that ave(C ′) > ave(C). Then, the set of
eigenvalues of a matrix is given as follows.

Theorem 5.11. Let A ∈ Rn×n
max . Then, the set of finite eigenvalues is

{ave(C) | C: spectral circuits in G(A)}.

Proof. Let λ be the average weight of a spectral circuit. Then, without loss
of generality, we assume that A is of the form(

A1 E
A2 A3

)
,

where λ(A3) = λ. From the results in the previous subsection, there is a
vector u ̸= E such that A3 ⊗ u = λ⊗ u. Hence, we have(

A1 E
A2 A3

)
⊗
(
E
u

)
= λ⊗

(
E
u

)
.

This leads to the fact that λ is an eigenvalue of A.
Conversely, let λ ̸= ε be an eigenvalue of A and u = t(u1, u2, . . . , un)

be a corresponding eigenvector. Suppose uj ̸= ε. Then, as in the proof of
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Proposition 5.4, λ coincides with the average weight of a circuit C that is
reachable from vertex j. Moreover, uk ̸= ε if k is a vertex in C. On the
other hand, as in the proof of Proposition 5.9, λ does not fall below average
weights of circuits from which vertices of C are reachable. This proves that
C is a spectral circuit in G(A).

The computation of eigenvectors is straightforward.

Proposition 5.12. Let A ∈ Rn×n
max and λ ̸= ε be an eigenvalue of A. Assume

that

A =

(
A1 E
A2 A3

)
,

where λ(A1) > λ and λ(A3) = λ. If {u1,u2, . . . ,um} is a basis of the
eigenspace U(A3, λ), then{(

E
u1

)
,

(
E
u2

)
, . . . ,

(
E
um

)}
is a basis of the eigenspace U(A, λ).

Let U(A) be the sum space of all eigenspaces of A, i.e.,

U(A) =

 ⊕
λ∈Λ(A)

uλ

∣∣∣∣∣ uλ ∈ U(A, λ)

 .

Then, we have the following fact.

Corollary 5.13. Let A ∈ Rn×n
max and B(A, λ) be a basis U(A, λ) for each

eigenvalue λ of A. Then,
∪

λ∈Λ(A)

B(A, λ) is a basis of U(A). The dimension

of U(A) does not exceed n.

Example 5.14. Consider the matrix

A =


ε −2 ε ε
2 −1 ε ε
ε −2 −3 ε
−1 ε 0 −2

 .

The associated graph G(A) is shown in Figure 6. The spectral circuits in
G(A) is (1, 2, 1) with the weight 0 and (4, 4) with the weight −2. Hence, the
eigenvalues of A are 0 and −2. The corresponding eigenvectors are t(0, 2, 0, 0)
and t(ε, ε, ε, 0), respectively.
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Figure 6: The associated graph for Example 5.14

5.4 Characteristic polynomials

A univariate polynomial in the max-plus algebra is of the form

f(t) = c0 ⊕ c1 ⊗ t⊕ c2 ⊗ t⊗2 ⊕ · · · ⊕ cn ⊗ t⊗n, c0, c1, c2, . . . , cn ∈ Rmax.

Max-plus univariate polynomials are piecewise linear functions on Rmax. A
term ck ⊗ t⊗k is called essential if it contributes to f(t) as a function, that
is,

ck ⊗ t⊗k >
⊕
j ̸=k

cj ⊗ t⊗j

for some t ∈ Rmax; otherwise, it is called inessential. As with the case of
standard polynomials over C, each polynomial can be uniquely factorized
into the product of linear factors:

f(t) = (t⊕ r1)
⊗p1 ⊗ (t⊕ r2)

⊗p2 ⊗ · · · ⊗ (t⊕ rm)⊗pm .

Then, ri and pi are called a root of f(t) and its multiplicity, respectively. In
the graph of the piecewise linear function f(t), the roots are the bending
points of f(t) and the multiplicities are the differences in the slopes of the
lines around the roots.

As in the conventional linear algebra, the characteristic polynomial of
A ∈ Rn×n

max is defined by

φA(t) := det(A⊕ t⊗ En).

If we expand the right-hand side, the coefficient of t⊗k is the maximum
weight of multi-circuits in G(A) with length n − k. Here, a multi-circuit is
the set of disjoint elementary circuits in G(A) and its length (resp. weight)
is the sum of the lengths (resp. weights) of all circuits in it. The following
factorization algorithm is essentially the same as the operations RESOLU-
TION and RECTIFY in [24, Section IX], but it is reformulated in terms of
graph theory.
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Algorithm 5.15. Input: A matrix A ∈ Rn×n
max

Output: The factorization of the characteristic polynomial of A

(1) Set i := 0 and C0 = ∅.

(2) Set i := i+ 1.

(a) If there is no multi-circuit in G(A) whose length is larger than
ℓ(Ci−1), then setm := i, λm := ε and pm := n−(p1+p2+· · ·+pi−1)
and proceed to (3).

(b) If there exist multi-circuits in G(A) whose lengths are larger
than ℓ(Ci−1), let Ci be the multi-circuit C attaining the max-

imum value of
w(C)− w(Ci−1)

ℓ(C)− ℓ(Ci−1)
among them. If there is more

than one such multi-circuit, we choose the longest one. We set

λi :=
w(Ci)− w(Ci−1)

ℓ(Ci)− ℓ(Ci−1)
and pi := ℓ(Ci) − ℓ(Ci−1), and we re-

peat (2).

(3) We have the factorization of the characteristic polynomial:

φA(t) = (t⊕ λ1)
⊗p1 ⊗ (t⊕ λ2)

⊗p2 ⊗ · · · ⊗ (t⊕ λm)⊗pm .

We define the relative average of multi-circuits C′ with respect to C by

r.ave(C, C′) =


w(C′)− w(C)
ℓ(C′)− ℓ(C)

if ℓ(C′) > ℓ(C),

ε otherwise.

Using this notion, λi in Algorithm 5.15 is the maximum value of the relative
averages of all multi-circuits with respect to Ci−1 in G(A).

As in the conventional linear algebra, the characteristic polynomial of
a matrix is related to the eigenvalue problem. A root of the characteristic
polynomial of a matrix A is also called an algebraic eigenvalue of A [1].

Theorem 5.16 ([23]). For a matrix A ∈ Rn×n
max , the maximum root of its

characteristic polynomial is the maximum eigenvalue of A.

Proof. We observe from the above algorithm that the maximum root of the
characteristic polynomial of A is

max
C

(r.ave(∅, C)) = max
C

w(C)
ℓ(C)

= max
C

ave(C) = λ(A),

where C and C are taken over all multi-circuits and all elementary circuits
in G(A), respectively. Hence, Theorem 5.5 leads to the conclusion.

Theorem 5.17 ([1]). All eigenvalues of a matrix A ∈ Rn×n
max are roots of its

characteristic polynomial.
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Proof. Let λ be an eigenvalue of A. If λ = λ(A), it is the maximum root of
φA(t) by Theorem 5.16. If λ < λ(A), we may assume that

A =

(
A1 E
A2 A3

)
,

where λ(A3) = λ. By Theorem 5.16, λ is the maximum root of φA3(t). On
the other hand, we have φA(t) = φA1(t) ⊗ φA3(t). Hence, λ is a root of
φA(t).
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6 Jordan canonical forms of max-plus matrices

In the previous section, we summarized the theory for the max-plus eigen-
value problem. The results indicate that the number of independent eigen-
vectors of a matrix does not exceed the number of spectral circuits in the
associated graph, which is much smaller than the size of the matrix in gen-
eral. This means that it is hard to consider the diagonalization of max-plus
matrices. In the conventional linear algebra, we can consider a Jordan canon-
ical form of a matrix if it cannot be diagonalized and the columns of the
transformation matrix consist of generalized eigenvectors. We would like to
imitate this idea in the max-plus algebra, so we first define generalized eigen-
vectors of max-plus matrices. Then, we propose Jordan canonical forms of
matrices together with a necessary and sufficient condition of matrices to
have those. This section includes the second main result of this thesis, which
is published in [62].

6.1 Generalized eigenspaces

Let A ∈ Rn×n
max and λ be an eigenvalue of A. If a vector u ∈ Rn×n

max \ {E}
satisfies A⊗m ⊗ u = λ⊗m ⊗ u for some positive integer m, it is called a
generalized eigenvector of A with respect to λ. Indeed, (A⊕λ⊗En)

⊗(m−1)⊗u
is an eigenvector of A with respect to λ if A⊗m⊗u = λ⊗m⊗u. The subspace

Ũ(A, λ) =
{
u ∈ Rn

max | A⊗m ⊗ u = λ⊗m ⊗ u for some m ≥ 1
}
.

is called the generalized eigenspace of A with respect to λ. The sum of all
generalized eigenspaces is denoted by Ũ(A), i.e.,

Ũ(A) =

 ⊕
λ∈Λ(A)

uλ

∣∣∣∣∣ uλ ∈ Ũ(A, λ)

 .

From the following proposition and Corollary 5.13, we see that a basis of
Ũ(A) is the union of bases of Ũ(A, λ) for λ ∈ Λ(A) and the dimension of
Ũ(A) does not exceed n.

Proposition 6.1. Let A ∈ Rn×n
max and L be a common multiple of the lengths

of all elementary circuits in G(A) with average weights λ(A). Then,

Ũ(A, λ(A)) = U(A⊗L, λ(A)⊗L).

Proof. The inclusion U(A⊗L, λ(A)⊗L) ⊂ Ũ(A, λ) is obvious. To prove the
opposite inclusion, suppose u ∈ Rn

max satisfies A⊗m⊗u = λ⊗m⊗u for some
positive integer m. Then, we have

A⊗Lm ⊗ u = A⊗(L−1)m ⊗ (λ(A)⊗m ⊗ u) = · · · = λ(A)⊗Lm ⊗ u.

37



So, it suffices to show that U(A⊗Lm, λ(A)⊗Lm) = U(A⊗L, λ(A)⊗L). First,
we see that (

(−λ(A)⊗A)⊗Lm
)∗ ≤ ((−λ(A)⊗A)⊗L

)∗
(6.1)

On the other hand, fix a vertex i in a critical circuit of G(A), or equivalently,
G(A⊗L) or G(A⊗Lm). Then, for any j-i path in G(−λ(A)⊗A) whose length
is a multiple of L, we can construct a j-i path with the same weight whose
length is a multiple of Lm. This is because of the fact that there is a
path with weight 0 and length L that passes through i. Hence, the ith
column of both sides of (6.1) are identical. Now, Proposition 5.6 yields
U(A⊗Lm, λ(A)⊗Lm) = U(A⊗L, λ(A)⊗L).

6.2 Jordan canonical forms

For λ ̸= ε and an integer m ≥ 1, we define a matrix of the form

J(λ,m) =



ε λ ε · · · ε

ε ε λ
. . .

...
...

. . .
. . .

. . . ε

ε
. . .

. . .
. . . λ

λ ε · · · ε ε


∈ Rm×m

max .

In this section, we consider the problem when a max-plus matrix A ∈ Rn×n
max

is transformed into the matrix of the form

J =


J(λ1,m1) E · · · E

E J(λ2,m2)
. . .

...
...

. . .
. . . E

E · · · E J(λr,mr)

 . (6.2)

If there exists a nonsingular matrix P ∈ Rn×n
max such that A ⊗ P = P ⊗ J ,

then we call J a Jordan canonical form of A. This name comes from the
following observation. Let Pi ∈ Rn×mi

max be the columns of P corresponding
to the block J(λi,mi). Then, we have

A⊗mi ⊗ Pi = A⊗mi−1 ⊗ (Pi ⊗ J(λi,mi)) = · · · =Pi ⊗ J(λi,mi)
⊗mi

=λ⊗mi
i ⊗ Pi.

This leads to the fact that all columns of P are generalized eigenvectors of
A with respect to λi, which is analogous to the conventional case.

Remark 6.2. For a max-plus matrix A, we must note that the inclusion

(the column space of P ) ⊂ Ũ(A). (6.3)

38



may be strict even if P is a nonsingular matrix satisfying A ⊗ P = P ⊗ J ,
where J is a Jordan canonical form of A. To make a similar result to the
conventional theory, a transformation matrix P achieving the equality in
(6.3) seems the best choice. Since a basis of a max-plus linear space is
unique up to scalar multiples by Theorem 3.5, the equality holds if and only
if the columns of P form a basis of Ũ(A).

We present the statement of the second main result.

Theorem 6.3 ([62]). A matrix A ∈ Rn×n
max has a Jordan canonical form if

and only if each vertex in G(A) is contained in exactly one spectral circuit.
In this case, we can choose the transformation matrix P so that the equality
in (6.3) holds.

To prove “if part” of the theorem, we first show the following lemma.

Lemma 6.4. For a matrix A = (aij) ∈ Rn×n
max , let C = (i0, i1, i2, . . . , iℓ = i0)

be a spectral circuit of G(A) and λ be the average weight of C. If L is a
multiple of ℓ = ℓ(C), then for k = 1, 2, . . . , ℓ, we have

A⊗ µik = aik−1ik ⊗ µik−1
,

where µi is the ith column of
(
(−λ⊗A)⊗L

)∗
.

Proof. The jth entry of vector µi represents the maximum value of weights
of all j-i paths in G(−λ ⊗ A) whose lengths are multiples of L. Since
C is spectral and w(C) = 0 in G(−λ ⊗ A), µik does not contain ∞ for
k = 1, 2, . . . , ℓ. Consider the vector (−λ ⊗ A) ⊗ µik . The j th entry of
that vector represents the maximum value of weights of all j-ik paths in
G(−λ ⊗ A) whose lengths are congruent to 1 modulo L. Let P be such a
j-ik path with the maximum weight. Then, we have

w(P ) = [(−λ⊗A)⊗ µik ]j .

On the other hand, we may assume that the last edge of P is (ik−1, ik)
by appending L/ℓ copies of C to the end of the path. Then, P is the
concatenation of the j-ik−1 path P ′ and the edge (ik−1, ik). The length of
P ′ is a multiple of L and it has the maximum weight among all j-ik−1 paths
whose lengths are multiples of L. As the weight of the edge (ik−1, ik) in
G(−λ⊗A) is −λ⊗ aik−1ik , we have

w(P ) = [µik−1
]j ⊗ (−λ⊗ aik−1ik).

Hence, we obtain

[(−λ⊗A)⊗ µik ]j = [µik−1
]j ⊗ (−λ⊗ aik−1ik).

As this holds for j = 1, 2, . . . , n, we have

A⊗ µik = aik−1ik ⊗ µik−1

by multiplying λ to both sides in the sense of max-plus arithmetic.
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Proof (“if” part of Theorem 6.3). Let λ1 > λ2 > · · · > λq be the eigen-
values of A. Renumbering the vertices of G(A), if necessary, we assume
that

A =


A1,1 E · · · E

A2,1 A2,2
. . .

...
...

. . .
. . . E

Aq,1 · · · Aq,q−1 Aq,q

 ,

where the vertices of G(Ai,i) are covered by the spectral circuits of average
weights λi without duplications. We remark that the upper right blocks of
A are E since otherwise some of λi would not be an eigenvalue of A. We will
prove the existence of a Jordan canonical form of A by induction on q.

First, we assume that q = 1, which means G(A) has exactly one eigen-
value λ. Let {C1, C2, . . . , Cr} be the set of all spectral circuits, where
Cj = (ij,0, ij,1, ij,2, . . . , ij,ℓ(Cj) = ij,0) for j = 1, 2, . . . , r. Note that ℓ(C1) +
ℓ(C2)+ · · ·+ ℓ(Cr) = n since each vertex is contained in exactly one Ci. Let
L be the least common multiple of ℓ(C1), ℓ(C2), . . . , ℓ(Cr) and µi be the ith
column of

(
(−λ⊗A)⊗L

)∗
. By Lemma 6.4, we have

A⊗ µij,k = aij,k−1,ij,k ⊗ µij,k−1

for j = 1, 2, . . . , r and k = 1, 2, . . . , ℓ(Cj). Hence, if we replace µij,k with

νij,k = λ⊗k ⊗

(
−

k⊗
s=1

aij,s−1,ij,s

)
⊗ µij,k ,

we have

A⊗ νij,k = λ⊗ νij,k−1
.

By setting

P =
(
νi1,1 ,νi1,2 , . . . ,νi1,ℓ(C1)

, . . . . . . ,νir,1 ,νir,2 , . . . ,νir,ℓ(Cr)

)
∈ Rn×n

max ,

we obtain

A⊗ P = P ⊗


J(λ, ℓ(C1)) E · · · E

E J(λ, ℓ(C2))
. . .

...
...

. . .
. . . E

E · · · E J(λ, ℓ(Cr))

 .

To prove 
J(λ, ℓ(C1)) E · · · E

E J(λ, ℓ(C2))
. . .

...
...

. . .
. . . E

E · · · E J(λ, ℓ(Cr))
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is a Jordan canonical form of A, it remains to show that P is nonsingu-
lar. Since P is obtained from

(
(−λ⊗A)⊗L

)∗
by permuting the columns

and multiplying the columns by scalars, P is nonsingular if and only if(
(−λ⊗A)⊗L

)∗
is nonsingular. If

(
(−λ⊗A)⊗L

)∗
were singular, the maxi-

mum in det
(
(−λ⊗A)⊗L

)∗
would be attained at least twice: with the iden-

tity permutation and another permutation. This implies that the graph
G
(
(−λ⊗A)⊗L

)
has a circuit with weight 0 besides loops. Since L is the

least common multiple of ℓ(C1), ℓ(C2), . . . , ℓ(Cr), it occurs only if some of
two spectral circuits share a vertex, which contradicts the assumption of the
theorem.

Next, we assume that the assertion is proved for matrices that have q−1
different eigenvalues. For the block A1,1 ∈ Rd1×d1

max , let {C1, C2, . . . , Cr} be
the set of spectral circuits covering {1, 2, . . . , d1}, where

Cj = (ij,0, ij,1, ij,2, . . . , ij,ℓ(Cj) = ij,0), j = 1, 2, . . . , r.

Recall that ave(Ci) = λ1 for all i = 1, . . . , r. Let L be the least common mul-
tiple of ℓ(C1), ℓ(C2), . . . , ℓ(Cr) and µi be the ith column of

(
(−λ1 ⊗A)⊗L

)∗
.

As above, setting

νij,k = λ⊗k
1 ⊗

(
−

k⊗
s=1

aij,s−1,ij,s

)
⊗ µij,k

and

P1 =
(
νi1,1 ,νi1,2 , . . . ,νi1,ℓ(C1)

, . . . . . . ,νir,1 ,νir,2 , . . . ,νir,ℓ(Cr)

)
∈ Rn×d1

max ,

we get

A⊗ P1 = P1 ⊗ J1,

where

J1 =


J(λ1, ℓ(C1)) E · · · E

E J(λ1, ℓ(C2))
. . .

...
...

. . .
. . . E

E · · · E J(λ1, ℓ(Cm))

 ∈ Rd1×d1
max .

For (n− d1)× (n− d1) matrix

A′ =


A2,2 E · · · E

A3,2 A3,3
. . .

...
...

. . .
. . . E

Aq,2 · · · Aq,q−1 Aq,q

 ,
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by induction, there exists a nonsingular matrix P ′ and a Jordan canonical
form J ′ satisfying A′ ⊗ P ′ = P ′ ⊗ J ′. Thus, we have

A⊗
(
P1

∣∣∣∣ EP ′

)
=

(
P1

∣∣∣∣ EP ′

)
⊗
(
J1 E
E J ′

)
.

Here P =

(
P1

∣∣∣∣ EP ′

)
is nonsingular. Indeed, since both P ′ and the first

d1 rows of P1 are nonsingular, the maximum in detP is attained precisely

once. Thus, we conclude that

(
J1 E
E J ′

)
is a Jordan canonical form of A.

The last statement of the theorem follows from the fact that the transfor-
mation matrix P above achieves the equality in (6.3), which can be verified
by inductively use of Proposition 6.1.

For the proof of the “only if” part, let G(A)[λ] denote the subgraph
of G(A) induced by all spectral circuits with average weights λ. Clearly,
G(A)[λ(A)] is the critical graph Gc(A) defined in Section 5.

Proof (“only if”part of Theorem 6.3). Assume that A⊗P = P⊗J , where P
is a nonsingular matrix and J is a Jordan canonical form of A. We take L as
the least common multiple of the sizes of all diagonal blocks in J . Let dλ be
the sum of the sizes of the diagonal blocks in J whose eigenvalues are equal
to λ, and let Pλ ∈ Rn×dλ

max be the collection of the corresponding columns
of P . For each eigenvalue λ of A, all columns of Pλ are in Ũ(A, λ). The
dimension of Ũ(A, λ) is at least dλ; otherwise the column rank of Pλ would
be less than dλ and hence the column rank of P would be less than n. Then,
Lemma 3.7 implies P is singular, which is a contradiction. By Theorem
5.8 and Proposition 6.1, we will find out that the subgraph G(A⊗L)[λ⊗L]
has at least dλ connected components. Since this holds for all eigenvalues
λ of J , the subgraph G(A⊗L)[λ⊗L] must be a collection of dλ loops and for
each vertex j there exists exactly one λ such that G(A⊗L)[λ⊗L] contains
loop (j, j). This means that vertex j is contained in a spectral circuit of
G(A) with average weight λ. We will finish the proof with the following
lemma.

Lemma 6.5. For a matrix A ∈ Rn×n
max and an eigenvalue λ ̸= ε, suppose

that there exists an integer L such that G(A⊗L)[λ⊗L] is a collection of loops.
Then, any two spectral circuits of G(A) with average weight λ have no com-
mon vertices.

Proof. On the contrary, suppose that there exists a vertex i that is contained
in two circuits C and C ′ of G(A)[λ]. Without loss of generality, we may
assume that the predecessor of i in C, namely j, is different from that in C ′,
namely j′. Then, G(A)[λ] has a j′-j path whose length is a multiple of L.
Indeed, we can find such a path as a concatenation of the edge (j′, i), (L−1)
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copies of Ci and i-j path along Ci. Similarly, G(A)[λ] also has a j-j′ path
whose length is a multiple of L. Hence, G(A⊗L)[λ⊗L] has both j′-j path
and j-j′ path. This contradicts the fact that G(A⊗L)[λ⊗L] is a collection of
loops.

The proof of the “if part” of Theorem 6.3 indicates how to compute a
Jordan canonical form and a transformation matrix. We will show this by
an example.

Example 6.6. Consider the matrix

A =



ε 4 3 ε ε ε ε
4 ε ε ε ε ε ε
ε ε ε 5 ε ε ε
ε 2 ε ε 4 ε ε
ε ε 3 ε 0 ε ε

ε ε ε ε 0 1 3
ε ε ε ε 2 1 ε


.

The spectral circuits of G(A) are (1, 2), (3, 4, 5) and (6, 7), whose average
weights are 4, 4 and 2, respectively. Since G(A) satisfies the condition in
Theorem 6.3, A has a Jordan canonical form. Now, we will compute that.
First, we focus on the spectral circuits with average weight 4. Since the least
common multiple of 2 and 3 is 6, we compute

(
((−4)⊗A)⊗6

)∗
=



0 −2 −1 0 0 ε ε
−2 0 −1 0 0 ε ε
−1 −1 0 −1 −1 ε ε
−2 −2 −3 0 −2 ε ε
−2 −2 −3 −2 0 ε ε
−5 −5 −4 −4 −5 0 −12
−4 −4 −5 −2 −4 −14 0


.

Setting

µ1 =
t(0,−2,−1,−2,−2,−5,−4), µ2 =

t(−2, 0,−1,−2,−2,−5,−4),
µ3 =

t(−1,−1, 0,−3,−3,−4,−5), µ4 =
t(0, 0,−1, 0,−2,−4,−2),

µ5 =
t(0, 0,−1,−2, 0,−5,−4),

we have

A⊗ µ1 = 4⊗ µ2, A⊗ µ2 = 4⊗ µ1,

A⊗ µ3 = 3⊗ µ5, A⊗ µ4 = 5⊗ µ3, A⊗ µ5 = 4⊗ µ4.

Similarly, since ((
(−2)⊗

(
1 3
1 ε

))⊗2
)∗

=

(
0 0
−2 0

)
,
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we set

µ6 =
t(ε, ε, ε, ε, ε, 0,−2), µ7 =

t(ε, ε, ε, ε, ε, 0, 0),

and we have

A⊗ µ6 = −4⊗ µ7, A⊗ µ7 = −2⊗ µ6.

Hence, replacing µ1,µ2, . . . ,µ7 with

ν1 = (4− 4)⊗ µ1, ν2 = µ2,

ν3 = (4− 3)⊗ µ3, ν4 = (4⊗2 − (3⊗ 5))⊗ µ4, ν5 = µ5,

ν6 = (2− 1)⊗ µ6, ν7 = µ7,

and setting P =
(
ν1 ν2 ν3 ν4 ν5 ν6 ν7

)
, we have

A⊗ P = P ⊗



ε 4 ε ε ε ε ε
4 ε ε ε ε ε ε

ε ε ε 4 ε ε ε
ε ε ε ε 4 ε ε
ε ε 4 ε ε ε ε

ε ε ε ε ε ε 2
ε ε ε ε ε 2 ε


.

Further, {ν1,ν2,ν3,ν4,ν5} and {ν6,ν7} are bases of generalized eigenspaces
Ũ(A, 4) and Ũ(A, 2), respectively.
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7 Algebraic eigenvectors associated with roots of
max-plus characteristic polynomials

As we saw in Section 5, the maximum root of the characteristic polynomial
of a matrix is its eigenvalue. However, other roots may not be eigenvalues.
Thus, our concern is to clarify the roles of the roots of the characteristic
polynomial that are not maximums. To investigate this problem, we in-
troduce the notion of algebraic eigenvectors associated with roots of the
characteristic polynomial of a matrix. Then, we show some properties of
algebraic eigenvectors analogous to those of the conventional eigenvectors.
The result in this section is presented in the author’s publication [64].

7.1 One assumption for generic matrices

For A ∈ Rn×n
max and variable t, we define 2n× 2n matrix

Ã(t) =

(
A t⊗ E
E E

)
.

We note that φA(t) = det Ã(t) as the functions of t. The matrix Ã(t) also
admits a graph theoretical characterization. We say that a permutation
π ∈ S2n is finite with respect to Ã(t) = (ãij) if ãiπ(i) ̸= ε for i = 1, 2, . . . , 2n.

For a multi-circuit C in G(A), we define a finite permutation πC ∈ S2n as
follows:

πC(i) =


(the next vertex of i in C) if i ∈ V (C), 1 ≤ i ≤ n,

i+ n if i ̸∈ V (C), 1 ≤ i ≤ n,

i if i− n ∈ V (C), n+ 1 ≤ i ≤ 2n,

i− n if i− n ̸∈ V (C), n+ 1 ≤ i ≤ 2n.

The map C 7→ πC gives a one to one correspondence between multi-circuits
in G(A) and finite permutations with respect to Ã(t). For λ ̸= ε, we say
that a multi-circuit C is λ-maximal if πC attains the maximum of det Ã(λ).
A multi-circuit C is ε-maximal if πC attains the maximum of det Ã(λ) for a
sufficiently small finite value λ. Note that the ε-maximal multi-circuit has
the maximum length among all multi-circuits in G(A). In Algorithm 5.15,
both Ci−1 and Ci are λi-maximal multi-circuits.

Lemma 7.1. If λ is a root of the characteristic polynomial φA(t), then the
matrix Ã(λ) is singular.

Proof. If λ = ε is a root of φA(t), the graph G(A) has no multi-circuit with
length n. Then, both detA and det Ã(ε) are ε, which means that Ã(ε) is
singular.
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If λ ̸= ε is a root of φA(t), there exist at least two terms, say ck1 ⊗ t⊗k1

and ck2 ⊗ t⊗k2 , k1 ̸= k2, such that

ck1 ⊗ λ⊗k1 = ck2 ⊗ λ⊗k2 = φA(λ) = det Ã(λ).

Both ck1⊗λ⊗k1 and ck2⊗λ⊗k2 appear in the summands of det Ã(λ). Hence,
Ã(λ) is singular.

Generally, the converse of the above lemma is not true. However, it
holds under the following assumption, which is so weak that it is satisfied
by generic matrices.

Assumption 7.2. For a matrix A ∈ Rn×n
max , we assume that all essential

terms of its characteristic polynomial are attained with exactly one permu-
tation. Equivalently, if ck ⊗ t⊗k is an essential term of φA(t), there exists
exactly one multi-circuit C with ℓ(C) = n− k and w(C) = ck in G(A).

Proposition 7.3. Under Assumption 7.2 for a matrix A ∈ Rn×n
max , λ is a

root of the characteristic polynomial φA(t) if and only if the matrix Ã(λ) is
singular.

Proof. The “only if” part has been proved in Lemma 7.1. For the “if”
part, suppose that Ã(λ) is singular. If the maximum of φA(λ) is attained
with exactly one term, say ck ⊗ λ⊗k, then ck ⊗ t⊗k must be an essential
term. From Assumption 7.2, the maximum of det Ã(λ) is also attained
exactly once, which leads to a contradiction. Thus, the maximum of φA(λ)
is attained at least twice. Hence, λ is a root of φA(t).

In terms of graph theory, λ is a finite root of φA(t) if and only if there
exist at least two λ-maximal multi-circuits with different lengths in the as-
sociated graph G(A). Hereinafter, we proceed with our argument under
Assumption 7.2. We note that this kind of assumption also appears in the
literature on the supertropical algebra [48].

7.2 Definition of algebraic eigenvectors

For a matrix A = (aij) ∈ Rn×n
max and a multi-circuit C in G(A), we define four

types of matrices, AC , A\C , EC and E\C as follows:

[AC ]ij =

{
aij if (i, j) ∈ E(C),
ε otherwise,

[A\C ]ij =

{
ε if (i, j) ∈ E(C),
aij otherwise,

[EC ]ij =

{
e if i = j, i ∈ V (C),
ε otherwise,

[E\C ]ij =

{
e if i = j, i ̸∈ V (C),
ε otherwise.

Here V (C) and E(C) denote the vertex set and the edge set of C, respec-
tively. Now we present the main result of [64] together with the definition
of algebraic eigenvectors.
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Theorem 7.4 ([64]). Let A ∈ Rn×n
max . Then, λ ∈ Rmax is an algebraic

eigenvalue, i.e., a root of φA(t), if and only if there exists a λ-maximal
multi-circuit C and a vector u ̸= E such that

(A\C ⊕ λ⊗ EC)⊗ u = (AC ⊕ λ⊗ E\C)⊗ u.

We call such a nontrivial vector u an algebraic eigenvector of A with respect
to λ.

Remark 7.5. If λ is the maximum eigenvalue of A, then it coincides with
the maximum algebraic eigenvalue and hence C = ∅ is λ-maximal. Thus,
the equation in Theorem 7.4 will be A ⊗ u = λ ⊗ u, which is the same as
the defining equation of usual eigenvalues and eigenvectors. In fact, we will
prove later that eigenvectors of A with respect to other eigenvalues are also
algebraic eigenvectors.

Proof. “If part”: Suppose there exists a λ-maximal multi-circuit C and a
vector u ̸= E such that

(A\C ⊕ λ⊗ EC)⊗ u = (AC ⊕ λ⊗ E\C)⊗ u.

For i = 1, 2, . . . , 2n, if we evaluate the ith row of(
A λ⊗ E
E E

)
⊗
(
u
u

)
,

the maximum is attained at least twice. This means that Ã(λ) is singular
by Proposition 4.4. Hence, λ is an algebraic eigenvalue of A by Proposition
7.3.

“Only if” part: Suppose λ is an algebraic eigenvalue of A. First, we
consider the case λ ̸= ε. From Proposition 4.4 and 7.3, there exists a

nontrivial vector ṽ =

(
v
v

)
∈ R2n

max such that the maximum of each row of

(
A λ⊗ E
E E

)
⊗
(
v
v

)
is attained at least twice. Let C be a λ-maximal multi-circuit in G(A). We
define the matrices P and Q and the vector b by

P =

(
AC λ⊗ E\C
E\C EC

)
, Q =

(
A\C λ⊗ EC
EC E\C

)
, b =

(
(A⊕ λ⊗ E)⊗ v

v

)
.

Since the (i, j) entry of P is finite if and only if j = πC(i), P has its inverse
P−1. We consider the equation P ⊗ x̃ = Q ⊗ x̃ ⊕ b and its solution of the
form

x̃ = ũ := (P−1 ⊗Q)∗ ⊗ (P−1 ⊗ b).
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Then, the vector consisting of the first n entries of ũ is the desired algebraic
eigenvector. Indeed, since we compute

ũ = (P−1 ⊗Q)∗ ⊗ P−1 ⊗ (P ⊕Q)⊗ ṽ = (P−1 ⊗Q)∗ ⊗ ṽ,

we have ũ ≥ ṽ. From our choice of ṽ, we have

Q⊗ ũ ≥ Q⊗ ṽ = (P ⊕Q)⊗ ṽ = b.

Thus, we obtain P ⊗ ũ = Q ⊗ ũ. By the last n rows of this equation, ũ is

of the form

(
u
u

)
. Checking the first n rows, we have

(A\C ⊕ λ⊗ EC)⊗ u = (AC ⊕ λ⊗ E\C)⊗ u.

Next, we consider the case λ = ε. Let C be an ε-maximal multi-circuit.
For sufficiently small number t, we define

Pt =

(
AC t⊗ E\C
E\C EC

)
, Qt =

(
A\C t⊗ EC
EC E\C

)
, bt =

t(t, t, . . . , t).

The vector ũt = (P−1
t ⊗Qt)

∗ ⊗ (P−1
t ⊗ bt) satisfies Pt ⊗ ũt = Qt ⊗ ũt ⊕ bt.

Taking the limit t→ −∞, we obtain the desired vector as the first n entries
of ũ := lim

t→−∞
ũt. The fact that ũ ∈ R2n

max \ {E} can be proved as follows.

We first verify that all entries of ũt are of the form c + dt, d ≥ 0, by easy
computations, which implies ũ ∈ R2n

max. We next see that ũ is nontrivial.
Since λ = ε is an algebraic eigenvalue, V (C) must not be {1, 2, . . . , n}. Take
k ̸∈ V (C). From the kth and (k + n)th rows of Pt ⊗ ũt = Qt ⊗ ũt ⊕ bt, we
have

[Pt]k k+n ⊗ [ũt]k+n ≥ [bt]k,

[Pt]k+nk ⊗ [ũt]k ≥ [Qt]k+nk+n ⊗ [ũt]k+n,

Since [Pt]k k+n = [bt]k = t and [Pt]k+nk = [Qt]k+nk+n = 0, we have

[ũt]k ≥ [ũt]k+n ≥ 0.

As this holds for arbitrary small value t, [ũt]k is a finite constant independent
of t. Thus, [ũ]k ̸= ε.

Example 7.6. Let us consider the max-plus matrix

A =



ε 9 8 ε 0 ε
7 2 ε ε ε ε
ε ε ε 4 ε ε
6 0 ε ε ε ε
ε ε ε ε ε 1
ε 2 ε ε ε ε

 .
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The characteristic polynomial of A is

φA(t) = (t⊕ 8)⊗2 ⊗ (t⊕ 2)⊗2 ⊗ t⊗2.

Take an algebraic eigenvalue 2 of A and a 2-maximal multi-circuit C =
{(1, 2, 1)}. Then, the defining equation of algebraic eigenvectors in Theo-
rem 7.4 is



ε ε 8 ε 0 ε
ε 2 ε ε ε ε
ε ε ε 4 ε ε
6 0 ε ε ε ε
ε ε ε ε ε 1
ε 2 ε ε ε ε

⊕ 2⊗



0 ε ε ε ε ε
ε 0 ε ε ε ε
ε ε ε ε ε ε
ε ε ε ε ε ε
ε ε ε ε ε ε
ε ε ε ε ε ε



⊗ u

=





ε 9 ε ε ε ε
7 ε ε ε ε ε
ε ε ε ε ε ε
ε ε ε ε ε ε
ε ε ε ε ε ε
ε ε ε ε ε ε

⊕ 2⊗



ε ε ε ε ε ε
ε ε ε ε ε ε
ε ε 0 ε ε ε
ε ε ε 0 ε ε
ε ε ε ε 0 ε
ε ε ε ε ε 0



⊗ u.

It can be easily verified that u = t(0, 5, 6, 4, 4, 5) is an algebraic eigenvector
of A with respect to algebraic eigenvalue 2. We will show later in Example
7.10 how to find this algebraic eigenvector.

7.3 Algebraic eigenspaces

Next, we describe the set of all algebraic eigenvectors. Let A ∈ Rn×n
max . For

an algebraic eigenvalue λ of A and a multi-circuit C in G(A), we define

W (A, λ, C) =
{
u ∈ Rn

max

∣∣ (A\C ⊕ λ⊗ EC)⊗ u = (AC ⊕ λ⊗ E\C)⊗ u
}
.

Lemma 7.7. Let λ ̸= ε be an algebraic eigenvalue of A ∈ Rn×n
max and C be

a λ-maximal multi-circuit in G(A). Then, for all multi-circuits C′ in G(A),
we have W (A, λ, C′) ⊂W (A, λ, C).

Proof. Let u = t(u1, u2, . . . , un) ∈ W (A, λ, C′). We set uj+n = uj for j =
1, 2, . . . , n. Then, we have

ãiπC(i) ⊗ uπC(i) ≤
2n⊕
j=1

ãij ⊗ uj = ãiπC′(i) ⊗ uπC′(i)

for i = 1, 2, . . . , 2n, where Ã(λ) = (ãij). We first assume all entries of u are
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finite. Then, we have

2n⊗
i=1

ãiπC(i) ⊗ uπC(i) ≤
2n⊗
i=1

2n⊕
j=1

ãij ⊗ uj =
2n⊗
i=1

ãiπC′(i) ⊗ uπC′(i)

=
2n⊗
i=1

ãiπC′(i) ⊗
2n⊗
i=1

uπC′(i)

≤
2n⊗
i=1

ãiπC(i) ⊗
2n⊗
i=1

uπC(i)

=

2n⊗
i=1

ãiπC(i) ⊗ uπC(i),

proving that

2n⊗
i=1

ãiπC(i) ⊗ uπC(i) =

2n⊗
i=1

2n⊕
j=1

ãij ⊗ uj .

As this value is finite, we have

ãiπC(i) ⊗ uπC(i) =
2n⊕
j=1

ãij ⊗ uj , i = 1, 2, . . . , 2n.

In particular, we have proved that u ∈ W (A, λ, C) from the equalities for
i = 1, 2, . . . , n.

Next, we assume that some but not all entries of u ∈ W (A, λ, C′) are ε.
Let K = {j | uj ̸= ε} and L = {j | uj = ε}. For i ∈ K, since we have

ãiπC′(i) ⊗ uπC′(i) =

2n⊕
j=1

ãij ⊗ uj ≥ λ⊗ ui+n = λ⊗ ui ̸= ε,

we obtain uπC′(i) ̸= ε. This implies πC′
(K) = K and hence πC′

(L) = L. For
i ∈ L and k ∈ K, we have

ãik ⊗ uk ≤
2n⊗
j=1

ãij ⊗ uj = ãiπC′(i) ⊗ uπC′(i) = ε.

Thus ãik must be ε. Since det Ã(λ) ̸= ε for any finite value λ, πC satisfies
πC(K) = K and πC(L) = L. Restricting calculations only to the rows and
columns indexed by K, we obtain u ∈W (A, λ, C) by the same argument as
above.

50



Let λ be a finite algebraic eigenvalue of A. For two distinct λ-maximal
multi-circuits C1 and C2 in G(A), we have both W (A, λ, C1) ⊂ W (A, λ, C2)
and W (A, λ, C2) ⊂ W (A, λ, C1), which implies that the set W (A, λ, C) does
not depend on the choice of λ-maximal multi-circuit C. On the other hand,
if λ = ε, the λ-maximal multi-circuit is unique under Assumption 7.2. Thus,
we write W (A, λ) := W (A, λ, C), where W (A, λ) is the set of all algebraic
eigenvectors of A with respect to λ. Since W (A, λ) is the set of solutions
of a homogeneous linear system, W (A, λ) is a max-plus subspace of Rn

max.
Hence, it is called the algebraic eigenspace of A with respect to λ. We also see
that any usual eigenspace U(A, λ) is contained in the algebraic eigenspace
W (A, λ) by setting C′ = ∅ in Lemma 7.7.

7.4 Dimensions and multiplicities

In this subsection, we give an upper bound for the dimension of the algebraic
eigenspace of a matrix by the multiplicity of the algebraic eigenvalue.

Theorem 7.8 ([64]). Let λ be an algebraic eigenvalue of A ∈ Rn×n
max . Then,

the dimension of the algebraic eigenspace W (A, λ) does not exceed the mul-
tiplicity of the root λ in the characteristic polynomial φA(t).

To prove this theorem, we distinguish the case where λ is finite from
the case λ = ε. We first consider the case λ ̸= ε. Let C be a λ-maximal
multi-circuit in G(A). Then, an algebraic eigenvector u ∈W (A, λ) satisfies

(A\C ⊕ λ⊗ EC)⊗ u = (AC ⊕ λ⊗ E\C)⊗ u.

Since AC ⊕ λ⊗ E\C is invertible, we have(
(AC ⊕ λ⊗ E\C)

−1 ⊗ (A\C ⊕ λ⊗ EC)
)
⊗ u = u.

This means that u is an eigenvector of BC := (AC⊕λ⊗E\C)
−1⊗(A\C⊕λ⊗EC)

with respect to the eigenvalue 0 of BC . Thus, from Theorem 5.8, we see
that the dimension of the algebraic eigenspace W (A, λ) is the number of
connected components of Gc(BC).

Lemma 7.9. Let λ ̸= ε be an algebraic eigenvalue of A ∈ Rn×n
max and C be

a λ-maximal multi-circuit in G(A). Then, from any multi-circuit D with
weight 0 in G(BC), we can find a multi-circuit C′ in G(A) satisfying

(ℓ(C′)− ℓ(C))λ = w(C′)− w(C)

and

(V (C′) \ V (C)) ∪ (V (C) \ V (C′)) ⊂ V (D).

It follows from the first equality that C′ is also a λ-maximal multi-circuit in
G(A).
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Since the proof of this lemma is quite complicated and rather technical,
we leave it in Section 7.5 later.

Proof of Theorem 7.8 for the case λ ̸= ε. Let m be the dimension of the al-
gebraic eigenspace W (A, λ) and C be a λ-maximal multi-circuit with the
minimum length inG(A). Then, there arem disjoint circuitsD1, D2, . . . , Dm

with (average) weights 0 in G(BC). It follows from Lemma 7.9 that we find
λ-maximal circuits Ci, i = 1, 2, . . . ,m, corresponding to Di. Let C′ be the
λ-maximal multi-circuit obtained from D := {D1, D2, . . . , Dm}. Since we
have(

(V (Ci) \ V (C)) ∪ (V (C) \ V (Ci))
)
∩
(
(V (Cj) \ V (C)) ∪ (V (C) \ V (Cj))

)
⊂V (Di) ∩ V (Dj)

=∅

if i ̸= j, we see that the construction of the λ-maximal multi-circuit Ci from
each circuit Di in BC does not interfere with each other. Hence, we have

V (C′) \ V (C) =
m∪
i=1

(V (Ci) \ V (C)), V (C) \ V (C′) =
m∪
i=1

(V (C) \ V (Ci)).

From Assumption 7.2 and the minimality of the length of C, we see ℓ(Ci)−
ℓ(C) ≥ 1 for all i = 1, 2, . . . ,m. Further we note

ℓ(Ci)− ℓ(C) = |V (Ci)| − |V (C)| = |V (Ci) \ V (C)| − |V (C) \ V (Ci)|

for i = 1, 2, . . . ,m. Thus, we have

ℓ(C′)− ℓ(C) = |V (C′) \ V (C)| − |V (C) \ V (C′)|

=

m∑
i=1

(|V (Ci) \ V (C)| − |V (C) \ V (Ci)|)

≥ m.

This means there exists a multi-circuit C′ in G(A) satisfying ℓ(C′) ≥ ℓ(C)+m
and r.ave(C, C′) = λ. Algorithm 5.15 implies that m cannot exceed the
multiplicity of λ.

To prove the case λ = ε, we use the iterative method in Section 4.

Proof of Theorem 7.8 for the case λ = ε. Suppose C is the ε-maximal multi-
circuit of length ℓ in G(A). We assume without loss of generality that
V (C) = {1, 2, . . . , ℓ}. Let u ∈ W (A, ε) and u1 and u2 be the first ℓ rows
and the last (n− ℓ) rows of u. Then we have(

A1
\C A2

A3 A4

)
⊗
(
u1

u2

)
=

(
A1

C E
E E

)
⊗
(
u1

u2

)
,
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where A =

(
A1 A2

A3 A4

)
, A1 ∈ Rℓ×ℓ

max, A
2 ∈ Rℓ×(n−ℓ)

max , A3 ∈ R(n−ℓ)×ℓ
max , A4 ∈

R(n−ℓ)×(n−ℓ)
max , yielding two equations:

A1
\C ⊗ u1 ⊕A2 ⊗ u2 = A1

C ⊗ u1,

A3 ⊗ u1 ⊕A4 ⊗ u2 = E .

Fix a vector u2 ∈ Rn−ℓ
max. By Corollary 4.2, the first equation has the unique

solution

u1 = ξ(u2) :=
(
(A1

C)
−1 ⊗A1

\C

)∗
⊗
(
(A1

C)
−1 ⊗A2 ⊗ u2

)
because every circuit in G((A1

C)
−1 ⊗ A1

\C) has negative weight by Assump-
tion 7.2. Combining this solution with the second equation, we have

W (A, ε) =

{
u =

(
ξ(u2)
u2

) ∣∣∣∣ [u]j = ε if aij ̸= ε for some i = ℓ+ 1, . . . , n

}
.

In particular, a basis of W (A, ε) is the set{(
ξ(ẽk)
ẽk

) ∣∣∣∣ the kth column of A4 is E ,
[ξ(ẽk)]j = ε if aij ̸= ε for some i = ℓ+ 1, . . . , n

}
,

where ẽk, 1 ≤ k ≤ n− ℓ, are the standard basis vectors of Rn−ℓ
max. Hence, the

dimension of W (A, ε) does not exceed n− ℓ, which is the multiplicity of the
root ε in φA(t).

Example 7.10. We again consider

A =



ε 9 8 ε 0 ε
7 2 ε ε ε ε
ε ε ε 4 ε ε
6 0 ε ε ε ε
ε ε ε ε ε 1
ε 2 ε ε ε ε

 .

The algebraic eigenspace W (A, 8) is the same as the eigenspace of A with
respect to 8. Hence, computing

((−8)⊗A)∗ =



0 1 0 −4 −8 −15
−1 0 −1 −5 −9 −16
−6 −5 0 −4 −8 −15
−2 −1 −2 0 −10 −17
−14 −13 −14 −18 0 −7
−7 −6 −7 −11 −15 0

 ,

we identify a basis t(0,−1,−6,−2,−14,−7) of W (8).
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From the discussion after the statement of Theorem 7.8, the algebraic
eigenspace W (A, 2) is same as the eigenspace of

B{(1,2,1)} = (A{(1,2,1)} ⊕ 2⊗ E\{(1,2,1)})
−1 ⊗ (A\{(1,2,1)} ⊕ 2⊗ E{(1,2,1)})

=



ε −5 ε ε ε ε
−7 ε −1 ε −9 ε
ε ε ε 2 ε ε
4 −2 ε ε ε ε
ε ε ε ε ε −1
ε 0 ε ε ε ε


We see G(B{(1,2,1)}) has exactly one circuit (1, 2, 3, 4, 1) with average weight
0. Computing (B{(1,2,1)})

∗, we have a basis t(0, 5, 6, 4, 4, 5) of W (A, 2).
For the algebraic eigenvalue ε, the ε-maximal multi-circuit in G(A) is

C = {(1, 3, 4, 1), (2, 2)}. The map ξ : R2
max → R4

max in the above proof is
given by

ξ(u2) =



ε ε 8 ε
ε 2 ε ε
ε ε ε 4
6 ε ε ε


−1

⊗


ε 9 ε ε
7 ε ε ε
ε ε ε ε
ε 0 ε ε




∗

⊗



ε ε 8 ε
ε 2 ε ε
ε ε ε 4
6 ε ε ε


−1

⊗


0 ε
ε ε
ε ε
ε ε


⊗ u2.

Since the first column of the right bottom 2 × 2 block of A is t(ε, ε), the
vector (tξ(ẽ1),

tẽ1) =
t(ε, ε,−8, ε, 0, ε) is a basis of W (A, ε).

Thus, we have computed bases of all algebraic eigenspaces of A and have
found that the dimensions of all algebraic eigenspaces are 1, which is less
than their multiplicities in φA(t) = (t⊕ 8)⊗2 ⊗ (t⊕ 2)⊗2 ⊗ t⊗2.

7.5 Proof of Lemma 7.9

Let λ ̸= ε be an algebraic eigenvalue of A ∈ Rn×n
min and C be a λ-maximal

multi-circuit in G(A). For any vertex i ∈ V (C), we denote by σ(i) the
succeeding vertex of i in the circuit in C; σ−1(i) is the preceding vertex
of i in C. Recalling that BC := (AC ⊕ λ ⊗ E\C)

−1 ⊗ (A\C ⊕ λ ⊗ EC) and
computing entries of BC , we obtain the correspondence in edges between
G(A) and G(BC) shown in Table 1. We see that G(BC) has a multi-circuit
←−
C , which consists of the edges {(σ(i), i) | i ∈ V (C)}.

Let D be a multi-circuit in G(BC) with (average) weight 0. We construct
a multi-circuit C′ in G(A) by the following steps:
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Table 1: Correspondence between G(A) and G(BC)
G(A) G(BC)

edge weight edge weight

(i, i′), i ̸∈ V (C) aii′ (i, i′) −λ+ aii′

(i, σ(i)), i ∈ V (C) aiσ(i) (σ(i), i) max{λ, aii} − aiσ(i)
(i, i′), i ∈ V (C), i′ ̸= σ(i) aii′ (σ(i), i′) aii′ − aiσ(i)

(1) Set C′ := ∅.

(2) Choose any edge of D that is not in E(
←−
C ) and denote the terminal

vertex of that edge by i. We define the initial sequence of vertices by
Ĉ := (i).

(3) The succeeding vertex of i in Ĉ is determined by the following rules.

(a) If i ̸∈ V (C), let i′ be the succeeding vertex of i in D. Append i′

to Ĉ and set i := i′.

(b) If i ∈ V (C) and σ(i) ̸∈ V (D), append σ(i) to Ĉ and set i := σ(i).

(c) If i ∈ V (C) and σ(i) ∈ V (D), let i′ be the succeeding vertex of
σ(i) in D. Append i′ to Ĉ and set i := i′.

(4) Repeat (3) until the original vertex i selected in (2) appears again. If
we return to i, append the circuit Ĉ to C′.

(5) Repeat (2)–(4) while there exist edges (or corresponding terminal ver-
tices) satisfying (2).

(6) Append all circuits in C that have no common vertices with D to C′.

(7) Find all loops on V (D) \ V (C′) whose weights are greater than λ.
Append them to C′.

An example of these steps is illustrated in Figure 7. The steps (2)–(5) give a
union of disjoint circuits because this vertex search is uniquely traced back
as follows:

• If j ∈ V (D), let j′ be the preceding vertex of j in D. The preceding
vertex of j in Ĉ is σ−1(j′) if j′ ∈ C; otherwise it is j′.

• If j ̸∈ V (D), the preceding vertex of j in Ĉ is σ−1(j).

Lemma 7.11. Let C′ be the multi-circuit in G(A) constructed as above. We
have V (C) \ V (C′) ⊂ V (D) and (σ(i), i) ∈ E(D) for any i ∈ V (C) \ V (C′).
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Figure 7: Graph G(A) and circuit C (left) and graph G(BC) (right). Bold
arrows represent the multi-circuit D (right) and the corresponding multi-
circuit C′ (left). Examples of five types of edges are also illustrated.

Proof. We assume the contrary. Suppose there is a vertex j ∈ (V (C) \
V (C′)) \ V (D). In that case, we show that, without loss of generality, we
may assume σ−1(j) ∈ V (D). In order to show the assumption is proper, first
we prove σ−1(j) ̸∈ V (C′) if σ−1(j) ̸∈ V (D): if σ−1(j) ∈ V (C′) \ V (D), then
step (3) should has been executed for i := σ−1(j) just after the vertex σ−1(j)
was appended to V (C′). Since σ−1(j) ∈ V (C) and j = σ(σ−1(j)) ̸∈ V (D),
the case (b) occurs and we have j ∈ V (C′), leading to a contradiction. Thus,
we can continue to replace j with σ−1(j) until σ−1(j) is contained in V (D).
The edge in D whose terminal vertex is σ−1(j) exists but it is not (j, σ−1(j))
since j ̸∈ V (D). Thus, σ−1(j) must be in V (C′) and the case (3)-(b) occurs
for i := σ−1(j), which implies j ∈ V (C′), leading to a contradiction. Hence,
we conclude V (C) \V (C′) ⊂ V (D), which is the first assertion of the lemma.
In particular, if (σ(i), i) were not an edge of D for some i ∈ V (C) \ V (C′),
there would be another edge in D whose terminal vertex is i. By step (2),
this means i ∈ V (C′), leading to a contradiction.

Proof of Lemma 7.9. The inclusion V (C) \ V (C′) ⊂ V (D) has been proved
in Lemma 7.11. On the other hand, from the above procedure, each vertex
in V (C′) is contained in V (C) or V (D), which shows V (C′) \ V (C) ⊂ V (D).

We next prove the equality for weights. Let {(αk, α
′
k)} be the set of the

edges in C′ constructed by (3)-(a), {(βk, σ(βk))} by (3)-(b), {(γk, γ′k)} by
(3)-(c), {(δk, σ(δk))} by (6), {(ϵk, ϵk)} by (7), respectively. We denote by
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ℓα, ℓβ, ℓγ , ℓδ and ℓϵ the numbers of those edges, respectively. Then, we have

w(C′)− w(C)

=

ℓα∑
k=1

aαkα
′
k
+

ℓβ∑
k=1

aβkσ(βk) +

ℓγ∑
k=1

aγkγ′
k
+

ℓδ∑
k=1

aδkσ(δk)

+

ℓϵ∑
k=1

aϵkϵk −
∑

i∈V (C)

aiσ(i)

=

ℓα∑
k=1

aαkα
′
k
+

ℓγ∑
k=1

aγkγ′
k
+

ℓϵ∑
k=1

aϵkϵk −
∑

i∈V (C)\{βk,δk}

aiσ(i).

Let bij be the weight of the edge (i, j) in G(BC). From Table 1, we have

ℓα∑
k=1

aαkα
′
k
= ℓαλ+

ℓα∑
k=1

bαkα
′
k
,

ℓγ∑
k=1

aγkγ′
k
=

ℓγ∑
k=1

aγkσ(γk) +

ℓγ∑
k=1

bσ(γk)γ′
k
,

ℓϵ∑
k=1

aϵkϵk =

ℓϵ∑
k=1

(aϵkσ(ϵk) + bσ(ϵk)ϵk).

Therefore,

w(C′)− w(C)

=ℓαλ+

ℓα∑
k=1

bαkα
′
k
+

ℓγ∑
k=1

bσ(γk)γ′k +

ℓϵ∑
k=1

bσ(ϵk)ϵk −
∑

i∈V (C)\{βk,γk,δk,ϵk}

aiσ(i)

=ℓαλ+

ℓα∑
k=1

bαkα
′
k
+

ℓγ∑
k=1

bσ(γk)γ′k +

ℓϵ∑
k=1

bσ(ϵk)ϵk

−

(ℓ(C)− ℓβ − ℓγ − ℓδ − ℓϵ)λ−
∑

i∈V (C)\{βk,γk,δk,ϵk}

bσ(i)i


=(ℓ(C′)− ℓ(C))λ+

ℓα∑
k=1

bαkα
′
k
+

ℓγ∑
k=1

bσ(γk)γ′k

+

ℓϵ∑
k=1

bσ(ϵk)ϵk +
∑

i∈V (C)\{βk,γk,δk,ϵk}

bσ(i)i.
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From our procedure and Lemma 7.11, we have

E(D) ={(αk, α
′
k) | k = 1, 2, . . . , ℓα}

∪ {(σ(γk), γ′k) | k = 1, 2, . . . , ℓγ}
∪ {(σ(ϵk), ϵk) | k = 1, 2, . . . , ℓϵ}
∪ {(σ(i), i) | i ∈ V (C) \ {βk, γk, δk, ϵk}}.

Thus, we obtain

w(C′)− w(C) = (ℓ(C′)− ℓ(C))λ+ w(D).

Since w(D) = 0, we have the desired equality.
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8 Conclusion

In the present thesis, the author develops the linear algebra on the max-plus
algebra. The theory on linear systems and the eigenvalue problem are two
major themes on the study of the max-plus linear algebra. Solving tropical
linear systems is so difficult that no polynomial-time algorithm has intro-
duced so far. First, we have presented a characterization of the vectors in a
basis of the kernel of a matrix, which is the solution set of a homogeneous
tropical linear system. Each vector is a Cramer vector, that is, the vector
obtained by applying the Cramer’s rule to some submatrix. This character-
ization provides some information that the basis should have and helps us
with theoretical analysis of the kernel. This result also suggests the way to
compute the basis of the tropical kernel a matrix. However, the number of
Cramer vectors increases exponentially depending on the size of the matrix.
Hence, it remains as a future work to derive an efficient method to detect
Cramer vectors that are indispensable for the basis.

In the latter part, the author discusses the eigenvalue problem on the
max-plus algebra. Since a general max-plus matrix has a few numbers of
eigenvalues and eigenvectors, it seems impossible to be diagonalized. Hence,
the author has proposed Jordan canonical forms of max-plus matrices. Al-
though they are not based on the SN (or the Jordan-Chevalley) decomposi-
tion, a transformation matrix leading to a Jordan canonical form consists of
a basis of the generalized eigenspace. Unlike in the conventional linear alge-
bra, not all square matrices have their Jordan canonical forms. Indeed, the
author has proved that a matrix can be transformed into a Jordan canonical
form if and only if critical circuits of the associated graph cover all vertices
and are mutually disjoint. This condition is so restricted that many classes
of matrices do not satisfy it.

On the other hand, the concept of algebraic eigenvectors is defined for
a more general class of matrices. It is based on the perspective that many
roots of the characteristic polynomial of a matrix are not its eigenvalues
and seem useful for extending the definition of eigenvalues. The author has
derived the fact that the dimension of the algebraic eigenspace with respect
to a root of the characteristic polynomial does not exceed the multiplicity
of the root. Thus, it is expected that algebraic eigenvectors become tools to
establish a block diagonalization theory for general matrices, which is left
as a final goal of the max-plus eigenvalue problem.
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