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In this paper, we investigate pollutant reduction policies under uncertainty. We consider

two kinds of policies as distinguished by their associated costs. The first policy incurs a

proportional reduction cost, while the second policy incurs fixed and proportional reduction

costs. We formulate the policymaker’s decision as a singular stochastic control problem in

the first case and as a stochastic impulse control problem in the second case. We then de-

rive each optimal pollution reduction policy as characterized by the thresholds required to

invest in the projects. We derive the threshold of the first case explicitly, whereas we derive

the threshold for the second case numerically. In addition, we employ comparative static

analysis to investigate the effect of changes in the parameter values on the thresholds. First,

we find that the thresholds for both cases increase in the discount rate, the uncertainty pa-

rameter, and both fixed and proportional cost parameters. Second, the thresholds for both

cases decrease with the drift parameter. Finally, we find that the impact of the damage pa-

rameter in the first case depends on the level of proportional cost. The results obtained offer

useful guidance for the implementation of environmental policy.
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1 Introduction

The world faces many environmental problems, including climate change, acid rain, desertifi-

cation, and soil contamination among others. Further, the population experiences harm, both

directly and indirectly, because of these problems, which have arisen mainly as a result of en-

vironmental pollutants discharged as the by-products of economic activity. In response, there

must be appropriate control of the pollutants responsible, that is, pollution targets must be set

(Perman et al., 2003). This paper investigates how decision makers can reduce pollution as a

means of decreasing the damage associated with pollution.

Three important characteristics of most environmental problems are uncertainty, irreversibil-

ity, and the feasibility of postponing decisions (Pindyck, 2000, 2007). First, there is uncer-
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tainty over future economic activities that discharge pollutants. This implies uncertainty con-

cerning the future costs and benefits of environmental damage and its reduction. Second, the

cost of implementing an environmental policy is a sunk cost. This typically means that envi-

ronmental policy is irreversible once implemented. Environmental damage is also generally ir-

reversible, either in part or as a whole. Finally, it is often feasible to delay the adoption of en-

vironmental policy and wait for new information. A real options approach enables us to solve

environmental problems given these characteristics (Pindyck, 2000, 2002; Lin et al., 2007).

In the literature on environmental preservation, Arrow and Fisher (1974) and Henry (1974)

show the value of flexibility in decision making under uncertainty1). The real options approach

captures the value of filexibility in investment decisions and has been applied to investigate

the timing of implementing environmental policy under uncertainty (Conrad 1997; Pindyck,

2000, 2002, Saphores, 2004, Balikcioglu et al., 2011). Many researchers in the field investi-

gate the timing of environmental policy designed to reduce a pollutant just once.

In order to describe reality more accurately, some researchers have extended this body of

work. For instance, Wirl (2006) considers an agent that can both stop and restart any equip-

ment discharging pollutants, while Lin and Huang (2010) explores the firm’s cyclical invest-

ment problem, including the installation and periodic replacement of energy-saving equipment.

The present paper applies two types of stochastic controls to the agent’s sequential environ-

mental investment problem in this regard where we derive the duration of investment in a pro-

ject endogenously. In addition to the timing of pollution reduction, we also derive the size of

the reduction endogenously. Furthermore, this paper explores how differences in the structure

of investment costs affect environmental policy.

This paper provides a very general and tractable real options model for pollutant reduction

policies (PRPs) under uncertainty. Suppose that an agent suffers from a pollutant emitted

through an economic activity. The agent then considers investing in a pollutant reduction pro-

ject to mitigate this damage. In this paper, we investigate two pollutant reduction projects. The

first type of project involves investment expenditure that depends only on the size of the pro-

ject, such that we can use the magnitude of the project to measure the extent to which the

agent reduces the pollutant. We refer to the cost of this project as the proportional cost and to

this type of investment as Case 1. For simplicity, we assume the proportional cost is constant.

For example, a Case 1 project aimed at reducing greenhouse gases could involve installing a
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device that cuts the use of liquid fossil fuel.

In contrast, the second type of project incurs an additional cost to the proportional cost that

is independent of the magnitude of the project. We refer to this independent cost as the fixed

cost and to the second type of project investment as Case 2. Once again, we assume the fixed

cost is constant, where the fixed cost represents costs such as research costs. In Case 2, project

investment requires detailed analysis. For example, suppose that the agent invests in a carbon

dioxide capture and storage (CCS) project to reduce carbon dioxide emissions, involving the

capture and transfer of CO2 emissions to a storage site, such as a deep ocean or geological

site. To keep the CO2 stored safely, the agent must find a suitable storage site, and this in-

volves an expense for the firm (IPCC, 2005; Leung et al., 2014).

We assume that the agent does not undertake both projects simultaneously. Instead, the

agent has either project available as a means of reducing the emission of pollutants, but not

both2). To solve these problems, in Case 1 we first formulate the agent’s problem as a singular

stochastic control problem. Shah (2005), Pommeret and Prieur (2013), Tsujimura (2014), and

De Angelis and Ferrari (2018) also apply singular stochastic control to investigating environ-

mental policies. See, for example, Karatzas (1983), Alvarez (2001), Yang and Liu (2004), and

Pham (2006) for more details on singular stochastic control problems. Next, we formulate the

agent problem as a stochastic impulse control problem in Case 2. Ferrari and Koch (2019) also

examine a pollution control problem by applying impulse control. See, for instance, Eastham

and Hastings (1988), Cadenillas and Zapatero (1999), Ohnishi and Tsujimura (2006) Alvarez

and Lempa (2008), and Stokey (2009) for more details on stochastic impulse control problems.

We then derive each optimal PRP as characterized by the thresholds required to invest in the

projects. We derive the threshold of Case 1 explicitly, whereas we derive the threshold for

Case 2 numerically. In addition, we employ comparative static analysis to investigate the effect

of changes in the parameter values on the thresholds. We first find that the thresholds for both

cases increase in the discount rate, the uncertainty parameter, and both fixed and proportional

cost parameters. Second, the thresholds for both cases decrease with the drift parameter. Fi-

nally, we find that the impact of the damage parameter in Case 1 depends on the level of pro-

portional cost. The results obtained offer useful guidance for the implementation of environ-

mental policy.

The remainder of the paper is organized as follows. Section 2 describes the setup of the
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agent’s problem. Section 3 examines Case 1 in which the PRP incurs proportional cost. Sec-

tion 4 investigates Case 2 in which the PRP incurs fixed and proportional costs. We present

the numerical analysis in Section 5. Section 6 concludes the paper.

2 Setup

Assume that an agent suffers from a pollutant emitted through an economic activity. The agent

considers investing in a pollutant reduction project in order to mitigate damage. Let ��be the
stock of the pollutant at time ���. We assume that when the agent does not reduce the pol-
lutant, the following stochastic differential equation governs its dynamics:����������������, �����, (1)

where ���is the expected growth rate of the pollutant stock including the rate of decay,���represents the intensity of the uncertainty (or volatility), and ��is a standard Brownian
motion on a filtered probability space (�, ℱ, ℙ, �ℱ�����). We assume damage is dependent
only on the magnitude of the pollutant stock and is continuously increasing in the pollutant

stock. We justify this in that many pollution problems (such as climate change and acid rain)

arise from the stock of pollutants. See, for example, Perman et al. (2003). The damage func-

tion ����is assumed to be strictly convex and specified as a form of:��������, (2)

where ���is a conversion factor and ���is the damage elasticity of the pollutant stock3).
The conversion factor �converts the magnitude of the pollutant stock to a monetary value.
Further, we assume the damage function � satisfies:

�
��������������� ���， (3)

where ���is the discount rate. Let 	�be the cumulative amount of pollutant reduction until
time �and be right continuous with left limits. For any 	�
�, we obtain the Lebesgue de-
composition (Yong and Zhou, 1999, p.87):	��	����	���	���, �������, (4)

where 
� is the space of bounded variational functions, 	�� is the absolutely continuous part
of 	, 	� is the singularly continuous part of 	, and 	�� is the pure jump part of 	. The pure
jump part of 	is defined by 	�������	���	, where �	���	��	��. The continuous part of
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�, �� is defined by ������������, so that ��������. In the current analysis, the absolutely con-
tinuous part of �is assumed to be equivalently zero, �����, in order to focus on the two
types of pollution reduction policies, namely, Case 1 and Case 24). The process of the pollut-

ant stock then becomes: ����������	�	������	�
	���. (5)

The agent’s expected total discounted cost �is given by:�������� ����������������������	�������	����������������������������	� �
， (6)

where �	� and ��� denote reduction cost functions. Then, the agent’s problem is to choose �
to minimize the expected total cost �.
The next section is devoted to investigating the case in which the PRP incurs the propor-

tional cost. Section 4 examines the case in which the PRP incurs the fixed and proportional

costs. In this case, the singularly continuous part of �is equivalently zero, �	���.
3 Pollution Reduction Policy with Proportional Cost

This section investigates the PRP of Case 1, that is, when the agent invests in the pollutant re-

duction project, it incurs only the proportional cost. For simplicity, we assume the proportional

cost is constant. Then, the reduction cost functions �	� and ��� are the same form without the
fixed cost. Then, replace these functions by the proportional cost, ����.
In this case, the cumulative amount of pollutant reduction until time � is���������	������. Then, the dynamics of pollutant stock (1) goes to:��������������
�����, �����. (7)������	��� is assumed to be nonnegative, nondecreasing, right-continuous with a left-hand

limits ℱ�-adapted process with �����. Furthermore, we assume that:
�
����������� ���． (8)

The agent’s expected total discounted cost �		� is then given by:�		�������� ��������������������������� �
， (9)

Therefore, the agent’s problem is to choose �so as to minimize �		�:
�

�		�����	
��
 �		��������		�������， (10)
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where ���� is the value function, � is the set of admissible PRPs, and �� is the optimal PRP.
We formulate the agent’s problem (10) as a singular stochastic problem.

From the formulation of the agent’s problem (10), we naturally surmise that under an opti-

mal PRP, the agent reduces the pollutant whenever the pollutant stock reaches some threshold�. To verify this conjecture, we solve the agent’s problem (10) using variational inequalities.
The variational inequalities of the agent’s problem (10) are as follows Øksendal, 2003).

Definition 3.1 (Variational Inequalities).

The following relations are referred to as the variational inequalities for the agent’s prob-

lem (10): ℒ��������������, (11)�����������, (12)�ℒ�������������������������, (13)

where ℒ is the operator defined by:ℒ���	�	�	
	
�	���

���. (14)

Let 	���be the continuation region given by:	���������������	. (15)

The following lemma is the well-known Skorohod Lemma. A proof is available in Rogers

and Williams (2000, pp.117-118).

Lemma 3.1.

For any ���and given a boundary ���, there exist a unique cadlag-adapted process
���
��	���and a nondecreasing process ��satisfying the following Skorohod problem:

����
��
���
��
���
��, 
�����, ���, (16)
��
������������, (17)�����
����	
�����. (18)

Furthermore, if ���, then ��is continuous. If ���, then �������and 
����.
The Skorohod Lemma implies that 
� is a reflected diffusion at the boundary �and �� is

the local time of 
�at �. The condition (18) means that ��increases only when 
�reaches �.
Then, the continuation region 	��� is replaced by:
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������������. (19)

Let �������be a function and �����be a stopping time. From the Ito formula for cadlag

semimartingales we have:����������������������������ℒ�������������������������������	�
(20)�����������������
�����	�	������������������������	．

Note that it follows from 
��
�that 
���
��.
We are now in a position to prove that a solution to the variational inequalities is optimal.

The following is the well-known verification theorem. We prove the theorem by following

Pham (2006, Proposition 1.3.1) and Yang and Liu (2004, Theorem 1) in Appendix A.

Theorem 3.1

(I) Let ����be a solution of the variational inequalities satisfying the following:
�������������������． (21)

Then, we obtain: �������	�������, ���. (22)

(II) ����also satisfies the following:ℒ�������������, ���, (23)�����������������, ���, (24)

where c is constant. Then, there exists an optimal policy ��� such that:���������������. (25)

That is, ���� is the value function and �is the corresponding optimal policy.
Proof. See Appendix A. □

For ���, the variational inequalities (11)-(13) lead to the following ordinary differential
equation: ����������������������������������������. (26)

The general solution of the ordinary differential equation (26) with �����is given by:�����������������, ���, (27)

where � and ��are constants to be determined. The solutions to the following characteristic
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equation are ��and ��: �����������������������, (28)

and are calculated with:���������� ������� �������� �����, ���������� ������� �������� �����, (29)

where the inequalities of (29) hold with ���which is derived by assumption (3). On the
other hand, to find a particular solution of (26), we seek a function of the form ���������.
As ℒ������������, we have: ����, (30)

where ����������	����������. It follows from (3) that we have ���. The general
solution of (26) is: ��������	�����	���������, ���． (31)

Given ����, the boundary condition ��	������������yields 	���. Then, the general so-
lution to (26) is: ��������	���������, ���. (32)

The second term on the right-hand side of (32) represents the expected discounted present

value of damage when the agent will not reduce the pollutant forever:

�
���
��
���
��
� ������． (33)

From the definition of the agent’s problem, we have:������������. (34)

Then, we obtain 	���.
Let ����be redefined as a candidate function for the value function given by:�������� 
�����	����������
������������ ������������	 (35)

Two unknowns, 	�and �, are determined by the following simultaneous equations:
�������, (36)
�������. (37)

The condition (36) is the smooth-pasting condition and (37) is the super contact condition (see
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Dumas (1991) for details). From (36) and (37) we obtain:����������������������� , (38)�� ������������������ �����
. (39)

Note that from ����, (38), and (39), the parameter �must satisfy:������. (40)

We can explore characteristics of the PRP in Case 1 by investigating the impact of varying the

threshold parameter �. We conduct a comparative static analysis in Section 5 so that we can
compare the results of both cases.

4 Pollution Reduction Policy with Fixed and Proportional Costs

In this section, we investigate the case in which implementing the PRP incurs a fixed cost and

a cost proportional to the reduction.

Let ��be the fixed cost and a constant. Given the presence of a fixed cost, it is not optimal
to reduce the pollutant continuously. Then, the cumulative amount of pollutant reduction until

time �is 	��	�
�with 	�����. This is verified by the fact that the reduction cost function sat-
isfies subadditivity with respect to the reduction amount �	�:
���	���	����
���	���
���	���, (41)

where the reduction cost function 
� is given by:
���	���������	�. (42)

Let �� be the �th amount of pollutant reduction and �� be its time, where��������������������. Then, ���	���	��� and ����	����	��
�	. We then replace the re-
duction cost function by: 
�����������. (43)

An agent’s PRP �is then defined as the following double sequences:����������	���. (44)

For all ���, the dynamics of the pollutant stock (1) changes to:����������������������������������������������	��� (45)
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We assume that ��satisfies: ℙ ������������ ���, (46)

where ��is a terminal time. The condition (46) implies that pollutant reduction will only occur
finitely before ��. Then the agent’s expected total discounted cost function ��� is given by:���������� ���	���	�
��
������� 	������������������ �

． (47)

Therefore, the agent’s problem is to choose �so as to minimize ���:
�

�����������	 ����������������
�, (48)

where ��� is the value function, � is the set of admissible PRPs and �
 is the optimal PRP.
We formulate the agent’s problem (48) as a stochastic impulse control problem.

From the formulation of the agent’s problem (48), we naturally surmise that an optimal PRP

is in the following form specified by two critical pollutant levels: namely, whenever the pollut-

ant stock reaches some level ��, the agent reduces the pollutant, so that it instantaneously re-
duces to another pollutant level �. To verify this conjecture, we solve the agent’s problem (48)
using quasi-variational inequalities.

Letℳ be the pollutant reduction operator defined by:ℳ������� ����	�����������������������． (49)

Then, the quasi-variational inequalities (QVI) of the agent’s problem (48) are as follows (Ben-

soussan and Lions, 1984):

Definition 4.1 (QVI)

The following relations are the QVI of the agent’s problem (48):ℒ�������	�����, (50)�������ℳ������, (51)�ℒ�������	�����ℳ����������������. (52)

From the solution to the QVI, it is possible to construct the following impulse control.

Definition 4.2 (QVI-policy)

Let �be a solution to the QVI. Then the following PRP ��������������is the QVI policy:�������������, (53)��������������
�∈/ ����, (54)
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�������������������	��������	
�������������. (55)

Here, ��� is the continuation region defined by:������
���	�ℳ���	�. (56)

Now we are in a position to prove that the QVI policy is the optimal PRP. The following is

the well-known verification theorem. We mainly refer to Brekke and Øksendal (1998, Theo-

rem 3.1) and Cadenillas and Zapatero (1999, Theorem 3.1).

Theorem 4.1

(I) Let �be a solution of the QVI. Suppose that �is a 	� function for ���and is a 	
function for �in ����	��, where � is a finite subset of ����	. Suppose that there exists
�����	such that �is linear in ���
��	and satisfies:����	���������	��. (57)

Then, for all ���we obtain: ���	
����	. (58)

(II) From the QVI, we have: ℒ���	����	��, �����, (59)

Suppose that QVI policy ��is admissible. Then we obtain:���	�����	. (60)

That is, �is the value function and ��is the corresponding optimal policy.
Proof. See Appendix B. □

From the above conjecture, the continuation region ��� is given by:������
�����. (61)

Then, an optimal PRP ���������	is characterized by ��and ��with ��������� such

that: ��������������� 
��������, (62)��������������������. (63)

Let ����	be a function. For ����, QVI (50)-(52) lead to the following ordinary differ-
ential equation: ����������	�	�������	�������	������. (64)
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As in Section 3, the solution to (64) is:�����������������, (65)

where �� is a constant to be determined and �� is derived by (29). The value of �� is nega-
tive along with ��. Let ��� be defined as a candidate function of the value function given by:������� ������������������������	��
�������������������� (66)

Three unknowns ��, ��, and ��are determined by the following simultaneous equations. The
first equation is: �������	��
�������������. (67)

The second equation is:

↓

↓

���������	�����������	��� 

���	��
���������������
. (68)
From (62) and (63), ��� is minimized at ����������������	��
��������������	�����������	��
������������. (69)

The final equation is: ��������
.
Unfortunately, as we are unable to derive these unknowns analytically, in the following section

we numerically calculate their values. We then compare the results of the comparative static

analysis for both cases.

5 Numerical Analysis

In this section, we numerically examine both of the optimal PRPs in order to explore their

characteristics. All of the parameter values are identical in each case so that we can best com-

pare the impact of varying the parameter values at the thresholds. The basic parameter values

are set out as follows: �����, 	������, 
�����, ������, �����, �
����, and�	����. Then, we obtain ����������, ����������, ��������, ���������, and���������.
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We provide the results of the comparative static analysis of the thresholds in Figures 1-8.

Figure 1 shows that the continuation regions ����and ���, and the amount of pollutant reduc-
tion �����are increasing in the discount rate, �. The higher the discount rate implies that the
smaller present value of the damage. The agent then postpones implementing the PRPs. Once

the PRP is implemented in Case 2, the amount of pollutant reduction increases.

Figure 2 illustrates that the continuation regions ���� and ���, and the amount of reduction
are decreasing in the expected growth rate of the pollutant stock, �. Put differently, the higher
the expected growth rate of the pollutant stock, the larger the present value of the damage. Ac-

cordingly, the agent hastens the implementation of the PRPs.

Figure 3 depicts that the continuation regions ����and ���, and the amount of reduction are
increasing in the volatility of the pollutant stock, �. These results imply that the incentive to
wait for new information regarding the damage becomes stronger as the uncertainty in the dy-

namics of pollutant stock increases. Consequently, the agent postpones implementation of the

PRPs.

Figure 1 Comparative statics of the thresholds with respect to �.

(a) Case 1 (b) Case 2

Figure 2 Comparative statics of the thresholds with respect to μ.

(a) Case 1 (b) Case 2
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Figure 4 shows that the continuation regions ����and ���, and the amount of reduction are
decreasing in the damage parameter �. This implies that the higher the damage parameter �,
the larger the present value of the damage. Accordingly, the agent hastens the implementation

of the PRPs.

Figure 5 illustrates that the continuation region ���� is increasing in the damage elasticity of
the pollutant stock �, while the continuation region ��� is decreasing in �. In general, the
higher the damage elasticity of the pollutant stock, the larger the present value of the damage.

This implies the result of ���. The unexpected result for ���� comes from the setting of pa-

rameter values. The sensitivity of ����with respect to �is depended on the value of the pro-
portional cost �	. See Appendix C. for details. In our base parameter values, if �	 is higher
than 0.236796 approximately, the derivative of 
with respect to � is negative. This means
that the continuation region ���� is decreasing in �. Figure 6 illustrates that the sensitivity of 

with several values of �	.
The sensitivity of the thresholds with respect to �	 itself is illustrated in Figure 7. It shows

that the continuation regions ���� and ���, and the amount of reduction are increasing in the

Figure 3 Comparative statics of the thresholds with respect to σ.

(a) Case 1 (b) Case 2

Figure 4 Comparative statics of the thresholds with respect to �.

(a) Case 1 (b) Case 2
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proportional cost, ��. Accordingly, the agent again postpones implementation of the PRPs.

Figure 8 shows that the continuation region ���, and the amount of reduction are increasing
in the fixed cost, ��. Accordingly, the agent postpones implementation of the PRPs. When the
fixed cost ��goes to �, the thresholds ��and ��go to the threshold �. The limit of the thresh-
olds with the impulse control problem as the fixed cost ��goes to �is equal to the threshold
of the corresponding singular control problem as in Jeanblanc-Picqué and Shiryaev (1995).

Figure 5 Comparative statics of the thresholds with respect to �.

(a) Case 1 (b) Case 2

Figure 7 Comparative statics of the thresholds with respect to ��.

(a) Case 1 (b) Case 2

Figure 6 Comparative statics of �with respect to �with several ��values from 0.05 to 0.3.
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6 Conclusion

In this paper, we examined PRPs under uncertainty. When the policy is implemented by the

agent, it contains two types of reduction costs. We formulated the agent’s problems as the sin-

gular stochastic control problem and the stochastic impulse control problem, respectively. We

found optimal PRPs in both cases. In the paper, we also presented the results of a numerical

analysis. Our main results are as follows. First, the thresholds for both PRPs increase in the

discount rate, the uncertainty parameter (volatility), and the cost parameters. Second, the

thresholds for both policies decrease with the drift parameter. Finally, we found there is a dif-

ference in the impact of the damage elasticity of the pollutant stock �on both policies.
To conclude the paper, we suggest a number of possible extensions for our model. To start

with, we need to use this framework to undertake the examination of specific pollutants and/or

pollutant reduction projects. Furthermore, we would consider the model uncertainty of pollut-

ant stock dynamics. When we consider environmental policies, we often face long-term

decision-making problems like climate change related policy issues. We need to incorporate

the limits of our knowledge into the policy analysis. To this end, we would consider the envi-

ronmental policy under model uncertainty (Funke and Paetz 2011; Tsujimura, 2015). We leave

these important topics to future research.

Appendix A.

Proof of therem 3.1 (I) For ���������, let ������������������, ��ℕ be the finite

stopping time. We apply (20) between ���and ���� and take expectation. We obtain that:

Figure 8 Comparative statics of the thresholds with respect to ��in Case 2.
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ℒ��������������������������� ������������������� ��� ���������������������� �
�
�������������������������������� �

． (A.1)

As (12) and �����������indicate, the mean-value theorem implies that:��������������������������������	
���, (A.2)

where ����������. It follows from (11) and (12) that (A.1) is rewritten as:
��������������������������� ���������������� ��� ��������	
����� �

－�
�����������	
���� �

． (A.3)

Further, it follows from �������� ��������and ������that we have:
��������������������������� ������������������������	
���� �

． (A.4)

Taking 	
���	 and using (21) and the dominated convergence theorem, we obtain that:��������� ��	��������������	����	
���� ��������． (A.5)

�

From the arbitrariness of �, we have:��������
��� ����������������, (A.6)

which completes the proof of (I).

(II) For ���, from Lemma 3.1, �
 is continuous for all ���and increases only when�
��. Then, for ���
(A.5) becomes equality:��������� ��	��������������	����	
���� �������
��������． (A.7)

For ���, it follows from Lemma 3.1 that we have:�������	
������������. (A.8)

From (A.7) we have ��������������. From the continuous property of �������, ���������.
Thus, for all ���we have:�������	
���������������������. (A.9)

This completes the proof of (II). □
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Appendix B.

Proof of Theorem 4.1. (I) For all ���and ��ℕ we obtain:���������������������������������� ������������������������������������������������� ������� ��������������������������������� �� (B.10)

where � is a continuous semimartingale in �����������and ��� is a �� function in���������. Then, it follows from the Ito formula for a semimartingale that:����������������������������������������������������������������	ℒ�����	��	������������������	��	���	��	��
	． (B.11)

Using (50), we can rewrite (B.11) as:����������������������
�����������������������������������������	���	��	������������������	��	���	��	��
	． (B.12)

Moreover, from (51) we have:��������������������������	������������． (B.13)

Combining (B.10)-(B.13), and taking expectations, we obtain:

� ����������������������� �
�������� ����� �����������������	���	��	�������������������� �	
 ��. (B.14)
Taking 
����� and 
����� and using (57) and the dominated convergence theorem, we ob-
tain: �������������	���	��	������ ��������������������������． (B.15)

For the arbitrariness of �, we have:
�

������������ ��������������. (B.16)

(II) Assume that (60) holds and the QVI policy ��is applied. Repeating the argument in part
(I) for ����, we have: ����������������������. (B.17)

Therefore, ��� is equivalent to the value function and the QVI policy is optimal. □
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Appendix C.

Let rewrite the the threshold �in Case 1 as:�� �����, (C.18)

where ��������������������������, ������������������������, and �������� ����. Notice that ������������������ and ���������� ������� �������� ����
.

Then, the derivative of �with respect to the damage elasticity of the pollutant stock, �, is:��������� ����� ����������������������� �
， (C.19)

where �� and �� are the partial derivatives of � and �with respect to �, respectively. The
sign of �� is dependent on the sign of the braces term. The braces term can be rewritten as:���������������������� � ����� ����������������������������������������� 	
． (C.20)

The sign of the first term is dependent on the proportional cost ��:��������������������� � �	�		�����������������
������
�� , (C.21)

The second term is positive since ����. Therefore, if the proportional cost �� is enough high
such that the braces term (C.20) is negative, the partial derivative �� is also negative. In our
numerical analysis, if �� is higher than 0.236796, �� is negative.
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Notes

１）The value of flexibility is known as the quasi-option value. The relationship between the quasi-
option and real option values is discussed in Fisher (2000), Mensink and Requate (2005).

２）Décamps et al. (2006), Siddiqui and Fleten (2010), and Heydari et al. (2012) investigate the
case in which the agent can choose a project from among two projects.

３）Pindyck (2000) assumes that ���. Pindyck (2002), Saphores and Carr (2000), Saphores
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(2004), and Lin et al. (2007) assume that ���.
４）Cadenillas and Zapatero (2000) investigate the exchange rate control problem using an abso-

lutely continuous control and an impulse control, while Davis and Norman (1990) examine an

investor’s consumption and investment problem using an absolutely continuous control and a

singular stochastic control. Conversely, Øksendal and Sulem (2002) examine the investor’s

problem using an absolutely continuous control and an impulse control. Liu (2004) extends

these studies and examines the same problem using an absolutely continuous control, a singular

stochastic control, and an impulse control. However, Liu (2004) does not examine the thresh-

old property discussed in this paper.
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