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Abstract 

Multi-agent systems (MAS) are widely applied for problem solving, software 

engineering, and the simulation of (human, robotic, etc.) societies. Compared to a 

monolith system, owing to their complex, non-linear nature, MAS can often provide 

efficient solutions to complex problems. However, the main challenge of applying 

MAS is that due to the enormous semantic gap between the properties of (i) entities 

(agents) and (ii) the system as a whole, it is difficult to obtain an optimal solution to the 

problem analytically. 

The objective of our research is to investigate two relatively orthogonal ways of 

improving the overall performance of MAS: (i) minimizing the time needed by MAS 

to solve a given problem by evolutionary optimizing (coevolving) both the morphology 

and behaviour of agents, and (ii) minimizing the runtime needed by evolutionary 

framework – genetic programming – to successfully accomplish such a coevolution. As 

an evolutionary framework we adopted the in-house XML-based genetic programming 

(XGP), which offers a flexible, human-readable, and cross-application compatible 

XML representation of the genotype of evolved agents. 

The application domain is the well-known, but difficult to solve predator-prey 

pursuit problem (PPPP) comprising a team of predator agents, that needs to capture a 

prey by surrounding it in a simulated two-dimensional world. We considered two 

instances of PPPP featuring predator agents with different abilities. The first instance, 

inspired by the opportunity to challenge the relevance of the “average” (rather than the 

individual) abilities of agents, comprises relatively complex, reactive predator agents 

with continuous sensory (morphological) and moving abilities. The second instance – 

comprising absolutely simple reactive predator agents (that do not even compute in 

their decision making) with rather primitive, discrete sensory and moving capabilities 



(a single line-of-sight sensor and two thrusters in a differential drive configuration, 

respectively) – is motivated by our intention to model the recently emerged nano- and 

micro robots and their potential applications in biomedicine.         

The experimental results obtained from the evolution of the team of complex 

predator agents in PPPP indicate that, indeed, MAS with lower values of the average 

(mean) sensory- and moving capabilities of agents could have a superior performance 

compared to that of MAS with higher average values. This finding is consistent with 

the concept of the “end of average” arguing that the combination of individual qualities 

of entities in complex system matters more than the average value of these qualities. 

From another standpoint, the results could be seen as a verification of the survival value 

of the diversity of qualities of entities in complex systems, such as MAS. 

The results obtained from the evolution of the team of simple predator agents suggest 

that an asymmetric morphology (i.e., an angular offset of the line-of-sight sensor) 

coevolved with an intricate “driving” behaviour of predator agents, results in a most 

efficient behaviour of the agents. The results confirm that even the complex problems, 

such as PPPP, could be solved by the team of extremely simple predator agents if their 

morphology and behaviour are developed by means of simulated evolution. On the 

other hand, the experimental results also indicate that efficiency of this evolution 

depends on the size of the evolved population of agents. Counterintuitively, the smaller 

sizes of populations – due to lower genotypic redundancy and favourable cache-related 

effects during the simulation – result in faster overall runtime of evolution. 

Presented research could be viewed as a step towards the development of MAS that 

are capable of solving complex problems efficiently, having a lower evolutionary 

overhead.  
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Chapter 1: Introduction 

1.1 Background 

Throughout the years, multi-agent systems (MAS) have become important in solving 

complex problems where monolith (single entity) systems are unable to produce an 

acceptable solution in terms of speed or resource requirements. Base components of 

MAS are a world (environment), entities (agents), relations between the entities, a way 

with which they perceive the world, a set of operations and functions of the agents and 

changes in the world as a result of their execution. The main applications of MAS are 

problem solving, simulation, collective robotics, software engineering and construction 

of synthetic worlds [1]. 

1.2 Objective of research 

The objective of our research is to investigate two relatively orthogonal ways of 

improving the overall performance of MAS: (i) minimizing the time needed by MAS 

to solve a given problem by evolutionary optimizing (coevolving) both the morphology 

and behaviour of agents, and (ii) minimizing the runtime needed by evolutionary 

framework – genetic programming – to successfully accomplish such a coevolution. As 

an evolutionary framework we adopted the in-house XML-based genetic programming 

(XGP), which offers a flexible, human-readable, and cross-application compatible 

XML representation of the genotype of evolved agents. 

For this reason, we have investigated the performance of heterogeneous multi-agent 

systems of agents in comparison to morphologically identical homogeneous systems, 

pertaining the same average physical and sensory abilities for the system as a whole. 

Furthermore, we have suggested improvements to the system, such as simplifying the 
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morphology, lowering the evolutionary overhead and minimizing the solution search 

space. 

1.3 Motivation for the research 

Out motivation for this research comes from a need to develop cheaper, better 

performance MAS, for use in everyday real-life situations. During our research, we’ve 

found numerous ways to improve the efficacy of multiple aspects of MAS in PPPP.  

1.4 The predator-prey pursuit problem 

We chose to use the PPPP, because it’s a well-known and extensively studied 

problem, which features hunting agents (Predators) - ideally modelled by a MAS, and 

a Prey agent. 

1.5 Methodology 

We’ve developed a testing system, having two sub-components – evolutionary 

system and evaluation system. Using the adopted method, we’ve developed 

additionally two MAS, featuring complex and simple agents. Each of the bringing 

improvements to the traditional solutions of PPPP. 

1.5.1 Homogeneous complex MAS 

We’ve developed an in-house heterogeneous MAS, that we will use as a base for 

comparison, of the suggested improvements. 

1.5.2 Heterogeneous complex MAS 

In the first part of this research, we’ve shown improvements based on the real-life 

evidence, that the average capabilities of a system do not always define the system as a 

whole and a better disparity in individual capabilities of its consisting entities can bring 

better results in solving the problems at hand [2]. 
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1.5.3 Simple MAS 

In the second part of the research, we’ve simplified the agents as much as possible, 

in an attempt to lower the resources, need for their creation and operation to a minimum. 

After seeing their success, we’ve continues improving the agents by suggesting changes 

to their morphology and the evolution of their phenotype. 

1.5.4 Evolutionary system 

We developed an evolutionary computing framework – e.g., genetic programming, 

that could be used to evolve such a behaviour of agents that result in best efficiency 

(performance) of the multi-agent system as a whole. The use of genetically evolved 

solutions will make our work more realistic than commonly considered previous work 

[3] [4]. Further, we will evolve this multi-agent system for various combinations of the 

individual abilities of the agents (and for various results of the average of these abilities) 

and investigate the obtained optimal performance of the whole system. 

1.5.5 Evaluation system 

In consistency with the MAS model, each type of agents received their own 

evaluation system – “World”, which helped determine their performance and 

behavioural qualities. 

  



Page 4 of 90 

 

Chapter 2: Introduction to genetic programming and genetic 
algorithms 

2.1 Basic concepts 

Finding a solution to a problem that requires exploration of a big search space may 

be challenging. Genetic and evolutionary programming can help us overcome this 

challenge, by developing strategies to do that exploration more efficiently. In genetic 

programming, the generated solutions take form of computer programs which are then 

evaluated to determine their fitness – their ability to solve the problem at hand. 

Evolutionary programming is similar to genetic programming with the difference that, 

in this case, the structure of the program is fixed and only its parameters are being 

evolved. 

2.2 Selection algorithm 

The selection algorithm’s purpose is to choose which individuals of the population 

at every generation will survive to the next generation. Commonly this requires ranking 

the performance of the generated individuals using an arbitrary measure such as their 

fitness to the environment (ability to solve a certain problem or quality of the solution 

following given rules). 

2.3 Breeding algorithms 

Breeding algorithms are the strategies used to generate an offspring based on an 

existing one. There are multiple ways to do that generation. For sake of simplicity, we 

will review only the methods that we have used in our research. 

2.3.1 Crossover 

Crossover in genetic programming, also called “recombination”, is a genetic 

operation that is used to combine information from the phenotype of two “parents” to 
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generate new offspring. It is one of the ways to generate new population, based on an 

existing one.  

2.3.2 Mutation 

Mutation is a genetic operation used to maintain genetic diversity. It can be used in 

combination with crossover to introduce a greater genetic variety to the offspring. Since 

mutation can change the solution entirely, compared to the previous generation, it’s 

effects should be controlled to avoid reducing the evolution to a primitive random 

search. 

2.4 Genetic representation 

Just as all living organisms’ characteristics are described by their DNA and RNA, 

we need a way to describe the properties of our genetic entities. Genotype is usually 

represented of linear multigenic chromosomes of fixed length and the phenotype takes 

the form of different expression trees. 

2.4.1 Traditional genetic trees 

Genetic programming uses tree-like structures as in memory representation. Usually 

binary trees are used, as operations with them are very simple to implement. Every tree 

node is an operator function and every terminal (leaf) node is an operand. These 

structures, while useful for representation, are hard to work with and difficult to read 

by humans. This is why we developed our in-house solutions – XGP and XGA. 

2.4.2 Introducing XGP and XGA 

For our implementation of the evolutionary framework, we’ve decided to use XML 

schema, to evolve Genetic Programs (XGP) for the controller of the complex agents 

and to evolve the values described in the morphology of the simple agents, using 

Genetic Algorithms (XGA). We chose to use XML, because it provides the following 

advantages compared to the traditional genetic trees [5]:  
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 The genetic operations can be performed using off the shelf, and 

programming language neutral, XML DOM parsing tools, thus allowing fast 

prototyping. 

 The generated code is human readable 

 Platform and programming language independent approach for descripting 

genetic structures 

 Generic support for the representation of the grammar of a strongly-typed 

genetic program 

2.5 Summary 

Using genetic and evolutionary programming allows an easy way to automatically 

generate, evolve, evaluate and improve the controlling algorithms for a MAS. Moreover, 

describing the programs using a human readable format, such as XML, allows further 

analysis and improvement of the generated solutions. This level of automation saves 

time and resources, in attempt to find the solutions to complex problems as PPPP. 
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Chapter 3: Modelling the predator-prey pursuit problem 
featuring complex predator agents 

3.1 Investigating a heterogeneous approach to MAS 

Due to the various constraints (e.g. consensus problem, inter-agent credit- 

assignment problem, computationally heavy evolution due to the large search space, 

etc.) pertinent to the development of heterogeneous multi-agent systems (MAS) as a 

distributed problem-solving approach [6], the research on them is underrepresented 

compared to the alternative homogeneous implementations [7]. The main motivation 

of our current work is that, to the best of our knowledge, the comparative analysis of 

the effects of uncertainty and noise in the environment of heterogeneous and 

homogeneous multi-agent systems is not studied extensively enough. An additional 

motivation of our research is, consonant with the concept of the “end of average” that 

appreciates the difference from the (often – mediocre, and sometimes – even non-

existing, statistically calculated) average in human societies [2], to investigate the 

importance (if any) of the diversity of individual capabilities of heterogeneous agents 

featuring the same average as the (identical) agents in analogous homogeneous systems.  

As a model of the typical human being, its performance and efficiency in society, 

the most common image is characterized by a simple value – the value of the average 

of abilities of its respective members [2]. The concept is borrowed from electrical 

engineering where the average usually manifests the useful signal while any 

fluctuations from it are a result of random noise. For human societies, however, the 

average (of a given ability of the members of society) is not necessarily seen as a useful 

signal, but rather as a synthetic, and often – meaningless, value, that is not actually 

exhibited by the vast majority of the members of society. Similarly, the fluctuations 

from the average value (of a given ability) are far from noise, but rather – specific 



Page 8 of 90 

 

variations that characterize the identity and personality of these members and a trait 

that, in many cases, may contribute to solving challenging new, previously unknown 

problems. 

What we’ve studied is the importance (if any) of the average for the efficiency of 

multi-agent systems as a model (yet, to very a limited extent) of human societies, in 

uncertain environments. In addition, we have investigated whether the diversity (even 

at the expense of reduced average) of abilities rather than their average plays an 

important role in building better-performing multi-agent systems. 

The main application areas of MAS are problem solving, simulation, collective 

robotics, software engineering and modelling of synthetic worlds [1]. For this purpose, 

we developed heterogeneous MAS that models some of the important aspect of human 

societies, such as cooperation, collaboration, communication, and division of labour. 

We are also implemented an evolutionary computing framework – e.g., genetic 

programming (GP), that could be used to evolve such a behaviour of agents that results 

in best effectiveness (performance) of the multi-agent system as a whole. The use of 

genetically evolved solutions will make our work more realistic than commonly 

considered previous work [3] [4]. Further, we will evolve this multi-agent system for 

various combinations of the individual abilities of the agents (and for various results of 

the average of these abilities) and investigate the obtained optimal performance of the 

whole system. 

Within the considered context, we will be employing the predator-prey pursuit 

problem (PPPP) to investigate the effect of the average and diversity on the MAS in 

evolution of the behaviour and performance in an unforeseen, randomly generated 

environment. 
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The efficiency of the multi-agent systems will be measured using a few factors – the 

number of different test scenarios that leads to a positive outcome (capturing the prey), 

overall fitness of the solution, found through genetic programming, and speed of 

evolution (the time needed to find an optimal solution for the specified number of test 

cases). Additionally, we will investigate the robustness of the evolved team of agents 

to newly presented, previously unknown initial situations. 

3.2 Proposed approach 

In this section, we will describe, in detail, the implementation of the complex 

predator and prey agents in the PPPP (predator-prey-pursuit problem), as well as the 

implementation of the world. Our initial implementation of the predator-prey-pursuit 

problem features a team of superior in terms of perception agents - predators, 

attempting to capture a single - more mobile agent – prey, as seen in Figure 1.  

 

Figure 1:Predators surrounding a prey agent  

3.3 Evolutionary framework 

We will be using a previously developed custom implementation of a strongly typed 

genetic programming framework [8] for homogeneous MAS. We are striving to achieve 

heterogeneity by a morphological difference in spite of genetical similarity, this enables 

us to use the same framework to evolve both the heterogeneous and homogeneous 

systems of agents for our test cases, without additional changes. 



Page 10 of 90 

 

The main parameters chosen for the settings of the evolutionary framework are 

shown in Table 1, below. The evolution continues until 50 generations have been 

evaluated, the evolution stagnated for 10 consecutive generations or an appropriate 

solution to all 10 initial situations was found. Every generation includes 400 different 

chromosomes, initially random generated for the first generation.  

Table 1: Parameters of the GP framework 

Parameter Value 

Population size 400 chromosomes 

Selection Binary tournament 

Selection ratio 10% 

Elite Best 4 chromosomes 

Crossover Both single- and two-point 

Mutation Single-point 

Mutation ratio 1-30% 

Fitness cases 10 initial situations 

Duration of the 
fitness trial 

600 cycles per initial situation (300 seconds with 500ms sampling 
interval) 

Fitness value 

Sum of the average distance to the prey, average energy 
consumption and elapsed time for the trial. 

In addition, punishment is applied for large controllers. 

Agents are explicitly rewarded for capturing the prey 

Termination 
criteria 

(Fitness value<300 AND 10 successful situations) or (# 
Generations>50) or (Stagnation of fitness for 10 consecutive 
generations) 

Since, initially, the agents won’t be able to solve all 10 situations, to improve the 

computational efficiency of GA, the first test starts with 2 initial situations and the 

number of tested situations is increased by 2, every time the agents manage to solve n-

1 situations, where n is the number of currently tested situations. If the GA is unable to 
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produce a solution for the tested situations, we increase the number of situations until 

stagnation criteria or trial end conditions are met. 

3.3.1 Genetic representation 

The controlling programs for the predator agents are a set of IF-THEN stimuli-

response rules. An example of an agent controller in XML format is shown in Figure 

2. 

<?xml version="1.0"?> 

<GP xmlns:xs="http://www.w3.org/2001/XMLSchema-instance" 
xs:noNamespaceSchemaLocation="..\SharedResources\GPSchema.xsd"> 

    <STM ind="3" age="1"> 

        <IF-THEN ind="4" age="1" histone="1"> 

            <COND-THEN ind="5" age="1"> 

                <COND_TBool ind="6" age="1"> 

                    <OPER_TBool>not</OPER_TBool> 

                    <VAR_TBool>PeerVisible</VAR_TBool> 

                </COND_TBool> 

            </COND-THEN> 

            <THEN ind="11" age="1"> 

                <STML ind="12" age="1"> 

                    <STM ind="13" age="1"> 

                        <COM-TURN ind="14" age="1"> 

                            <COM-TURN-OPERAND ind="15" age="1"> 

                                <SIGN>+</SIGN> 

                                <ANGLE-OP ind="18" age="1"> 

                                    <CONST_TVisAngle_Pos>18</CONST_TVisAngle_Pos> 

                                </ANGLE-OP> 

                            </COM-TURN-OPERAND> 

                        </COM-TURN> 

                    </STM> 

                </STML> 

            </THEN> 

        </IF-THEN> 

    </STM> 

</GP> 

Figure 2: Sample agent controller code in XML format 
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This set of rules is represented as Document Object Model (DOM) parse tree 

structures, featuring, in addition, using plain-text XML encoding [5]. The DOM/XML 

representation allows us to perform the genetic operations using the API of an off-the-

shelf, programming-language-neutral, XML DOM parser. The set of functions and 

terminals of the adopted GP are identical to the ones used in our previous work [8]. 

They are shown in Table 2 and Table 3, respectively.  

Table 2: Function set of GP 

Designation Meaning 

IF-THEN 

LE, GE, WI, EQ, NE, +, - 

stimuli-response IF-THEN rule  

≤, ≥, Within, =, ≠, +, - 

 

Table 3: Terminal set of GP 

Category Designation Explanation 

Sensory abilities 

Prey_d;   

Peer_d 

Prey_a;    

Peer_a 

PreyVisible; 
PeerVisible 

Distance to the prey and to the closest 
agent, mm. 

Bearing of the prey and of the closest 
agent, degrees 

True if prey (predator) agent is “visible”, 
false otherwise 

State variable Speed Speed of the agent, mm/s 

Ephemeral 
constants 

Integer  

Moving abilities 

Turn(α) 

 

Stop, Go_1.0 

Go_0.25, Go_0.5, 
Go_0.75 

Turns relatively to α degrees (α>0: 
clockwise) 

Sets speed to 0, or to maximum, 
respectively 

Sets speed to 25%, 50%, 75% of 
maximum 
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The execution of the example in Figure 2, of a behavioural stimuli-response IF-

THEN rule would result in turning the predator 18 degrees to the right and setting if a 

peer (another predator agent) is not in sight.  

3.3.2 Genetic operations 

The breeding strategy is homogeneous in such a way that the performance of a single 

chromosome, cloned to all four agents is evaluated. The gene pool consists of 400 

chromosomes. 

We introduced a binary tournament selection as we consider it computationally 

efficient and simple to implement. We also adopted elitism in that the 10% of the best 

performing chromosomes of the current generation are copied unconditionally and are 

inserted in the mating pool for the next generation. A strongly typed crossover operation 

is defined in a way that only the nodes of the same data type (featuring an identical 

DOM/XML tag) from both parents can be swapped. Sub-tree mutation is also allowed, 

in a strongly typed way – a synthetically correct subtree can replace a random node in 

the genetic program. 

3.4 Evaluation subsystem 

We used a previously developed implementation of a strongly-typed GP framework 

[8] for homogeneous MAS. We intend to achieve heterogeneity in the behaviour of 

agents by means of exploiting their morphological – rather than their genotypic – 

differences. The possibility to exploit such a polymorphism to obtain a behavioural 

heterogeneity of genetically identical (homogeneous) predators allows us to employ the 

same evolutionary framework to evolve the team of predators in both – homogeneous 

and heterogeneous systems. We view this as an important argument in favour of the 

fairness of the presented comparative analysis of both systems.  
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3.4.1 Simulating the world 

The simulated environment is a two-dimensional infinite toroidal world with size of 

1600x1040mm (scaled). The perception range, decision making and resulting new state 

(location, orientation and speed) of the agents are updated with sampling interval of 

500ms. 

3.4.2 Fitness calculation 

In order to evolve a general enough solution to the problem, the behaviour of the 

team of predators is evaluated on 10 initial situations. This allows us to avoid overfitting 

of the evolved agents to any particular situation, and to create a more robust system. In 

each of the evaluated situations, the prey is located in the centre of the world and 

oriented in a random direction. The agents are then randomly placed on the field in such 

a way, as to have a diverse set of situations, to avoid overfitting for a certain way of 

disposition.  

The overall fitness for the particular chromosome is calculated as an average of the 

fitness values scored in each of the test situations for that run. The fitness for an initial 

situation is the sum of the average distance to the prey, average energy consumption 

and elapsed time for the trial. To avoid generation of very large controllers, a 

punishment is added to the fitness equal to 0.1xC, where C is the complexity of the 

agents’ representation in tree nodes, estimated as the number of nodes in its parse-tree. 

Lower fitness values represent better performing team of predator agents. The criteria 

to end evolution is fitness under 300 and 10 successful situations, stagnation for 10 

consecutive generations or 50 total generations tested. 
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3.5 Agent characteristics 

3.5.1 Prey agent 

The prey is a single agent with fixed behaviour using a handcrafted escaping strategy 

[8]. It responds to two situations – running away at 180 degrees angle from the nearest 

adversary, when a predator agent is visible and random wandering when there is not 

imminent threat. The maximum moving speed of the prey is higher than the maximum 

speed of the predators. The movement of the prey is continuous; it can turn left or right 

at any angle from its current direction. When chased, the prey is able to run at full speed, 

until its adversary is no longer in perception range. Features of the prey agent can be 

seen in Table 4. 

Table 4: Features of the prey 

Feature Value 

Number of prey agents 1 

Diameter, mm  40 

Maximum speed, mm/s 24 

Type of sensor Omnidirectional vision 

Range of visibility of the sensor, mm  200 

 

3.5.2 Predator agents 

The team of predators consists of four agents with inferior moving abilities, 

compared to the prey. We do not consider the case in which the agents are superior in 

terms of speed, as capturing the prey in that condition seems to be trivial and a single 

agent will be able to accomplish it. In addition, if the prey agent is completely superior, 

it will be very hard or even impossible for our team of predators to capture it. Therefore, 

to give the chasing agents a chance to complete the given task - they are equipped with 

a sensor that provides them with a greater vision range than the prey. As the behaviour 

of the predator agents is not fixed like the prey agent, this will allow for emerging 
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collective strategies during the evolution of the behaviour. As shown in Table 3, the 

predators also have the ability to adjust their moving speed to 0, 0.25, 0.5, 0.75 and 1.0 

of their maximum speed, if they need to. The main features of the predator agents are 

shown in Table 5, for homogeneous multi-agent system and in  

Table 6, for heterogeneous multi-agent system.  

Table 5: Predator features in homogeneous MAS 

Feature Value 

Number of predator agents 4 

Diameter, mm  50 

Max speed of predator agents, mm/s 16 

Range of visibility of the sensor, mm  450 

Type of sensor 
360 degree 

(Omnidirectional) 

 

Table 6: Features of the predators in heterogeneous MAS 

Feature Value 

Number of predator agents 4 

Diameter, mm  50 

Max speed of predator agents, mm/s 16 

Type of sensor Omnidirectional vision 

Range of visibility of the sensor of the two agents 
in Group 1, mm 

300-400 

Range of visibility of the sensor of the two agents 
in Group 2, mm 

500-600 

The heterogeneous system features two groups of two, morphologically identical 

agents (2 by 2 identical). Each of them will have a value of sensor range, such as to 
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keep the average of all four agents of 450 – equal to the range of sensors of predators 

in homogeneous MAS. 

We have chosen an arbitrary value of 450 for the average view range and 16 for the 

average speed. The homogeneous system will be serving as our control group and take 

on the average values, while the homogeneous system will be tested with different 

values for the range of the view sensor. 

3.6 Experimental results 

Our experiments involve 40 independent runs of GP for each one of the test cases of 

PPPP. Each test case involves different configuration of agents, and for heterogeneous 

system this implies a different combination of ranges of sensors of predators belonging 

to the two groups of agents. We considered a change of the range in intervals of 50 (e.g. 

400-500, 350-550, 300-600) while keeping the value of the average of the range’s 

constant (i.e., 450). In this section we will present the features of the behaviours of the 

team of predators, obtained from the evolution of an average homogeneous system, 

compared to the solutions of each of the heterogeneous configurations, evolved over 50 

generations of GP. Additionally, we will review the generality of the evolved predator 

agents, as well as their robustness to a changing environment. We will discuss the 

problems that arise from the proposed approach to create a heterogeneous system based 

on disparity in morphology rather than changes in genotype of the predator agents and 

how they affect the general performance in a noisy or uncertain environment. 

3.6.1 Evolution of the Homogeneous System 

On average, the homogeneous system is able to solve all 10 initial situations only in 

3 out of 40 (i.e., 7.5%) of runs. The evolution shows consistent development of 

controllers of predator agents, with fitness level averaging around 447 and with worst 
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solution having a fitness of 465. However, best solution of the series ends the trial with 

fitness of 235 and 10 successful initial situations in twenty-first generation, as 

illustrated in Figure 3 and Figure 4.  

 

Figure 3: Convergence of fitness in the homogeneous MAS 

The result of this experiment demonstrates that, while the best run is able to solve 

the problem with a reasonable effectiveness, the efficiency of evolution is rather poor, 

as the majority of the independent runs of GP could not reach the desired results. 

Moreover, as shown in Figure 5, even some of the runs could not resolve more than one 

initial situation.  

 

Figure 4: Dynamics of number of successfully solved initial situations by the 
homogeneous MAS. 
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success shows that more than 50% of the agents finish their evolution with 1 or 2 solved 

initial situations. While only 7.5% manage to solve all 10 initial situations 

 

Figure 5: Distribution of successful individuals for each tested initial situation 

We view this inconsistency as an indication that the homogeneous system – for the 

considered combinations of perception- and moving abilities of the entities – features a 

rather difficult, rugged fitness landscape, and the evolution often struggles to discover 
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shown in Table 7. Notice that the average of the range of visibility of sensors of the 

agents in these three configurations of the heterogeneous system is constant. Moreover, 

it is equal to the range of visibility of sensors of predators in the considered 

homogeneous MAS.  

Table 7: The three experimental configurations of the ranges of visibility of 
sensors of the agents in heterogeneous MAS 

Experimental 
Configuration 

(Test Case) 

Range of visibility of sensors, mm 

Group 1 

(two agents) 

Group 2 

(two agents) 

Average 

of all four agents 

A 400 500 

450 for all three test 
cases 

B 350 550 

C 300 600 

The results are very diverse – some configurations show better evolution than the 

average (homogeneous) system, while others cannot compare at all. Some of the 

configurations manage to evolve better solutions than the average, with fitness values 

converging around 425 (compared to 447 for the average systems) and the solved initial 

situations converging around 5 (compared to 4 in average MAS). Other configurations 

of the heterogeneous system show poor results in terms of successfully solved situations 

and fitness, as illustrated in Figure 6 and Figure 7. These results demonstrate that the 

improvement of the overall performance of the heterogeneous MAS, in regard to the 

average value of a homogeneous MAS, vary depending on the difference between the 

average values of their perception abilities and the desired optimal values of the 

implementation of the agents (e.g. in general, based on financial, available resources or 

some other constraints). In the considered context, the most prominent results are 

exhibited by multi-agent systems with sensor variations between 10 and 20 percent of 
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the range of visibility of the predators in the average (homogeneous) system. More 

significant disparities in perceptions of the heterogeneous predators seem to be 

detrimental both for the efficiency of evolution and effectiveness of the evolved 

behaviour of agents in the considered instance of MAS. 

 

Figure 6: Convergence of the average fitness for different configurations of 
evolved MAS. On generation #50 the P-value is 1,91x10-11<<0.05 

 

Figure 7: Dynamics of number of successfully solved initial situations. On 
generation #50 the P-value is 1,56x10-83<<0.05 
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homogeneous system featuring configuration B. The average values, for this test case 

converge at 429 fitness and 5 successfully solved initial situations. 

 

Figure 8: Variation of average, best and worst fitness in a heterogeneous system of 
predator agents 

 

Figure 9: Variation of average, best and worst number of successful situations in a 
heterogeneous system of predator agents 
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Figure 10: Distribution of successful individuals for each tested initial situation 
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the homogeneous system with an average range of visibility of predators (i.e., 450) 

solves all 10 initial situations at generation 20 and fitness of 232. The increased 

computational effort of evolution is somehow expected, given the significant inflation 

of the search space of the heterogeneous system. This inflation is caused by the fact 

that the agents are now separated in two groups of morphologically similar entities and 

their position in the world has an effect on the outcome of the attempt to solve the task, 

while in the homogeneous system all agents are the same and their position does not 

matter. Moreover, despite the increased search space, the results remain comparable - 

as shown in Table 8, the heterogeneous MAS is more successful in solving more than 

one initial situation even though the end results are the same – three out of four systems 

manage to evolve around 3 individuals that solve all 10 initial situations.  

Table 8: Average number of successfully solved initial situations.  

Successful 
Initial 

Situations 

Configuration of MAS 

Standard 
deviation 

σ 
Homogeneous 

Heterogeneous 
Range of visibility 

350 and 550 

(Test Case B) 

Range of 
visibility 400 and 

500 

(Test Case A) 
1 10 5 5 2.88 
2 11 7 7 2.30 
3 2 5 7 2.51 
4 3 2 1 1 
5 1 5 5 2.30 
6 1 4 2 1.52 
7 4 3 5 1 
8 1 2 2 0.57 
9 4 4 4 0 

10 3 3 2 0.57 

 

In addition, we would like to note that the best behaviour of predators is evolved in 

the heterogeneous MAS with range of visibility of predators 400 and 500, respectively, 
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which corresponds to about 10% disparity compared to the average value of 450, used 

by agents in homogeneous system. Figure 11 illustrates the dynamics of the fitness 

value and the number of successfully solved initial situations. It is interesting that the 

evolution actually manages to solve all 10 situations at generation 7. However, because 

the fitness value at that point does not meet the termination criterion of 300, the 

evolution proceeds further until, at generation 15 both the fitness value (223) and the 

number of successful situations (10) satisfy these criteria.   

 

Figure 11: Evolution of the best behaviour in heterogeneous MAS with range of 
visibility of predators 400 and 500, respectively 

3.6.4 Heterogeneous MAS featuring an unequal size of groups of predators 

From what we have observed so far, the heterogeneous MAS shows promising 
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group of three agents with increased (above the average) sensory capabilities and one 

group of one inferior agent with lower than average range of visibility, and vice versa. 

Table 9 and Table 10 show the two variants of such grouping. We will conduct 

additional experiments with these two variants of configurations of MAS, and will refer 

to them as unbalanced configuration #1 and #2 from now on. 

Table 9: First variant of the configuration of heterogeneous agents featuring an 
unequal size of groups  

Group # 
Number of 

agents 
Range of visibility, mm Average range, mm 

1 3 400 
450 

2 1 600 

 

Table 10:  Second variant of the configuration of heterogeneous agents featuring 
an unequal size of groups 

Group # 
Number of 

agents 
Range of visibility, mm Average range, mm 

1 3 500 
450 

2 1 300 

 

The trend of solving more of the cases with 3 to 9 initial situations remain, even for 

the MAS, where 3 of the agents have lower than average sensory abilities, as 20% of 

the runs manage to solve 9 initial situations, compared to 17,5% in the average MAS. 

Table 11 shows the success rate of the newly tested configurations of MAS.  

We would like to note that in the unbalanced configuration #2, the number of 

successfully evolved individuals that solve 10 initial situations, significantly increases, 

however, at the cost of worse fitness values. Most of the evolved solutions for the 
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improved systems were able to solve 10 initial situations and complete the evolution 

with fitness greater (worse) than 300 – one of the termination criteria, after which they 

regress to being able to solve less of the initial situations. In addition, for unbalanced 

configuration #2, there was an individual that stand out from the other solutions, which 

completed its evolution with great results by having fitness of 159 and 10 successfully 

solved initial situations, with small regression in the first few generations. Figure 12 

shows the evolution of that individual. 

Table 11: Success rate (in %) for each initial situation count for the unbalanced 
configuration compared to average in percentage of total runs. 

Successful 
Initial 

Situations 

Configuration of MAS 

Homo-Heterogeneous 
Heterogeneous 

Unbalanced 
Configuration #1 

Unbalanced 
Configuration #2 

1 100 100 100 
2 75 90 85 
3 47,5 67,5 60 
4 42,5 62,5 42,5 
5 35 50 35 
6 32,5 45 27,5 
7 30 32,5 25 
8 20 25 25 
9 17,5 12,5 20 
10 7,5 5 12,5 

 

 

Figure 12: Evolution of the best individual in unbalanced configuration #2. 
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Even though unbalanced configuration #1 results in lower probability of success, 

manifested by the lower number of evolutionary runs that solve all 10 initial situations, 

it produces a notable individual on its own. One of the runs managed to satisfy the 

termination criteria, with fitness of 260 in only 16 generations, compared to 20 for the 

best homogeneous (average) system. The evolution of that run is shown in Figure 13. 

 

Figure 13: Evolution of the sample individual in unbalanced configuration #1. 
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different configurations of MAS. The generality, in our experiments is estimated by the 
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10 situations employed for the evolution of predators, plus 990 newly introduced 

situations. The experimental results are shown in Table 12.  

Table 12: Generality of evolved behaviour of predators to newly introduced 990 
situations 
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(out of 1000) 
Success rate 

Homogeneous 4 x 450 mm 736 100% (base) 
Heterogeneous A 2x400 mm and 2x500 mm 660 90% 
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Unbalanced #1 3x400 mm and 1x600 mm 549 75% 
Unbalanced #2 3x500 mm and 1x300 mm 461 63% 



Page 29 of 90 

 

number of combinations of four heterogeneous agents divided into two groups of two 

identical agents is (4!) ÷ (2!) × (2!) = 6, theoretically the total number of possible initial 

situations in heterogeneous systems A and B is 6 times (4 times for unbalanced 

situations #1 and #2) higher than that of homogeneous MAS. Consequently, in order to 

provide the heterogeneous agents with an equal opportunity to learn (how to capture 

the prey) as the agents in homogeneous systems, we should have evolved them on 6 

times higher number of initial situations, i.e., 60 initial situations. 

Because we evolved all the systems under the same setup of the evolutionary 

framework, we, to some extent, expected the inferior generality of the heterogeneous 

systems. Nevertheless, the heterogeneous systems A featuring a lower disparity of 

range of visibility of predators (400 mm and 500 mm, respectively) solves 90% of 

initial situations that are solved by homogeneous system. Also, it is interesting to note 

that the unbalanced system #1, with the critical mass of 3 myopic, below average (range 

of visibility 400 mm) heterogeneous agents is more general than that featuring three 

longsighted, above the average predators (range of visibility 500 mm).  

To show how the increased search space affects the team of heterogeneous agents, 

we will evolve a new set of controllers for the team of agents in configuration B. To 

compensate for the increased complexity, we will be evolving a new set of 

chromosomes, this time on 60 initial situations in a period of 200 generations. How the 

new configuration of the genetic programming framework relates to the previous one, 

is displayed in Table 13. We will compare the newly evolved solution to the current, 

using 1000 initial situations. 
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Table 13: Changes to the GP framework to address the new evolutionary 
requirements 

Parameter Old Value New Value 

Fitness 
cases 

10 initial situations 60 initial situations 

Terminati
on criteria 

(Fitness value<300 AND 10 
successful situations) or (# 
Generations>50) or (Stagnation 
of fitness for 10 consecutive 
generations) 

(Fitness value<300 AND 10 
successful situations) or (# 
Generations>200) or (Stagnation 
of fitness for 10 consecutive 
generations) 

Once again, to be consistent, we generated 40 runs with the new configuration. The 

increase in difficulty proved great, as all of the produced solutions stagnated without 

finding a solution to all 60 initial situations. The best of them, which we will use in the 

comparison, needed 157 generations to reach its peak performance, while the worst 

could solve only one situation in 35 generations. Figure 14 shows the development of 

the best controller from all 40 runs of the GP framework. 

 

Figure 14: Evolution of the best run of the heterogeneous system evolved on 60 
initial situations 

The best chromosome of the newly evolved solution for the heterogeneous system 

managed to solve 57 out of 60 initial situations during the evolution and achieve a 

fitness of 338. In the test for robustness, we compared that individual to the best 

individual of the homogeneous system, using 1000 initial situations. As seen in Table 
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14, the results show that the newly evolved agent managed to solve only 692 out of 

1000 situations, compared to the 736 out of 1000 for the heterogeneous system. While 

these results are far better than the results that the initial solution shows – 436 out of 

1000, and the deterioration of performance drops from 30% down to less than 10%, the 

heterogeneous systems still remains inferior to its heterogeneous counterpart.  

Table 14: Comparison of robustness test on different types of MAS 

System type # of successful situations in 1000 initial situations 

Homogeneous 736 

Heterogeneous (configuration 
B) 

533 

Heterogeneous trained in 60 
initial situations 
(configuration B) 

692 

 

3.6.6 Robustness to noise 

While introducing noise to the environment or hardware errors to the agents is the 

most obvious way to test for robustness of the evolved controller solutions, we will 

introduce a simpler way, next. 

To investigate the robustness of the team of predators, evolved in noiseless 

environment, would degrade when subjected to perception noise, we introduced a 

uniform perception noise of up to 5% to both the distance (perceptions Prey_d and 

Peer_d, shown in Table 3) and bearing (Prey_a and Peer_a) of the perceived entities in 

MAS. Figure 15 illustrates the variations of the number of solved initial 1,000 

(including 10 used for evolution, and 990 newly added) situations for different levels 

of perception noise. For most of the considered configurations of MAS, the noise results 

in anomalous increase of the number of successfully solved situations. Because the 
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actions of predators (e.g., “Turn 22 degrees to the left”, “Go with 50% of max speed”, 

“Turn 10 degrees to the right”, etc.) are a result of execution of alternating stimuli-

response rules (corresponding to the instantly perceived, dynamic environment), and 

therefore, the behaviour of agents – seen as a sequence of actions – is rather discrete 

(jerky) [8], a possible explanation of this anomaly is in the favourable effect of the 

noise-induced dithering (smoothing) on such a behaviour. We are planning a more in-

depth investigation of why and how dithering facilitates a better behaviour of predators 

in unforeseen situations. Moreover, we intend to investigate the conditions (if any), at 

which the generality of the multi-agent systems could be improved by adding a certain 

amount of perception noise.  

 

Figure 15: Robustness to perception noise in 1000 initial situations. Legend of 
lines from top to bottom: Homogeneous, Heterogeneous A, Unbalanced #1m 

Heterogeneous B, Unbalanced #2 

Due to the trend that number of successfully solved situations increases with noise, 

we decided to make one additional test of the two best chromosomes – homogeneous 

and heterogeneous A. We have tested with 25% noise. The results show that the 

homogeneous system suffered a regression to only 596 solved situations, while the 

heterogeneous system managed to solve 843 out of 1000. It shows 14% increase 

compared to the base of 736. 
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3.7 Summary 

In this chapter we analysed the performance of homo- and heterogeneous multi-

agent systems modelling the predator-prey pursuit problem. All considered systems 

featured identical average values of the respective perception abilities of predator 

agents. The experimental results indicate that both (i) the speed of evolution of the 

successful capturing behaviour of predator agents and (ii) the effectiveness (i.e., its 

fitness value) of the best-evolved behaviour, of the heterogeneous MAS are improved, 

using different methods and techniques, in such a way that it performs better than its 

homogeneous counterpart. We have demonstrated that the heterogeneous system 

featuring a deviation of the perception abilities of predator agents, of about 10% from 

the average, could be evolved faster and could result in a better performing team of 

agents. We also showed that by implementing a team of agents that is big enough to 

potentially solve the problem alone (i.e., critical mass), the evolution of even better 

performing team of agents could be achieved even faster. The homogeneous system, 

however, is more general, in that it is able to successfully resolve the higher number of 

unforeseen initial situation. The robustness to introduced noise, however, depends on 

the level of the noise. With high levels of noise, the heterogeneous system shows results 

that are more consistent and more efficient.  One of the reasons for the inferior 

robustness of heterogeneous systems to uncertainty is that the space of possible 

combinations of initial situations is significantly larger than that of the homogeneous 

system. Evolving both types of systems on the same number of initial situations might 

result in under-representation of the training cases for the heterogeneous system. 

However, increasing the number of initial situations used for the evolution of the latter 

would inevitably result in increase of the computational overhead of simulated 

evolution. In our future work we are planning to investigate the trade-off (if any) 
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between the computational overhead of evolution and the robustness to uncertainty of 

heterogeneous systems. An eventual success in this direction would allow us to verify 

our hypothesis that – similarly to the human societies – the disparities in individual 

capabilities of agents are more important for the success of the team of agents than 

maintaining identical, “average” agents. 

3.8 Discussion 

We’ve shown that, by making a part of the agents simpler, in terms of morphology, 

the system as a whole can gain some improvement in certain areas, such as 

effectiveness in capturing the prey and evolution speed. This led us to wonder, what 

would happen if we simplify all the agents in the system. We revisited the predator-

prey pursuit problem to use very simple predator agents. 
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Chapter 4: Modelling the predator-prey pursuit problem 
featuring simple predator agents 

4.1 Proposed approach 

The direction for this optimisation was inspired by simple reactive robots that were 

previously modelled as agents by Gauci et al [9]. The agents were able to self-organize 

in order to solve the simple robot aggregation problem. The same framework was also 

successfully applied for the more-complex object-clustering problem [10] in which the 

agents need to interact with an additionally introduced immobile object.  The very 

possibility of a team of such agents to conduct an elaborate social (surrounding) 

behaviour in an environment featuring dynamic objects was recently demonstrated by 

Ozdemir et al [11] in solving the shepherding problem, where a team of simple agents 

(shepherds) need to guide multiple dynamic agents (sheep) toward an a priori defined 

goal. 

Bhattacharya et al. [12] presented one of the first works on sensory constrains for 

robots featuring two wheels in a differential drive configuration (the simplest possible 

effectors), that are required to solve complex tasks such as navigation. The notion of 

sensory constraints was later developed into the concept of the minimum amount of 

sensory information that should be adequate for robots with two wheels as effectors to 

accomplishing a task of a given complexity. Yu et al. [13] proposed the simple 

“windshield” (field of view) sensors. The proposed sensor was further minimized to a 

single line-of-sight sensor that could be viewed as a special case of the “windshield” 

featuring a nearly zero angle of the visual field [14]. 

In our study, we are proposing the use of similar team of simple agents in the solution 

of a different task – the well-studied, yet difficult to solve predator-prey pursuit problem 
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(PPPP) [3] [4] [15] [16]. In the considered PPPP, eight identical, simple agents 

(predators) are required to capture the single dynamic agent (prey).  

4.1.1 Changes compared to the complex MAS 

To comply with this definition of simple robots, in our research we consider predator 

agents featuring a single beam (line-of-sight) sensor providing just two bits of 

information, and two wheels (arranged in a differential drive configuration), rotational 

velocities of which are controlled by two motors. Their purely reactive behaviour is 

realized by a simple decision-making that does not require any computing. Instead, it 

involves a direct mapping of just four perceived environmental states into 

corresponding pairs of rotational velocities of wheels’ motors. 

4.1.2 Motivation for the introduced changes 

While previously are interested to reduce the costs of manufacturing and operation, 

of the MAS, we are looking towards creating such a team of agents, that can be used 

for novel tasks, where other – more complex systems are unusable. We are especially 

interested in the emerging small-scale robots – micro and nano-robots – that are 

promising candidates in future manufacturing and biomedicine [17] [18] [19] [20]. 

Other researchers have already found ways to create robots on a nano-scale, which are 

guided by an external force [21] [22]. Our work focuses on creating autonomous units 

which can operate, even on a miniature scale, without the need of outer force or a 

monitoring. However, several challenges are currently hindering the progress of the 

real-world applicability of these robots. Because of the physical constrains due to their 

small size, these robots could not be morphologically advanced – both the sensors and 

the actuators would have to be rather simple in order to fit the body of the agent. Further, 

their behaviour would be simple as well. It would not involve any computing; instead, 

it would feature a direct mapping of the (few) perceived environmental states into 
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actuators commands, instead of featuring a complex decision-making mechanism in 

each one of them. Most likely the communication (if any), between the individual 

agents, would be impossible to be realized in a direct manner and would be fulfilled 

implicitly, using the environment. As an example of such robots, we consider robots 

equipped with a single line-of-sight sensor providing only two bits of information, and 

two thrusters (wheels, in two dimensions, or propellers, in three-dimensional 

environments) in a differential drive configuration, controlled by two motors. Such 

robots can be regarded as an ultimate case of Occam’s razor principle, applied both the 

morphology and decision-making of mobile robots. The simplicity of such robots 

would imply a reduced size of the search space, and therefore more efficient heuristics 

[23] [24]. 

As a model of such agents, we’ve used PPPP [3] [8] [15] [16], to test and show, if 

any, the advantages that the agents have over the traditional complex MAS. The PPPP 

is widely used as a benchmark for the effectiveness of emergent complex, coordinated 

behaviour of agents in MAS. It could serve as a model of various potential real-world 

applications of both macro- [25] [3] [26] and micro-robots [26] [27] [28] [29] [30]. 

The proposed MAS features eight identical, simple agents (predators) - used to 

capture a single dynamic agent (prey). At first, our objective is to investigate whether 

the PPPP is solvable by the team of such simple predator agents. Further, we 

investigated the feasibility of applying genetic algorithms (GA) to evolve direct 

mapping of the four perceived environmental states into the respective velocities of the 

wheels of the predators that yield the social behaviour of the predators, resulting in the 

successful capturing of the prey.  
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An additional motivation of our research is the recognition that while many real-

world scenarios could be, indeed, reduced to the previously researched wall-following, 

dispersal [31], clustering [9], and shepherding problems [11], there would be few 

scenarios – requiring a direct physical contact with an active prey – that could be 

modelled by the proposed instance of PPPP [28] [29] [30]. These scenarios might 

include pinpoint drug delivery, surrounding and destroying (cancer) cells or bacteria, 

gathering around cells to facilitate their repair or imaging, etc. 

4.2 Agent characteristics 

4.2.1 Prey agent 

The prey is equipped with an omnidirectional sensor, with limited visibility range. 

To balance the advantage that the omnidirectional sensor gives to the prey, compared 

to the single line-of-sight sensor of the predators. The viewing distance of the prey is 

only 50 units, compared to the 200 units of the predators (Table 15). The maximum 

speed of the prey, however, is identical to that of the predators. We introduced such 

sensory and moving contrast to encourage the agents, to evolve as cooperative 

behaviour as they will be unable to capture the prey alone. Another viewpoint suggests 

that a successful solution to PPPP, defined in such a way, could demonstrate the virtue 

of the MAS as it could solve a problem that a single (predator) agent could not.  

In contrast to the predator behaviours, we implemented a handcrafted behaviour for 

the prey. The prey attempts to escape from the closest predator (if any) by running at 

its maximum speed in the direction that is exactly opposite to the bearing of the predator. 

The prey it remains still if it does not detect any predator [8]. Table 15 shows the main 

features of the prey agent. 
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4.2.2 Predator agents 

Each of the eight identical predators models a simple cylindrical robot with a sensor 

featuring a limited range, and two wheels, controlled by two motors in a differential 

drive configuration. The features of the agents are shown in Table 15.  

Table 15: Features of the predator and prey agents 

Feature 

Value of the Feature 

Predators Prey 

Number of agents 8 1 

Diameter (and wheel axle track), units  16 16 

Max linear velocity of wheels, units /s 10 10 

Max speed of agents, units /s 10 10 

Type of sensor Single line-of-sight Omni-directional 

Range of visibility of the sensor, units 200 50 

Orientation of sensor Parallel to longitudinal axis N/A 

The predators’ sensor provides two bits of information: each bit encodes if an entity 

(predator or prey) – is detected in the line of sight. Such sensors allow the predators to 

perceive only four discrete environmental states, as shown in Figure 16. The perceived 

environmental states do not provide the predators with any insight about the distance 

to the perceived entities, nor their total number. 

 

Figure 16: The four possible environmental states perceived by (any) predator 
agent Ai. 
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The reactive behaviour of the predator agents could be described as a direct mapping 

of each of the four perceived environmental states into a corresponding rotational speed 

of the wheel motors. For simplicity, hereafter, we will assume a mapping into the linear 

velocities of the wheels, expressed as a percentage – within the range [-100 % ; +100%] 

– of their respective maximum linear velocities. The decision- making of the predator 

agents could be formally expressed by the following octet D: 

D ={V00L,V00R,V01L,V01R,V10L,V10R,V11L,V11R} (1) 

where V00L, V00R, V01L, V01R, V10L, V10R, V11L, and V11R are the linear velocities (as a 

percentage of the maximum linear velocity) of the left and right wheels of the predators 

for the perceived environmental states <00>, <01>, <10>, and <11>, respectively.  

Our objective of evolving (via GA) the optimal direct mapping of the four perceived 

environmental states into their respective velocities of wheels could be rephrased as 

evolving such values of the velocities, shown in the octet in Equation (1), resulting in 

an efficient capturing behaviour of the team of predator agents.  

4.3 Evolutionary subsystem 

MAS, as complex systems, feature a significant semantic gap between the 

hierarchically lower-level properties of the agents, and the (emergent) higher-level 

properties of the system as a whole. Thus, we could not analytically infer the optimal 

velocity values of the wheels of the agents from the desired behaviour of the team of 

predator agents. Therefore, we applied the GA – a nature-inspired heuristic approach 

to gradually evolve good values of the parameters, similar to the evolution of species 

in nature. GA have proven to be efficient in finding the optimal solution(s) to 

combinatorial optimization problems featuring large search spaces [32] [33]. Thus, 

consonant with the concept of evolutionary robotics [34], we adopted the GA [5] to 

evolve good values of the eight velocities of the wheels of the predators that resulted in 
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an efficient behaviour – presumably involving exploring the environment, surrounding, 

and capturing the prey – of the team of predators. The algorithmic steps of the GA are 

shown in Figure 17, and its main attributes are elaborated below. 

Step 1: Creating the initial population of random chromosomes; 

Step 2: Evaluating the population; 

Step 3: WHILE not (Termination Criteria) DO Steps 4~7: 

Step 4:  Selecting the mating pool of the next generation; 

Step 5:  Crossing over random pairs of chromosomes of the mating pool; 

Step 6:  Mutating the newly created offspring; 

Step 7:  Evaluating the population; 

Figure 17: Main steps of GA 

4.3.1 Genetic Representation 

The decision-making of the predator agents is encoded genetically as a 

“chromosome”. The latter consist of an array of eight integer values (“alleles”) of the 

evolved wheel velocities of the agents, as shown in Equation (1). Sample configuration 

of a predator chromosome is shown in Figure 18. These values are within the range [-

100 % … +100 %], and are discretized into 40 values, with an equal interval of 5 % 

between them. This number of discrete values provides an acceptable trade-off between 

the resolution of the evolved velocities and the size of the search space (408) of the GA. 

The size of the population is 400 and the breeding strategy is homogeneous – each 
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chromosome is evaluated after being cloned to all eight predator agents. 

 

Figure 18: Sample chromosome of a predator agent in simple MAS 

4.3.2 Genetic Operations 

We decided to use binary tournament selection strategy in the evolutionary 

framework. It is computationally efficient, and has been proven to provide a good trade-

off between diversity of the population and the fitness convergence rate [33]. We also 

adopted elitism in that the four best-performing chromosomes survive unconditionally 

and are inserted into the mating pool of the next generation. Further, we implemented 

– with equal probability – both one and two-point crossovers. The two-point crossover 

results in an exchange of the values of both velocities (of the left and right wheels, 

respectively) associated with a given environmental state (e.g., both V01L and V01R). This 

reflects our assumption that the velocities of both wheels determine the moving 

behaviour of the agents (for a given environmental state); therefore, they should be 

<?xml version="1.0"?> 
<GP xmlns:xs="http://www.w3.org/2001/XMLSchema-instance" 
xs:noNamespaceSchemaLocation="..\SharedResources\GPSchema.xsd"> 
    <STM ind="3"> 
        <M00 ind="4"> 
            <M00L>-4</M00L> 
            <M00R>17</M00R> 
        </M00> 
        <M01 ind="9"> 
            <M01L>16</M01L> 
            <M01R>15</M01R> 
        </M01> 
        <M10 ind="14"> 
            <M10L>-13</M10L> 
            <M10R>-12</M10R> 
        </M10> 
        <M11 ind="19"> 
            <M11L>14</M11L> 
            <M11R>9</M11R> 
        </M11> 
    </STM> 
</GP> 
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treated as a whole – as an evolutionary building block. The one-point crossover is 

applied to develop such building blocks (exploration of the search space), while the 

two-point crossover is intended to preserve them (exploitation). 

4.4 Evaluation subsystem 

We’ve used the previously developed simulation and introduced changes to model 

the new environment more closely. 

4.4.1 Simulating the world 

We modelled the world as a two-dimensional infinite plane with a visualized part of 

1600 × 1600 units. We update the perceptions, decision-making, and the resulting new 

state (e.g., location, orientation, and speed) of agents with a sampling interval of 0.1 s. 

The duration of trials is 120s, modelled in 1200 time-steps. We approximate the new 

state of predators in the following two steps, as illustrated in Figure 19. First, from the 

current orientation, the yaw rate, and the duration of the sampling interval we calculate 

the new yaw (orientation) angle (as an azimuth to the north) of the agents. The yaw rate 

is obtained from the difference between the linear velocities of the left and right wheels, 

and the length of the axis between the wheels. Then, we calculate the new position (i.e., 

the two-dimensional Cartesian coordinates) as a projection (in time, equal to the 

duration of the sampling interval) of the vector of the linear velocity of predators. The 

vector is aligned with the newly calculated orientation, and its magnitude is equal to 

the mean of the linear velocities of the two wheels.  
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// Global definitions: 

type 

    TEntitiy_in_MAS = record 

       Yaw : float; // radians 

       X : float; // units 

       Y : float: // units 

    end; 

const 

    Num_of_Predators =  8;  

    Pred_Max_Speed = 10;  // units/s 

    Sampling_Interval =  0.1; // seconds 

    Pred_Radius  =  8; // units       

var 

    Predator: array [0.. Num_of_Predators-1] of TEntitiy_in_MAS; 

. . . 

   //  The routine Move_Predator estimates the new state of predators 

Procedure Move_Predator (ID: integer; V_L,V_R: float); 

  //  ID: the ID of the predator being currently updated, within the range [0..7] 

  //  V_L and V_R: linear velocities of the left and right wheels, respectively.  

  //  Calculated from the evolved genotype (as percentages of the max velocities), the values of max 
velocities  

  //  (10 units/s), and currently perceived (one of the four: <00>,<01>,<10> or <11>) environmental 
situations. 

  //  For the evolved sample genotype <10,15,20,25,30,35,40,45> and current situation <01> these 
values 

  //  are V_L=2.0 units/s, and V_R=2.5 units/s, respectively 

begin 

// Step #1: Calculating the new yaw angle of the predators #ID as azimuth (to the north) in radians: 

    Predator[ID].Yaw := Predator[ID]. Yaw + (V_L –V_R) » ( Pred_Radius × 2) × Sampling_Interva 

 

// Step #2: Calculating the new position (X,Y) of the predator #ID: 

    Predator[ID].X := Predator[ID]. X + ((V_L + V_R)/2) × sin(Predator[ID].Yaw) × Sampling_Interval; 

    Predator[ID].Y := Predator[ID]. Y + ((V_L + V_R)/2) × cos(Predator[ID].Yaw) × Sampling_Interval; 

end; 

Figure 19: The pseudocode of estimating the new state of the moving predators. 

4.4.2 Fitness Calculation 

To evolve predator behaviours that are general to several initial situations, we 

evaluated the objective (fitness) function (OF) of each of the evolved chromosomes on 

10 different initial situations. In each of these situations, the prey is located in the centre 

of the world. The predators are scattered in a small cloud situated south of the prey 

(Figure 20).  
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Figure 20: Sample initial situation. 

The predators’ starting location is very close to the prey during the initial situation 

and increases in distance with each run. The distance of the cluster, of agents, to the 

prey is calculated as the follows: ID of the current situation × 2 + (random of 50 units). 

This helps reduce the impact of the first few evolutionary runs, when the predators are 

learning how to move around the environment to find the prey. The overall fitness is 

the sum of the values, scored in each of the 10 initial situations. For a successful 

situation (the predators manage to capture the prey during the 120s trial), the fitness is 

the time needed to capture the prey (selection favouring the lowest values). For an 

unsuccessful situation, the OF is calculated as the sum of (i) the closest distance, 

registered during the trial, between the prey and any predator, and (ii) a penalty of 

10,000. The former component provides evolution with a cue about the comparative 

quality of the different unsuccessful behaviours. We verified empirically that this 

heuristic quantifies the “near-misses” well, and correlates with the chances of the 

predators – pending small evolutionary tweaks to their genome – to successfully capture 

the prey in the future. The second component penalizes heavily the lack of success of 

the predators in any given initial situation. The main parameters of the GA are 

elaborated in Table 16. 

 

Predators 

Prey 
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Table 16: Parameters of GA 

Parameter Value 

Population size 400 chromosomes 

Selection Binary tournament  

Selection ratio 10% 

Elites Best 4 chromosomes 

Crossover Both single and two-point 

Mutation Random single-point (with even distribution) 

Mutation ratio 5% 

Fitness cases 10 initial situations 

Duration of the trial 120 s per situation 

Fitness calculation 

Sum of fitness values of each situation: 

a) Successful situation: time needed to capture the prey  
b) Unsuccessful situation: 10,000 + shortest distance between the prey and any 

predator 

Termination criteria 
(overall fitness < 600) or (number of generations > 200) or (fitness stagnation for 32 
generations) 

Genotype 
Eight integer values of the velocities of wheels (V00L, V00R, V01L, V01R, V10L, V10R, 
V11L, and V11R)  

 

Our PPPP is an instance of a minimization problem, as a lower overall fitness value 

corresponds to a better performing team of predator agents. The evolution terminates 

on overall fitness values lower than 600, which implies a successful capture of the prey 

in all 10 initial situations in an average time shorter than 60s (half of the trial duration).  
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4.5 Initial results and challenges 

4.5.1 Evolving the team of straightforward predator agents 

We implemented 32 independent runs of the GA in an attempt to evolve a suitable 

mapping of the perceived environmental states into corresponding velocities of wheels 

of predators with canonical morphology [23]. The sensor of these agents is aligned with 

their longitude axis. Figure 21 illustrates, the mean value of the OF slowly converges 

to approximately 60,000, indicating that, on average, only 6 (of 10) initial situations 

could be successfully resolved (Figure 21). The best result, achieved by the team of 

predators, is only 6 successful situations. These results suggest that the PPPP is, in 

general, intractable for the current morphology of the predator agents. 

 

Figure 21: Convergence of the values of best objective function (top left) and the 
number of successful situations (bottom left) of 32 independent runs of GA. The bold 
curves correspond to the mean, while the envelope shows the minimum and maximum 

values in each generation. A snapshot of a sample initial situation is shown on the 
right. 

4.5.2 Enhancing the morphology of predators 

To improve the generality of the evolved predator behaviours, we focus on 

modifying their morphological features. The last of the features listed in Table 15 – the 

orientation of the sensors – implies a straightforward implementation of the agents. 

This, indeed, is the common configuration of the previously studied simple agents [9] 

[10] [11] [14] [31]. We are interested in whether an a priori fixed asymmetry – an 
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angular offset – would facilitate the evolution of more general behaviours of the team 

of predators. We speculate that a sensory offset would allow the predators to realize an 

anticipatory (equiangular, proportional) pursuit of the prey, aiming at the anticipated 

point of contact with the moving prey, rather than the currently perceived position of 

the prey. Notice that the proposed asymmetric morphology does not compromise the 

intended simplicity of the predator agents. 

In our experimental setup, we fixed the offset of all predators to 10°, 20°, 30°, and 

40° counter clockwise and conducted 32 evolutionary runs of the GA for each of these 

4 configurations. The results are shown in Figure 22a, b, c, and d, respectively, and 

summarized in Table 17. As Figure 22a and Table 17 illustrate, offsetting the sensors 

by only 10° significantly improves the generality of the evolved predator behaviours. 

They can resolve all 10 situations in 30 (93.75%) of the 32 evolutionary runs. The 

probability of success – the statistical estimation of the efficiency of evolution, defined 

for the PPPP as the probability to resolve all 10 initial situations, reaches 90% by 

generation #60 (Table 17). The terminal value of the OF in the worst evolutionary run 

is 10,987, corresponding to only one unresolved initial situation.  

Offset 

Terminal value of objective function Successful Runs  
# Generations 

needed to reach probability 
of success 90% Best Worst Mean 

Standard 
deviation 

Number 
in % 

of 32 runs 
No offset 40,928 70,729 61,064 8,516 0 0 NA 

10° 504 10,987 1,310 2,531 30 93.75 60 

20° 468 818 588 57.2 32 100 9 

30° 495 713 574 38.5 32 100 12 

40° 475 40,903 1,840 7,128 31 96.875 15 

Table 17: Efficiency of evolution of the team of predator agents 

More efficient evolution and behaviours that are more general were obtained for the 

sensory offsets of 20° and 30°. As Figure 22b and Table 17 depict for 20°, the predators 

successfully resolved all 10 initial situations in all 32 evolutionary runs. The probability 
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of success reaches 90% relatively quickly – by generation #9 (Table 17). Both the 

efficiency of evolution and the generality of the predator behaviours are similar for 

agents with a sensory offset of 30°, while these two characteristics deteriorate with the 

further increase of the offset to 40° (Figure 22c, d, and Table 17). 

 

Figure 22: Convergence of the values of best objective function (top) and the 
number of successful situations (bottom) of 32 runs of GA evolving predators with 
sensor offset of (a) 10°, (b) 20°, (c) 30°, and (d) 40°, respectively. The bold curves 
correspond to the mean, while the envelope illustrates the minimum and maximum 

values in each generation. 

4.6 Robustness of the Evolved Behaviour to Noise 

We examined the effect of a random perceptual noise on all evolved behaviours of 

the most general predators – those with sensory offsets of 20° and 30°. We introduced 
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two types of noise – a false positive (FP) and false negative (FN), respectively. The FP 

results in either of the two bits of perception information to be occasionally (with a 

given probability) read as “1” regardless of whether an entity is detected by the 

predators. The FN results in readings of “0” even if an entity is the line of sign. The 

best results with the increase in the amount of noise from 0 to 16 % (Figure 23a and b) 

were achieved by a predator with a sensor offset of 20°, as shown in Table 18. The OF 

value of such predators in a noiseless environment is 552 – close to the average (588) 

and far from the best evolved (468). Interestingly, the same behaviour, being evolved 

for the sensor offset of 20°, exhibits an impressive robustness to errors in the angular 

positioning of the sensor, as well.  As shown in Figure 23c, the predators can resolve 9 

(of 10) initial situations when the sensor offset of all the agents is set to any value 

between 10° and 40°. 

 

Figure 23: Robustness of a sample best evolved behaviour of predators with sensor 
offset of 20° to random false positive (FP) noise (a), false negative (FN) noise (b), 

and to error in angular positioning of the sensor (c). 

Table 18: Evolved velocities of wheels of predators that result in a behaviour that 
is most robust to noise. The sensor offset is 20°. 

V00L V00R V01L V01R V10L V10R V11L V11R 
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The team of predators exhibits three emergent behaviours, as illustrated in Figure 

24 (a movie is available at http://isd-si.doshisha.ac.jp/itanev/SA/): (i) exploring the 

environment by dispersing themselves into a wide area in the world (t = 0 and t = 20 s), 

(ii) shepherding (t = 30s and t = 40 s), and (iii) capturing the prey (t = 50 s and t = 55 

s), respectively. The agents commence the trial (t = 0) with no entity in sight. Controlled 

by <V00L = 25%,V00R = 100%> (Table 18) they turn to the left until either a predator 

(most likely) or a prey is detected. Detecting a predator activates the setup of the wheels 

<V10L = –25%,V10R = –20%>, resulting in both turning slowly and moving (dispersing) 

away from the perceived predator. Such a dispersion widens the area of the cloud of 

predators and enhances their ability to explore the environment and to detect the prey 

(t = 0 s and t = 20 s). When the predators detect the prey, they activate the setup <V01L 

= 100%,V01R = 100%>, resulting in a chase of the prey in the forward direction with 

maximum speed (Figure 24, t = 20 s and t = 30 s). As a result of the optical parallax, 

during the chase, the prey might become temporarily invisible, as shown in Figure 16a 

and b. When this occurs, the predator activates the setup <V00L = 25%,V00R = 100%>, 

which yields a counter clockwise rotation towards the invisible prey. The predator 

exhibits an embodied cognition that the parallax is a result, in part, of its own forward 

motion; therefore, the new location of the prey is – due to the counter clockwise offset 

of the sensor, – most likely on the left of its own orientation. Therefore, the virtue of 

the sensor offset is in the more deterministic direction of the prey disappearance, which 

facilitates a faster rediscovery of the latter by the predator (Figure 16b and c). The 

predator could quickly rediscover the prey by turning slightly (and quickly) by only a 

few degrees to the left (α). Conversely, in an eventual straightforward implementation 

of the sensor, the predator would need to turn α degrees if the direction of turning by 

chance coincides with the new location of the disappeared prey, or (360-α) degrees 
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otherwise. Because, from the predator viewpoint, the moving of the disappearing prey 

is non-deterministic, on average, the predator would have to turn 180° – i.e., much 

wider (and slower) than turning only a few degrees (α), as with an offset sensor. 

Moreover, such a chase, due to the sensor offset, yields a counter clockwise, circular 

trajectory of both the chasing predator(s) and the prey (Figure 16c), thereby resulting 

in shepherding the prey back into the (already widely dispersed) other predators. 

Surrounded from all sides of the world by both current and newly encountered chasing 

predators, the prey is finally being captured (Figure 24, t = 40 s, t = 50 s and t = 55 s).  

In hindsight, we could also argue that the initial dispersion illustrates the emergent 

strategy of the predators, i.e., for a capture, only three of them (the “critical mass”) 

would be sufficient. By moving away from each other, most of the predators move 

further away from the prey as well (Figure 24, t = 0 and t = 20 s), thereby compromising 

their chances to capture the prey. However, such an altruistic behaviour results in a 

faster discovery – and a faster capture of the prey by some (e.g., just three) predators, 

presumably, for the benefit of the whole team. 

 

Figure 24: Phases of a sample best evolved behaviour of the predators with sensor 
offset of 20°. 

t=0 s t=20 s t=30 s t=40 s t=50 s t=55 s 

Prey 
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Figure 25: Reliable tracking of the prey by chasing predator Ai. 

4.7 Summary 

We examined a PPPP featuring very simple, non-computing predator agents, 

equipped with a single line-of-sight sensor and a simple control of velocities of their 

two wheels. We applied a GA to evolve the successful behaviour of the team of predator 

agents. To enhance the generality of the evolved behaviour, we proposed an asymmetric 

morphology of the predators. Offsetting their sensors angularly to 20° and 30° yielded 

the most efficient and consistent evolution of successful behaviours of agents.  

4.8 Discussion  

4.8.1 Heterogeneous vs Homogeneous systems  

A different approach to finding a solution would be to implement a multi-agent 

system with several different types of predator agents, in which, each of them has a 

specifically assigned role that contributes towards capturing the prey. In our previous 

work that compares the performance of heterogeneous and homogeneous MAS [35] 

[36], we have analysed in-depth the different problems that heterogeneity introduces. 

The main reason we did not implement a heterogeneous MAS is that the efficiency of 

evolution of the heterogeneous system might be hindered by the inflated search space. 

Additionally, due to the a priori defined specialization of the agents in heterogeneous 

systems, we cannot ensure that generality of the heterogeneous team; e.g., consisting 

of two types of agents—drivers and capturers—would not be compromised, because 
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we could not guarantee that the a priori defined drivers would be in the most favourable 

position relative to the prey in each of the initial situations. Indeed, in real-world 

situations, placing a particular predator (driver) in a particular position is challenging 

and not always possible. Alternatively, we decided to implement a priori unspecialized, 

versatile agents and to give them the ability to execute any role (depending on their 

perceived environment) that is needed to capture the prey. In our case, the agent that is 

closest to the prey would assume the role of a “driver”. This behavioural heterogeneity 

emerges dynamically from the interaction between the homogeneous genotype (all of 

the agents share the same velocity mappings of the rotation velocities of wheels) and 

the environment. 

4.8.2 Finding the optimal configuration 

In this section, we’ve shown how a MAS featuring simple predator agents compares 

to its counterpart system featuring more complex in terms of morphology agents. 

Initially the simple MAS was able to solve the problem only partially – being able to 

catch the prey only 6 out of 10 times. To overcome this problem, an offset to the 

viewing sensor was introduced. We’ve determined that this simple change provides the 

MAS with the means to successfully solve the PPPP. However, we cannot say if the 

values for the sensory offset (20° and 30°) that we’ve found to work the best in our tests 

are optimal for the system. To answer this question, we’ve decided to coevolve the 

sensory offset as well as the motor mappings of the predators, in attempt to find an 

optimal value. 
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Chapter 5: Coevolution of the morphology and behaviour of 
simple predator agents 

In this section we will present the experimental results of evolving the optimal values 

of the velocities of the motors and the angular offset of the sensor that yield an optimal 

successful behaviour of the predator agents. We will evaluate the proposed approach in 

terms of efficiency and consistence of evolution, generality of evolved behaviour, and 

robustness to noise. 

5.1 Coevolution objective 

Our objective of coevolving (via GA) the behaviour and asymmetric sensory 

morphology of the agents could be rephrased as coevolving (i) such values of the 

velocities, shown in the octet in Equation (1), together with (ii) the angular offset of the 

sensor, resulting in an efficient capturing behaviour of the team of predator agents. We 

shall elaborate on such a coevolution in the next section. MAS, as a complex system, 

feature a significant semantic gap between the simple, hierarchically lower-level 

properties of the agents, and the more elaborate, higher-level behaviour of the whole 

system. Consequently, we would be unable to formally infer the values of the octet of 

velocities of the wheels of agents from the desired behaviour of the team of such agents. 

Similarly, we are unaware of the value of the angular offset of the sensor – resulting in 

an efficient capturing behaviour of the agents. Moreover, the values of velocities of 

both wheels and the value of the angular offset of the sensor would, most likely, be 

dependent on each other. 

5.2 Experimental Results 

5.2.1 Coevolving the Asymmetric Morphology and the Behaviour of Predator Agents 

As Figure 26, Figure 27 and Figure 28 illustrate, just by adding the offset, the results 

in number of successful initial situations and overall fitness significantly improves 
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compared to the evolution of the team of straightforward predator agents featuring no 

angular offset for the sensors. On average, the predators were able to resolve all 10 

initial situations by 10th generation of the GA.  From all 32 independent runs of GA, 

there is one distinguished solution (from now on we will refer to it as the fastest evolved 

solution SFE) which successfully solves 8 initial situations (out of 10) in the first 

generation. The chromosome of this solution encodes for offset of the sensor of 20°. 

This confirms the findings in our previous research [23] [37], that a team of predators 

with 20° sensor offset yields favourable results during evolution. As we will discuss 

later, this is also true in case of additional – unforeseen, situations and presence of 

perception noise. However, from all 32 solutions, this is not the one that has achieved 

the best overall fitness value. The best agent behaviour (manifested by the achieved 

lowest of fitness value) was obtained by the solution SBF featuring a sensory offset of 

16°. Compared to the fastest evolving solution SFE, the solution SBF evolved a bit 

slower and solved all 10 situations by 6th generation, achieving the terminal fitness of 

369 (compared to 417 of solution SFE). 

 

Figure 26: Convergence of the best fitness of 32 independent runs of GA 

0

20000

40000

60000

80000

100000

0 10 20 30 40 50

Fi
tn

es
s

# Generations

Min (best)
Average
Max (worst)



Page 57 of 90 

 

 

Figure 27: A more detailed illustration of the convergence of the best fitness of 32 
independent runs of GA 

 

Figure 28: Convergence of the number of successful situations of 32 independent 
runs of GA. 
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morphology and (ii) the behaviour, rather than a particular instance of each of them, is 

important for the success of the behaviour of predator agents. 

 

Figure 29: The sensor offset and the fitness value of all 32 solutions obtained form 
32 independent runs of the GA The fastest evolved- and the best overall solutions are 

denoted as solutions SFE and SBF, respectively. 

The breakdown of the number of the successful situations and the sensor offset of 

all 32 solutions are illustrated in Figure 30. As depicted in Figure 30 (right), the sensor 

offset of 90% (i.e., 29 of 32) of solutions is within the range (15° … 35°). There is no 

evolved solution that features a sensor offset lower than 10°, which confirms 

experimentally our initial hypothesis about the beneficial effect of the asymmetric 

morphology of predators on the efficiency of their behaviour. The statistical 

characteristics of all 32 solutions are shown in Table 19.  

Table 19: Statistical characteristics of the 32 solutions obtained form 32 
independent runs of the GA 

Parameter Value 

Mean of the best fitness values 436 

Standard deviation of the best fitness value 63 

Mean of the sensor offset, °  24.7 

Standard deviation of the sensor offset, ° 7.2 
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Figure 30: The breakdown of the number of the successful situations (left) and the 
sensor offset (right) of all 32 solutions obtained form 32 independent runs of the GA. 

5.2.2 Generality of the Evolved Solutions 

To assess the generality of the evolved behaviour of the predator agents, we will 

examine how their performance (i.e., the number of successfully resolved initial 

situations) degrades with the increase of the speed of the escaping prey. We tested all 

32 solutions, obtained via the GA (for the speed of the prey equal to 10 units/s), for 

speeds of the prey, unforeseen during the evolution, of 12, 14, 16, 18, and 20 units/s, 

respectively. The number of initial situations, successfully solved by each of the 32 

solutions for each of the considered speed of the prey is shown in Figure 31.  The mean 

(over the whole range of speeds of the prey) of the successfully solved situations by 

each of these solutions, and its breakdown are depicted in Figure 32. As these figures 

illustrate, one of these solutions – denoted as SMG – is most general in that is features 

no degradation in the number of successful situations with the increase of the speed of 

the prey. Moreover, its fitness value remains under 500 (i.e., the agents capture the prey 

earlier than 50 s into the 120 s trial) for all considered speeds of the prey. As shown in 

Table 20, the sensor offset of SMG is 24°. 
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Figure 31: The number of successfully solved situations by the evolved 32 solutions 
for the speed of prey being increased from 10 to 12, 14, 16, 18 and 20 units/s, 

respectively. 

 

Figure 32: Generality of the evolved 32 solutions to the changes in the speed of prey 
from 10 to 12, 14, 16, 18, and 20 units/s: the mean number of successfully solved 

situations (left) and its breakdown (right). 
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noise levels in the environment or in sensors would result in the considered two types 

of perception noise. Figure 33 and Figure 34 show the dynamics of the number of 

successfully solved situations by all 32 solutions for different amount of FP and FN 

perception noise, respectively.  

 

Figure 33: Robustness to FP noise of each of the 32 evolved solutions. 

 

 

Figure 34: Robustness to FN noise of each of the 32 evolved solutions. 
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20) emerge as most robust to FP noise and FN noise, respectfully. Solution SMRFP 

manages to solve the tests with FP noise perfectly, while maintaining satisfactory 

performance in the tests with FN noise, being able to solve on average 8.25 initial 

situations, depending on the level of FN noise. On the contrary, the agents controlled 

by SMRFN solve the situations with FP noise perfectly, while being able to an average of 

9.5 initial situations in the situations with FN noise, resulting in the best overall 

performance. The sensor offset of SMRFP and SMRFN is 18° and 20°, respectively (Table 

20). 

Table 20: Genotype of evolved solutions: the fastest evolved (SFE), with the best 
fitness (SBF), most general (SMG), most robust to FP (SMRFP) and FN (SMRFN) 

noise 

Solution Fitness V00L, % V00R, % V01L, % V01R, % V10L, % V10R, % V11L, % V11R, % Sensor Offset α,° 

SFE (#9) 417 30 95 100 90 -80 -75 50 -95 22 

SBF (#32) 369 -95 80 90 85 -90 -90 100 90 16 

SMG (#21) 382 -95 80 95 90 -90 -90 60 -10 24  

SMRFP (#11) 404 -70 70 90 85 -100 -100 65 70 18  

SMRFN (#14) 421 30 100 100 95 -75 -70 100 100 20  

 

5.3 Discussion 

5.3.1 The Advantage of Asymmetric Morphology  

The experimental results indicate that the introduction of the angular offset of the 

sensor of the agents improves the effectiveness of the team by enabling the emergence 

of a general and robust (to environmental noise) capturing behaviour. It also helps 

increase the efficiency of the evolution of successful capturing behaviour of agents. 

Our previous work [23], as well as the result provided above suggest that the behaviour, 

evolved with a sensor offset of 20° (in solution SMRFN) is most robust to noise and is 
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close enough in terms of fitness to the best performing team of agents in noiseless 

environments. The fitness of SMRFN is 421 compared to 369 of SBF. While SMG shows 

best results in the generality test, with perfect score in all initial situations, it falls short 

in the noise robustness test. This leads us to believe that SMRFN is an example of a good 

combination of coevolved behaviour and asymmetric morphology of the predator 

agents. On average, SMRFN manages to solve 9.57 and 9.65 situation in the generality- 

and robustness tests cases. The angular offset of 20° of SMRFN provides a good trade-

off between the tangential- and radial (i.e., towards the prey) components of the speed 

vector of the chasing predators. 

The beneficial effect of the sensor offset is in that it helps the chasing predator to 

implicitly determine the position of the prey if the latter disappears. Having a counter 

clockwise displacement means that most of the time the disappeared prey, due to the 

parallax induced by the movement of the predator, would be to the left, and 

consequently – a slight turn to the left would allow relocating it again. Therefore, one 

of the virtues of the sensor offset is in the more deterministic direction of the 

disappearance of the prey – almost certainly to the left – which, in turn facilitates a 

faster rediscovery, and consequently – a more reliable tracking of the latter by the 

predator. Moreover, as shown in Figure 35, the chase by the predator featuring an 

asymmetric morphology would result in a characteristic circular trajectory of both the 

predator and the prey. This behaviour is more efficient, compared to that of the 

predators with canonical straightforward morphology. In the latter case the predator 

could not make any reliable prediction about the most likely direction of the 

disappearance of the chased prey. With the rather challenging, but realistic assumption 

that initially the prey is not being surrounded by the predators (as illustrated in Figure 
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20) such emergent circular trajectories would facilitate the surrounding as the prey 

would be shepherded (driven) by a single predator (driver) towards the pack of the 

remaining predators.   

 

Figure 35: Chasing the prey by a sample predator agent Ai 

Significantly reducing the sensor offset from 20° would stretch the chasing trajectory 

of the predator. Moreover, in such case, as the chased prey becomes closer to the 

longitudinal axis of the predator, in order not to compromise the certainty that the prey 

has disappeared to the left, it would need to turn slightly to the right (instead of going 

straight, as shown in Figure 35, for environmental state <01>)—by reducing the speed 

of the right wheel—during the chase. This, in turn, would reduce the overall chasing 

speed of the predator. These two factors—stretching the chasing trajectory and reducing 

the chasing speed of the predator—would result in increasing the time needed to drive 

the prey towards the dispersed predators. Conversely, increasing the sensor offset 

would result in a more compact chasing trajectory that might not stretch enough to 

reach back to the pack of remaining predators. 

5.3.2 Emergent behavioural strategies 

The current research, as well as our previous work on agents with asymmetric 

morphology [23], suggest that the solution most robust to noise and with greatest 

success rate in the generality tests is the behaviour obtained from the evolutionary run 
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# 17. In this section, we will use that specific behaviour to review the behavioural 

strategies of the team of predator agents emerging from evolution of the velocity 

mappings by the GP framework. 

The values of the evolved velocities of motors and the sensor offset of behaviour 

#17 are shown in Table 18. The team of predator agents exhibits the following four 

behavioural strategies, executed in four consecutive phases of the trial: (i) circling 

around until they find a peer or the prey (controlled by velocities V00), (ii) exploring 

the environment by distancing themselves from each other (controlled by velocities 

V10), (iii) surrounding by shepherding (driving) the prey (by some of the predators - 

drivers) in a circular trajectory (V01), and (iv) capturing the prey (V11).The team of 

predator agents exhibits the following three behavioural strategies, executed in three 

consecutive phases of the trial: (i) circling around until they find a peer or the prey 

(controlled by velocities V00), and then exploring the environment by distancing 

themselves from each other (controlled by velocities V10), (ii) surrounding by 

shepherding (driving) the prey (by some of the predators - drivers) in an circular 

trajectory (V01), and (iii) capturing the prey (V11). Figure 36 illustrates the different 

phases the agents go through in the process of catching the prey. A video of how the 

team of predators deals with all 10 initial situations can be found at http://isd-

si.doshisha.ac.jp/m.georgiev/2018-12-08-SA20deg.mp4 
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Figure 36: Emergent behavioural strategies of a sample evolved team of predator 
agents with sensor   offset of 20°. Environmental state perceived by predator: grey = 

<00>, red = <10>, blue = <01>, purple = <11>. 

As shown in Figure 36a, in the beginning all agents have no vision of either the prey 

or any of the peers. Following the mapping of V00L = 25% and V00R = 100% (as shown 

in Table 18), they start circling around—scanning the environment in an attempt to find 

another entity. Detecting a peer activates the set of velocities V10L = −25% and V10R = 

−20%, which forces the predators to enter the second stage: to move away from the 

perceived agent, which facilitates a better dispersion and a coverage of a wider area. 

This enhances the ability of the predators to explore the environment and to discover 

the prey. The third stage—surrounding—begins when any of the predators discovers 

the prey. The mapping V01L = 100%, and V01R = 100% results in moving forward at the 

highest speed, which helps in keeping the prey almost always in the same relative 

position to the agent—i.e., on the left side, as shown in Figure 25, 9b–e. Once the prey 

disappears from view—as shown in the centre panel of Figure 25—the predator exhibits 

t=0 s, Circling t=20 s, Surrounding by 
shepherding 

t=30 s, Surrounding by 
shepherding 

t=40 s, Surrounding by 
shepherding 

t=50 s, Surrounding by 
shepherding t=55 s, Capturing 

Prey Shepherd 
(driver) 

(a) (b) (c) 

(d) (e) (f) 
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an embodied cognition that the disappearance is a result, in part, of its own forward 

motion; therefore, the new location of the prey is—due to the counter clockwise offset 

of the sensor—most likely on the left of its own orientation. Then the evolved V00L = 

25% and V00R = 100% are activated (Figure 25 right) resulting in a circular motion to 

the left, until the agent rediscovers the disappeared prey. 

Moreover, as Figure 36b–d show, a single predator—driver—due to its sensor offset, 

shepherds (drives) the prey in a circular, counter clockwise trajectory into the (already 

dispersed) other predators. The fourth (final) behavioural phase concludes the chase by 

capturing the prey that is surrounded from all sides by both the driver(s) and the newly 

encountered predators, as illustrated in Figure 36e,f. When approaching from opposite 

sides, the predators are able to see both the prey and a peer, which activates the mapping 

V11L = 100% and V11R = 100%. Since they have a slight angular offset, it is possible for 

only three predators to catch the prey, as illustrated in Figure 36e, f. One of the predators 

chases the prey from behind and guides it to its front left side, while the other 

approaches it from the opposite direction.  

At the same time, as shown in Figure 36d–f, two of the agents keep distancing 

themselves from the group of other predators. The agents seem to exhibit an emergent 

knowledge [38] that not all eight agents are needed to capture the prey. For the group 

of agents to be successful, the most important mission is to capture the prey, rather than 

which particular agent does it. As the performance of the predators is calculated, based 

on the success of the group, instead of that of the particular individual agent, such 

behaviour helps the team (as a whole) by expanding the search field and finding the 

prey faster, especially when it is further away from the predators. If, instead, the agents 

were trying to find the prey and capture it by themselves via “greedy chase”, they would 
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inevitable fail because: (i) the prey is fast enough to run away from a single predator, 

and (ii) the predators would have been unable to engage in any organized behaviour 

that allows surrounding, and ultimately – capturing the prey. 

The manifestation of shepherding behaviour in the third behavioural phase is 

probably the most significant difference between the evolved behaviour of the 

canonical straightforward predator agents and that of the agents with asymmetric 

morphology. This behaviour, being a vital part of the successful capturing, could not 

be observed in the behaviour of the canonical predator agents. A video showing how 

the canonical agents struggle to find and capture the prey is available at http://isd-

si.doshisha.ac.jp/m.georgiev/2018-12-03-SA-Straightforward.mp4 

5.3.3 Alternative methods 

We could have adopted another – deterministic – approach, such as, for example, a 

complete enumeration of the possible combinations of the eight velocities of wheels 

and the sensor offset. If each of these 8 velocities is discretized into, say, 40 possible 

integer values ranging from -100% to +100%, and the sensor offset – just into 20 values 

– then the size of the resulting search space would be equal to 408 or about 1.3×1014. 

This would render the eventual “brute force” approach, based on complete enumeration 

of possible combinations of values of velocities computationally intractable. 

As an alternative to the brute force search, we could apply reinforced learning (RL) 

in order to define the good mapping of the four perceived environmental states into the 

four pairs of velocities of wheels. However, MAS are complex, non-linear systems, and 

there is a significant gap between the properties of the entities and the (emergent) 

properties of the system. RL would obtain a “reward” from the system (i.e. the 

efficiency of the team of predators), and will try to modify the properties (the four pairs 
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of velocities of wheels) of the entities. Due to the complexity and non-linearity of MAS, 

this is not a straightforward task. This is also related to the intra-agent credit- (or 

blame-) assignment problem, as we could not tell which part of the agents is responsible 

(and therefore – should be modified) for the bad overall behaviour of the system. 

Evolutionary computing solves these challenges in an elegant way – by obtaining 

the fitness value from the system, as a whole (i.e., the efficiency of predators in 

capturing the prey) and then modifying the properties of entities (pairs of velocities of 

wheels of predators) via genetic operations - crossover and mutations.  

Yet another challenge in RL is the delayed reward problem – the success (if any) of 

the system (team of predators) would occur several hundred time-steps into the trial, 

but might be related to the earlier behaviour phases of the team of predators – such as 

the dispersing (exploration of the environment) at the very beginning of the trial. 

Regarding the delayed reward problem, the evolution, as a holistic approach, does not 

care about how to achieve the success, but rather – about the overall (final) outcome of 

the trial. 

In our work we apply GA – a nature-inspired heuristic approach that gradually 

evolves the values of a set of parameters in a way similar to the evolution of species in 

nature. GA has proved to be efficient in finding optimal solution(s) to combinatorial 

optimization problems featuring large search spaces [32] [33] [39]. Thus, consonant 

with the concept of evolutionary robotics [34], we adopted GA to evolve the values of 

the eight velocities of the wheels and the offset of the sensor that result in an efficient 

behaviour – presumably involving exploring the environment, surrounding-, and 

capturing the prey – of the team of predators. 
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5.4 Additional tests  

5.4.1 Generality of the Evolved Behaviour 

After seeing the success which the sensory offset brought to solving the initial 10 

test situations, we investigated the generality of the best-evolved teams of predators on 

an extended set of 100 initial situations, including the same 10 initial situations used in 

the evolution, and 90 additional situations unforeseen during the evolution. For the 10 

initial situations (from situation #1 to situation #10) used during the evolution, the 

predators are dispersed south of the prey (as illustrated in Figure 20) such that the 

average distance between the prey and the group of predators slightly increases with 

each situation. For the additional situations, (from situation #11 to situation #100) the 

average distance between the predators and the prey is kept the same as that of the 

situation with the most distant predators used during the evolution—situation #10. In 

each of the additional situations #11…#100 the average distance of the predators to the 

prey is the same as that of situation #10; however, both the position and the orientation 

of the predators are random. We would like to note that the alternative approach of 

exploring the generality of the agents by evolving them directly on 100 initial situations 

would feature a greater computational overhead as the total number of fitness trials 

would be almost 10-fold higher.  

We conducted the experiments on the set of these 100 initial situations with the 32 

evolved best-of-run teams of predators featuring a sensor offset of 20°. Our choice of 

this particular morphological configuration is based on its superiority in terms of both 

(i) the quality (fitness value) of the evolved best-of-run teams of agents and (ii) the 

consistency (probability of success) in evolving these teams, as illustrated in Table 17. 

Figure 38 shows the experimental results of the number of successfully solved initial 

situation by each of the 32 evolved best-of-run teams of predators. The results shown 
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in Figure 37 demonstrate that the sensory offset of 20° results in behaviours of predator 

agents that are quite general (rather than over-fitted to particular initial situations). 

Indeed, only three solutions resolved less than 60 of all 100 initial situations (obtained 

from evolutionary runs #11, #22, and #25), while, the best solution (obtained from 

evolutionary run #17) resolves 97 initial situations. The evolved mapping of the 

velocities of wheels of the most general solution #17 is shown in Table 18. 

 

Figure 37: Generality of the 32 evolved best-of-run behaviours of the team of 
predator agents. 

5.4.2 Robustness to Sensory Noise 

After verifying the generality of the 32 evolved best-of-run behaviours of the team 

of predator agents, we decided to investigate how each of these behaviours degrades 

when a random noise is introduced into the perception readings. Revisiting the same 

set of 100 initial situations (including the same 10 initial situations used in the evolution, 

and 90 additional unforeseen situations), we introduced two types of noise—false 

positive (FP) and false negative (FN), respectively. Under the influence of the FP noise, 

the value of either (randomly chosen with probability of 50%, individually for every 

predator agent, on each time step) of the two bits of sensory information is read as one, 

regardless of the actual reading of the sensor. On the contrary, in the presence of FN 

noise, the reading is registered as zero, even if the corresponding entity (a predator or 
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the prey) is in the line-of-sight. We conducted experiments for levels of either FP or 

FN noise, starting from 2% and increasing by multiplier of 2, up to 16% (i.e., 2%, 4%, 

8% and 16%). 

The experimental results obtained, as shown in Figure 38, are somehow unexpected. 

We anticipated that that the number of solved initial situations would decrease in a 

monotonic way with the increase of the level of FP noise. However, most of the 32 

best-of-run behaviours are quite robust to FP noise in that the number of solved initial 

situations varies slightly compared to the number of solved situations in a noiseless 

environment. Moreover, often the number of solved situations anomalously increases 

with the increase of noise levels. Notable behaviours that exhibit a slight increase in the 

number of solved situations with the increase of noise are, for example, those obtained 

from evolutionary runs #7 and #15. For behaviour #15, the number of successful 

situations (91) for 4% noise is significantly higher than that obtained in noiseless 

environments (91 vs 83, respectively, or a 10% increase).  

 

Figure 38: Number of successfully solved initial situations for various levels of false 
positive (FP) perception noise. 

As illustrated in Figure 39, the detrimental effect of FN noise is as we expected – 

for most of the 32 best-of-run behaviours the number of solved initial situations steadily 

decreases with the increase of noise levels. Even so, there are some behaviours that 
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exhibit an anomalous increase of the number of solved situations with the increase of 

noise levels. The notable behaviours are #7, #16, #19 and #28. Each of these behaviours 

result in an increase in the number of solved initial situations for 8%, 2%, 16% and 4% 

noise, respectively, as seen from Figure 38. 

 

Figure 39: Number of successfully solved initial situations for various levels of FN 
perception noise. 

These results demonstrate that both the type and the magnitude of perception noise 

have an influence on the robustness of the evolved behaviours of predator agents. The 

effect of FP noise on the behaviour of the team of predator agents is sometimes 

detrimental, sometimes favourable, or often insignificant. On the other hand, the FN 

noise with few exceptions (e.g., behaviours #7, #17, #19, #23 and #28) is detrimental 

for performance of the agents.  

It is interesting to note that the evolved behaviour #17 (shown in Table 18) is rather 

versatile in that it (i) exhibits good performance on the 10 initial situations used during 

the evolution, (ii) is general to most unforeseen initial situations (solving 97 of 100 

situations), and (iii) is robust to both FP and FN noise. Furthermore, behaviours like #7, 

#23 and #28, exhibit robustness to both types of noises and even increased performance 

for certain levels of noise. 
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5.5 Conclusions  

We considered a society of very simple robots (modelled as agents in MAS) that 

feature an “extreme simplicity” of both sensors and control. The adopted agents have a 

single line-of-sight sensor, two wheels in a differential drive configuration as effectors, 

and a controller that does not require a memory and does not involve any computing, 

but rather a direct mapping of the currently perceived environmental state into a pair of 

velocities of the two wheels. Also, we applied genetic algorithms to evolve a mapping 

that will result in effective behaviour of the team of predator agents towards the goal of 

capturing the prey in the predator-prey pursuit problem (PPPP). The preliminary 

experimental results indicated that the simple agents featuring the canonical 

straightforward sensory morphology could hardly evolve the ability to solve the PPPP.  

To enhance the performance of the evolved system of predator agents, we propose 

an asymmetric morphology featuring an angular offset of the sensor, relative to the 

longitudinal axis of the agents. The experimental results demonstrated that this 

modification brings—without compromising the simplicity of agents—a considerable 

improvement of both (i) the efficiency of evolution and (ii) the effectiveness of the 

evolved capturing behaviour of predator agents. Also, we verified that some of the 

evolved best-of-run behaviours of predators featuring a sensor offset of 20° are both (i) 

general in that they are able to successfully solve most of the additionally introduced, 

unforeseen initial situations, and (ii) robust to perception noise in that they show a 

limited degradation of the number of successfully resolved initial situations. 

The results described in our work could be seen as a step towards the verification 

that complex behaviour needed for solving challenging tasks could emerge from the 

coordination of very simple robots featuring an asymmetric sensory morphology. The 
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advantages of such robots, in addition to the simple design, include better robustness, 

higher throughput of production and lower production costs, reduced energy 

consumption, and the potential to be implemented at very small (nano- and micro-) 

scales. 
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Chapter 6: Improving the evolution speed of the system featuring 
simple predator agents 

6.1 Evolving agents with different population sizes 

The first evolution with low population size happened by a serendipity. In our 

previous work on simple agents we were using 32 individuals for testing. Since the 

software for testing and evolution is the same, when we needed to evolve additional 

chromosomes for more tests, we forgot to change the population size from 32 to 400. 

After seeing that the results with large and small populations are comparable, we 

decided to study how population size affects the evolution runs and the evolved 

chromosomes. The population size in each evolutionary run will be one of 

16/32/100/400, as our goal is to test how the population size affects the performance of 

the produced solution. In Table 21, we can see how the time needed for the evolution 

changes as the population size changes. With lower population size we usually need 

less time to generate 32 chromosomes that solve the 10 initial situations – this is our 

criteria to stop the run. Table 21 shows the distribution of all generated solutions, 

grouped in three groups, using their success status. “Non-successful” means the run 

ended without producing a chromosome that was able to solve all 10 initial situations. 

“Successful with stagnations” means that the run was able to solve all 10 initial 

situations, but it was not able to reach the goal of fitness better than or equal to 600. 

The third group shows the number of chromosomes that was able to reach the ending 

goal of having fitness better than or equal to 600. The “Total” column shows the overall 

number of solutions that were generated during each run. We must note that our target 

during the evolutionary runs was to generate 32 chromosomes that solve all 10 initial 

situations and we don’t care how many of the extra chromosomes fail during that time. 
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We see the ability to generate more chromosomes than needed, in less time, as an 

advantage of the runs with lower population count. 

Table 21: Statistics about the evolution with different population sizes 

Population 
Size 

Evolution 
Time 
(Hours) 

Non-
Successful 

Successful 
with 
Stagnation 

Successful 
reaching 
600 fitness 

Total 

400 1732 0 4 28 32 
100 1318 18 6 26 50 
32 707 40 14 18 72 
16 385 60 22 10 92 

 

The resulting increase of stagnated chromosomes should not be a reason for concern. 

If we look at Table 22, we see that with lower population size, the fitness of the best 

individual improves. In our case we have the best fitness with the lowest population 

size of 16. Although, later we will show that the best fitness does not mean most general 

and robust chromosome. 

Table 22: Performance results from the evolution with different population sizes 

Population 
Size Terminal Fitness 

Successful 
with 
Stagnation 

Successful 
without 
Stagnation Best* Worst Average Stand. Dev 

400 466 693 578 44.2 4 28 
100 514 805 598 66.4 6 26 
32 512 781 629 59.5 14 18 
16 445 870 657 97.8 22 10 

* Best fitness during the evolution but not with highest generality or robustness 

6.1.1 Generality of the Evolved Behavior 

We investigated the generality of the best-evolved teams of predators on an extended 

set of 100 initial situations, including the same 10 initial situations used in the evolution, 

and 90 additional situations unforeseen during the evolution. For the 10 initial situations 

(from situation #1 to situation #10) used during the evolution, the predators are 
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dispersed south of the prey (as illustrated in Figure 2) such that the average distance 

between the prey and the group of predators slightly increases with each situation. For 

the additional situations, (from situation #11 to situation #100) the average distance 

between the predators and the prey is kept the same as that of the situation with the 

most distant predators used during the evolution—situation #10; however, both the 

position and the orientation of the predators are random. We would like to note that the 

alternative approach of exploring the generality of the agents by evolving them directly 

on 100 initial situations would feature a greater computational overhead as the total 

number of fitness trials would be almost 10-fold higher.  

We conducted the generality test using the set of 100 initial situations on all 

128(4*32) successful chromosomes from the 4 groups of evolutionary runs using 

different population sizes. In  

Table 23, we can see a comparison of all the chromosomes with best fitness during 

evolution and best chromosome from the generality tests. As mentioned before, we can 

see that, having the best fitness after the evolutionary run is over, does not mean the 

evolved individual will have a good generality. Later we will show that this is also valid 

for the robustness to noise that each chromosome exhibits. 

Table 23: Most general chromosome (right) compared to the one with best fitness 
during evolution (left) for every group of different population sizes 

Population 
size 

400 100 32 16 

Fitness 466 541 514 514 512 593 445 589 
Generality* 56 94 94 94 65 97 76 95 

* Number of solved initial situations out of 100 

A notable point is that the results from all the best individuals are comparable. The 

generality that they show is around 95%. This shows our initial hypothesis that the 
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lower population size does not have a great impact on the quality of the generated 

solutions. 

The evolved mapping of the velocities of wheels of the most general solution is 

shown in Table 24 – the one evolved with 32 population size. 

Table 24: Velocity mappings of the most general and robust chromosome (top) and 
the one with best fitness during evolution (bottom) 

V00L V00R V01L V01R V10L V10R V11L V11R 

25% 100% 100% 100% − 25% − 20% 100% 100% 

-60% 75% 95% 90% -100% -100% 5% -80% 

6.1.2 Robustness to Sensory Noise 

After verifying the generality of the 32 evolved best-of-run behaviors of the team of 

predator agents for each of the four evolutionary cases (total 128 individual 

chromosome), we decided to investigate how each of them behaves when a random 

noise is introduced into the perception readings. Using the same set of 100 initial 

situations, previously used in the generality test, we repeated the tests, after introducing 

two types of noise—false positive (FP) and false negative (FN), respectively. Under the 

influence of the FP noise, the value of either (randomly chosen with probability of 50%, 

individually for every predator agent, on each time step) of the two bits of sensory 

information is read as one, regardless of the actual reading of the sensor. On the contrary, 

in the presence of FN noise, the reading is registered as zero, even if the corresponding 

entity (a predator or the prey) is in the line-of-sight. We conducted experiments for 

levels of either FP or FN noise, starting from 2% and increasing by multiplier of 2, up 

to 16% (i.e., 2%, 4%, 8% and 16%). 

For the sake of simplicity, we will show the results only for the top individuals of 

each evolutionary run. In Table 25, we have a comparison of the robustness test for the 
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best performing chromosomes of each of the four evolutionary cases. We chose the 

individual chromosomes by calculating the average solved situations in all cases (with 

and without noise) and selecting the top one. The table shows that even with a great 

change in population size (ex. From 400 to 16), there isn’t a great impact on the 

performance of the team of agents. Moreover, sometimes, the performance can increase 

– such is the result in the cases when population lowers from 400 or 100 to 32. In this 

case we can see that the number of solved situations increases for ¾ of the tests having 

false positive noise. 

Table 25: Noise test results for the best chromosomes of all 4 evolution cases. 

Population 
 False Positive Noise False Negative Noise 

0% 2% 4% 8% 16% 2% 4% 8% 16% 
400 94 91 90 94 82 90 83 77 37 
100 94 92 92 90 91 91 93 91 90 
32 97 100 99 93 97 95 96 92 82 
16 95 95 93 92 91 92 92 86 86 

 

6.2 Discussion 

6.2.1 The best versus the average 

In the previous section, we’ve shown a comparison between the best (on average) 

individuals for each of the 4 evolution cases. This might lead to a question – why choose 

a single chromosome from each evolutionary setup instead of using the average 

individual comprised of the average values, of the motor mappings of all generated 

chromosomes. In Table 26 we can see the results of doing so: 

Table 26: Generality and noise test results for 4 synthetic chromosomes made with 
the average motor mappings from the best selected chromosomes in each run 

Population 
 False Positive Noise False Negative Noise 

0% 2% 4% 8% 16% 2% 4% 8% 16% 
400 73 66 71 69 65 70 54 43 29 
100 59 66 71 65 61 67 60 58 34 
32 54 58 59 54 54 57 49 47 25 
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16 52 52 57 56 54 52 48 50 25 

These results suggest that the eight motor mappings in each chromosome evolve 

finely tuned interactions which are lost when the mappings of different genomes are 

averaged. 

6.2.2 Lowering the population size even more 

While it may be possible to lower the population size even more, we decided to stop 

at size 16. After this point, the population may be too low to allow proper use of genetic 

algorithms, such that the elitism and cross-over may be affected. In the end it will be 

reduced to random mutation.   

6.3 Conclusions 

In our research, we considered an implementation of the predator-prey pursuit 

problem (PPPP), involving a team of very simple robots that feature an extremely 

simple design for both control and sensor abilities. The robots, considered as agents in 

a multi-agent system, have a single line-of-sight sensor, two wheels in a differential 

drive configuration and a controller that does not require any computational effort or 

memory. Instead, there is a direct mapping of the currently perceived environmental 

state into a pair of velocities for the two wheels. We used the findings in our previous 

research to improve the performance of the robots by introducing a counterclockwise 

offset of 20 degrees to the sensor, relative to the agents’ longitudinal axis. This was 

needed because the agents featuring a straightforward sensor were struggling to find 

solutions to the 10 initial situations used for the evolution of their behavior. We have 

also increased the range of the vision that the sensor provides to 400 units, for this 

experiment, as we determined that this increase yields better results. We applied genetic 

algorithms to evolve a mapping that will result in effective behavior of the team of 

predator agents towards the goal of capturing the prey in the predator-prey pursuit 
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problem (PPPP). Inspired by serendipity, we hypothesized that lowering the population 

size will not have any significant impact on the quality of the solutions produced by the 

genetic algorithm. Furthermore, we found out that we were able to find mappings with 

a comparable performance, for less time, than the runs with higher population size. All 

of this leads to reduction of the hardware and computational resources needed, which 

would mean lower production and exploitation costs, and higher production throughput. 
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Chapter 7: Summary, Conclusion and Future work 

7.1 Summary 

Multi-agent systems (MAS) have proven to be an important tool for problem solving 

and have become widely applied. Due to their complex, non-linear nature, MAS can 

often provide efficient solutions to problems where monolithic systems are unable to 

produce an acceptable answer in terms of speed or resource requirements. However, 

their strength also makes implementation of MAS difficult to implement as an optimal 

solution to the problem is hard to obtain analytically 

In our research we have investigated two relatively orthogonal ways of improving 

the overall performance of MAS: (i) minimizing the time needed by MAS to solve a 

given problem by evolutionary optimizing (coevolving) both the morphology and 

behaviour of agents, and (ii) minimizing the runtime needed by evolutionary framework 

– genetic programming – to successfully accomplish such a coevolution. As an 

evolutionary framework we adopted the in-house XML-based genetic programming 

(XGP), which offers a flexible, human-readable, and cross-application compatible 

XML representation of the genotype of evolved agents. 

In attempt to improve the cost-effectiveness of developing a MAS, we tested how 

two novel approaches compare to a traditional MAS – (i) a heterogeneous MAS, 

featuring greater disparity of agents and (ii) a MAS comprised of very simple agents. 

In our research we’ve used in-house implementations of the well-studied but 

difficult to solve predator-prey pursuit problem (PPPP), since it is an ideal target for 

solving by MAS. 

Our initial results have shown that both (i) the speed of evolution of the successful 

capturing behaviour of predator agents and (ii) the effectiveness (i.e., its fitness value) 
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of the best-evolved behaviour, of the heterogeneous MAS are improved, using different 

methods and techniques, in such a way that it performs better than its homogeneous 

counterpart. We have shown that a heterogeneous system featuring agents with a 10% 

deviation from the average capabilities of the system will offer faster evolution and 

better performing agents. However, the homogeneous system was still more general, in 

a way that it could solve more additional, previously unforeseen situations. The 

homogeneous system is more consistent and efficient in a presence of sensory noise, 

making it more robust. This disparity is caused by the increased search space in the 

heterogeneous system. To overcome this problem, we have increased the number of 

training initial situations. After the introduction of bigger training set, the 

heterogeneous system was able to catch up in robustness, in some of the test cases. 

However, this increase in evolution time is opposing our goal of a faster evolution. 

Next, inspired by previous research on simple robots, we have suggested an 

implementation of non-computing predator agents, equipped with a single line-of-sight 

sensor and a simple control of velocities of their two wheels. Our goal was to have a 

system where the predator agents can catch (make contact with) the prey – a feature 

that other similar researches, did not have. We applied a GA to evolve the successful 

behaviour of the team of predator agents. Immediately, we’ve seen a problem, since the 

MAS was unable to solve many of the initial test situations. The suggested morphology 

was good enough in a task where simply clustering of objects was required, but not in 

our specific scenario. To enhance the generality of the evolved behaviour, we proposed 

an asymmetric morphology of the predators. The performance of the system was greatly 

increased. Inspired by this success, we’ve introduced the sensory offset into the genetic 

algorithm, in order to evolve the optimal value that will show best performance. 
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Offsetting their sensors angularly between 20° and 30° yielded the most efficient and 

consistent evolution of successful behaviours of agents. 

During our work, we usually used a greater generation pool for evolution than we 

did for testing of the evolved solutions. Due to serendipity, we have discovered that 

lowering the population size will not have any significant impact on the quality of the 

solutions produced by the genetic algorithm. Furthermore, we found out that we were 

able to find mappings with a comparable performance, for less time, than the runs with 

higher population size. All of this leads to reduction of the hardware and computational 

resources needed, which would mean lower production and exploitation costs, and 

higher production throughput 

7.2 Conclusion  

One of the most desired features of autonomous robotic systems is their ability to 

accomplish complex tasks with a minimum amount of resources, lowering their 

implementation and exploitation costs. Often, however, the limited physical abilities 

should be compensated by more precise and complex control. An optimal trade-off 

between the simplicity of their morphology and control would result in robots featuring 

better robustness, higher throughput of production and lower production costs, reduced 

energy consumption, and the potential to be implemented in solution to novel problems. 

In our work we’ve proposed several approaches to minimizing the resources needed to 

build and evolve efficient MAS. These methods include the use of heterogeneous 

systems, simplifying the morphology to feature a reactive model and minimizing 

evolutionary time by reducing the computational overhead. These techniques were able 

to produce solutions comparable or even better (in some cases), to the one evolved 

using standard complex MAS. 
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7.3 Future Work 

In our future work, we are planning to investigate the anomalous increase of the 

number of successful situations with the increase of false positive noise. While similar 

phenomena are well known in engineering (e.g., stochastic resonance, dithering) there 

are no documented results on the beneficial effects of noise on the performance of MAS. 

Also, we are planning to develop an even more realistic, three-dimensional model of 

the environment of PPPP, including simulation of Brownian motion, which may affect 

the behaviour of nano scale robots. 
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