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Pass-through measurement of remanent magnetization and magnetic susceptibility of U-channel samples is now widely 

used in paleomagnetic and environmental magnetic studies of marine and lacustrine sediments. Since the output from pass-through 

measurement is inevitably smoothed and distorted by the response function of the sensors, deconvolution of the measurement 

result is necessary to obtain accurate signals of the sediment. Methods of deconvolution have been improved by modeling the 

remanent magnetization as a smoothly changing function by minimizing Akaike’s Bayesian information criterion. In this study, we 

developed deconvolution programs for pass-through magnetic susceptibility data based on the same algorithm, first by using a 

single smoothness parameter for the entire sample and then introducing an additional parameter for the interval with a strong 

susceptibility peak. Applying these programs to U-channel samples from Lake Tazawa, Akita Prefecture, it was confirmed that 

results of the deconvolution well correspond with susceptibility of the discrete samples. However, the interval with a sharp 

susceptibility peak produced noisy erroneous variation, suggesting that further improvement is necessary for deconvolution of the 

samples including tephra or event layers. 
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Fig. 1. Magnetic susceptibility measurement system for 

U-channel samples with a core-logging sensor (MS2C). 

 

Fig. 2. Response curve of the core-logging sensor 

(Bartington MS2C). 
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Fig. 3. Magnetic susceptibility of the simulated continuous samples made by connecting discrete cubic samples of 

TZW15-1-1 and TZW15-1-2. Susceptibility data obtained by pass-through measurement, deconvolution (mono-decon 

and dual-decon) and discrete measurement are shown. The yellow bands indicate the intervals with significant peaks 

where the second hyperparameter was assumed in dual-decon. 

Fig. 4. Magnetic susceptibility of the U-channel samples of TZW15-1 core. Susceptibility data obtained by 

pass-through measurement, deconvolution (dual-decon for TZW15-1-1 and TZW15-1-2, mono-decon for TZW15-1-3) 

and discrete measurements are shown. The yellow bands indicate the intervals with significant peaks where the 

second hyperparameter was assumed in dual-decon. 
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