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Abstract
We use the standard two-good version of the life cycle/permanent income model in analyzing
the intratemporal and intertemporal aspect of food and non-food expenditure in Japan. The
empirical dilemma in identifying and estimating the parameters governing the intertemporal
elasticity of substitution (IES) is addressed. In overcoming this empirical dilemma we employ
the Cross-Euler equation approach proposed by Nishiyama (2005). The IES parameters are
estimated by exploiting the cointegration restriction implied by the Cross-Euler equation and
also from the standard Euler equation using GMM. Further, by comparing the IES estimates
from the Cross-Euler equation to those from the standard Euler equation, we formally test the
hypothesis whether food and non-food expenditure in Japan is affected by some factors that
cause misspecification in the standard Euler equation approach, such as liquidity constraints or
habit formation.

Key words : Cointegration, Elasticity of Intertemporal Substitution, Euler Equation JEL
Classification : C22, E21

Ⅰ Introduction

Previous empirical studies often estimated the intertemporal elasticity of substitution (IES)

of Japanese consumer in the context of single goods and found the IES to be considerably
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high2, implying that the consumers are willing to substitute current consumption for future

consumption in response to small change in real interest rate. If these high estimates of IES

are indeed true, then we should be observing a significant decrease in the consumption growth

rate during an expansionary monetary policy and significant increase during a contractionary

monetary policy in Japan. However, in reality, we do not observe this kind of phenomenon in

Japan and, therefore, the counter-intuitively high estimates of IES from the previous literature

remains to be a puzzle. In this paper, we estimate and test intertemporal and intratemporal

implications of a two-good model with food and non-food goods with a representative

consumer, using Japanese data.

The preference specification of the two-good model follows Atekeson and Ogaki (1996). In

this model, the intertemporal elasticity of substitution (IES) for total consumption expenditure

increases as the level of wealth increases. The intuition behind this is that the consumer is less

willing to substitute the food consumption than the non-food consumption over time. Thus, the

IES for the food good is smaller than that for the non-food good. The IES for the total

consumption expenditure is a weighted average of the IES for the food and the IES for the

non-food good, with the weights being the budget shares. Because the budget share for the

food is larger when the consumer is poor, the IES is small when the consumer is poor. The

IES increases as the wealth increases in this model. Also, the model has various implications

on how macroeconomic variables behave as the Japanese economy grows out of the

destruction during the World War II. For example, the model typically predicts that the saving

rate in Japan was very low immediately after the World War II, and then started to increase as

the economy grew (see, e.g., Ogaki, Ostry, and Reinhart (1996) for a description of the saving

rate behavior of the model with wealth-increasing IES). Thus it is important to investigate the

extent to which the model is consistent with the Japanese data.

As for the methodological strategy of this paper, we apply Nishiyama’s (2005) Cross-Euler

Equation approach to test intertemporal and intratemporal implications of the model. This is a

new approach to test Euler equation in two-good models. In many applications of two-good

models, researchers have faced a methodological problem in estimating intratemporal first

order condition and Euler equations. The Cross-Euler equation approach3 can be a solution to
────────────
２ For instance, Hamori (1996) reports the IES of Japanese consumer to be well above 10.
３ Further, Nishiyama (2005) showed that the cointegration relationship implied by the cross-Euler equation is

robust to many factors such as liquidity constraints and time non-separability of preferences. These factors are
often pointed out as possible causes of empirical rejections of standard Euler equations. Thus, by comparing
estimates from cross-Euler equations and those from standard Euler equations, it is possible to formally test the
hypothesis that liquidity constraints or non-separability of preferences casue the misspecification of the standard
Euler equations.
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this methodological problem.

The methodological problem in a two-good model with time separable preferences arises

because the intratemporal first order condition holds without any forecasting error in the

model. In order to use the first order condition to estimate and test the model, it is necessary

to add measurement errors or preference shocks to the model. However, adding measurement

errors or preference shocks causes problems for the Euler equation approach based on the

Generalized Method of Moments (GMM) as pointed out by Garber and King (1983). Because

of the nonlinearity of Euler equations, measurement errors or preference shocks make GMM

estimators inconsistent. Nishiyama (2005) solved this problem by focusing on first order

conditions involving a good at time t and the other good at time t＋1. He calls such a first
order condition a cross-Euler equation. A cross-Euler equation involves a forecasting error

unlike the intratemporal first order condition. Hence statistical methods can be applied to the

cross-Euler equation without adding measurement errors nor preference shocks to the model.

The first step in his approach is to derive a long-run restriction from a cross-Euler equation.

This long-run restriction implies a relationship between variables called cointegration. The

cointegration relationship allows one to use a regression to estimate preference parameters.

Regarding the cointegration regression and the test of coingetration, Nishiyama (2005) used

Park’s (1992) Canonical Cointegration Regression (CCR) estimator, and Park’s (1990) tests

for the null hypothesis of cointegration in the CCR framework. In this paper, we use Stock

and Watson’s (1993) Dynamic Ordinary Least Squares (DOLS) estimator and Choi, Hu, and

Ogaki’s (2005) Hausman-type test for the null hypothesis of cointegration. If the

parameterized endogeneity correction used in the DOLS is a good approximation, these

methods have better small sample properties than the nonparametric CCR methods. On the

other hand, CCR is expected to perform better when the prameterized endogeneity correction

is misspecified. Because of a relatively small sample we used in this paper, we prefer to use

the DOLS estimator. In the DOLS framework, only the Hausman-type cointegration test and

Shin’s (1994) test are available at this point (it should be noted that the popular augmented

Dickey-Fuller test should be applied to the static OLS residual rather than the DOLS residual.)

The Hausman-type test has better small sample properties than Shin’s test as shown in Choi,

et. Al. (2005).

The rest of the paper is organized as follows. In Section 2, we describe the two-goods

version of life cycle/permanent income model (LCPIM) for food and non-food consumption.

In Section 3, we explain the Cross-Euler equation approach and derive the cointegrating

restriction among the forcing variables. In Section 4, we estimate the IES parameters
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exploiting the cointegration restriction implied by the Cross-Euler eqation. We also estimate

the IES parameters from the standard Euler equations using GMM. In Section 5, we formally

compare the IES estimates from the Cross-Euler to standard Euler equation. Section 6

summarizes this paper with a tentative conclusion.

Ⅱ Modeling Food and Non-Food Consumption Behavior

Ⅱ.1. Setup of the Model
This paper adopts the standard two-goods version of the life cycle/permanent income model

following Atkeson and Ogaki (1996). A representative agent is assumed to maximize his

expected lifetime utility under his lifetime budget constraint. The dynamic optimization

problem is formulated as follows,���������� ������������ �
������������	������
�����
������������ (1)

where ��stands for food expenditure at period t, ���for non-durable non-food expenditure,��for assets held by the agent, ��for the stochastic labor income of the agent, 	�for the real
interest rate from period t to t＋1, 
�� for the price of food, and 
��� for the price of non-
food, respectively. �stands for the agent’s discount rate.
We assume that period-by-period utility is time separable for this agent and also assume

additive-separability between durable goods and non-durable goods. As for the period-by-

period utility function, we employ a standard addi-log function following Houthakker (1960) :�����������������������������. (2)

Under this specification, the FOCs will then be as follows :
��
������ ��������� (3)���������� ������	��
��
����� ��� (4)
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������������ �������������������� ��� (5)

It should be noted that under this addi-log specification, ���and ���can be interpreted as the
intertemporal elasticity of substitution (IES) of food and non-food expenditure, respectively.

Some remarks should follow for these FOCs. As was pointed out by Ogaki and Park

(1997), the specification of the intratemporal relationship eq. (3) turns out to be robust to

several kinds of nuisance factors, such as liquidity constraint and/or habit formation in the

utility function. However, the specification of Euler equations is very sensitive to the presence

of liquidity constraint or habit formation. In other words, specification of the intratemporal

relationship is robust, but the specification of Euler equations is not. Conversely, if by any

method we can find evidence that the Euler equation is correctly specified, this will be strong

evidence against the presence of liquidity constraint or habit formation.

If the model is correct, then the intratemporal optimality condition (3) and Euler equations

(4) and (5) will be correctly specified. Therefore, parameter estimates �and �from eq. (3)

and Euler equations (4) and (5) should be reasonably close. If the statistical test concludes that

parameter estimates are significantly different from each other, then, by contrapositive logic,

we can conclude that some of the assumptions we had made (i.e. addi-log type utility

function, additive separability of durable and non-durable goods, non-existence of liquidity

constraints, non-existence of habit formation, etc.) are implausible. Conversely, if a statistical

test does not reject the null hypothesis that parameter estimates are equal, it will support or, at

least, leave some possibility open for the joint assumption of addi-log utility specification

without the presence of habit formation or liquidity constraints.

Ⅱ.2. Complications in Estimating IES parameters
The empirical task is to first obtain the IES parameter estimates from the intratemporal

relationship and from Euler equations. However, as Nishiyama (2005) pointed out, when the

utility function is of the addi-log type, there is an empirical complication in estimating

parameters.

A complication arises from the deterministic relationship of the intratemporal FOC (3). A

natural way to estimate the IES parameters from the intratemporal relationship is to log-

linearize eq. (3) as follows������������	
����������������� (6)

The Cross-Euler Equation Approach in Estimating the Elasticity of Intertemporal Substitution for Food and Non-Food Consumption in Japan（Nishiyama）（ 783 ）１７７



Provided that (log) relative price, (log) food expenditure, and (log) non-food expenditure all

follow the difference stationary process, one may be tempted to exploit the cointegration

restriction by adding the ad-hoc stationary error term on RHS of eq. (6). But then, in order to

maintain coherence of the error structure within the model, the ad-hoc error term should also

be incorporated in the Euler equations (4) and (5). Indeed, Nishiyama (2005) shows that, by

introducing new kind of error term to the model, the conditional moment conditions implied

by the Euler equations to be non-standard - i.e.,���������� ������������������ ����and������������ �������������������� ����.
As such, in the presence of ad-hoc error term, eq. (4) and (5) are no longer correctly specified

and, therefore, the GMM estimation based on those misspecified conditional moment

conditions yields inconsistent estimates of the IES parameters.

This is the point where one experiences an empirical difficulty in estimating the IES

parameters. In order to overcome this difficulty, Nishiyama (2005) proposed the Cross-Euler

equation approach in estimating the IES parameters. By exploiting the cointegrating restriction

implied by the cross-Euler equation, it becomes possible to estimate the IES parameters from

both standard Euler and cross-Euler equation without altering the error structure of the model.

Ⅲ The Cross-Euler Equation Approach

Ⅲ.1. Economic Interpretation of the Cross-Euler Equation
In this section, we derive the Cross-Euler equations based on a time-separable utility

function. Since the time-horizon of a representative agent’s optimization problem is infinite,

we can reformulate the problem using Bellman equation as follows,����������������	��������������������
�������������������������������������.
First, the FOCs with respect to ��and ���will be
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������������� �������������	����and (7)�
������������ �������������	����， (8)

respectively. Next, invoking the envelope theorem on the Bellman equation, we obtain the

following relationship between the current and future shadow price of wealth ;���	���������������	���� (9)

Substituting eq. (9) for eq. (7) and eq. (8), the FOCs for ��and ���can be rearranged as������������� ����	��and (10)��������������� ����	��. (11)

Conventionally, the standard Euler equation can be derived by updating eq. (10) (or eq.

(11)) and substituting back to eq. (7) (or eq. (8)) which was the case in the previous section.

Instead, we derive the Cross-Euler equation by updating eq. (11) and substituting it for eq. (7).

After some manipulation, the Cross-Euler equation can be shown to be���������������������������������������������� ���. (12)

By the same token, another type of Cross-Euler equation can be derived by updating eq. (10)

and substituting it for eq. (8) as follows,�������������������������������������������� ���. (13)

�

� � �

�

� � �

�� �

� �

�

� �

��
Now, let us attempt to make an economic sense of the Cross-Euler equation taking the case

of eq. (13). First, notice that the term � in eq. (13) stands for the cross-intertemporal marginal
rate of substitution (CIMRS4) between goods ��� and ����. In other words, the term �
────────────
４ The concept of cross-intertemporal marginal rate of substitution (CIMRS) is a key ingredient of the cross-Euler

equation and is defined as follows. For more elaboration regarding the concept of CIMRS, see Nishiyama
(2005). ↗
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represents the agent’s perceived trade-off between current non-food goods and future food

goods. Second, let us turn to the term � in eq. (13). The term � stands for the opportunity
cost of obtaining ����in terms of ���. The logic is as follows. By selling one unit of ���at
period t, the agent can obtain ���� amount of numeraire goods −− i.e., ��in this context. By
saving all of these numeraire goods at period t, the agent can obtain ���������� of numeraire
goods at period t＋1. By using all of these to buy ����, the agent can buy ����������������
units of ����. Thus, the opportunity cost of ���� in terms of ��� is ���������������� .
Finally, if the agent is optimally trading ��� to ����, then the agent is equalizing the
opportunity cost to CIMRS between ���� and ���, yielding the above Cross-Euler equation
(16). This is the economic intuition behind the Cross-Euler equation.

In order to understand the structure of Cross-Euler equation further, it is useful to

decompose the terms � and �. Decomposing the Cross-Euler equation (16), we obtain the
following relationship����������������������������� ����������������������� ���. (14)

�

�

�

�

��� �� � �� � ��� �

�

�

�

��� �����
It is possible to decompose CIMRS into IMRS component and MRS component. Exploiting

this property, the term � can be decomposed to IMRS portion (denoted �� in the above
equation) and MRS portion (denoted ��in the above equation). Turning to the term �, which
stands for the opportunity cost of ���� in terms of ���, it is also possible to decompose it
into two parts ; the opportunity cost of ����� in terms of ���(denoted �� in eq. (14)) and
the opportunity cost of ���� in terms of ����� (denoted �� in eq. (14)). Here, notice that
IMRS �� and opportunity cost �� constitutes a standard Euler equation in the conventional
context. Further, notice that MRS �� and opportunity cost �� constitutes an intratemporal
FOC at period t＋1. Thus, in this sense, the Cross-Euler can be interpreted as the composite
optimal condition that embeds both intertemporal and intratemporal optimality conditions into

one equation.

────────────
↘ Definition : Let 	�
�������
�������
�������
���be a utility function defined upon K goods with T periods

and let � be a ���� vector such that ���
�������
�������
�������
���. Then we call the following
expression,��	�
���
���
�	�
���
�� ,
as the cross-intertemporal marginal rate of substitution (CIMRS) between goods 
���
 and 
��, where 
���and�����������.
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Ⅲ.2. Cointegration Relationship Implied by the Cross-Euler Equation
Next, under certain assumptions, we show that the Cross-Euler equation implies the

cointegrating restriction among the forcing variables. Further, we show that the Cross-Euler

equation approach can overcome the empirical dilemma. In other words, the Cross-Euler

equation approach allows us to estimate and compare the IES parameters to those from the

standard Euler equations without altering the error structure of the model.

In what follows, we assume the following stochastic processes for each variable.

Assumption 1 : Log food and non-food goods expenditure follow the I(1) process.

Assumption 2 : Log price index for food and non-food goods follow the I(1) process and they

are not cointegrated.

Assumption 3 : Real interest rate follows the I(0) process.

We parametrize the Cross-Euler equation (12) using Houthakker’s (1960) addi-log utility

function ;������������������������������� ���. (15)

In a similar fashion, we parametrize the another version of the Cross-Euler equation (13) as

follows,�� ����������������������������� ���. (16)

The forecast error from the Cross-Euler equation (15) can be defined as follows,����������������������������������������������������������������� �
����������������� ������������� ��� �������������� �� �
�

�

�

�

�
non-stochastic at perioe t

�

� � � �

�

� � � �

�
stochastic at perioe t

It is useful to notice where the stochasticity of ���� is arising. Rearranging the definition of
the forecast error as in the second line of the above equation, we see that ����is composed of
non-stochastic portion and stochastic portion as of period t. As can be seen, the stochasticity

of ���� arises from the discrepancy between the realized marginal utility of ����� and
expected marginal utility of �����. This discrepancy is discounted to the present value and
denominated by the marginal utility of ��, which is non-stochastic as of period t. In this sense,
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the forecast error in the context of the Cross-Euler equation measures the magnitude of

expectation error in future marginal utility from goods j in terms of current marginal utility

from goods i.

From the definition of the forecast error, the Cross-Euler equation (15) can be rewritten as�����������������������������������. (17)

Taking logarithm on both sides of eq. (17) will yield�	
���������������������� ���������������������������.
Under the assumption that growth rate of food and non-food expenditure, the real interest rate,

and the growth rate of the price level of both food and non-food are stationary, Nishiyama

(2005) showed that ��������to be stationary.
Exploiting the I(0) process of ��������, we obtain the following cointegrating restriction

among the forcing variables,������������������ ��������������������� (18)

By the same token, the Cross-Euler equation (16) implies the following cointegrating

restriction,������������������ ��������������������� (19)

Thus, we have derived the legitimate cointegrating restriction among the forcing variables

based on the forecast error alone. Further, since we have not introduced any ad-hoc error

structure to the model, such as an optimization error, measurement error, preference shock, the

specification of the standard Euler equation (4) and (5) remain intact. In the sense that we

now can compare the IES estimates from Cross-Euler equation to those from the standard

Euler equations without altering the error structure of the model, our proposed approach

successfully overcomes the empirical dilemma.

In addition, the log-linearized Cross-Euler equations can be shown to be robust against

several nuisance factors (see Appendix). In particular, even in the existence of liquidity

constraints or a certain type of habit formation, cointegration relationships (18) and (19) yield
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super-consistent estimates for �and �, while Euler equations (4) and (5) are not guaranteed to
yield consistent estimates. On the other hand, in the absence of liquidity constraints or habit

formation, both log-linearized Cross-Euler equations and standard Euler equations yield super-

consistent and consistent estimates of �and �, respectively. This latter proposition, which
basically states that the estimates of IES parameters from cointegration analysis and GMM to

be close in the absence of liquidity constraints or habit formation, is particularly important

since we can formally test this hypothesis using statistical methods such as Cooley and

Ogaki’s (1996) LR type test.

Ⅳ Estimating IES Parameters from the Cross-Euler Equations

Ⅳ.1. Data Description
The data used in this paper is based on the Family Income and Expenditure Survey (FIES)

from 1982 to 2004. In order to preserve enough number of observations, we focused on the

expenditure behavior of both metropolitan and rural households excluding single-person

households and agricultural households5. To smooth out the haphazard monthly movements,

the expenditure data is transformed into quarterly data by summing monthly observations and

the price data is transformed into to quarterly data by taking quarterly averages. The seasonal

factor in both expenditure and price data have been removed using X-12 ARIMA method6. As

a result of these adjustments, we have total of 90 observations (1982Q1 to 2004Q2) in

estimating the IES parameters.

Although it is possible to define food expenditure in various ways, we construct food

expenditure data by excluding ‘alcoholic beverages’ from ‘all food’ in FIES expenditure

category. As Unayama (2003) reports, alcoholic beverages in Japan are well characterized as

luxury goods rather than necessity goods. While other food related goods are characterized as

necessity goods, the characteristic of alcohol beverages stands in sharp contrast to other food

related goods. In order to retain the homogeneity among the food related goods so as to avoid

the goods aggregation bias, we have deliberately excluded alcoholic beverages from the food

category.

In constructing the non-food expenditure data, we have combined expenditure categories

────────────
５ Family Expenditure and Income Survey started to include the single-person households and agricultural

households in the survey starting from January 2000.
６ The consumption tax, which was initially set at 3%, was introduced in April 1989 and subsequently raised to

5% in April 1997. The effects of consumption tax on the prices of goods have been removed by including the
level shifts in X-12 ARIMA method.
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‘apparel’ and ‘other goods’ in FIES. Again, Unayama (2003) found some empirical evidence

that suggest ‘apparel’ and ‘other goods’ to be luxury goods. Based on this finding, the goods

aggregation bias from combing ‘apparel’ and ‘other goods’ does not seem to be too

problematic.

The price indexes for food and non-food have been constructed by taking the weighted

average within the same category. The weight for each item corresponds to real expenditure

share of each item within the category. Then those price indexes are used to deflate the

nominal expenditure of food and non-food in order to convert them into real expenditure.

Finally, the real expenditure for food and non-food are further adjusted to per-capita base. The

Figure 1 and Figure 2 show the time-series plots for each variable.

Figure 1 Log Food and Non-Food Expenditure

Figure 2 Real interest rate, Food and Non-Food Price Index
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Ⅳ.2. Preliminary Analysis : Testing for Unit Root
As for a preliminary analysis before the cointegrating regression and testing, we test the

null of unit root non-stationarity against the alternative of (trend) stationarity for the variables

included in the cointegrating regression. In particular, we test the unit root non-stationarity of

the following four variables : log food expenditure (����), log non-food expenditure (�����),
opportunity cost of current food consumption against future non-food consumption

(�������������������), and opportunity cost of current non-food consumption against future
food consumption (������������������� ). For the sake of visualization, the time series plot of
the log food and non-food expenditure are provided in Figure 1, while the time series plot of

the opportunity costs are provided in Figure 3. In Figure 3, the legend ‘Opp 1’ stands for the

opportunity cost of current food consumption against future non-food consumption and ‘Opp

2’ stands for the opportunity cost of current non-food consumption against future food

consumption.

The test results are reported in Table 0. For the tests setting the null as unit root non-

stationarity, we have conducted Said and Dickey’s (1984) augmented Dickey-Fuller (ADF)

test and Phillips and Perron’s (1988) PP test. The test results for ADF test and PP test are

reported on the left hand side of Table 0. As can be seen from the table, the tests were not

able to reject the null of unit root non-stationarity at the 5% significance level for all variables

relevant to cointegrating regression. As for confirmatory analysis, we have tested the null of

(trend) stationarity using KPSS method proposed by Kwiatkowski et al. (1992). The test

results are reported on the right hand side of Table 0. The test rejects the stationarity of log

food expenditure and ‘Opp 1’ −− conforming to the test results from ADF and PP tests −−,

Figure 3 Opportunity Costs
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but was not able to reject the stationarity of the log non-food expenditure and ‘Opp 2’. We

have also tested the null of trend stationarity using KPSS test. Here, the test rejects the trend

stationarity for 3 out of 4 variables. Although, the hypothesis regarding the unit root non-

stationarity regarding 4 variables are somewhat mixed, considering that ADF and PP tests

were not able to reject the unit root hypothesis for all the cases and also based on the several

rejections of (trend) stationarity from KPSS test, from this point forward, we regard four

variables considered in the cointegration regression to be I(1) variables.

Ⅳ.3. Dynamic Regressions and the Hausman-type Cointegration Test
In this subsection, we use Stock and Watson’s (1993) DOLS estimator in estimating the IES

parameters from the log-linearized Cross-Euler equations7. We test the null hypothesis of

cointegration.with Choi, Hu, and Ogaki’s (2005) Hasusman-type Cointegration test in the

DOLS framework.

The DOLS estimator is well known, but the Hausman-type cointegration test is not.

Therefore, we mainly explain the idea of the Hausman-type cointegration test in this

subsection. Consider the following dynamic regression where ��is an I(1) variable, ��is a 2-
dimensional vector of I(1) variables, and �stands for the order of leads and lags.������������� ��������������������� (20)

────────────
７ Nishiyama (2005) adopted Park’s (1992) Canonical Cointegration Regression (CCR) in estimating the IES

parameters. If the parametric form of the endogenerity correction is a good approximation, then the Dynamic
OLS Regression is more efficient than the CCR.

Table 0

Null of Unit Root Null of Stationary

ADF test PP test KPSS test
cst. cst.&trend cst. cst.&trend cst. cst.&trend���� −2.257 −2.310 −2.257 −2.032 0.702* 0.242**��	�� −1.383 −0.783 −1.201 −0.872 0.315 0.301**�����
���������	�� �

−1.164 −2.819 −1.149 −3.038 1.086** 0.077�����
����	������� �
−2.703 −2.682 −2.612 −2.589 0.160 0.167*

Note :
Lag order used for ADF test was chosen based on Schwartz Information Criteria.
*denotes the rejection of null hypothesis at 5% level.
**denotes the rejection of null hypothesis at 1% level.

同志社商学 第７０巻 第６号（２０１９年３月）１８６（ 792 ）



The leads and lags of the first difference of the regressors are added in this regression in

order to correct for the endogeneity problem. Following Stock and Watson (1993), we assume

that the endogeneity correction of adding leads and lags perfectly eliminates the endogeneity

problem in that ��is strictly exogenous with respect to the regressors in (20) in this paper8.
Now, if the error term ��is I(0), then this is a dynamic cointegrating regression. As shown

by Stock and Watson (1993), the OLS estimator for this regression is super-consistent and

asymptotically efficient under their regularity conditions.

On the other hand, if the error term ��is I(1), then regression (20) is a spurious regression
and, the Dynamic OLS is inconsistent for the coefficient as shown in Choi et al. (2005). The

Hausman-type cointegration test utilized these properties to discriminate between the situation

in which ��is I(0) and that in which ��is I(1). In order to understand the idea of this test, it is
useful to start with an analysis of the DOLS estimator by the Gauss-Markov Theorem, using

Ogaki and Choi’s (2001) framework. For this purpose, we consider a special case in which ��
is serially uncorrelated. In this case, Ogaki and Choi’s conditional probability version of the

Gauss-Markov Theorem applies9, and the OLS applied to (20) is the Best Linear Unbiased

Estimator (BLUE) given the realization of the regressors.

Now consider the case in which �� is a random walk. Then all the assumptions of the

condional probability version of the Gauss-Markov Theorem hold except for the spherical

variance assumption. In this case, the OLS applied to (3.1) is unbiased (since we are assuming

strict exogeneity), but is not efficient. In this case, we can apply the Generalized Least

Squares (GLS) to (20) to obtain the BLUE. Applying GLS to (3.1) basically means that we

apply OLS after taking the first difference of (20) ;��������������� ����������������������� (21)

Choi et al. (2005) call this estimator the GLS corrected estimator.

In more general cases in which the error is serially uncorrelated, Choi et al. (2005) note that

asymptotic theory shows that (a) the DOLS estimator is asymptically efficient if ��is I(0), (b)
the GLS corrected estimator is consistent, but is not as efficient as the DOLS estimator if ��is
I(0), (c) the DOLS estimator is inconsistent if ��is I(1), and (d) the GLS corrected estimator
is consistent if ��is I(1).
────────────
８ To ease our exposition, we assumed that the endogeneity correction is complete. We can relax this assumption

as shown by Saikkonen (1991) under some regularity conditions.
９ We implicitly assume that the error has finite second moments and that the design matrix is of full column rank

given the realization of the regressors.
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These observations naturally lead to the idea of testing for cointegration by comparing the

DOLS estimates and the GLS corrected estimates for . Let the Hasuman-type cointegration be

defined by������������������ �������������������� �
,

where T stands for the sample size, �����stands for DOLS estimator in level regression, �����
stands for GLS corrected estimator in differenced regression, and �� stands for a consistent
estimator for the asymptotic variance of �� ��������� �

. Under the null hypothesis that error

term is I(0), both estimators �����and �����are consistent and, therefore, they should be ‘close’
to each other. The test statistic, ��, has an asymptotic chi-square distribution with 2 degrees
of freedom. On the other hand, under the alternative hypothesis that the error term is I(1), the

level regression will be spurious and, therefore, only the differenced regression will be

consistent. Therefore, the estimates from these two estimators will be very different with a

large probability. The test statistic, ��, diverge in this case.
Ⅳ.4. Estimation Results
Having explained the dynamic regression and Hausman-type Cointegration test, we are now

in the position to estimate the IES parameters from the log-linearized Cross-Euler equation.

The estimation results of the IES parameters are reported in Table 1.

First, we have estimated the IES parameters F and from eq. (18) using the Dynamic OLS.

In order to check for the robustness of the estimate, we report the estimation results for

several lag specifications. As can be seen from the left-side panel of the Table 1, level

regression estimates of e and have theoretically ‘correct’ signs. The estimates for ranges from

1.281 to 1.424, while 1 ranges from 0.382 to 0.435. We have also estimated the IES

parameters W and from the differenced regression. In a sharp contrast, the differenced

regression estimates of e and turned out to be conspicuously smaller than those from the level

regression. The estimates for . ranged from 0.148 to 0.515, while the estimates for ranged

from 0.013 to 0.343. Although the difference between the estimates from level regression and

differenced regression are evident, we formally conduct a statistical test using Hausman-type

Cointegration test. As can be seen from the test results reported in Table 1, for all the lag

specifications, the Hausman-type test rejects the null hypothesis of cointegration. Taking this

test result for a face value, this implies that the log-linearized Cross-Euler eq. (18) is a

spurious regression and, therefore, the estimates of and from the level regression are likely to
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be inconsistent. As such, for the purpose of recovering the structural parameters from eq. (18),

it seems to be reasonable to rely on the estimates from the differenced regression.

Second, by the same token, we have estimated the IES parameters b and from eq. (19) and

the estimation results are reported on the right-side panel of Table 1. As can be seen from the

table, both level and differenced regression yield theoretically ‘correct’ signs for and . Turning

to estimation results from the level regression, the estimates for ranges from 0.167 to 0.519,

while the estimates for ranges from 0.163 to 0.298. Next, turning to the estimation results

from the differenced regression, the estimates for ranges from 0.215 to 0.446, while the

estimates for ranges from 0.1 to 0.337. Giving a cursory look at the estimation results, there

seems to be no discernible difference between the estimates from the level regression and

differenced regression. Again, to formally back this observation, we conduct the Hausman-

type Cointegration test. Conforming to our guess, the Hausman-type test did not reject the null

hypothesis of cointegration for all lag specifications, supporting the cointegration relationship

of eq. (19). Provided this test result, for the sake of recovering the structural parameters from

eq. (19), it seems to be reasonable to rely on the level regression, which is known to be more

efficient than the differenced regression. Thus, thanks to the Hausman-type Cointegration test,

we now have some guidance in which type of regression to rely on. In other words, for the

Cross-Euler eq. (18), it seems to be reasonable to rely on the differenced regression, while for

the Cross-Euler eq. (19), it seems to be better to rely on the level regression.

Table 1

Cross-Euler Equation Ver.1 Cross-Euler Equation Ver.2

DOLS (level) GLS-corrected
(difference) Hausman-

Test

DOLS (level) GLS-corrected
(difference) Hausman-

Test
a g a g a g a g

Lag 0 1.314
(0.184)

0.382
(0.03)

0.333
(0.005)

0.013
(0.001) 189.82** 0.167

(0.068)
0.163
(0.011)

0.329
(0.008)

0.1
(0.003) 3.13

Lag 1 1.381
(0.252)

0.414
(0.038)

0.313
(0.042)

0.248
(0.006) 26.54** 0.23

(0.069)
0.191
(0.010)

0.297
(0.019)

0.288
(0.009) 0.22

Lag 2 1.424
(0.349)

0.435
(0.049)

0.515
(0.072)

0.343
(0.016) 11.37** 0.351

(0.064)
0.239
(0.009)

0.386
(0.054)

0.289
(0.021) 0.02

Lag 3 1.384
(0.483)

0.427
(0.062)

0.343
(0.075)

0.275
(0.011) 13.44** 0.48

(0.083)
0.289
(0.011)

0.215
(0.101)

0.29
(0.027) 0.69

Lag 4 1.281
(0.556)

0.413
(0.060)

0.148
(0.135)

0.168
(0.018) 9.46** 0.519

(0.128)
0.298
(0.015)

0.446
(0.112)

0.337
(0.025) 0.04

Note :
Number in brackets represents the estimated standard error.
*denotes the rejection of null hypothesis at 5% level.
**denotes the rejection of null hypothesis at 1% level.
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Now, the big puzzle remains. If indeed the permanent income /life-cycle model described in

Section 2 is correct, we should be expecting both log-linearized Cross-Euler equation to be

cointegrated. Likewise, if some assumptions pertaining to the cointegration restriction are

violated, then it is natural for us to expect both log-linearized Cross-Euler equation to be

spurious. However, the test results from the Hausman-type Cointegration test were perplexing.

That is, for the log-linearized Cross-Euler eq. (18), the test rejected the null of cointegration,

implying the regression to be spurious, while for the log-linearized Cross-Euler eq. (19), the

test did not reject the null of cointegration. How should we interpreting this contradicting

results?

It is indeed difficult to find a clear-cut answer to the above question. Although this deep

puzzle remains, however, based on the observations that 1) differenced regression estimates

for 1 and from both Cross-Euler equation are relatively similar, and 2) that the level

regression from the Cross-Euler eq. (19) yields estimates that are close to the differenced

regression estimates10, in this paper, we simply regard the log-linearized Cross-Euler (18) to be

spurious and disregard their estimates based on the level regression.

Ⅴ Estimating IES parameters from the Euler Equations

In this section, we conduct Hansen’s (1982) GMM on eq. (4) and (5). Before reporting the

GMM estimation results, we discuss the choice of instrumental variables (IV).

Ⅴ.1. Choice of Instruments and Lag Order
As was pointed out by Hall (1993) and Ogaki (1993), it is well known that the estimate of

GMM is very sensitive to the choice of instrumental variables. To test for the robustness of

the estimates vis-a-vis the choice of instruments, we estimated the parameters under several

types of instruments with varying time lags. The family of instrumental variables was chosen

following the convention in applied GMM literature. The following table summarizes the

choice of instrumental variables.

Another issue in conducting GMM estimation is to choose the lag order of the error term

when estimating the variance-covariance matrix of GMM disturbance terms. According to the

rational expectation hypothesis, the forecast error will be serially uncorrelated. Since our

model is based on the representative agent with rational expectation, economic theory suggests
────────────
１０ This “closeness” is statistically confirmed by the Hausman-type Cointegration test which is reported on the

right-panel of Table 1.
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a lag order of zero. Nevertheless, taking into account the time aggregation problem which was

pointed out by Grossman et al. (1987) and Heaton (1995) among others, we choose a lag

order of one in estimating the variance-covariance matrix of GMM disturbance terms

following Hansen and Heaton (1996). Also, to be consistent with time aggregation issues, we

have lagged instrumental variables for at least two periods when conducting GMM

estimations.

Ⅴ.2. Estimation Results
GMM estimation was conducted using a family of conventional instruments. GMM

estimation results of food Euler eq. (4) are summarized in Table 2. Similarly, GMM

estimation results of non-food Euler eq. (5) are summarized in Table 3. Hansen’s J-statistics

for each GMM estimation are also reported.

Let us first turn to Table 2. As can be seen from the table, the estimates of �are close to
zero for the most cases with occasional negative estimates. Also, for the estimates which were

relatively apart from zero, there had been a tendency for those estimates to be accompanied by

relatively high standard errors. Literally interpreting this estimation result, this implies that the

representative agent is nearly risk-neutral with regard to the food consumption. Also, as for

the intertemporal substitution of the food consumption, low estimates of �implies high IES.
Even worth, the negative estimates of implies the representative agent to increase current

consumption by intertemporally substituting future consumption in response to a rise in real

interest rate. In other words, the negative estimates of IES implies that the income effect from

the rise of real interest rate dominate the substitution effect, which is quite unlikely to happen

in practice. Finally, as for the specification check of the Euler equation, we now turn to

Hansen’s J-statistics. The test rejected the specification of the Euler equation for 12 out of 21

cases. Considering this frequent rejections by the Hansen’s J-test, this can be considered as

IV Type Euler Equation (4) Euler Equation (5)

IV 0
IV 1
IV 2
IV 3
IV 4
IV 5
IV 6

Const., F-lag, PF-lag
Const., F-lag, Int-lag
Const., F-lag, NF-lag
Const., PF-lag, PNF-lag
Const., F-lag, PF-lag, Int-lag
Const., F-lag, NF-lag, PF-lag, PNF-lag
Const., F-lag, NF-lag, PF-lag, PNF-lag, Int-lag

Const., NF-lag, PNF-lag
Const., NF-lag, Int-lag
Const., F-lag, NF-lag
Const., PNF-lag, PF-lag
Const., NF-lag, PNF-lag, Int-lag
Const., F-lag, NF-lag, PF-lag, PNF-lag
Const., F-lag, NF-lag, PF-lag, PNF-lag, Int-lag

Note : Following the convention in applied GMM literature, the instrumental variables have been constructed
by lagging the forcing variables. Namely, constant (const.), lagged food consumption growth rate (F-
lag), lagged non-food consumption growth rate (NF-lag), lagged price change in food (PF-lag) and non-
food (PNF-lag), and lagged real interest rate (Int-lag).
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Table 2

GMM Result :
Food Euler eq. (2.4)

���������� ������������������� ��� ���
IV Type Lag b a J statistics D.F.

IV 0

(−2)

(−3)

(−4)

0.978
(0.003)
0.979
(0.003)
0.979
(0.003)

−0.538
(0.175)
0.665
(0.210)
1.847
(0.543)

1.501
[0.220]
2.262
[0.132]
0.831
[0.361]

1

1

1

IV 1

(−2)

(−3)

(−4)

0.979
(0.003)
0.981
(0.003)
0.979
(0.003)

−0.044
(0.191)
0.681
(0.226)
2.342
(0.493)

20.219**
[0.000]
12.763**
[0.000]
5.319*
[0.021]

1

1

1

IV 2

(−2)

(−3)

(−4)

0.978
(0.003)
0.979
(0.003)
0.978
(0.003)

−0.310
(0.288)
0.536
(0.257)
0.084
(0.189)

0.246
[0.619]
1.068
[0.301]
2.702
[0.100]

1

1

1

IV 3

(−2)

(−3)

(−4)

0.978
(0.004)
0.970
(0.008)
0.972
(0.007)

−0.972
(0.742)
−2.769
(1.114)
3.857
(1.078)

5.638*
[0.017]
4.131*
[0.042]
0.680
[0.409]

1

1

1

IV 4

(−2)

(−3)

(−4)

0.979
(0.003)
0.981
(0.003)
0.979
(0.003)

−0.141
(0.146)
0.667
(0.210)
2.304
(0.489)

20.809**
[0.000]
12.711**
[0.001]
5.603
[0.060]

2

2

2

IV 5

(−2)

(−3)

(−4)

0.980
(0.003)
0.982
(0.003)
0.978
(0.003)

−0.375
(0.272)
0.413
(0.222)
0.124
(0.172)

6.170
[0.103]
11.986**
[0.007]
11.899**
[0.007]

3

3

3

IV 6

(−2)

(−3)

(−4)

0.981
(0.003)
0.983
(0.003)
0.982
(0.002)

0.314
(0.188)
0.473
(0.218)
0.127
(0.168)

18.068**
[0.001]
15.820**
[0.003]
18.447**
[0.001]

4

4

4

Note :
Number in brackets represents the estimated standard error.
Number in square brackets represents the p-value.
* denotes the rejection of null hypothesis at 5% level.
** denotes the rejection of null hypothesis at 1% level.
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Table 3

GMM Result :
Non-food Euler eq. (2.5)

������������ ������������������������ ���
IV Type Lag b g J statistics D.F.

IV 0

(−2)

(−3)

(−4)

0.952
(0.010)
0.981
(0.002)
0.979
(0.002)

2.994
(0.718)
0.433
(0.208)
−0.171
(0.199)

4.482*
[0.034]
4.523*
[0.033]
6.588*
[0.010]

1

1

1

IV 1

(−2)

(−3)

(−4)

0.973
(0.003)
0.978
(0.002)
0.979
(0.002)

1.069
(0.225)
0.762
(0.148)
0.413
(0.144)

6.128*
[0.013]
5.994*
[0.014]
23.447**
[0.000]

1

1

1

IV 2

(−2)

(−3)

(−4)

0.971
(0.011)
0.979
(0.002)
0.979
(0.003)

−1.918
(1.284)
0.386
(0.273)
−0.562
(0.383)

0.247
[0.619]
0.261
[0.609]
0.255
[0.613]

1

1

1

IV 3

(−2)

(−3)

(−4)

0.972
(0.003)
0.982
(0.002)
0.977
(0.002)

1.533
(0.363)
0.132
(0.435)
0.362
(0.080)

0.000
[0.981]
6.664**
[0.009]
8.092**
[0.004]

1

1

1

IV 4

(−2)

(−3)

(−4)

0.972
(0.003)
0.979
(0.002)
0.979
(0.002)

1.075
(0.220)
0.696
(0.140)
0.399
(0.143)

9.225**
[0.009]
7.679*
[0.021]
23.835**
[0.000]

2

2

2

IV 5

(−2)

(−3)

(−4)

0.972
(0.003)
0.982
(0.002)
0.979
(0.002)

1.331
(0.310)
0.371
(0.227)
0.345
(0.062)

2.532
[0.469]
8.363*
[0.039]
11.295*
[0.010]

3

3

3

IV 6

(−2)

(−3)

(−4)

0.974
(0.003)
0.980
(0.002)
0.980
(0.002)

1.039
(0.200)
0.619
(0.155)
0.343
(0.062)

4.000
[0.405]
11.777*
[0.019]
16.715
[0.149]

4

4

4

Note :
Number in brackets represents the estimated standard error.
Number in square brackets represents the p-value.
*denotes the rejection of null hypothesis at 5% level.
**denotes the rejection of null hypothesis at 1% level.
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empirical evidence against the specification of the Euler equation for the food consumption.

Next, let us turn to Table 3. The estimates of �are close to zero with some negative
estimates. Interpreting this result, this implies that the representative agent to be risk-neutral

with regard to the non-food expenditure. Also, as for the intertemporal substitution of the non-

food consumption, low estimates of e implies high IES. Again, literally interpreting, high IES

for non-food expenditure means that the representative agent is willing to substitute current

non-food consumption for future non-food consumption in response to a miniscule change in

the real interest rate. Turning to J-test results, we found 14 rejections out of 21 cases which

can be considered as evidence against the specification of the non-food consumption.

From our conventional wisdom, risk-neutral preference or extremely high value of IES (or

even negative IES) is counter-intuitive and therefore it is hard to accept this GMM estimation

result for face value. In addition, taking into account the strong evidence against the

specification of the Euler equations for both food and non-food consumption from Hansen J-

test, there seems to be little ground to believe that the GMM estimates for t and are consistent.

However, at the same time, we should be aware of the possibility of size distortion since we

have only used 90 sample periods in estimating the IES parameters. Due to the small sample

size, it may well be the case that the J-test over-rejected the specification of the Euler

equation. In order to verify the specification of the Euler equation further, we use likelihood

ratio type test in the next section.

Ⅴ.3.1. Further Specification Test
In the previous subsection, we have solely relied on Hansen J-test as for the specification

check of the Euler equations. In this subsection, for the sake of additional specification check,

we conduct the likelihood ratio type test proposed by Cooley and Ogaki (1996). The idea of

the likelihood ratio type test is as follows.

If the model is correct under the assumption that there is no liquidity constraint or habit

formation, log-linearized Cross-Euler equations will be correctly specified with cointegrating

restriction. At the same time, standard Euler equations will also be correctly specified.

Consequently, under the null hypothesis that the model is correctly specified, parameter

estimates of �and �from cointegration regression and GMM estimation should be statistically

close. Under the test, the null hypothesis will be��������������		������and �
�� �����		������.
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The rejection of the null implies that there exists at least one assumption that is violated.

Unfortunately, the rejection of the null does not provide us much information about which

assumption has been violated. On the other hand, the non-rejection of the null supports or, at

least, leaves some possibility open for the plausibility of the joint hypothesis such that 1) the

representative agent’s utility function is of addi-log type, 2) the agent does not face liquidity

constraints, and 3) the agent does not form habit.

Ⅴ.3.2. Test Results
Here, we report the results of Cooley and Ogaki’s (1996) LR-type test. In conducting the

test, the same instruments from GMM estimation were used for both restricted and unrestricted

GMM. We basically tested two types of null hypothesis. The first null hypothesis is������������������� and results are reported in Table 4. The second null hypothesis is�������������������and results are reported in Table 5.
First, let us see the results under the null of �������������������. Turning to Table 4, which

Table 4

LR-type Test Result : 	���������������������
IV Type Lag Restricted Unrestricted QLR

IV 0
(−2)
(−3)
(−4)

15.034
13.244
17.380

1.501
2.262
0.831

13.533**
10.982**
16.549**

IV 1
(−2)
(−3)
(−4)

15.034
13.244
17.380

20.219
12.763
5.319

−5.185
0.481
12.061**

IV 2
(−2)
(−3)
(−4)

5.118
0.549
5.618

0.246
1.068
2.702

4.872*
−0.519
2.916

IV 3
(−2)
(−3)
(−4)

7.843
9.090
5.950

5.638
4.131
0.680

2.205
4.959*
5.27*

IV 4
(−2)
(−3)
(−4)

15.044
13.654
18.437

20.809
12.711
5.603

−5.765
0.943
12.834**

IV 5
(−2)
(−3)
(−4)

12.209
9.244
12.365

6.170
11.986
11.899

6.039*
−2.742
0.466

IV 6
(−2)
(−3)
(−4)

15.667
13.883
18.456

18.068
15.820
18.447

−2.401
−1.937
0.009

Note :
*denotes the rejection of null hypothesis at 5% level.
**denotes the rejection of null hypothesis at 1% level.

Table 5

LR-type Test Result : 	���������������������
IV Type Lag Restricted Unrestricted QLR

IV 0
(−2)
(−3)
(−4)

2.513
4.056
5.734

4.482
4.523
6.588

−1.969
−0.467
−0.854

IV 1
(−2)
(−3)
(−4)

15.446
15.087
15.489

6.128
5.994
23.447

9.318**
9.093**
−7.958

IV 2
(−2)
(−3)
(−4)

1.172
0.278
3.773

0.247
0.261
0.255

0.925
0.017
3.518

IV 3
(−2)
(−3)
(−4)

14.076
6.115
7.278

0.000
6.664
8.092

14.076**
−0.549
−0.814

IV 4
(−2)
(−3)
(−4)

16.817
15.239
16.398

9.225
7.679
23.835

7.592**
7.56**
−7.437

IV 5
(−2)
(−3)
(−4)

15.649
7.548
10.953

2.532
8.363
11.295

13.117**
−0.815
−0.342

IV 6
(−2)
(−3)
(−4)

18.321
16.454
17.585

4.000
11.777
16.715

14.321**
4.677*
0.870

Note :
*denotes the rejection of null hypothesis at 5% level.
**denotes the rejection of null hypothesis at 1% level.
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reports the LR-type test results based on the DOLS estimate11 from eq. (19), we found 9

rejections out of 21 cases. Considering this frequent rejection of the null hypothesis, the LR-

type test does not seem to be supporting the specification of the Euler equation for food

consumption. This test result is consistent with the test result from Hansen J-test.

Next, we turn to results under the null of �������������������. Examining Table 5, which
reports the test results based on the DOLS estimate12, again, from eq. (19), we found 8

rejections out of 21 cases. Again, conforming to the result from Hansen J-test, the LR-type

test frequently rejected the null hypothesis of �������������������, giving little support for the
specification of the Euler equation for non-food consumption.

Thus, even for the alternative specification test utilizing LR-type test, we found an evidence

against the specification for both food and non-food Euler equations. Based on the test results

from Hansen J-test and LR-type test, there seems to be no strong ground in believing that the

Euler equations are correctly specified. Since the Euler equations are unlikely to be correctly

specified, consequently, the IES estimates from GMM estimation are unlikely to be consistent

as well.

Ⅵ Concluding Remarks

In this paper, we adopted the Cross-Euler equation approach in estimating the IES following

Nishiyama (2005). In particular, based on the two-goods (food and non-food consumption)

version of the LCPIM, we exploited the cointegrating restriction implied by the Cross-Euler

equation in estimating the IES of the representative consumer.

We used Stock and Watson’s (1993) dynamic OLS in estimating the cointegrating

regression. From the level regression estimates, the IES for food consumption was around 0.76

(i.e., estimates of w was around 1.3) from one Cross-Euler specification and was around 3.33

(i.e., estimates of was around 0.3) from another Cross-Euler specification. As for the IES for

non-food consumption, the estimates were around 2.5 for one Cross-Euler specification and

were around 5 for another specification. Thus, we encountered significantly different sets of
────────────
１１ The estimate for ������������is based on the DOLS estimation of the log-linearized Cross-Euler eq. (19) with

the lag order of four. The reason why we have relied solely on the Cross-Euler eq. (19) is because the
regression of the log-linearized Cross-Euler eq. (18) is deemed spurious. Regarding the lag order of the DOLS
estimation, we have noticed an influence possibly from the endogeneity problem. As can be seen from the
Table 1 right-hand side panel, the DOLS estimate for increases as the lag order increases from zero to four.
Since the endogeneity bias can be mitigated by including higher order of lags, we have decided to pick lag
order of four in this particular exercise.

１２ For the same reason, the estimate for ������������is based on the DOLS estimation of the log-linearized Cross-
Euler eq. (19) with the lag order of four.
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IES estimates depending upon the specification of the Cross-Euler equations. In order to

discern which set of estimates are more reliable, we conducted Hausman-type Cointegration

test proposed by Choi et al. (2005). According to the test results, it turned out that one of the

Cross-Euler equation specifications to be spurious and the other to be cointegrated. Simply

disregarding the estimation results from a spurious regression, the sensible estimates of IES

seems to be around 3.33 for food consumption and around 5 for non-food consumption.

Although these IES estimates are not as large as the previous estimates of the IES, however,

they still remain to be oddly high.

For the sake of comparison, we also estimated the IES for food and non-food consumption

based on the standard Euler equation using GMM estimation method, which has been a

popular method in the preceding studies. Conforming to the preceding studies, the IES

estimates for both food and non-food consumption turned out to be conspicuously high (i.e.,

CRRA coefficients to be close to zero). Further, Hansen J-test and Cooley and Ogaki’s LR-

type test frequently rejected the specification of the Euler equations.

Taking into account the possible miss-specification of the standard Euler equation based on

the test results from J-test and LR-type test, it is likely that GMM estimation for IES

parameters to be inconsistent. Given this test result, instead of relying on those GMM

estimation results, one may be naturally tempted to count on the IES estimation results from

the cointegration regression. Considering the robustness of the log-linearized Cross-Euler

equation against the existence of liquidity constraint or habit formation, there seems to be a

good reason to count on the IES estimates from the cointegration regression. However, at the

same time, one should bear in mind the fact that one of the specification of the Cross-Euler

equation turned out to be spurious in this paper. If indeed the assumptions pertaining to

LCPIM model adopted in this paper were all plausible, then we should be expecting both

specifications of the Cross-Euler equation to be cointegrated. The mixed evidence from

Hausman-type Cointegration test is perplexing and may be implying that some of the

assumptions we made in this paper to be violated. For this reason, the IES estimates from the

cointegration regression reported in this paper should be interpreted with caution.

Appendix : Robustness of the Cointegration Relationship implied by the Cross
-Euler Equation
Unlike the standard Euler equation which specifies the intertemporal optimality condition in

terms of the growth rate of the forcing variables, the log-linearized Cross-Euler equation

specifies the intertemporal optimality condition in terms of level. By the virtue of long-run
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equilibrium relationship in terms of level, the cointegration regression on (18) and (19) can be

shown to be robust against certain types of nuisant factors −− i.e., the cointegration regression

yields a super-consistent estimates for the IES parameters. In this appendix, based on

Nishiyama (2005), we show the robustness of cointegration relationship against two types of

nuisant factors discussed in the consumption literature : liquidity constraints and habit

formation.

A.1. Robustness against Liquidity Constraints

Among the various types of liquidity constraints, we adopt the simplest form −− i.e., a

borrowing constraint that requires the net worth of the agent to be always non-negative.

Specifically, following Zeldes ( 1989 ) , we impose the constraint such that������������������to the agent’s dynamic optimization problem. Then, the Bellman
equation can be reformulated as follows��������������������������������������������������� �	�����������
������������������� ������ (A. 1)

where Lagrangian multiplier ��takes a positive value when the liquidity constraint is binding
and becomes zero when the constraint is not binding.

As a preliminary step in showing the robustness of a cointegration relationship, we first

show that the Lagrangian multiplier is stationary. The Euler equations for food and non-food

goods can be shown to be������������� ��������
����������������������� and��������������� ��������
������������������������� ,

respectively. Now, following the treatment by Zeldes (1989), we normalize the Lagrangian

multiplier into two types :���� ������
������������������������� �and����� ������
��������������������������� �.
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As can be seen, ��� stands for the Lagrange multiplier denominated by the present-valued
marginal utility derived from ����, and ���� stands for another normalization in terms of�����. Here, it should be noted that ��� and ���� are both non-negative and inside the

information set available at period t, since the denominators used for the normalization are

positive and non-stochastic as of period t.

Using the new normalization of the Lagrangian multiplier and with addi-log utility function,

the Euler equation for food and non-food goods can be conveniently rearranged as�������������� ����������� ��������������� and (A. 2)���������������� ������������������������������. (A. 3)

where ����� and ������ represent the forecast errors arising from the discrepancy between the

expected and realized marginal utility. By assuming that the forecast errors are stationary over

time, the Lagrangian multipliers ��� and ���� can be shown to be stationary as well.
Given the stationarity of the Lagrangian multipliers, we next demonstrate the robustness of

the cointegration relationship. The specification of the Cross-Euler equation in the presence of

liquidity constraint can be shown to be�� ����������� ���� ���������������� ����������� ������� and (A. 4)��� ����������� ����� ��������������� ����������� ������ and (A. 5)

For convenience, let us take the case of eq. (A. 4) to show the robustness of the cointegration

relationship against the liquidity constraint. Dividing both side of eq. (A. 4) by������������ ����������� ��������� �
and rearranging the equation yields the following

relationship������������������� ����������� ���������� � ������� ���������
where ���� stands for the new normalization of the Lagrangian multiplier defined above, and����� stands for the forecast error. Taking the logarithm on both sides and by the assumption

of addi-log utility function, it follows that
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������������������������������������������������������� (A. 6)

Now, since the forecast error follows the I(0) stochastic process and the normalized

Lagrangian multiplier follows the I(0) process as well, the RHS of eq. (A. 6) will be I(0). As

a consequence of this stationarity restriction, the LHS of eq. (A. 6) will also be I(0), which is

exactly the cointegration relationship shown in eq. (18). Thus, under the addi-log utility

function, the cointegration relationship (18) turns out to be robust against liquidity constraints

and, therefore, allows us to estimate the IES parameters super-consistently even in the

presence of liquidity constraints. A similar argument holds for the cointegration relationship

(19).

The intuition behind the robustness of the cointegration relationship is as follows. The

Lagrangian multiplier term, which is an unobservable variable, enters the regression as an

error term in addition to the forecast error. However, since the Lagrangian multiplier term is

stationary over time, its presence does not affect the cointegration relationship among I(1)

variables −− i.e., �������, ����, and the opportunity cost ������������������. Putting it
another way, the perturbation resulting from the Lagrangian multiplier term is of I(0)

stochastic order which distorts the growth rate of optimal consumption (which is the case for

the standard Euler equation), but remains relatively innocuous vis-a-vis the level of the

optimal consumption (which is the case for the log-linearized Cross-Euler equation).

Of course, in the small sample, there is an endogeneity problem in estimating the

cointegrating relationship, since the Lagrangian multiplier ���� and future consumption �����
are obviously correlated. However, this endogeneity problem could be handled by an

estimation method such as Phillips and Hansen’s (1991) FM-OLS or Park’s (1992) CCR.

Further, since the estimators in cointegrating regression will be super-consistent, i.e. ���	���
consistent, the endogeneity problem will not matter asymptotically. Thus, despite the

endogeneity problem stemming from the presence of liquidity constraints, we can still obtain

consistent estimates for �and �from the cointegration relationship (18) and (19).
A.2. Robustness against Habit Formation

Next, we show the robustness of the cointegration relationship (18) and (19) in the presence

of habit formation in the agent’s preference. Among the various types of habit formation, we

follow the specification used by Amano and Wirjanto (1996). Assuming that ����, �����, and������������follows the I(1) process and that the agent has habit forming preference as
follows
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������� � ������������� �� �
where ���������������takes the addi-log type utility function and habit formation variable
defined as ��������� ������and ���������� �������, Amano and Wirjanto (1996) shows the
stochastic relationship among the intratemporal relative price, current food and non-food goods

as follows,��	���	�� ����������
���
Taking the logarithm on both sides of the above stochastic relationship, the intratemporal

relative price, food and non-food goods reveal the following cointegration relationship,��
�������	������	�����������������
���
Now, by adding �������� and ��	����� on both sides and subtracting ������, ��	���, and��������from both sides, we obtain the following relationship��
����������������	�����	������������������������������������������	��������	��������������
���
By assumption, the growth rate of ���, 	��� and the real interest rate is stationary and,
therefore, the RHS of the above relationship is I(0). By the stationarity restriction on the RHS,

consequently, the LHS will follow the I(0) process which is exactly the cointegration

relationship we derived in eq. (18). Thus, cointegration relationship (18) turns out to be robust

even in the presence of habit formation in the agent’s preference. A similar argument holds

for cointegration relationship (19).
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