
THE SCIENCE AND ENGINEERING REVIEW OF DOSHISHA UNIVERSITY, VOL. 54, No. 2 JULY 2013

(1)

A Web Load Distribution System: Implementation and Evaluation

with PlanetLab

Cheng TIAN* , Ryota AYAKI* , Hideki SHIMADA* , and Kenya SATO*

(Received February 5, 2013)

The Internet increases its popularity and evolves largely. The lack of a central coordination is a critically

important problem to the rapid growth and evolution of the Internet. The lack of management makes it very

difficult to guarantee the web servers keep proper performance and to deal systematically with performance problems.

Meanwhile, the available network bandwidth and server capacity continue to be overwhelmed by the accelerating

growth of the Internet utilization. When a web server is under a heavy load, its performance suffers, and it may even

crash, which caused customers feel largely inconvenient and unsatisfactory. To avoid the web server performance

problems caused by high load, a few methods and systems have been proposed. But, some of them are commercial,

and some of them cannot solve the problem well. We think that distributing its load to other servers that are not

busy is a solution for the problem. In this research, we propose a web load distribution system made by a network

technology that can distribute the web load from the web server to other servers automatically, when the web server

is in high loads. We implement the system on PlanetLab, which is a free global research network that supports the

development of new network services. Then we evaluate the system in two cases. Based on the evaluation results,

we have learned that the HTTP response delay was reduced. So we verified that this technology can distribute the

web server load so that users can access their web servers faster during high load time.

Key words ： Web system, load distribution, PlanetLab, CDN

1. Introduction

Due to the Internet’s continued popularity,

sometimes users experience slow server response.

Their servers might even crash, so that it cannot

provide any web services, which is very inconvenient.

From the company side, commercial losses are even

more substantial. To avoid such web server per-

formance problems caused by high load, we set up

shared cache servers called assistant servers all over

the world in our system to distribute web server load.

When a web server is experiencing a high load, user

requests are automatically transferred to assistant

servers who distribute the load and spread web server

resources all over the world to access web servers that

are faster abroad.

After Section 2, related works and existing sys-

* Information and Computer Science, Graduate School of Science and Engineering, Doshisha University
1-3 Tatara Miyakodani, Kyotanabe-shi, Kyoto, 610-0321 Japan
Telephone:+81-774-65-6297, Fax:+81-774-65-6801, E-mail:ksato@mail.doshisha.ac.jp

tems are introduced. Our proposed system is pre-

sented in detail in Section 3. In Section 4, the imple-

mentation is explained, and the evaluation is shown

in Section 5 and we also compare the proposed sys-

tem with existing systems.

2. Related Works and Existing Systems

In networking, load balancing is a technique

to distribute the server load evenly across two or

more servers, in order to get optimal resource uti-

lization, maximize throughput, minimize response

time, and avoid overload. Using multiple compo-

nents with load balancing, instead of a single com-

ponent, may increase reliability through redundancy.

The load balancing service is usually provided by

a dedicated program or hardware device, such as a

DNS server. It is commonly used to mediate inter-

(2)

Cheng TIAN, Ryota AYAKI, Hideki SHIMADA and Kenya SATO102

nal communications in computer clusters, especially

high-availability clusters. If the load is more on a

server, then the secondary server takes some load

while the other is still processing requests.

2.1 Related Works

Load balancing is a critical issue for distribut-

ing web server loads. One of the thrust of such re-

search spreads the entire contents to network nodes

more evenly, and can find out the parts of the

contents more quickly when the user wants to get

them. In peer-to-peer (P2P) networks, the dis-

tributed hash table (DHT) has been researched for

load balancing. Chord1), Pastry2), Tapestry3), and

Content-Addressable Networks (CAN)4), which we

call DHTs, are the most famous algorithms that sup-

port DHT functionality. In such structured systems,

a unique identifier is associated with each data item

and each node in the system. The identifier space is

partitioned among the nodes that form the P2P sys-

tem, and each node is responsible for storing all the

items that are mapped to an identifier in its portion

of the space. Thus, the system provides an inter-

face consisting of two functions: put(id, item), which

stores an item, associating with it a given identifier

id; and get(id), which retrieves the item with the

identifier id6).

2.2 Existing Systems

To reduce the web server load, a few systems

have been proposed to distribute the web load to

other servers. Proxy server5), Round-robin DNS

system7), load balancer8), content distribution net-

work (CDN)9) , are the most popular examples.

2.2.1 Proxy Server

In computer networks, a proxy server acts as

an intermediary for requests from users seeking re-

sources from other servers and copies these resources

to respond the requests faster to users. But proxy

servers also have problems. Their performance might

suffer during high load times like a web server, be-

cause they are usually comprised of only a few ma-

chines.

2.2.2 Round-robin DNS

A round-robin DNS system is one of the load

distribution and balancing techniques. In its imple-

mentation, it responds to DNS requests not with a

Web Servers

Assistant
Servers

Management
Server

Users

LAN Internet

Contents

State

Fig. 1. System Architecture.

single IP address but with a list of IP addresses of

multiple servers. But it responds to the IP addresses

from a list’s fixed order and needs extra machines for

distribution because copies of the web server contents

are stored on these machines in advance.

2.2.3 Load Balancer

A load balancer is working like a management

server for load balancing. It manages the requests

from the external network, and forwards these re-

quests to multiple servers with equivalent functional-

ity. The load balancer sends distribute these request

to multiple servers as many as possible for maintain-

ing a high speed of each server response. Also, if

users need to communicate with the server multiple

times by one set of transactions, the load balancer

will also need an ability to transfer communications

from the same server as the client is always the same.

Generally, a server can be used as a load balancer by

introducing a dedicated application.

2.2.4 Content Delivery Network

A content delivery network is a system of com-

puters containing copies of data, placed at various

points in a network so as to maximize bandwidth

for access to the data from clients throughout the

network. A client accesses a copy of the data near

to the client, as opposed to all clients accessing the

same central server, so as to avoid bottlenecks near

that server. One benefit of it is that the capacity sum

of strategically placed servers can be higher than the

network backbone capacity. For instance, when there

is a 10 Gbit/s network backbone and 100 Gbit/s cen-

A Web Load Distribution System: Implementation and Evaluation with PlanetLab

(3)

103

Management
ServerUser

Responds the IP of
www.example.com

(10.0.0.5)

Management
Server

User

IP of assistant server
(133.168.0.5)

is responded instead
of www.example.com

When the web server
becomes busy.

Fig. 2. IP address changed to the assistant server

when the web server is busy.

tral server capacity, only 10 Gbit/s can be delivered.

But when 10 servers are moved to 10 edge locations,

total capacity can be 10× 10 Gbit/s.

Akamai10) is one of successful commercial

CDNs. Its proprietary system, called Dynamic Site

Delivery, is combined with high-speed network and

cache servers. Based on the access request from a

user, Dynamic Site Delivery can automatically de-

termine the most appropriate server to provide the

content faster. Technically, Akamai’s DNS servers

can get the information about the users’ locations

basing on the IP addresses, and make users access the

closest Akamai’s servers instead of accessing to the

servers which are in USA. The benefit is that users

can receive content from whichever Akamai server is

close to them or has a good connection, leading to

faster download times and less vulnerability to net-

work congestion or outages.

3. Web Load Distribution System

The purpose of our proposed web load distri-

bution system is to reduce the web server load and

automatically distribute it to other assistant servers

to maintain balanced web access. When it is busy, it

also makes users directly access the assistant servers

instead of the web server. For managing these ma-

chines and accesses and distributing the load, this

system features a management server and assistant

servers. In this section, we will describe the pro-

posed system in detail. Figure 1 shows the system

architecture.

3.1 Management Server

The management server, which manages the

users, the web servers, and the assistant servers, has

three main functions. First, it receives requests from

users and the state data from the web server. Sec-

ond, based on the state of the web server, the man-

agement server judges whether it should provide a

new assistant server to the web server to distribute

the load. There are two cases about the web server.

Third, if the web server is not in a high load, the

management server will do nothing. But, if the web

server is in a high load, the management server will

respond the user’s DNS request with an IP address

from the list of assistant servers (Figure 2). This

way make the user does not access the web server,

but directly accesses the assistant server when the

web server is in a high load. Because the assistant

server is not overload, it can respond the requests

from users quickly.

For achieving these functions, there is a DNS

server working in the management server. That

makes the management server can respond the user’s

DNS request. A management program, which is

working on the management server, can add an IP

address of assistant server into the DNS zone file.

And the proposed system can also support multiple

web servers. If another web server need to use the

proposed system, we just need to run management

program once again, which is very simple. At the mo-

ment, there two management programs are running

on the management server. Also, the state file names

from the web servers are different to each other.

Based on the filenames, the management server can

determine the state is belong to which web server.

We will explain it in some detail in the Section 4:

Implementation.

3.2 Web Server

Web servers in the proposed system, working

like common web servers, provide web services to

(4)

Cheng TIAN, Ryota AYAKI, Hideki SHIMADA and Kenya SATO104

2. Ask for the IP of
‘www.example.com’ .

3. The web server is not busy.
Send the IP of

‘www.example.com’ .

1. Send the state of
web server.

4. Visit the web server.

Web Server
(www.example.com)

Management
ServerUser

Fig. 3. Action when the web server is not busy.

users. But there is a difference between the com-

mon one that a state checking and sending program

is running on the web server in the proposed system.

Our web servers are working by the web service soft-

ware. The program can check the current quantity

of established connections from the web service soft-

ware and save it into a file. Then the number is sent

to the management server by sending program. Cer-

tainly, we make the state file name be different to

identify different web serers.

3.3 Assistant Server

Assistant servers are working like a cache sys-

tem about web server for responding fast. On the

other hand, sometimes when we access the oversea

web server, we feel the response is very slow. Maybe

the high load cause the response delay at that mo-

ment, but we also think the long distance and com-

plicated routing between the user and the web server

perhaps is the main cause. To improve it, we made

assistant servers distributed around the world. Be-

cause of that, the user can access the closest assis-

tant server without accessing oversea. An assistant

server’s main function is getting the contents from

the web server and sharing them with users to re-

duce the web server load. Also, assistant servers

are sending their state file like the web server to the

management server to ensure that their are not in a

high load. If one assistant server is overloaded, the

management server will change it into another idle

assistant server.

2. Ask for the IP of
‘www.example.com’ .

3. The web server is busy.
Send the IP of assistant

server in stead of
‘www.example.com’ .

1. Send the state of
web server.

4. Connect to the assistant server.

5. Connect to the
web server.

6. Visit the web server by the assistant server.

Web Server
(www.example.com)

Assistant
Server

Management
ServerUser

Fig. 4. Action when the web server has high load.

3.4 Action of the Proposed System

In this subsection, we will explain the action of

the proposed system. Figures 3 and 4 show the tem-

poral analysis about two cases of system main action,

witch are the web server is or is not overloaded.

The following is the action when the web server

is not overloaded. Figure 3 shows the temporal anal-

ysis about it.

1. In the proposed system, the web server always

sends a file about its condition to the manage-

ment server.

2. A user asks for the IP address of

’www.example.com’ when he want to visit

it.

3. The management server receives the user re-

quest and checks the web server state. Because

the web server is not busy at the moment, the

management server sends the web server’s IP

address.

4. The user gets the web server’s IP address by

DNS respond from the management server.

Then he can access the web service of

’www.example.com’.

The following action occurs when the web

server is overload. Figure 4 shows the temporal anal-

ysis about it. Steps 1 and 2 are identical as when the

web server does not have a high load. We explain it

from the step 3.

A Web Load Distribution System: Implementation and Evaluation with PlanetLab

(5)

105

Fig. 5. Distribution about the Notes in PlanetLab.

3. Based on the user’s request, the management

server checks the web server condition. At the

moment, since the web server has a high load,

the management server selects one of the IP ad-

dresses of the assistant server instead of the web

server and sends it as DNS response to the user.

4. The user gets the IP address of the assistant

server and uses it to visit ’www.example.com’.

However, the user does not know he is visiting

the assistant server instead of the web server.

5. Based on the user request, the assistant

server searches its own database to find the

’www.example.com’ cache at first. If there is

no caches matching the request, the assistant

server connects to the web server and gets these

contents from it.

6. The assistant server responds and sends these

contents to the user. At the same time, it copies

thees contents into its database for responding

more faster after.

4. Implementation

4.1 Implementation Platform: PlanetLab

As the implementation platform of our pro-

posed system, we chose PlanetLab11), which is a

global research network that supports the develop-

ment of new network services. There are a lot of note

that can be used around the world. In the proposed

system, the implementation of assistant servers re-

quires computers set up around the world. Using

PlanetLab

Linux

Cache
System

State
Sending

PlanetLab
Web Server

Linux
User

Firefox

Linux
Management Server

Bind

Management
Program

State
Receiving

Linux

State
Judgment

Apache

State
Sending

Fig. 6. Implementation Method.

PlanetLab, we can easily operate many computers

around the world by such SSH applications; this

would probably be impossible in a single laboratory.

Almost all of PlanetLab’s notes use Linux as their

operating system. Therefore, we can use much de-

veloping software to create our system much more

easily due to its great compatibility. Figure 5 shows

the distribution about the notes in PlanetLab.

4.2 Implementation Method

Figure 6 shows the implementation method of

the system.

We chose Firefox as our Internet browser for

our test. Using Firebug, a development tool of Fire-

fox, we determined the HTTP response time from

the web server to users. Also, we set the manage-

ment server’s IP address to the IP address of the

user’s DNS server. Therefore, the user could send

DNS requests to the management server to get the

web server’s IP address that he wanted to access.

The management server is built on Linux, can

receive the web server and assistant servers’ state

by the state receiving program. The state judgment

program can judge whether they are busy or not.

Based on the result, the management program se-

lects an appropriate IP address between the web and

(6)

Cheng TIAN, Ryota AYAKI, Hideki SHIMADA and Kenya SATO

assistant servers. Then it reports the IP address to

the DNS software Bind, and the Bind will respond

to the user with the IP address.

The web server is built on a PlanetLab node

that responds to the user’s HTTP request by web

server software, Apache 2. The State Sending pro-

gram are sending the state of web server to the man-

agement server.

The assistant server, which is built on a Plan-

etLab node, too. It is also sending its state to the

management server. By doing that, when an assis-

tant server becomes busy, the management server

can know that, then changes the user’s requests to

another assistant server. A cache system, likes a re-

verse proxy system, is working on it to get data from

the web server based on user requests. The cache

system backups these resources for faster requesting

when it sends them to users. Therefore, the assistant

server can directly send the data to other users if the

data have been cached before.

4.3 The Programming

The proposed system was built in Linux, and

we programed the system by program language C.

The state sending program, running on web servers

and assistant servers, and the state receiving pro-

gram used the socket to send and receive the date

with each other. They are sending the state every

10 seconds. The state judgment programs, which are

running on the the management server, can learn the

state of them and judge these servers whether they

are busy or not. If the result is not busy, the system

will do nothing. But, if the result is busy, the man-

agement program gets an IP address from a list of

the IP addresses of assistant servers and puts the IP

address into the DNS file which is the lists of the IP

addresses of the web server. Thus, the management

server can respond to the DNS request from the user

with the assistant server’s IP address when the web

server is in a high load.

5. Evaluation

For evaluating the system, users sent HTTP

requests to the web server to get static html files

and gathered the HTTP response times by Apache

JMeter12). We increased the number of HTTP re-

Table 1. Evaluation Environment.

CPU Memory OS Application PlanetLab
node

User Atom 1.6 GHz 1GB Ubuntu 8.04

Java 1.60_05

NoApache JMeter 2.3.4

Firefox 3.5

Management
Server Core2 2.0 GHz 3GB Fedora 8 Bind 9.6.1

gcc 4.1.2 No

Web Server Fedora Apache 2
gcc 4.1.2 Yes

Assistant
Server Fedora Squid 2.7 Yes

LAN PlanetLab

User

Assistant Server

Web Server

Management
Server

1 Gbps
Switch Internet

Fig. 7. Network Diagram.

quests from 1 to 400 per second so place the web

server in a high load. Finally, we gathered and ana-

lyzed the HTTP response time data.

5.1 Condition

Table 1 and Figure 7 show the evaluation en-

vironment and the network diagram of the system.

Since the performance of the PlanetLab nodes was

constantly changed because they are shared with

many researchers, their condition is not presented.

Instead, we recorded the evaluation times.

5.2 Evaluation Results

For evaluating the system, users sent HTTP

requests to the web server to get static HTML files

and gathered the HTTP response times by Apache

JMeter12). We increased the number of HTTP re-

quests from 1 to 400 per second so place the web

server in a high load. Finally, we gathered and ana-

lyzed the HTTP response time data. The proposed

system was evaluated in two cases, which the pro-

posed server is working or not.

First, we made the proposed system be not

running. The result of it is shown in Figure 8. The

106

A Web Load Distribution System: Implementation and Evaluation with PlanetLab

(7)

scale of the vertical axis is the HTTP response time

that the user received HTTP responses from the web

server. The scale of the horizontal axis is the amount

of requests which had been sent to the web server in

one second. The HTTP response time from the web

server rose by several seconds to 300 per second when

the requests were sent by users. The web server per-

formance decreased when it received 300 requests per

second.

For faster access, we made our system be run-

ning. The management server judged the web server

be in a high load and changed so that users got their

contents from the assistant server. For a simple com-

parison, the management server judged whether the

web server was in a high load when it received 400

HTTP requests per second. Based on the evaluation

results Figure 9, we learned the following:

• The web server was stable until it received 200

HTTP requests per second.

• It became unstable when it received 300 HTTP

requests per second.

• For simple comparison, the web server was

judged to be in a high condition when it received

400 HTTP requests per second.

• Comparing with that before the management

server connected the users to the assistant

server, the HTTP response time delay was re-

duced .

We compare the average HTTP response time

in three cases, which are the web server is idle,

overload NOT using the proposed system and

overload using the proposed system. As a re-

sults, users get HTTP responses using the pro-

posed system faster than without using it when

the web server is overload.

5.3 Comparison with Existing Systems

Based on our evaluation, we have learned that

the proposed system, working like a load balancing

system, can distribute the web server load and re-

duce the HTTP response time when the web server

has a high load. Unlike DHTs, our proposed sys-

tem does not evenly distribute the entire contents to

each node, but as far as possible, one assistant server

saves the contents which are accessed by users to in-

crease the hint percentage for requesting users more

quickly. Also, there is a great difference between the

proposed and existing systems.

• The proxy server cannot maintain web services

for users when it crashes. Different to it, our

system continues to provide the web service nor-

mally when one or more assistant servers crash,

since it has more than one assistant server. Also

using the proxy server, if we do not know the IP

address of it, we cannot even access the web ser-

vice and the Internet. But using the proposed

system, we do not need to know the IP address

of these assistant servers, because the manage-

ment server responds the IP address to the user

as DNS response.

• On the other hand, the round-robin DNS sys-

tem requires setting up some extra machines,

which are to keep the same contents as the web

server in advance. The proposed system makes

the assistant servers automatically get the con-

tents from the web server based on the user re-

quests. So different from the round-robin DNS

system, the proposed system does not require

any extra machines, which have the equivalent

functionality as the web server in advance.

• Different to load balancer, when the web server

does not have a high load, users can directly ac-

cess the web server. But when the web server

has a high load, users are made to access the as-

sistant server by management server for faster

access and distribution of the web server load.

Also, the proposed system does not require any

machines with the equivalent functionality as

the web server in advance.

• Akamai, a CDN, is working by its Dynamic Site

Delivery system. The proposed system is like

it in general. But there also are some difference

between them. Using the Dynamic Site Delivery

system, that requires many servers which which

are to keep the same contents as the web server

in advance for requesting faster like the Round-

robin DNS. The expenses will be very high for

107

(8)

Cheng TIAN, Ryota AYAKI, Hideki SHIMADA and Kenya SATO

123 ms

5000 ms

78.6 ms
0

1000

2000

3000

4000

5000

6000

7000

1 2 3

e
miT esnopse

R PTT
H egarevA

Overload,
NOT using the
proposed system.

Overload,
Using the proposed
system.

Idle

Fig. 10. Average HTTP Response Time in Three

Cases.

setting up these extra servers and maintaining

them. Using the proposed system, when the web

server is overload, it requires some servers for

distributing the load like the Dynamic Site De-

livery system. But it will not require any extra

server if the web server is idle. Certainly, the

scale and performance of Dynamic Site Delivery

system is much high than the proposed system.

But, we think the proposed system fits these web

servers those requires distributing the load but

do not want to pay a large expenses.

6. Conclusions

In this paper, we proposed a web load distri-

bution system that could distribute the web server

load to provide faster access to users during high load

periods. We also presented its implementation and

evaluation. Our proposed system allows users to ac-

cess an assistant server for faster access when the web

server has a high load. Based on user requests, the

assistant server gets the contents from the web server

and copies them for faster response before sending

them to users. Therefore, users get their web server

contents faster. The contents are also distributed

to other servers to ease the web server load. With

this system, users will not experience any difference,

even when the web server is busy. Based on imple-

mentation and evaluation, users get HTTP responses

using the proposed system faster than without using

it (Figure 10). We are thinking the proposed system

can distribute the web server load to other servers

when the web server is in a high load. So using the

proposed system, however high the web server load

is, the user can access the web contents smoothly.

References

1) I. Stoica, R. Morris, D. Karger, F. Kaashoek, and
H. Balakrishnan, ”Chord: A scalable peer-to-peer
lookup service for internet applications,” Proc. ACM
SIGCOMM’01, 149–160, (August 2001).

2) A. Rowstron, and A. Rowstron, ”Pastry: Scalable,
distributed object location and routing for large-
scale peer-topeer systems,” Proc. 18th IFIP/ACM
International Conference on Distributed Systems
Platforms, 329–350, (November 2001).

3) B. Y. Zhao, J. Kubiatowicz, and A. D. Joseph,
”Tapestry: An infrastructure for fault-tolerant wide-
area location and routing,” Tech. Rep. UCB/CSD-
01-1141, (April 2001).

4) S. Ratnasamy, P. Francis, M. Handley, R. Karp,
and S. Shenker, ”A scalable content-addressable net-
work,” Proc. ACM SIGCOMM, 161–172, (August
2001).

5) Y. M. Xu, Z. S. Xiao, and S. Liang, ”Study and
application about technology of web cache server,”
Proc. Computer Engineering and Design in Shan-
dong University, Vol.26, No.1, 126–128, (January
2005).

6) B. Godfrey, K. Lakshminarayanan, S. Surana, R.
Karp, and I. Stoica, ”Load balancing in Dynamic
Structured P2P Systems,” Proc. IEEE INFOCOMM
2004, Vol.4, 2253–2262, (March 2004).

7) V. Cardellini, M. Colajanni, and P. S. Yu, ”Dynamic
Load Balancing on Web-server Systems,” IEEE In-
ternet Computing, Vol.3, No.3, 28–39, (June 1999).

8) C. B. Coughlin, and S. Diego, ”Network Load Bal-
ancing,” United States Patent Application Publica-
tion, No.US 2004/0024861 A1, (February 2004).

9) G. Peng, ”CDN: Content Distribution Network,”
Technical Report TR-125 of Experimental Com-
puter Systems Lab in Stony Brook University,
(February 2008).

10) E. Nygren, R. K. Sitaraman, and J. Sun, ”The Aka-
mai network: A Platform for High-Performance In-
ternet Applications,” ACM SIGOPS Operating Sys-
tems Review, Vol.44, Issue 3, 2-19, (July 2010).

11) PlanetLab, An opne platform for developing, deploy-
ing, and accessing planetary-scale services, http:

//www.planet-lab.org/.

12) D. Nevedrov, ”Using JMeter to Performance Test
Web Services,” Published on dev2dev (http://
dev2dev.bea.com/), (August 2006).

108

A Web Load Distribution System: Implementation and Evaluation with PlanetLab

(9)

0

2000

4000

6000

8000

10000

1 50 150 200 400

H
TT

P
R

es
po

ns
e

tim
e

(m
s)

Times of HTTP Requests Per Second

HTTP Response Time (NOT Using the Proposed System)

HTTP Response Time, 4928ms
HTTP Requests Per Second, 300/s

HTTP Response Time, 6590ms
HTTP Requests Per Second, 400/s

HTTP Response Time, 474ms
HTTP Requests Per Second, 300/s

Fig. 8. Evaluation Results (NOT Using the Proposed System).

0

2000

4000

6000

8000

10000

1 50 150 200 400

)s
m(e

mit esnopse
R PTT

H

Times of HTTP Requests Per Second

HTTP Response Time (Using the Proposed System)

HTTP Response Time, 4928ms
HTTP Requests Per Second, 300/s

HTTP Response Time, 68ms
HTTP Requests Per Second, 400/s

HTTP Response Time, 474ms
HTTP Requests Per Second, 300/s

Fig. 9. Evaluation Results (Using the Proposed System).

109

