Estimation of Two Axes Synchronous Accuracy of Plate Pivot Control with a Dual Arm Robot by Monitoring Rolling Motion of Various Kinds of Balls on the Plate

Wei WU*, Toshiki HIROGAKI** and Eiichi AOYAMA***

(Received January 8, 2013)

Nowadays, industrial dual-arm robots have gained attention as novel tools in the field of new automation. We therefore focus on them to flexibly control both the linear motion and the rotational motion of a working plate. However, there has been one problem that it is difficult to measure the synchronous accuracy of two rotary axes without high accuracy gyro sensor. Thus, we proposed a novel method to measure the synchronous accuracy of two rotary axes of working plate with a ball, which keeps a ball rolling around a circular path on it by dual-arm cooperative control. In the present report, we investigated an influence of rolling friction coefficient of ball on its sensitivity and its resolution to estimate the synchronous accuracy of two rotary axes.

Key words : NC, Positioning Accuracy, Dual-Arm Robot, Working Plate, Automation, Machine Tools

キーワード:数値制御,位置精度,双腕ロボット,作業プレート,自動化,工作機械

各種ボールの転がり運動のモニターに基づく双腕ロボットによる プレート同期旋回2軸制御時の運動誤差の検出

呉 魏・廣垣 俊樹・青山 栄一

1. 緒 言

5 軸制御マシニングセンタやパラレルメカニズム や新しい産業用ロボットなどの応用範囲が拡大す るにつれ、複雑な旋回運動をテーブルに与えるため の運動制御の高度化や高精度化が望まれている¹⁾. その運動精度を改善するためには、それらの計測お よび評価の技術が不可欠である²⁾. その中でも輪郭 運動精度が求められる場合には、2 軸以上の制御軸 の同期精度を評価する必要がある. そこで、ダブル ボールバー(DBB)を用いて直進 2 軸と旋回 1 軸の同 期運動精度を調べた研究³⁾などは多く見られる.し かし、その多くは直進軸の運動が含まれた例であ り、旋回軸のみの同期運動精度を調べた例はほと んどない.また、双腕ロボットのような、両腕の 高度な協調動作が求められる新型産業用ロボット に適用した例はない.直進を含む任意の2軸同期 制御の精度診断にはDBB法(ダブルボールバー法) が用いられてきた.DBB法では2点間の距離を計 測するスケールを備えた伸縮するバーの伸縮変化 量より2軸同時制御における運動精度を評価する. しかし、その原理上、直進軸の運動なしには計測

^{*} Graduate Student, Doshisha University, Kyoto

Telephone: +81-774-65-6445, E-mail: etl1306@mail4.doshisha.ac.jp

^{**}Department of Mechanical Systems Engineering, Doshisha University, Kyoto

Telephone/Fax: +81-774-65-6503, E-mail: thirogak@mail.doshisha.ac.jp ***Department of Energy and Mechanical Engineering, Doshisha University, Kyoto

Telephone: +81-774-65-6506, Fax: +81-774-6829, E-mail: eaoyama@mail.doshisha.ac.jp

は不可能であった. 旋回 2 軸の同期制御の精度を 計測するには,例えば,航空機用などの高精度ジャ イロセンサーを用いる方法が考えられる. しかし, 当該センサは重く,大きいためコンパクトロボット には適用できない. さらに高価でもあり現場的では なかった.そこでこれらのセンサを用いないで,簡 単に旋回運動の同期運動精度の診断ができるシス テムが望まれている.特に旋回運動については基 準の設定が難しく,工場などの現場で容易に運動 精度の評価ができる技術が必要になるものと考え られる.

そこで著者らは、近年開発された多関節ロボッ トアームを各腕として構成された双腕ロボットに 着目して、両腕で作業プレートを保持することで 閉リンク構造を具現化でき、ある程度の支持剛性 の確保が可能で、人の動作に近い範囲において作 |業用としても実用性があることを示した⁴⁾. 双腕 ロボットの両腕で作業プレートを支持する手法で は,自由度が比較的高く空間上でプレートに直進 運動および旋回運動を与えることが可能である. そこで現場で簡易的に2軸同期の旋回運動の運動 誤差を診断する方法として,作業プレート上に円 軌道のボールの転がり運動を創成し,基準円に対 する転がり運動誤差を用いる新しい手法を提案し, シミュレーションおよび実験の両面よりその有効 性および実用性を確認した⁵⁾. さらに転がり運動に 用いるボールの慣性モーメントと運動誤差の検出 感度の関係について解明し, 必要とされるプレー トの旋回運動に合わせた転がりボールの選定指針 を示した.加えて2軸の旋回運動軸の中心が、ボ ールの転がり運動の中心と一致する場合と旋回軸 の旋回運動にオフセット角度誤差が存在する場合 についての特性も解明した⁶.

しかしながら,転がり運動に用いるボールの転が り摩擦係数の違い(ボールの密度,直径,表面状態 の差)と検出感度の関係について十分に述べていな かった.そこで本報では,ボールとプレート間の転 がり摩擦係数を変化させた場合を取り上げ,その検 出感度に与える影響を考察することで提案する手 法の一般性を広げる.

2. 実験装置および計測方法

実験に使用したロボットは安川電機製の双腕ロ

(a) Definition of Ji(b) Definition of coordinateFig. 1. Dual-arm robot.

ボット MOTOMAN-DIA10 (Fig.1) である. 人の 上半身をイメージして開発され、成人男性とほぼ 同じサイズである. 各腕に7 関節を持ち, 人の腕 に近い動きを実現することが可能である. さらに 各関節の動作範囲は人のそれを大きく上回り、取 り得る姿勢の自由度は人以上である. さらに胴体 のひねりを考えたボディ旋回軸を1軸装備し,合 計 15 自由度制御 (Fig.1 中の J1~J15) である. 各 腕は98kgf (10kg),両腕 196kgf (20kg)の重量物 を持つことができる. そこで Fig.1(b)に示す座標 系を設定して、作業プレートを双腕で支持しなが ら操り、そのX軸・Y軸まわりで作業プレートに 旋回運動を与えた(X軸まわりの運動は腕のシリ アル機構 J1~J6・J8~J13 の左右腕逆位相の上下 動作に基づく旋回運動となり、Y軸まわりの運動 は手首 J7・J14 の単純な同位相旋回運動で,特性 の異なる旋回運動の動作の同期精度の問題を扱 うことになる). プレートの支持には平爪を用い, 上下からクランプしている.また,実験における プレート上のボールの運動軌跡は、ビデオカメラ で動画を記録した後に画像処理にて解析した.カ メラは Fig.1(b)に示されるようにプレートに固定 され(撮影中にフォーカスのずれもなく、プレー ト平面上のボールの平面運動のみを画像として 取得), その真上 60cm に設置した. 使用したカメ ラはフジフィルム社製 FinePix Z200, 動画サイズ 640×480 画素で,空間分解能は δ=0.63mm/画素で ある. またフレームレートは 30fps であり, 撮影 された各フレーム画像を画像処理ソフト Photoshop で処理した.

3. 提案する手法の基本理論

3.1 基本モデルと提案する手法

直進2軸の運動精度を診断する手法として,円運 動指令を与えてその運動誤差に着目する DBB 法³⁾ に代表される手法が知られている. その場合, 半径 Rの円運動の中心の角速度を ω ,時間をt,初期位 相をゼロとすると、直交する直進2軸(例えばY軸 と X 軸)の位置指令は、一方の軸(Y 軸)に正弦関 数 Rsinωt, 他方の軸(X 軸)に余弦関数 Rcosωt す なわち Rsin (ωt+90°)の指令を与えて、その運動誤 差を診断するものである.著者らが提案した手法⁵⁾ は, 直交する旋回軸においても同様に考え, 一方の 旋回軸に正弦関数 $\theta_0 \sin \omega t$, 他方の旋回軸に余弦関数 $\theta_0 \cos \omega t$ で角度指令(ここで θ_0 は最大傾斜角、 $0 < \theta_0$ <90°)を与えるものある.そのような指令で2軸 同期の旋回運動するプレート上にボール置くと, そ のボールはそのプレート上で転がり円運動する点 に着目し、そのボールの運動軌跡から同時2軸制御 の旋回運動の運動誤差を診断する.この手法は、旋 回運動において絶対基準として重力軸, すべりに比 べて転がり運動は摩擦力が小さく高感度になる点 に着目したものである.

プレート上のボールの運動は, Fig.2(a)のような飛 行機ダイナミクス座標系⁷⁾O_m-X_mY_mZ_mを参考して, プレートの重心を座標の原点とした三次元モデル において, Fig.2 (b)のように斜面 (例えば, X 方向, 傾斜角 θ)のボールの転がり運動のモデルを考える. 斜面に沿って下向きに X (Y) 軸, これと垂直に Z 軸を構成する. θはプレートY軸まわりの水平に対 する回転角であり、CCW 方向を正とする. プレー トにガイドがなく理論上は6自由度で自由に運動可 能である.このような運動体には次のような運動座 標系⁸⁾を導入すると便利である.すなわち、 Σ_m は プレートに固定された座標系、 Σ_B は対象物の重心 位置に固定された座標系(Z_B軸はプレートとの接 触面に直交する), ${}^{m}X_{B}, {}^{m}Y_{B}$ は Σ_{m} から見た Σ_{B} 位 置とする. すべり運動と異なり, 転がり運動にお いては用いるボールの慣性モーメントが運動の特 性に影響する. そこで, ボールの内径 a, 外径 r, 回転角 φ ,ボールの質量をM(その密度を ρ とする) とすると,ボールの重心の運動方程式は

$$M \frac{d^{2m}X_B}{dt^2} = Mg\sin\theta - f - D\frac{d^mX_B}{dt} - M^mX_B(\frac{d\theta}{dt})^2$$
(1)

(a) Three dimensional coordinate

(b) Sectional view in two dimensional coordinateFig. 2. Model of ball rolling on working plate.

となる. ここでボールの質量は $M=4\pi\rho(r^3-a^3)/3$ であ り、式の右辺は、重力、ボールとプレートの接触点 における摩擦力 f、速度に比例する粘性項 D、プレ ート回転中におけるボールの遠心力 $M^m X_B (d\theta/dt)^2$ で ある. またボールの重心のまわりの回転運動に対す る式は

$$I\frac{d^2\phi}{dt^2} = rf$$
(2)

ここで,球心まわりの慣性モーメントを Iとし,式 (2)を変形して式(1)に代入すると

$$M\frac{d^{2m}X_{B}}{dt^{2}} = Mg\sin\theta - \frac{I}{r}\frac{d^{2}\phi}{dt^{2}} - D\frac{d^{m}X_{B}}{dt} - M^{m}X_{B}(\frac{d\theta}{dt})^{2}$$
(3)

が得られる.ここで,ボールがプレート上をすべら ないとすると,次式が得られる.

$$\frac{d^m X_B}{dt} = r \frac{d\phi}{dt} \tag{4}$$

となる.既報で、中実ボールのみを考えた場合⁵⁾、 中空ボールも含めて考えた場合⁶⁾を扱ったので、本 報ではさらに一般性を向上するために密度が違う

Table 1. Specifications of ball.

Ball	Maker	Mass[kg]	Diameter[mm]	Density[g/am3]	$D[N \cdot s \cdot Kg]$	$D_M[N*s/m*Kg]$	Inertia moment[Kg+m2]	Sphericity [µ m]
Mouse ball (M22)	ELECOM Co.,LTD	0.032	22	7.87	0.016	0.5	1.55×10-6	±50
Mouse ball (M18)	ELECOM Co.,LTD	0.016	18	7.87	0.006	0.38	0.5×10.6	±50
Ceramic ball (C13)	IKEDA 8ANGYO Co., LTD	0.004	13	3.9	0.0005	0.13	$0.7 \times 10-7$	± 0.25
Ceramic ball (C19)	IKEDA SANGYO Co.,LTD	0.014	19	3.9	0.001	0.08	0.5×10-6	± 0.4
Ceramic ball (C22)	IKEDA SANGYO Co.,LTD	0.022	22	3.9	0.001	0.06	0.1×10-5	± 0.5
Pachinko ball (P11)	SATO TEKKOU Ce.,LTD	0.005	11	7.184	0.0006	0.126	$0.6 \times 10-7$	± 20
Hollow ball (1142)	HUMANITY Co.,LTD	0.002	42(2a=38mm)	0.855	0.0003	0.17	0.3×10-6	±50

ボールも考慮して考える.密度一様な中空球体の慣 性モーメント $I=2M(r^5-a^5)/5(r^3-a^3)$ であるので,式(4) を時間 t で微分して式(3)に代入して整理すると,プ レートの操りによる斜面を転がるボールの運動方 程式は

$$\frac{7r^{5} - 5a^{3}r^{2} - 2a^{5}}{5(r^{3} - a^{3})r^{2}} M \frac{d^{2m}X_{B}}{dt^{2}} = Mg\sin\theta - D\frac{d^{m}X_{B}}{dt} - M^{m}X_{B}(\frac{d\theta}{dt})^{2}$$
(5)

$$\simeq \simeq ~ \ (r^{5}, I_{e} = \frac{7r^{5} - 5a^{3}r^{2} - 2a^{5}}{5(r^{3} - a^{3})r^{2}}, D_{M} = D/M \stackrel{\geq}{=} \ (r^{5} - 5a^{3}r^{2} - 2a^{5}) \stackrel{\leq}{=} \ (r^{5} - 5a^{3}r^{2} - 2a^{5}) \stackrel{\leq}{=} \ (r^{5} - 5a^{3}r^{2} - 2a^{5}) \stackrel{=}{=} \ (r^{5} - 5a^{3}r^{2} - 2a^{5})$$

$$I_e \frac{d^{2m} X_B}{dt^2} = g \sin \theta - D_M \frac{d^m X_B}{dt} - {}^m X_B (\frac{d\theta}{dt})^2$$
(6)

と表される.

プレートの角度 θ は時間 t の関数であり, ω は角速 度 (=2 πf_f =2 π/T , ここで f_f は運動の周波数 Hz, Tは運動の周期 s) で, θ_0 は最大傾斜角である.ここで, X-Y 平面における転がり円運動は, Z-X 平面または Z-Y 平面から見ると, それぞれに転がりの単振動すると考え られる. そこで θ が十分に小さな場合を考え, 実際にロ ボットでプレートを操作する時は Y 軸まわりに対して X 軸まわりは回転角 $\theta'(t)$ の位相 α 遅れを 90 度として, ボ ールの X-Y 平面における運動方程式は

$$I_{e}\left[\frac{d^{2m}X_{B}}{dt^{2}}\right] = g\left[\frac{\theta}{\theta'}\right] - D_{M}\left[\frac{d^{m}X_{B}}{dt}\right] - \left[\frac{m}{M}X_{B}\left(\frac{d\theta}{dt}\right)^{2}\right]$$
(7)

 $\theta(t) = \theta_0 \sin(\omega t)$

(8)

 $\theta'(t) = \theta_0 \cos \omega t = \theta_0 \sin[\omega t + \alpha] = \varepsilon \theta_0 \sin[\omega t + \alpha], (0 < \varepsilon) (9)$

と示される.ここで $\alpha = 90^{\circ}, \theta_0 = \theta_0'$ (すなわち,両軸の最大角度の比 $\theta_0'/\theta_0 = \varepsilon = 1$)として,この運動を

Fig.1 に示す双腕ロボットにおいて腰の関節 J15 を 除く同時 14 軸(J1~J14)で同期制御してプレート 上にボールの転がり円軌道を生じさせる.

実際の実験で使用するプレートは木製で 600×450×20mm,その上に厚さ5mmの透明アクリル 板を配置した.その平面度は±0.003mmである.本 報では,一般性の拡張を考慮して様々なボールを用 いて実験とシミュレーションを行った.ボールの詳 細をTable 1 と Fig.3 に示す. M22, M18 はマウス用 の径の異なるボールで鋼製だが表面はゴムで摩擦 係数を高めている. C13, 19, 22 は径の異なるセラミ ックス球(ボールベアリング用)で密度が鋼の約 1/2

Fig. 3. Balls used in experiment and simulation.

である. P11 はパチンコ球で鋼製である. H42 は液体の熱や蒸発の損失を防ぐ中空精密球でポリプロ ピレン製で密度が鋼の約 1/9 である.また, D, D_M の値は既報⁽⁶⁾と同様にアクリル円筒面の転がり振り 子実験による実測値を用いた.

3.2 ボールの運動制御の状態方程式

前節でボールの X-Y 平面における運動方程式を 考えた.ボールの運動を制御するための状態空間モ デルを考える. 運動方程式(6), (7)よりボールの駆動 力は作業プレートの傾斜により与えられている. そ こでボールの駆動力を F_{Ball} とすると, F_{Ball} =($1/I_e$) $Mg\theta$ が得られる. ボールは X,Y 軸上ではどち らも単振動する点は同じなので, ここは X 方向だけ 考える. 方程式(6)より変形して $^{m}V_{B}$ はボールの速度 とし, ボールの X 方向の状態方程式は

$$\begin{bmatrix} \frac{d^m V_B}{dt} \\ \frac{d^m X_B}{dt} \end{bmatrix} = \frac{1}{I_e} \begin{bmatrix} -D_M & -(\frac{d\theta}{dt})^2 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} {}^m V_B \\ {}^m X_B \end{bmatrix} + \begin{bmatrix} 1/M \\ 0 \end{bmatrix} F_{Ball} \quad (10)$$

となる.両辺をラプラス変換して

 $s^{m}V_{B}(s) + {}^{m}V_{B}(0) = \frac{1}{I_{e}} \left\{ -D_{M} {}^{m}V_{B}(s) - (\frac{d\theta}{dt})^{2m}X_{B}(s) \right\} + \frac{1}{M}F_{Ball}(s)(11)$ $s^{m}X_{B}(s) + {}^{m}X_{B}(0) = {}^{m}V_{B}(s)$

が得られる.式(11)より,ボールのX軸方向の運動 制御に対するブロック線図はFig.4になる.

Fig. 4. Block diagram of motion control of ball.

4. 解析および実験結果と考察

4.1 使用するボールの違いとボールの転がり円 運動の過度および周波数応答

式(7),(8),(9)より中空、中実の密度、半径および表面状態が違うボールを用いた場合について、プレート上の転がり軌道計算を行い、定常応答時までの過度応答と周波数応答の特性を考察する.Fig.5はマウスボールを用いた転がり計算値と実験値の定常状態の比較結果⁽⁹⁾(最大傾斜角 θ_0 =3°,周期*T*=4s すなわち角速度 1.57rad/s, α =90°, θ_0 = θ_0 'の例)である.Fig.6(a)は、プレート上の^mX_B=0.2m,^mY_B=0.2m にボールを置き、その位置を初期位置としてFig.1(b)に示すX軸まわりおよびY軸まわりの同期運動(最大傾斜角 θ_0 =3°,周期*T*=4s すなわち

角速度 1.57rad/s, $\alpha = 90^{\circ}$, $\theta_0 = \theta_0' \circ (M)$ をプレートに与えた時のボールの運動の位置成分である. Fig.6(a)は C13 の計算例であり,定常応答に達するまでの整定時間(10%)は130s 程度になることがわかる. Fig.6(b)には,各ボールのプレート上の転がり運動が定常応答(転がり円運動)になるまでの整定時間をと D_M の関係を示す.結果より,ボールの密度,慣性モーメント,表面状態を変化させた場合においても整定時間は D_M の値の影響が大きいことがわかる.

式(11)より,ボールの駆動力 F_{Ball}を入力,ボール がプレート上の各軸上で定常応答の振動運動する 片振幅(転がり円運動の半径 R)を出力とした伝達 関数のボード線図(ゲインの単位は m/N)を考え, その計算結果を Fig.7 に示す. Fig.7 より, プレート の旋回運動の角速度とボールがプレート上を回転 する出力転がり半径と位相の周波数応答がわかる. Fig.7(a)より, D_M が小さいと共振現象が起こり不安 定な周波数帯が存在することがわかる. Fig.7(b)より, 位相が-90°を示す周波数を調べると,用いるボール が軽量(直径が小さい、中空である、密度が小さい) であるほどその周波数をあげることができること がわかる. 一方, D_Mが十分に大きな値を示す M22 は共振現象もなく全周波数帯で安定した計測が可 能であることもわかる. D_M が十分に大きな値を確 保できない場合,用いるボールの径を小さくしたり, 密度の小さな材質にすることで共振の周波数をあ げる手法が有効であることがわかる.また C13 に着 目すると共振周波数は 2Hz 程度である.一方で Fig.6(a)における定常応答までの振動の周波数は 0.05Hz 程度である.両者に大きな差が見られ、系の 非線形系が強いこともわかる.

Fig. 5. Motion error of rotating ball on working plate.

呉

Fig. 7. Bode diagram of ball rolling motion on working plate.

4.2 ボールの転がり半径と運動誤差の関係

高精度なジャイロセンサーなどが搭載できない コンパクトロボットによる小面積のプレートの操 り動作などへの応用を考える.この場合,応答性が 高く小さいボールによる半径の小さい円軌道で計 測する必要があると考えられる.Fig.8 はマウスボ ール M22(θ_0 =3°, T=1.5s, R=0.05m)の定常状態にな った計算結果である. D_M が変化する場合の表1の 種々ボールを用い,転がり最大誤差/転がり半径を 調べた結果を Fig.9 に示す. ここで基準円はマウス ボール(M22, θ_0 =3°, T=3.3s)の計算値(R=0.1m)とし て,最大誤差はボールの転がり実軌跡と基準円の差 の最大値である. 共振現象に注意する必要があるが, 転がり半径が小さくても十分な誤差を生じさせる ためには密度の小さなセラミックスボール(C22, C19, C13)などが有効な手段になることがわかる.

4.3 転がり摩擦理論と D_Mの関係

Fig.6(b)や Fig.9 などにおいて, D_M の値が重要で あることがわかる. そこで本節では D_M に関係が深 い転がり摩擦係数について考える. 半径 rのボール が平面上を平面に平行な力 F を受けて転がる場合 を考える. すべることなく転がり始めるためには, 一定の回転モーメントを働かす必要がある. Fig.10 において示すように, ボールも水平面も弾性体であ るので両方とも変形し, 一部盛り上がるその点を A とする. ボールの中心を通る鉛直線から A 点までの 距離を e とする. またボールの中心を通る水平線 から A 点までの

Fig. 8. Rolling path of simulation result $(\theta_0=3^\circ, T=1.5\text{ s}, R=0.05\text{ m}).$

Fig. 9. Influence of diameter of rolling orbit on maximum rolling error ($\theta_0 = 3^\circ$, $T = 1.5 \sim 4.8$ s).

高さの差を r₁とすると,転がり始める時の A 点の まわりのモーメントのつりあいより

$$Mge = Fr_1 \tag{12}$$

実際には r1≒r なので式(12)は

$$F = \mu_r Mg \tag{13}$$

になる.ここで, $\mu_r = e/r$ で, その μ_r は転がり摩擦 係数である¹⁰⁻¹²⁾. その e は非常に小さい値なので, 測定するのは難しいのが現状である.転がり摩擦は, おもに弾性ヒステリシス損失や微小滑りなどによ り生じると言われるが,その値が小さいため,いろ いろな因子の影響を受けやすい.それで,普遍性の ある法則を得ることは難しいが,上記とほぼ同じ意 味の式¹³⁻¹⁵⁾,

$$u_r = kP^m / d^n \tag{14}$$

という形(d=2r)でも表現できる.ここで,指数m, nについては,諸説があるが,mは軟質金属で1に近 い値を取る場合を除き零と考えてよいとされて,nは $0.4\sim1.7$ 程度の数値が実験的に報告¹³⁻¹⁵⁾されてい る.したがって,基本的に式(14)よりボール半径rは大きい方が転がり摩擦係数が小さいことがわか る.Fig.6(b)やFig.9 などにおいて,C22,C19,C13,P11 に着目すると,密度の影響も多少あるが,ボールの 半径の影響が大きいことがわかる.すなわち, D_M の変化は転がり摩擦係数の一般論とも一致してい ることがわかる.

Fig. 10. Rolling friction model of ball.

4.4 ボールの種類と測定精度について

本節では,提案した手法の画像測定の精度を考える.転がり円運動の1周の中で何枚の画像が撮影できるかは,フレームレート fps に依存する. Fig.5 などに示される様に,回転運動の誤差が生じるとボールの転がり軌跡は楕円となる.その定義には最小で8枚程度/周の画像があればよいと考えられる.本報の場合,周期 T=1.5~3.3s を対象にし,30fps で45枚~99枚/周で十分である.

次に Z 方向の影響について考える.カメラの台座 の支えを床に固定すれば,原理的には Z 方向のボー ルの上下変位も測定可能になる.しかし,Z 方向の 分解能は低いことが予想される.Z 方向の測定範囲 は、カメラの光学系の焦点深度に依存することにな る.また,X-Y 平面の画像の結果はテーブル角度の 補正が必要になり,X-Y 平面の測定精度も悪くなる 可能性があると考えられる.一方,本報で用いた様 にカメラの台座を旋回運動するテーブルに固定す れば,Z方向のボールの上下変位は測定できないが, フォーカスのずれもなく,X-Y 平面の画像はテーブ ル角度の補正も必要なく,高い精度で平面上のボー ルの転がり運動の評価が可能になる.

最後に,最も重要と考えられる平面方向の空間分 解能について考える.一般にボールがプレート上を 転がる軌跡のプレート上の座標を Fig.11 に示す. プ レートの制御角度誤差 $\Delta \theta_0(c \neq 1)$ と同期誤差 $\Delta \alpha$ が存 在する場合について考えると式(9)は

$$\theta'(t) = (\theta_0 + \Delta \theta_0) \sin[\omega t + \alpha + \Delta \alpha]$$

= $\varepsilon \theta_0 \sin[\omega t + \alpha + \Delta \alpha], (0 \le \varepsilon)$ (15)

になる.ここで簡単にするため Fig.12(a)を参考して, $\epsilon \neq 1$, $\alpha = 90^{\circ}$ ($\Delta \alpha = 0$)の場合について考えて, $\Delta \theta_0$ は 微小, $\Delta \theta_0$ に対して軌跡の最大変化量 δ は線形とす ると式(8)と式(15)より

$$\frac{\theta_0}{\theta_0 + \Delta \theta_0} = \frac{R}{R + \delta} \tag{16}$$

が得られる. ここで *R* は *ε*=1, *α*=90°の時の基準円 半径で, δ は画素 1 辺の長さである. 式(16)を変形 すると

$$\Delta \theta_0 = \frac{\delta}{R} \theta_0 \tag{17}$$

呉

になる.したがって、角度誤差 $\Delta \theta_0$ は式(17) 画素の 最小分解能 δ と関係づけられる.

次に、式(15)の ε =1, $\alpha \neq 90^{\circ}$ ($\Delta \alpha \neq 0$)の場合につい て考える.この場合、長軸の傾きが X 軸に対して β =45°となる楕円軌道となる.ここで楕円の長軸/2 を R_1 ,短軸/2 を R_2 とすると、その短軸と長軸の比 は $R_2/R_1=\Delta \eta/2$ と表される.ここで、 $\Delta \eta$ は実際ボー ルがプレート上に転がる X 軸と Y 軸まわりの位相 差($\neq 90^{\circ}$)である.したがって、Fig.12(b)より R_1 と R_2 の変化範囲はそれぞれ $R \leq R_1 \leq \sqrt{2R}$, $0 \leq R_2 \leq R$ になり、同期誤差に対して長軸 R_1 の変化が小さく、 R_2 の変化が大きいことがわかる.そこで R_2 の変化 に着目して考えると、Fig.12(b)の楕円の長軸と短軸 の関係は

$$\Delta \alpha = \alpha - \Delta \eta = \alpha - 2 \tan^{-1} \frac{b - \sqrt{2}\delta}{b}$$
(18)

となる.したがって,楕円の短軸の長さの変化に 着目することによって,同期誤差 $\Delta \alpha$ は式(18)画素 の最小分解能 δ と関係づけられる.

2章で示した様に、本報では、カメラの画像の画 素 δ は 0.63mm である. 式(11)で ε≠1 の場合には Fig.12(a)の転がり軌跡, α≠90°の場合には Fig.12(b) の転がり軌跡を評価することになる.ここで,式(7)、 (8), (9)において ε=1 および α=90°を基準にした運 動誤差を考える. Table 1 の種々のボールを用いた場 合の Fig.6 の条件における各ボールでの測定感度の 計算結果を Fig.13 に示す. Fig.13 より, 各ボールと もプレートの傾斜角度 θ(=3°)の誤差に対する測定 感度は同期精度 αの誤差の 10 倍以上高いことがわ かる.また、半径が大きい中空ボール(H42)の測定 感度は高く,転がり摩擦係数が大きいゴムをコート したマウスボール(M22)の運動は安定しているが感 度は低いことがわかる.しかしながらその場合でも, 傾斜角度の誤差で 0.02°/画素以上, 同期誤差では 応答性の高い短軸の変化で考えると 0.5°/画素以上 の検出感度があり,産業用ロボットの運動精度を考 えると十分であることもわかる. さらに, Fig.5 に おいて、マウスボール (M22) の最大転がり誤差は

10mm 程度である. したがって, カメラ画素 0.63mm に対しては十分な分解能を有していることがわか る.

Fig. 11. Three-dimension model of observing ball rolling on the working plate with video camera.

Fig. 12. Pixel size and error of ball rolling motion on the working plate in image processing.

Fig. 13. Sensitivity of different ball on working plate.

5. 結 言

本研究では、現場で簡易的に2軸同期の旋回運動 の運動誤差を診断する方法として、作業プレート上 に円軌道のボールの転がり運動を創成し、その転が り軌道の基準円に対する誤差を用いる新しい手法 を提案している.本報では、使用するボールの摩擦 係数の違いの影響および提案する手法の運動誤差 の計測感度について検討を加えた.その結果、以下 の結論を得た.

(1) コンパクトロボットによる小面積のプレート の操り動作などへの応用を考える場合,共振現象な どの不安定運動に注意する必要があるが,転がり半 径が小さくても十分な誤差を出すために密度の低 い小さなセラミックスボールなどの使用が有効な 手段になる.

(2) 提案する手法は動画からの画像解析に基づい ており、その画素のサイズと運動の角度誤差や同期 誤差の検出感度の関係を検討した.その結果からも、 双腕ロボットにプレート支持をして2軸同期の旋回 運動を行った場合に生じる運動誤差に対して十分 な検出感度を有しており、現場的にも有効な手法で あることが示された.

参考文献

1) 古屋信幸, 岩月正幸, "SCARA 型ロボットの運動制御

の高精度化に関する研究",精密工学会誌, Vol.54, No.5, 173-178, (1988).

- 2)中川昌夫,梨木政行,垣野義昭,井原之敏,"Hexapod 型パラレルメカニズム工作機械の精度向上に関する研 究",精密工学会誌, Vol.67, No.8, 1333-1337, (2001).
- 3) 垣野義昭,井原之敏,亀井明敏,伊勢徹, "NC工作機 械の運動精度に関する研究(第1報)DBB 法による運 動誤差の測定と評価",精密工学会誌, Vol.52, No.7, 1193-1198, (1986).
- W. Wu, T. Hirogaki and E. Aoyama, "Motion Control of Rolling Ball by Operating the Working Plate with a Dual-arm Robot," *International Journal of Automation Technology*, Vol.6, No.1, 75-83, (2012).
- 5) 呉魏,廣垣俊樹,青山栄一,"ボールの転がり運動に 着目した双腕ロボットのプレート 2 軸旋回運動制御の 運動誤差の考察とその改善手法",日本機械学会論文集 C編, Vol.78, No.785, 292-304, (2012).
- 6) 呉魏,廣垣俊樹,青山栄一,"ボールの転がり運動軌跡を用いた作業プレートの2軸旋回運動制御の運動誤差測定とその感度に関する研究(使用するボールの影響と双腕ロボットを用いた検証)",日本機械学会論文集C編, Vol.78, No.793, 3317-3330, (2012).
- 7) 吉本堅一,松下修己, "Mathematica で学ぶ振動とダイ ナミクスの理論"(森北出版株式会社,東京, 2006), pp. 153-161.
- 8) 東森充,内海圭祐,大本康隆,金子真,"ピザ職人の ハンドリングメカニズムに着目した動的操り" 日本機 械学会論文集 C 編, Vol.74, No.743,1825-1833,(2008).
- W. Wu, T. Hirogaki and E. Aoyama, "Investigation of Synchronous Accuracy of Dual Arm Motion of Industrial Robot," *Journal of Key Engineering Materials*, Vol.516, 234-239, (2012).
- 10) 石川義雄, 須田稔,"転がり摩擦の基礎的研究-表面 粗さ形状による摩擦力の変動",精密機械, Vol.45, No.5, 49-54, (1979).
- 11) 渡辺彬, "摩擦の基礎"パワー社, 72-73, (1979).
- 12)田中久一郎, "摩擦のおはなし"日本規格協会,141-153,(1995).
- M. D. Hersey, "Rolling Friction, I Historical Introduction," *Journal of American Society of Mechanical Engineering*, Ser. F, Vol.91, No.2, 260-263, (1969).
- 14) M. D. Hersey, "Rolling Friction, II Cast-Iron Car Wheels," *Journal of American Society of Mechanical Engineering*, Ser. F, Vol.91 No.2, 264-268, (1969).
- M. D. Hersey, "Rolling Friction, III—Review of Later Investigation," *Journal of American Society of Mechanical Engineering*, Ser. F, Vol.91, No.2, 269-275, (1969).