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In the present paper, we focus on the eigenvalue problem of matrices with entries in min-plus algebra. Min-plus algebra is one of many

idempotent semirings which have been studied in various fields of mathematics. Many of the theorems and techniques that we use in classical

linear algebra seems to have analogues in linear algebra over min-plus algebra. However, such kinds of investigation have not yet exploited

sufficiently. In the present paper, we try to give a characterization of eigenvalues of matrices with entries in min-plus algebra. We prove that

eigenvalues of the weighted adjacency matrix of the network on digraphs with entries in min-plus algebra correspond to the average weight

of the directed circuits. However, it is impossible for us to prove that there always exists an eigenvalue of weighted adjacency matrices for

an arbitrary circuit of the network. So, the problem to characterize circuits for which there exits eigenvalues that are equal to the average

weight of the circuit is left as an open problem.
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1. Min-Plus Algebra

1.1 Definition and Basic Algebraic Properties
Let Rpin be a set of reals and the element +o00: Rpyin =
R U{+o0}. The min-plus algebra is an algebra over Ry, with

the two binary operations @ and ®:
a®b=min{a,b} , a®b=a+b.

The operations @ and ® are associative and commutative for

all a, b, ¢ € Ryjn:

ad(bdc)=(@db)dc, a®r(b®c)=(@Rb)®cC

a®db=bda, a®b=>b®a.
In Ryin, € = +o0 is the identity of &:
a®e=¢e®a=min{a,+o0} =a.
The identity of ® is e = 0:
a®e=eQ@a=a+0=a.
If x # &, there exists an inverse y of x with respect to ®:

xXQy=e.

* Graduate School of Engineering, Doshisha University, Kyoto
Telephone:0774-65-6302, E-mail:etk1903@mail4.doshisha.ac.jp
** Graduate School of Engineering, Doshisha University
*** Department of Mathematical Sciences, Doshisha University

Min-Plus algebra, eigenvalue, digraph, circuit

54

The operation ® is distributive with respect to &:
X ®z)=(x®y)®(xQz).
The identity € = +oo of @ is absorbing for ®:
X®eE=eQ@X=Xx+00=+00=¢.
The operation & is idenpotent:
x @ x = min{x, x} = x.

Definition 1. For x € Ry, and k € N, the k™ power of x is
defined by:

x®k=x®x®...®x .
N——
k times

In Runin, the ™ power of x reduces to conventional multipli-

cation x® = kx.

It is easy to verify that the min-plus power has the fol-

lowing properties. For x € Rpyin, m,n € N,

1. x®m ® x®n — x®(m®n)
2. (x®m)®n - x®(m®”)
3. x® =x

4. X" @)% = (x ®y)®".
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1.2 Matrices in Min-Plus Algebra
Here we will discuss on matrices with entries in Ryip.
For m,n € N, let R"*" be a set of all m X n matrices in Rppp.

We will define the several operations in R as follows.
Definition 2.

1. For 4, B € RI™", their sum 4 ® B € R is defined by:
(A S5 B),j = ajj 52} bij = min{aij, b,j} .

mxk kxn : mxn
2. For4 e R and B € R ", their product 4® B € R/
is defined by:

k
(4®B); = g_?(a,-f ®b) =, min (i +by)
3. For 4 € RI™", the transpose matrix ‘4 of 4 is defined

as in conventional algebra (‘A);; = (4);.
4. The n X n identity matrix [, is defined by

eifi=j
([n)ij = .
eifi#j
Then we can see that A® [, = [, ® A = A for 4 € R

We will abbreviate I, = I when the order of a matrix is

clear from the context.

5. For 4 e R™" and k € N, the k™ power of A4 is defined
by:
A =A040...04 .
R

k times

Ifk=0,weset A% = J.

6. For 4 € R and @ € Ry, their product a ® 4 € RI""
is defined by:

(Q@A)ij = a®(A),-j .

The operation & is commutative in R, but ® is not.
The operation ® is distributive with respect to @ in matrices.

Also @ is idempotent in Rﬁﬁ”, that is, we have A @ 4 = A.
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2. Graph Theory and Min-Plus Algebra

2.1 Digraph

A directed graph or, for short, a digraph G is a finite
nonempty set V' of elements called vertices together with a
set E of ordered pair of V called edges. To indicate that a
digraph G consists of the vertex set /" and the edge set E,
we write G = (¥, E). Each elements e € E can be expressed
as (u,v) with u, v € V. In the present paper, we consider the
digraph G = (V, E) with set of vertices V' = {vy,...,v,} and
the set of edges £ = {ey,...,e,}. We introduce the maps
0 :E—>Vandd* : E - Vbyd(e) =u d() = v
for e = (u,v), respectively. In this case, the vertices u# and
v are called the tail and the head of e, respectively, and they
are simply called the end vertices of e. If distinct edges e
and ¢’ have two end vertices in common, then (1)~ (e) =
07 (€), 0% (e) = d*(e’) or (i1)d(e) = 87 ('), 07 (e) = a7 (¢")
occurs. In the first case e and ¢’ are called parallel edges and
the second case, they are called antiparallel edges. An edge
with just one end vertex (07 (e) = 9% (e)) is called a loop.
A graph without loops, parallel edges and antiparallel edges
is called simple. A path P in G is an alternating sequence
of vertices and edges P = (vj,, €;,Vi,,- .., é€i,,V;,) such that
each e has the tail v;,_, and the head v;,, and the vertices and
the edges are pairwise distinct except the vertices v;,, v;,. If
P = (vi.e,vi,...,e,v;) is a path, then v; and v; are
called the initial and the terminal vertex, respectively, and a
path P from v;, to v;_ is expressed as a v;,-v;, path. The path
P is called closed if its initial and terminal vertex coincide;

the closed path is called a circuit. We consider a pair of

parallel edges and a pair of antiparallel edges as circuits.

Definition 3. Let G be a digraph with n vertices and m
edges. We define the adjacency matrix 4 = (a;;) € R™
of G by:

1 if (V,‘, V,) ek
0 if (Vi, Vj) ¢ E

a,-,- =
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2.2 Network

Let G = (V,E) be a digraph with n vertices and m
edges. We assign the integer w(e) to each edge e € E; w(e)
is called the weight of the edge e. The pair N = (G,w) is
called a network on the digraph G endowed with the weight

w.

Definition 4. Let NV be a network on the digraph G. We
define the weighted adjacency matrix B = (b;;) € R™" of N

by:

wie) if e=(v,v)€eE

0 if e=(,v)¢E

bij =

Let P = (vi, e, Viy,--.,€,Vv;,) be apath in N. The
length £(P) = s of the path P is the number of edges in P;
the weight w(P) of the path P is defined by:

s—1

W(P)= ) big, -
k=0

We define the length £(C) and the weight w(C) of a circuit

C in the same way as the difinition for paths.

Definition 5. The average weight of a circuit C is defined

w(C)

2.3 Network in Min-Plus Algebra

Let G = (V,E) be a digraph with n vertices and m
edges and N = (G, w) be a network on G. First we redefine
the weight w' : E — Ry, with values in Ry, in terms of
the weight w as follows: w'(e) = w(e) for w(e) # 0 and
w’(e) = & for w(e) = 0. Then we define the network N’ with
values in Ry, on the digraph G by the pair NV = (G, w’) of
G and w'. Next we define the weighted adjacency matrix of

the network N’ with values in Ry, as follows.

Definition 6. Let N’ be a network on the digraph G with
values in Rp,j,. We define the weighted adjacency matrix

B = (b)) e R of N7 by:

'min

|

w(e) if e=(v,v))€E

if e=(,v)¢E

+00
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Since the conventional addition + becomes the oper-
atin ® in Ry, we compute the weight w(P) of the path

P = (v, e, Vi,-..,e,,v) in the digraph G as follows:

s=1
w(P) = ® b;kikﬂ :
k=0

3. Eigenvalue in Min-Plus Algebra

Here we will discuss on the eigenvalues of matrices
with entries in min-plus algebra. We show that the min-plus

eigenvalues have a graph theoretical interpretation.

Definition 7. Given a matrix 4 € R™"

'min ’

we say that A € Ry
is an eigenvalue of 4 if there exists € R . such that = #

‘(e,¢,...,&) and:
AQxr=AQx.

The vector x is referred to as the eigenvector of 4 for the

eigenvalue A.

The definition above also allows the eigenvalue to be
equal to € and the eigenvector to have entries equal to . We

have the following proposition.

Proposition 8. The identity € of @ is an eigenvalue of 4 if

and only if 4 has a column whose all entries are &.

proof. Let x be an eigenvector of 4 for the eigenvalue A =
&. By definition, the eigenvector « has at least one element
which is not equal to & such that x; # &. Then we will prove
that all entries of the jM column of 4 is equal to &. If one

entry of the j™ column of 4 has a value g;; in i

row, then
we see a;; ® x; # £. On the other hand, 1 ® x; = & since

A = &. Therefore 4 has a column whose all entriesare &. O

For a matrix 4 € R:’nflf", we can construct the network
N’ = (G,w") whose weighted adjacency matrix with en-
ntries in Ry, is identical with 4. To indicate that N’ is deter-
mined by the matrix 4, we write N’ = N(4) = (G(4), w').
The network N (A) with values in Ry, is called the network
associated with the matrix 4 € R". We give one charac-

terization of eigenvalues of matrices 4 € R’" which are not

equal to & in the followg theorem.
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Theorem 9. Any eigenvalue A(# ¢€) of a squre matrix A4

become the average weight of some circuit in N'(4).

proof. For convenience, we assume the set of vertices of
the graph associated with the matrix 4 as V' = {1,2,...,n}.
Then set of edges E consists of pairs of vertices as (7, j) with
suitable i, j € V. Further in the proof, we express paths
and circuits as the sequece of edges for abbreviation. By
definition, an eigenvector  of A has at least one element
which is not equal to &. This means that there exists y; such
that x,,, # &. Therefore h [4® x],, = 1®x,, # &. Hence we
can find a vertex u; with a,,, ® x,, = A® x,,, implying that
Ay, * & Xy, # €and (u1,2) € E. Similarly there exists 3
such that a,,,,,, ® x,, = 1 ® x,,, with (uz,3) € E. Applying
the same procedure as above, we find the vertex y; that we
encounter twice for the first time, then we see u, = wp,
since the number of vertices is finite. So we have found a

circuit C:

C = (s tne1)s Wists he2)s - - - (Miek—15 M)

This has the length £(C) = k and the weight w(C) =

k-1 :
@)1=0 @ purssr» Where fty = ppi. By construction, we have
k=1 k-1
_ ek
®(a,uh+_/‘ﬂh+/+] ® xllh+/'+1) - J’ ® ® xllh-v»/'
J=0 J=0

Since ® converts to + in conventional algebra the equation

above can be written as

k-1
Z(aﬂh+/,‘l/x+_/+l + x,llll+_/‘+l) = k/l + x)uhf/
j=0 j=0
‘We also have that
k-1 k-1
xﬂh+j+l = x,uh+j
J=0 J=0

since u;, = ppx. Using this fact, we can substruct Z’j‘;(l) Xpup,,

from both sides giving us,
k=1
® al‘hﬂﬂh{ﬁl = k/l
J=0
This means that w(C) = kA. Then the average weight of the
circuit C is
w(C) kA

(e ok
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