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Two-step Family of
“Look-ahead” Linear Multistep Method for ODEs
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A family of two-step “look-ahead” linear multistep methods (LALMM) is formulated and analysed. LALMM is a new

class of discrete variable methods for numerical solution of initial-value problem of ordinary differential equations (ODEs).

Two fourth-order pairs of predictor and corrector are derived and showed to be A(f)-stable. The obtained schemes provide

the basis for futher developement of LALMM.
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1. Introduction and motivation

We are concerned with numerical solutions of
initial-value problem of ordinary differential equations
(ODEs) given by

B fey) @sesh), v@=u. )
Here the unknown function y is a mapping [a,b] —
R?, the right-hand side function f is [a,b] x RY — R4
and the initial vector y; is given in R?. Among many
numerical solutions, we are interested in the discrete
variable methods (DVMs) with a constant step-size h to
generate the approximate solution y,, of (1) on the step-
point x,, = a+nh (the book!) is an excellent reference of
the topic). In the previous work?), a new class of DVMs
was proposed as “look-ahead” linear multistep methods

(LALMM). The general framework of LALMM is as

follows.

Assume that we look for the numerical solution
of the (n + k)-th step-point when the back-values

YnsYn+1s-- - Yntk—1 and a pre-assigned initial guess

(0]

Ypir are available.  First, we look ahead for the

numerical solution, discrete variable method, predictor-corrector iteration, convergency, stability

(n+ k + 1)-st step-point by
[0]

k—1
0
Yntks1 T Oékyib_];,_k + g QYnti =
i=0

k—1

h <5kf(xn+kv yi?_]t,_k) + Z 5if(1'n+iv yn+1)> 3(2)

i=0
which can be regarded as a predictor. Then, correct
the look-for value by

k—1

1
y’E],-]‘,-k + Z a:yn+i =
=0

B (B @ W) + Bif e v y)
k—1
=0

When a (local) convergence attains, i.e., the estimation

Iy, — Il < dror

holds for a pre-assigned error tolerance 7oy, we com-
plete the current step and advance to the next step.
Otherwise, we replace yﬂr x by yﬂrk and iterate (2) and

(3). Note that generally we assume a; # o, 3; # 5.
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In the class of LALMM, the already known pairs
are the cases with k = 1% %), which is essentially single-
step, or with & more than four®). As a test-bed of
LALMM, a two-step (k = 2) family should be developed
and practiced. The present note aims the purpose. By
introducing a convenient and powerful technique em-
ploying the the power series expansion of log(1 + &),
we derive several possible schemes of two-step LALMM
with the aimed order of accuracy and analyse their sta-

bility.

2. Corrector equation

According to Theorem 1 of the previous paper?),
the order of accuracy of the predictor of an LALMM
pair can be one less than that of the corrector for the
global convergence of the pair. Thus, first we will anal-
yse the corrector equation.

The Theorem also states that for the convergence

the first characteristic polynomial of corrector p*(¢) =
k—1

ck+ Zaf(i should be restricted to be o}
i=0
certain ¢ and other o*’s zero. Thereofore in the two-

1 for a

step case we assume the corrector in the form:

Yn+2 + oj‘{yn—i-l + a8y7l =

h (ﬂ; frb+3 + 55 fn+2 + ﬁf er+1 + ﬂg fn) (4)

We will consider two types of corrector.
Adams type o] = —-1,a5 =0
Milne type o] = 0,05 =—1

Note that either case satisfies 1 + o + of; = 0, one of
the consistency conditions for the corrector ((15) of the

previous work?)).

2.1 Adams-type corrector

The first and second characteristic polynomials are

PrO=¢~¢ o (Q)=BC+BC+HE (5)

(20)
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We introduce the shift operator S with the reference

step-size h and express the corrector equation as:
p*(S)yn = h(B55° +0*(S)) fu-
Furthermore, an introduction of the the differentiation
operator D yields
p*(S)y(x) — (B55° + 0*(S))hDy(=)
= K, (hD)"*1y(x) + O(h™+?) (6)
for an infinitely differentiable function y(x). Here, the
index ¢, the term I?q(hD)q“‘ly(a:) and the constant I~(q
mean the order of accuracy, the local truncation error
and the error constant, respectively, of the corrector.
Since the equation
Sy(z) = exp(hD)y(z)
holds, Eq. (6) can be formally expressed as:
p(S) = (B35° + 07(8))log S = K,log"' S + O(h*+?)
(7)
This is the key equation which derives ¢ and I?q.

To analyse the order, we note that the formal ex-
pression S = 14+¢ (£ € R, [¢] < 1) is useful. This means
from (7) we have

p(1+6) = (B(1+€)° + 0™ (14 ) log(1 +€)

= Ky log" (1+€) + 0(6772). (8)

Note that the identities p*(1 + &) = (1 + &) and
log(1+¢) =€ (1 - 58+ 58 — 58 +-+)
_ fz (_1)T£r
r=0

r+1
hold (As for this way of analysis, one may refer to

(9)

URABE’s work®)). We introduce new coefficients i by
B3(L+8)° + 0" (L +8) = p3&” + ps€® + pi& + pg,

which yields

100 ol [g] [
310 of 85| |w
32 1 0| 8] |ur
o1 g |
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Therefore, (8) implies
L& = (g + pi8 + p36® + p3g?)
(- je i)
= K, log"(1+&) + 0(6), (10)

which gives ¢ and IN(q by comparing the same power of

& in both sides. In fact, we have the conditions

1= =0, (11)
* 1 *
1- (M - 2#0) =0, (12)
fo = 5k T gto = 0, (13)
H3*§N2+§H1*1Mozoa (14)
which give ¢ = 4 and
Ky = oHs = gH2 + 1H1— gHo:

Note that (11) is equivalent to the second condition of
consistency of the corrector. Egs. (11) to (14) have the

unique solution

/J/O_ 9 /”'1_2a /’(‘2_12v /”'3_ 24a
which implies I~(4 = 11/720. Converting into 3}, we
have

. 1 . 13 . 13 .1

BO__ﬁ7 ﬁ1_247 ﬁ2_24a ﬁS_ 24

Consequently, we derive the Adams-type corrector

given by

Yn+2 = Ynt1 = % (= fre3 + 13 fnyo + 13 fry1 — fu),
(15)
which is of fourth order and the error constant K, =
11/720.

Milne type corrector will be reported later.
3. Predictor equation

Since the corrector has been obtained as of fourth

order, predictor is sufficient to be of third order. As-

(21)
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sume the predictor equation

Yn+3 + Q2Ynt2 + Q1Yn+1 + QoYn

=h (ﬂan-i—Q + ﬁlfn—i—l + 60.](‘71) 5 (16)

whose first and second characteristic polynomials are

given by

p(¢) = @2C* + ar( + ao,

(17)
o(¢) = B2 + B1¢ + fo.

A formal expression of (16) with the shift operator is
(53+p(5)) Yn :hU(S)fn- (18)

Similar to the case of the corrector, the order p and the

error constant K, are defined through
{S% +p(S)} — o(S)log S = K, log"™ S + O(hP*?),
which is equivalent to

1+ +pA+8&) —o(14&)log(l+&) =

K, log" ™ (1+€) + 0(67). (19)

Since the condition 1+ p(1) = 0 should be satisfied for

consistency, we assume
(148> +p(1+8&) =&+ A&+ No)

where A\ = as + 3, \g = 2as + a1 + 3. Note that aq
will be determined by the condition 14 p(1) = 1+ ag +

a1 + ag = 0. Again we introduce new coefficients p; by

o(1+ &) = u2b® + € + o,

which derives

po = P2, p1 =202+ B1, po= P2+ p1+ Bo.

Consequently we have the equation for order determi-

nation as

&2+ A&+ Ao — (u2€? + & + o)
1, 1., 1.4
X<1‘zf+3f‘45*““)
= K2 (14 0(€)). (20)
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3.1 Fifth-order predictor
Full balancing of the powers of £ up to fifth order

in each side yields the equations:

Ao — o =0, (21)

1
/\1—M1+§M0=0, (22)
L (e s b o o

H2 2#1 3u0 =V,

1 1 1
§MQ—§M1+Z,U/O_03 (24)

1 1 1
“ps — ~p1 + —po = 0. 2
3H2 4M1+5M0 0 (25)

Egs. (21) to (25) imply the unique solution

A =30, X\ =21, p =30, p =36, p2=09,
which yields
ag=-10, a1 =-9, ay =18,
fo=3, Bi=18, (=09, (26)

and the error constant K5 = po/4—p1/5+p0/6 = 1/20.

The derived predictor equation is

yn+3+18yn+2_9yn+1_10yn =h (gfn+2 + 18fn+1 + 3fn) .

(27)
3.2 Third-order predictor

In order to make the predictor of third-order ac-
curacy, merely Eqgs. (21) to (23) should be satisfied.
Then, by taking p; and po as free parameters, other

coefficients are determined by

Xo = 5Sp1 — 3ua + 3,
A= g+ S — 3,
fio = 31 — 3pa + 3.
The coefficients of the characteristic polynomials are

given with two parameters p; and ps by

1
ag = i(—7,u1 +6ue +14), ap =2pu; -9,
1
Qg = _Z(,Ufl + 6pp — 18),
1 29
Bo = 5(#1 —4p2 +6),
Br = p1 — 22, B2 = pa.

(22)

One of the options to fix the coefficients is to make
a1 = 1 = 0. This means p; = 9/2 and po = 9/4, and

leads to the predictor equation in a rather simple form

h
Yn+3 — Yn = 1 (9fn+2 + 3fn) (29)

with the error constant K5 = 3/8.
Another option is ag = fp = 0. This implies p; =
46/11 and po = 28/11, and leads to another predictor

equation

4 7

h
Yn+s = TpUn+2 — {Un+1 = ﬁ(28fn+2 —10fns1) (30)

with the error constant K3 = 19/66. Note that this is

essentially an explicit two-step LMM.
4. Derived schemes

LALMM of two-step is carried out in the following

procedure.

Initialisation Given the the equation (1) and the step-

points {z,} (n = 0,1,...; 2o = a,zy = b) with
the step-size h. By utilizing the Heun method twice
from zy, we compute the starting value y; and the

[0]

predicted value y5~. That is, for n = 0 and 1 we

apply

k1= f(xn,yn),

ko = f(zn + h/3,yn + hk1/3),
ks = f(xn + 2h/3,yn + 2hk2/3),
Ynt1 = Yn + (h/4) (k1 + 3k3)

to obtain y; and ygo].

Stepping forward Starting fromn =0tilln =N -2

we repeat the following steps.

1. Utilizing the back-values ¥, Yni1, frn, fnr1

[0

and the initial guess ynJ]rQ, we compute the

look-ahead value yﬂ_:\) by (29), i.e.,

h
yﬂ; =Unt (9f (g2, yﬂg) + 3fn) .
(31)
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2. We correct the look-for value y,42 by (15),

i.e.,

(1

0
yn+2 o) )

= Yn+1 + % <_f(xn+3a yn+3

+13f(37n+27y1[?-]|-2) + 13fn+1 - fn) . (32)

For a pre-assigned error tolerance dror, we

test the local convergence by

[0]

1
Hsz —Yntall < dr0L.

When it holds, we terminate the present step
and proceed to the next step by increasing n

by 1. When the local convergence does not

(0]

attain, replacing ¥, 5 by the present ym_g,

we get back to Step 1.

We will call the above procedure as scheme of Adams

type-A. When (31) is replaced with that by (30), i.e.,

4 0 7
Ynt3 = ﬁy(xn—ﬁ-vaq[ﬂL.]}-Q) + 17 Ynt
h [0]
t17 (28f($n+27yn+2) - 10fn+1> ; (33)

it will be called Adams type-B.

5. Stability

The previous work?) (Eq. (26) there) shows that
the stability polynomial of LALMM is given by

m(¢52) = p*(¢) = 207(C) + Biya2p(C) — Biyaz°a(Q).
(34)
The scheme of Adams type-A has the characteristic

polynomials as

PO =1, o(¢) = {90 +3),
PO =C ¢ 07(O)= 5 (13 + 13— 1)

and 3 = —1/24. Substitution of these results into (34)

derives

m(¢;2) = p2(2)¢° + p1(2)¢ + po(2),

(23)

185
where 13 3
1 - 2.2
P2(2) YRR
13
pi(z) = — <1 + 242) , (35)

1 1
po(z) =z (12 + 322> .
Since 7(; z) is of second degree with respect to ¢, Schur
criterion tells that it is a Schur polynomial, i.e., a poly-
nomial whose roots are all less than unity in magnitude,
if and only if

[p2(2)] > [po(2)] (36)

and 71 ((; z) is Schur, where 71 (¢; 2) is the reduced poly-

nomial from 7({; z) given by

po(2)¢* + p1(2)¢ + po(2),

£ (R(0:2)7(G:2) = w(0: 2)R(G:2).

7(¢;2)
7T1(C§Z)

Since m1((; ) is linear in ¢, a simple calculation gives

the latter condition is equivalent to

[po(2)p1(2) = p2(2)p1 (2)] < [p2(2)* = Ipo(2)*. (37)

When we express z =z +1iy (z,y € R), the two condi-

tions imply that for (x,y) the inequalities

P(x,y) = |p2(2)* = Ipo(2)]?

L1377, 088, L
" g1 3181 y 381
2 4 2 2 4
o — - — 0
YT TtV gy ”

(38)

and

Q(z,y)
= (Ip2(2)1* = Ipo(2)[*)? = |po(2)p1(2) —
219017, 147590111 . ,

T— ————xy x
3667968 729925632
466591, o 283345 ,
3667968 7 7335936 © 7
420377 o 4 AL Al 54
1833084 Y T 8192 , 5192 y
6 6,2 4 4
Y q006 7 Y T g9 Y
1683 , 385 , 4863677 ,
096 1901047~ 3667968
571665479, 2763145, 700315
1459851264 1459851264 7~ 7335936
LTI e ST
407552 T 7335036 Y T 24576 ¢
8 8
To3s1” T ez ¥ 7Y

Wpl('zﬂz

7335036 e

25y —

7241576
+oog T Y+
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should be held. Tt is easily seen that P(z,y) > 1 holds
for all (z,y) (x < 0), i.e., z for Rz < 0, because of the
identity

13 1477 283 11

P(— -1 - -2 abe 2 3
(Coy) =1+ ot Yy tag”
A1

1 1 1
R S S S N N B
Taga ™ T g T Ter TV gy
On the other hand, the condition Q(z,0) > 0 is not nec-
essarily apparent. On the negative real line Q(z,y) > 0

holds, for

16853 , 4863677 ,
6368 3667968

760315 . 7133

Q(—x,()) =2z +

571665479

1459851264 © ' 7335936 © 407552
a1
toe” Tiesat

However, around the origin of the imaginary line

Q(0,y) < 0 holds because of the identity

385, 2763145
Q(0,y) = 19104 Y~ 1459851264 7
23443 1

7335936 7 " 163847

which also shows that (0, y) becomes positive when 3>
is getting considerably large. Therefore, by a help of the
mathematical software, Maple, we draw the contour line
Q(x,y) = 0 on the complex plane and obtain Fig. 1.
By these observations we can conclude that the scheme
of Adams type-A is A(6)-stable with a certain positive
angle 6.

The scheme of Adams type-B can be analysed simi-

larly. Replacement of the characteristic polynomials by

1 1
PO =~ (4C +70), () = 7 (28¢* — 10¢)
implies the two conditions
139 59 23 49
P _q1_ 09 2 49 o 4
(@.y) 32t T2 Tae3Y T 36"
49 ., 49 , 973 L, 973
- - - I O
ot T mse? T2t s 7

and
Q(z,y) =
931 s 93 ., 93 4.,
9108304 * ¥ T 1205536 * Y T 21083047 Y

19537, o, 290N g BSBIL g
383328 1054152 234256
571, 157 , 19 , 3869 4

“2004™ T o6 U T 7267 T 2004
ITOTLL g 139 g 81 o 957905
383328 351384 7 200088 2108304

931 4 931 2382433
8433216 ¢ T 8433216 " 101198592

_ B8L o 8L aa S8l 5
209088 69696 69696

2302369 ., , 2362417 , ,

101198502 © 50599296 © 7

>0

(41)
Again with a help of Maple we draw the region of sta-
bility (Fig. 2) and can conclude that the scheme of
Adams type-B is A(6)-stable.

6. Concluding remarks

The present note provides two pairs of Adams-type
two-step LALMM of fourth-order convergence. Their
stability analysis gives A(f)-stability. These facts sug-
gest their applicability to practical problems. Some pre-
liminary numerical experiments showed their compete-
tiveness with conventional DVMs. However, several is-

sues are remained to challenge.

e Full numerical experiments, in particular with sys-

tem of ODEs

e Development and analysis of Milne-type schemes,

mentioned in §2.

e Exploration of a posteriori error estimation of the
schemes and its application to an automatic step-

size control strategy

They will be reported in succeeding notes.
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Fig. 1. Region of stability of LALMM type-A (Left-hand side of the contour line).

Fig. 2. Region of stability of LALMM type-B (Left-hand side of the contour line).
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