On the Occurrence of Air Entrainment in a Suction Sump

Katsuya HIRATA*, Jiro FUNAKI*, Yoshihiro KUBOTA*, Katsuhisa INAGAKI* and Miki TAOKA*

(Received October 19, 2010)

In the present study, we consider the air entrainment into a suction pipe which is vertically inserted down into a suction sump across a mean free-water surface. This configuration is often referred to as the "vertical wet-pit pump", and has many practical advantages in construction, maintenance and operation. In particular, we focus our concern upon the critical submergence depth S_c , which is one of the prime and conventional indicators for the air-entrainment occurrence. By a systematic approach, we experimentally investigate the influences of kinetic and geometric parameters upon S_c . As the kinetic parameters, we consider the Reynolds number Re and the Weber number We, in addition to the Froude number Fr, on such a basis as Fr is not much larger than unity in many actual cases. As the geometric parameters, we consider back clearance X, sump breadth B and bottom clearance Z. Here, all parameters are non-dimensionalized by the outside diameter D and the intake velocity V_i of the suction pipe. As a result, we reveal the effects of such six parameters upon S_c . The We effect, namely, the surface-tension effect can be ignored at We > 12. And, the Re effect, namely, the viscous effect becomes negligibly small at $Re > 3 \times 10^4$. Under such conditions for We and Re, we could consider only the Fr effect, namely, the gravitational effect. Concerning the X/D and B/D effects, S_c/D attains the maximum at a certain X/D or B/D. On the other hand, the Z/D effect is monotonous, and becomes small at Z/D > 2.5. Some aspects of these geometric effects can be evaluated by a local-Froude-number effect on the basis of the global relation between S_c/D and Fr. And, the other aspects is necessarily considered to be related with the flow structure in the suction sump.

Key words: pumps, air entrainment, vortices, open sump, water intake, two-phase flow

キーワード: ポンプ,空気吸込,渦,吸込水槽,取水口,二相流

取水槽内の空気吸込の発生について

平田 勝哉・舟木 治郎・久保田 義啓・稲垣 勝久・田岡 未樹

1. はじめに

発電プラントや灌漑設備,排水施設などでは,イ ニシャルコストの削減や小型化,高効率化,高性能 化の実現のため,吸込水槽の最適設計が必要とされ る.近年,それらの要求を満たすためのより高水準 な解決策が求められている.そのような状況下では, 吸込管入口への空気吸込が起りやすくなる.空気吸 込は,振動や騒音,揚水効率低下,そして最悪の場 合はポンプ崩壊を引き起こす.よって,空気吸込を 防ぐよう,入念な吸込水槽と吸込管の設計が求めら れる.

吸込水槽では空気吸込が実用的局面での最重要 事項の一つであるので、これまでに空気吸込に関す る多くの研究がなされてきた.

^{*}Department of Mechanical Engineering, Doshisha University, Kyoto 610-0321, Japan Telephone: +81-774-65-6461, Fax: +81-774-65-6830, E-mail:khirata@mail.doshisha.ac.jp

Iversen (1953)¹⁾は, "vertical wet-pit pump" あるい は "vertical suspended pump in a wet well" と呼ばれ る形状を持つ単純なモデルを考えた. そこでは, 吸 込管が自由表面を貫いて垂直に吸込水槽に挿入さ れる.この形状は,構造や維持管理,操作において, 多くの実用的な利点がある.ここで,吸水管は円形 断面を有する直線状パイプであり,吸込水槽は開水 路である.この開水路は,吸込管の下流で,垂直な 背面を有する(Fig. 1参照). そのような簡単な形 状にも関わらず,この吸込水槽内の流れは,非常に 複雑である. 例えば, 空気吸込の基礎研究の為によ く調べられてきた水平オリフィス内流れ(後述)と 比較しても、ずっと複雑である. Iversenは、既存 の吸込水槽内の流れを, "局所渦"や"柱状渦"な どのいくつかのタイプに分類した.彼の研究は、先 駆的なものであるが, 首尾一貫した次元解析を欠い ており、また、定性的なものであった.一方で、彼 は、フルード数Frを唯一の運動パラメータとして考 えるだけでは空気吸込を規定するのに不充分であ ること、つまり、別の力学パラメータがこの現象を 規定するのに更に必要であることを,結論づけてい る. Fraser & Harrison (1953)²⁾は、複雑形状を有する いくつかの吸込水槽に生じる空気吸込を報告した. Denny (1956)³⁾は, 簡単な幾何形状と複雑な幾何形状 の吸込水槽の両者について,様々な形状効果を調査 した.彼は、実務的観点から、空気吸込のスケール 効果に最も重要なパラメータとして, Frなどの無次 元量の代わりに,吸込管入口の有次元流速を提案し た. ここで, スケール効果とは, すべての力学パラ メータ効果を包括したものを指す.

Stevens & Kolf (1957)⁴⁾は,最も簡単な問題の一つ である"水平オリフィス"(あるいは"horizontal orifice", "circular-drain basin")を対象にして, 重力および粘性,接近流の循環,幾何形状に関する 4つの無次元パラメータについて考えた. Hattersley (1965)⁵⁾は,修正vertical-wet-pit-pump形状を含むいく つかの複雑形状を持った吸込水槽の実際の運転状 況下での諸特性を報告した.更に,彼は,いくつか の実用的な空気吸込の防止方法を提案した.また, Iversen と同様に,彼は,空気吸込現象を規定する 為に, Frに加えて, 他の運動パラメータが必要であると指摘した.

Granger (1966)⁶とAnwar (1966)⁷⁾, Maris (1967)⁸⁾, Zielinski & Villemonte (1968)⁹⁾は, Stevens & Kolfと同 様に,水平オリフィスを研究対象とした. Granger は定常かつ軸対称の仮定の下,微小擾乱を考え粘性 解析解を導き,実験と比較した. 一方, Marisは非 粘性の仮定下,粘性一次近似のもとで解析解を求め, 渦度の時間発展を調べた. AnwarとZielinski & Villemonteは,流量係数への粘性および接近流の循 環,幾何形状の影響を示した. Anwarによると半径 レイノルズ数 $Re_s (\equiv \pi Q/(vS)) \ge 10^3$ の時, Zelinski & Villemonteによるとレイノルズ数 $Re_{ti} (\equiv \pi DV_{ti}/v) \ge$ 1.0×10^4 の時,粘性効果を無視できる. ここに, Qお よびv, S, D, V_{ti}は,それぞれ,吸込口での流量お よび動粘度,水深,吸込口直径,理論平均流速であ る.

Anwar (1968)¹⁰ と Domm et al. (1971)¹¹⁾ も, Hattersleyと同様, "vertical-wet-pit-pump"形状を含 む様々な吸込水槽を調査して,いくつかの空気吸込 の防止方法を提案した.彼らの研究は,次元解析上 の一貫性を如いているのだが,吸込口没水深さ*S*と 接近流の循環の両方が旋回流れに大きな影響を及 ぼす点を強調している.一方,Kondo & Maru (1972)¹²⁾は,単純な"vertical-wet-pit-pump"形状を 対象にして,縮尺モデル試験のための折衷規範を提

Fig. 1. Suction sump and suction pipe, with the vertical-wet-pit-pump configuration. D, Outside diameter of a suction pipe; d, inside diameter of a suction pipe; B, sump breadth; X, back clearance; H, water level; S, submergence depth; Z, bottom clearance.

案した.彼らの折衷規範は,Fr相似則と吸込管入口 の有次元速度一致則の中間則である.もちろん,こ の折衷評価は、レイノルズ数Re相似則から、はるか に懸け離れている.

Reddy & Pickford (1972)¹³⁾は, 吸込水槽背面に水平 吸込口を持つ"垂直オリフィス"(あるいは"vertical orifice")を調査した. "垂直オリフィス"とは水 平な吸込口を持つ吸込水槽である.彼らは, Fr相似 則を前提として, $S_{c}/D = Fr$ なる経験則を提案した. また,より実用的規範として $S_{c}/D = Fr + 1$ も提案し た.

Levi (1972)¹⁴⁾は、さまざまな水平オリフィスを実 験的に調べ,その流れの, 竜巻など気象現象への応 用を提案した. Dagget & Keulegan (1974)¹⁵⁾は, グリ セリン水溶液や種々の混合油など数種類の作動流 体を使用することで,水平オリフィスで包括的な実 験を行った.彼らの実験では、定常状態にある空気 糸が自由表面から吸込口まで存在する. なお, 以前 行われた水平オリフィスの基礎研究の多くは,空気 吸込を伴わない条件下での調査であった.彼らは, ウェーバー数We(定義は後述)の効果,さらに, FrとRe,接近流循環係数N_L,二つの幾何形状パラ メータの効果について, 調べた. We効果(または, 表面張力効果) に関する詳述を欠いているが, 彼ら は、流量係数へのWe効果を無視できると指摘した. また,彼らは, Re効果(または,粘性効果)が, Re $(\equiv V_i D/\nu) \ge 3.2 \times 10^4$ のとき, 無視できると結論付けた. ここで、Viの定義は後で示す.彼らと同様、We効果 およびFr効果(または、重力効果), Re効果, N_{Γ} 効果,いくつかの幾何形状効果が, Baum (1974)¹⁶⁾ ∜Baum & Cook (1974)¹⁷⁾, Anwar et al. (1978)¹⁸⁾, Jain et al. (1978)¹⁹⁾によって議論された. BaumとBaum & Cookはさまざまな流体 (sodium, 水, white spirit, Freon 113) を用いた実験を行った. Baum & Cookは, Re効果を無視して $S_c/D_t = 700 (Fr^{0.5} - 4.4Fr/We)$ を 提案した.ここに、D_tは円柱水槽直径である.Anwar et al.は、"水平オリフィス"の代わりに、吸込水槽 側面に吸込口を持つ"垂直オリフィス"を調査した. 彼らの結論では、We効果とRe効果の両方が、Wes(= $\rho Q^2 S/(A\sigma) \ge 10^4$ かつ $Re_S (\equiv Q/\nu S) \ge 3.0 \times 10^4 \mathcal{O}$ ときに

無視できる.前者と後者の条件は,それぞれ, $We \ge 41 - 71 \ge Re \ge 2.3 \times 10^4 - 3.8 \times 10^4$ に対応する.ここで, $We \ge Re$ の換算値は一定ではなく,Frの値に伴い変わることに注意すべきである.なぜならば,彼らの実験装置では,いくつかの形状パラメータが一定値に固定されており,また,一種類の作動流体,つまり,水だけが使用されている.一方,Jain et al.は,二つのサイズの吸込水槽と三種類の作動流体

(水, セルロース水溶液, アルコール水溶液)を使 用して, 整合性のある水平オリフィス実験を行った. 彼らは,接近流の循環が大きくなるにつれて,臨界 没水深さS_c(定義は後述)が大きくなる, すなわち, 空気吸込がより起こり易くなると考えた.この概念 のもとに解析された実験データは、その仮定の正当 性を示した. 彼らの結果によると, We ≥ 11でWe効 果を, $Re/Fr^2 \ge 5.0 \times 10^4$ でRe効果を, それぞれ, 無視 できる. Hecker (1981)²⁰⁾は、様々なモデルと原型と の比較により,以前の研究における寸法効果を要約 した. Farell & Cuomo (1984)²¹⁾とPadmanabhan & Hecker (1984)²²⁾は, Re効果は高Reで無視できること を確認した. もっとも, 両研究では, We効果は考 察対象外であった. Odgaard (1986)²³⁾は、軸対称の 層流を想定し、 $S_c \geq Fr \otimes N_{\Gamma}$ 、Re、Weとを関連付け る寸法効果規範を提案した.

Gulliver & Rindels (1987)²⁴⁾ や Takahashi et al. (1988a, 1988b)^{25, 26)}はvertical-downward flowing intake について,空気吸込を実験的に調べ,空気吸込の発 生条件をFrや N_{Γ} (あるいは,回転フルード数)の 関数とする経験則を提案している. Hite Jr & Mih (1994)²⁷⁾も吸込水槽側壁に吸込口を持つ vertical orificeについて,高Reかつ高Weにおいて,Re効果と We効果を無視し, $Fr \ge N_{\Gamma}$ の影響を明らかにした. Yildirim & Kocabas (1995, 1998)^{28, 29)} は vertical-downward flowing intakeについて考え,We, Fr, Re, N_{Γ} 効果を無視し,流速比と形状パラメー タについてのみ明らかにしている.

最近, Werth & Frizell $(2009)^{30}$ は vertical-wet-pit-pump水槽について, Gulliver & Rindels (1987)の経験則を修正し $S_c / D = 2.1 + 4Fr^{2/3}/3$ を提案した. これは, ANSIのThe 1998 HI Standard $(S_c/D = 1 + 2.3Fr$,後述)よりも、よい近似を与える.

上述の研究の内, 整合性のある次元解析は, 水平 オリフィスなどの最も簡単な形状でのみ取り扱わ れている. なぜならば, 形状パラメータの少ないそ のような単純流れに対してのみ, 整合的な取り組み が適用可能なためである.しかしながら、実際の吸 込水槽 (例えば, Iversen (1953)やFraser & Harrison (1953)に見られる)は、しばしば、実用上の広範囲 の制限や要求のため、複雑な形状を有する.残念な がら,現状では単純なvertical-wet-pit-pump形状のよ うな、わずかに複雑な形状の吸込水槽についてさえ 我々の知識は充分でない. その様なわずかに複雑な 形状の吸込水槽に水平オリフィスの知識を適応す ることも考えられるが、一般的に単純ではない.な ぜなら,水平オリフィスで想定したNrの値を,複雑 形状の吸込水槽で見積もることは容易ではない. つ まり、複雑形状の吸込水槽内で流れは、完全に三次 元的であり,かつ,非常に弱い周期性を伴う強非定 常性を示す.この様な状況下で、N」は通常、力学パ ラメータと幾何学パラメータの両方の関数として 与えねばならないからである.

本研究では、吸込管が自由表面を貫通して垂直下 方に吸込水槽に挿入される、いわゆる、 vertical-wet-pit-pump形状での空気吸込を考える.特 に、没水深さS_cに注目する.ここで、S_cは、空気吸 込発生のための重要かつ慣例的に使用される尺度 である.

vertical-wet-pit-pumpの形状は,実用的な利点が多 い.よって,これまでに理論と実務の双方の視点か ら,多くの研究がなされてきた.それらには,Iversen (1953), Denny (1956), Fujita & Oya (1962)³¹⁾, Hattersley (1965), Kyogoku (1965)³²⁾, Anwar (1968), Kitamura & Kida (1971)³³⁾, Kondo & Maru (1972), Isohata et al. (1975)³⁴⁾, Tagomori (1976)³⁵⁾, Kubota (1978)³⁶⁾, Shinhama et al. (1983)³⁷⁾, Okamoto et al. (1991)³⁸⁾, Tagomori & Ueda (1991)³⁹⁾, Arboleda & El-Fadel (1996)⁴⁰⁾, Constantinescue & Patel (1998)⁴¹⁾, Werth & Frizell (2009)や最近の著者らの研究(Funaki et al. (2008)⁴²⁾とHirata et al. (2009)⁴³⁾)などがある.な お, Funaki et al.では,空気吸込メカニズムを明らか にするために,超音波ドップラー法を使用して,吸 込水槽内の典型的な三次元時間平均流れ場,すなわ ち,時間平均速度分布や渦度分布を示した.更に, Hirata et al.では,単純なコンダクタンスタイプの気 泡センサーを製作し,空気吸込の正確な計測を行い, 従来法での結果と比較した.これまでの成果の一部 は,BHRA⁴⁴⁾やJSME⁴⁵⁾, ANSI⁴⁶⁾などの様々な基準に 反映されている.

これまでのvertical-wet-pit-pump形状に関する研究で は、いくつかの形状効果について議論しているが、 それらの結果は、様々な力学パラメータ効果、すな わち、寸法効果を包含しており、その徹底的な議論 の欠如のため、一般性に乏しい.事際、過去のいく つかの研究では、スケールモデル試験の結果を矛盾 なく説明するためには、Frに加えて他の力学パラメ ータが必要であると結論付けている.そこで、本研 究では、整合性を保証した一連の実験により、6個 の無次元パラメータがScへ及ぼす効果の解明を試 みる.6個の内の3個のパラメータは力学効果、すな わち、重力効果および粘性効果、表面張力効果に関 するものであり、他の三つのパラメータは形状効果 に関するものである.

2. 実験方法

2.1 吸込水槽と吸込管

Fig. 1は、今回対象とするモデルを示す. すなわ ち、単純なvertical-wet-pit-pump形状を持った吸込水 槽/吸込管系である. ここに、Dとdとは、それぞ れ、吸込口の外径および内径である. 前者は、本論 では代表長さスケールとする. 後者は、0.9Dに固定 する. 吸込管の吸込口形状は、ベルマウス型であ る.吸込管は吸込水槽の中心軸上に、上方から垂直 に挿入する. ここに、BおよびX、Zは、それぞれ、 吸込水槽幅および吸込管中心から吸込水槽後壁ま での間隙、吸込管入口と吸込水槽底壁との間隙を示 す.また、Hは、水位、すなわち、平均自由水面の 高さである.よって、パイプの没水深さSは、(H-Z) に等しい.代表速度スケールを吸込管入口の平均流 速Viとする.Viは、以下のように定義する.

33–150
20–215
7–23
14–48
0.45–1.20
1.43–5.30
0.79–5.0
0.26–3.21
0.53-6.05
0.66–2.8
8.3×10 ³ -4.6×10 ⁴
8.6–27
2.3×10 ³ -4.9×10 ⁴
20–500

Table 1. Experimental parameters.

 $V_{\rm i} = 4Q/(\pi D^2).$

(1)

(5)

ここに, *Q*は流出係数, すなわち, 吸込管内の流量 である.また, フルード数*Fr*およびレイノルズ数*Re*, ウェーバー数*We*を, 以下のように定義する.

(2)
(2

$Re = V_i D / v.$	(3)
$Re = V_{i}D/\nu.$	(3)

 $We = V_i (\rho D/\sigma)^{0.5}.$ (4)

ここに、gおよび ν , ρ , σ は, それぞれ, 重力加速 度, 流体の動粘度, 流体の密度, 水と空気との表面 張力を示す. また, 補助パラメータとして, Bond 数Boを考える. Boは以下のように定義する.

$$Bo = \rho g D^2 / \sigma.$$

Table 1は、本研究における実験パラメータとそれ らの範囲を、無次元形状パラメータおよび無次元運 動パラメータと共に示す.

Fig. 2は、本実験装置の概略を示す.ターボポン プA(図中, No.2)は、作動流体(水)を貯水槽(No.1)か ら吸込水槽(No.3)に送る.制御弁により、ポンプA の流量を調節して、吸込水槽の水位Hを定める.吸 込水槽の上流、すなわち、吸込水槽後壁から0.84m 上流に、整流装置(No.4)を設ける.整流装置は直径 0.001mかつ隙間0.001mのワイヤーメッシュ2枚によ って挟まれた、不織布から成る.ベンド・タイプ・ ジェット・ポンプ(No.6)により,吸込水槽から吸込 ロ(No.5)に水を吸い上げる.このジェット・ポンプ は、ターボポンプB(No.7)により,駆動する.ここ で、ジェット・ポンプは、通常の軸流ポンプなどと 比較して、旋回流成分が小さい特徴を有する.電磁 流量計(No.8)により、ジェット・ポンプの一次流量 を測定する.また、三角堰(No.9)により、ジェット・ ポンプの一次流量と二次流量の総和を測定する.こ こで、二次流量は、吸込管内の流量に等しい.最後 に、三角堰からの水は、貯水槽に戻され、水の循環 系が閉じる.

2.2 自由表面形状の分類

Iversen (1953)やDenny (1956), Prosser (1977)⁴⁴⁾, Toyokura et al. (1984)⁴⁵⁾, Padmanabham & Hecker (1984)を参考にしつつ,予備観測を実施し,吸込水 槽内に特有の自由表面パターンを,五つのタイプ(a) -(e)に分類する (Fig. 3を参照).

この分類法は,特に吸込管への空気吸込に注目したものである.考察の容易性と確実性とを重視した結果,本分類は,BHRA⁴⁴⁾やJSME⁴⁵⁾の分類法に近く, 染料などによる流れの可視化を伴うANSI⁴⁶⁾の分類 法とは,若干異なる.

以下に, 五つのタイプ(a)-(e)を説明する.

タイプ(a): Fig. 3(a)に示すように, 吸込管付近の平均 自由表面に浅いへこみ, すなわち, くぼ みを観測できる. くぼみの多くは, 吸込 管の下流に発生する. ここで, くぼみか らの空気吸込はないことに注意すべき

Fig. 2. Experimental apparatus 1. 1, Reservoir; 2, turbo pump A; 3, suction sump; 4, strainer; 5, suction pipe; 6, bend-type jet pump; 7, turbo pump B; 8, eletro-magnetic flow meter; 9, triangle weir.

である.

タイプ(b): Fig. 3(b)とFig. 4(a)とに示すように,空間 的に断続した空気糸,すなわち,ある線 上に一列に連なった一連の気泡を,観測 できる.空気糸の一端は,平均自由表面 の空気糸は吸込管下流に発生し,空気糸 を中心軸として,その周囲の流体が旋回 する.このタイプでは,吸込管への空気 吸込は起こりえるが,吸込まれる空気は, 微量である.

(a) A free-surface dimple near a suction pipe.

(b) A spatially-intermittent air string near a suction pipe

(c) A spatially-continuous air string near a suction pipe

Fig. 3. Types of distinctive free-surface patterns in suction sumps.

タイプ(c): Fig. 3(c)とFig. 4(b)とに示すように,空間 的に連続した空気糸,すなわち,平均自 由表面から吸込管入口へ至る自由表面上 の深いくぼみを,観測できる.タイプ(a) やタイプ(b)と同様,空気糸は,一般に吸 込管下流に発生し,流体旋回の中心軸と なる.このタイプでは,吸込まれる空気 の量は大きく,通常,ポンプ性能への影 響を無視できない.

(d) A free-surface hollow exposed to the peripheral wallof a suction pipe

(e) Submerging air strings

7

- タイプ(d): Fig. 3(d)に示すように,吸込管外周壁に 接する平均自由表面に大きなくぼみを 観測できる.くぼみは,吸込管の一部あ るいは全部を取り囲む.流体は,時に, 吸込管周囲を旋回することがある.空気 は,吸込管周囲の任意の場所から,不規 則に吸込まれ,ポンプ性能に致命的な影 響を与える.
- タイプ(e): Fig. 3(e)に示すように,水中空気糸が観測 できる. この自由表面境界は平均自由表 面に連結していない. さらに述べると, 空気糸の一端は,吸込管入口に達してお り,もう一端は,吸込管の底壁あるいは 側壁,後壁に達する. 他のタイプと同様

に,空気糸は流体旋回の中心軸となる. 吸込水槽内では,自由表面パターンは,ポンプ没水 深Sの減少とともに,通常,タイプ(a)からタイプ(d) へと移行する.一方,タイプ(e)は平均自由表面の存 在とは,直接,関係がない.換言すれば,たとえS が大きい時でも,タイプ(e)は出現し得る.以上の分 類法は,空気と水との間の自由表面の目視観測に基 づいた慣例的なものであることに注意すべきであ る.よって,どのタイプも,空気吸込の発生にも吸 込空気量にも直接関係づけることはできない

2.3 臨界没水深S_c

多くの研究者と同様,本研究では,空気吸込の第 一の指標を,臨界没水深 S_c とする. S_c の定義は,以 下の通りである.没水深S(Fig. 1 を参照)が充分大き い値から零まで減少するとき,まず, $S = S_c$ におい て空間的に連続した空気糸(タイプ(c))が最初に観 察できる.本実験では、 $S \ge 0.005$ m間隔で段階的に 減少させる.各段階では、各々5分間、タイプ(c)を 捜索する.なお、予備試験により、タイプ(c)発生の 周期性は非常に弱いが、5分間の観測は、タイプ(c) を確認するのに充分であることも確認できる.タイ プ(c)の発生は、吸込管への空気吸込の発生を直接意 味しないが、空気吸込発生の充分な指標にはなり得 る(Hirata et al. (2009)を参照).

3. 結果と考察

3.1 支配パラメータ

臨界没水深さS_cに影響を及ぼす有次元量9個を考 える.すなわち,吸込間入口速度V_iおよび吸込管外 径D,吸込水槽幅B,後壁間隙X,底壁間隙Z,重力 加速度g,表面張力σ,流体密度ρ,流体粘性係数 μである.次元解析より,次式を得る.

 $S_c/D = \Phi_1 (Fr, Re, We, B/D, X/D, Z/D).$

(6)

ここに、*Ф*は任意関数(整数i=1, 2, 3, …)である.

(a) Spatially-intermittent air string from the atmosphere to a suction-pipe intake

(b) Spatially-continuous air string from the atmosphere to a suction-pipe intake

Fig. 4. Photographs of air strings.

式(6)において、 $V_i \ge D \ge \varepsilon$ 、それぞれ、代表速度ス ケールと代表長さスケールとして、選ぶ.もし、本 現象で最も重要な力を、慣性力の代わりに重力と見 なすならば、式(6)に代わり、次式を得る.

 $S_{c}/D = \Phi_{2} (Fr, Re/Fr^{2}, Bo, B/D, X/D, Z/D).$ (7)

以下の節では,式(6)または式(7)を想定して,*S*_e/*D* への6個の無次元支配パラメータ*Fr*と*Re*,*We*,*B*/*D*, *X*/*D*,*Z*/*D*,または,*Fr*と*Re*/*Fr*²,*Bo*,*B*/*D*,*X*/*D*, *Z*/*D*の効果の解明を試みる.

式(6)と式(7)のどちらを考えるか,すなわち,第 一に支配的な力が慣性力か重力かは,自由表面の現 象を考える上で最も重要な力学パラメータである Frの値に依存する.(Iversen (1953)とHattersley (1956)を参照).明確に述べると,Fr «1においては 式(6)を,Fr »1においては式(7)を用いるべきである. Fr²は,慣性力の重力に対する全体的なバランスを 表している.そして,それら二つの力は,自由表面 現象を支配する主要な力である.それら二つの主要 な力のバランスを変更する補助的な力として,粘性 力と表面張力とを考えることができる.よって,慣 性力が重力よりも小さくなりがちなFr «1のとき, それら二つの補助的な力は,重力ではなく慣性力の 大きさに近づく.そして,それら二補助力と慣性力 との関係は、二補助力と重力との関係よりも、より 流れに影響を及ぼしやすくなる.そして、Fr » 1で は、その逆となる.

実用的な観点からすると, Fr は多くの場合1より もずっと大きくなることはないので,式(7)よりも式 (6)の方が有用であろう.この考えに基づくと,力学 パラメータとして, Frに加えて, Re/Fr²やBoではな く, ReやWeを考えるべきであろう.

また、代表速度スケールとして、Viの代わりに別 の量を使用でる. 例えば, 代表速度スケールとして, 吸込水槽の平均水路速度V。を選ぶことは、他の一選 択肢になりえる. しかし, Viは, Vsよりも有効であ ると思われる.なぜならば,吸込管入口付近の局所 流れは、より空気吸込に影響を与え得る. さらに、 Vi の使用はV、と比べて、広範囲な実験データをより うまくまとめ得る. 言い換えると, 非常に幅の広い 水槽,つまりB/Dが大きい時,V、は非常に小さい値 をとる.一方で、V、の使用は接近流がより効果的 になる様な狭いパラメータ範囲内では有効と思わ れる. 代表速度スケールと同様, 代表長スケールと して, Dの代わりに別の量を使用できる. 例えば, 代表長スケールとしてBを選ぶことは、他の一選択 肢であろう.しかし、代表速度スケールでの議論と 同様、DはBよりも有効であると思われる.

Fig. 5. Critical submergence S_c/D versus Weber number We: •, B/D = 3.13, X/D = 5.0, Z/D = 0.48, Fr = 0.67 and $Re = 2.2 \times 10^4 (Re/Fr^2 = 4.9 \times 10^4, Bo = 380, 420, 440, 470)$; •, B/D = 3.16, X/D = 1.71, Z/D = 0.71, Fr = 1.35 and $Re = 3.8 \times 10^4 (Re/Fr^2 = 2.1 \times 10^4, Bo = 260, 300)$; •, B/D = 3.16, X/D = 1.71, Z/D = 0.71, Fr = 2.8 and $Re = 3.8 \times 10^4 (Re/Fr^2 = 4.8 \times 10^3, Bo = 95, 130)$.

3.2 力学パラメータの影響

今,式(6)中の三つの力学パラメータFrとRe,We, および,式(7)中の三つの力学パラメータFrとRe/Fr², Boの,S_c/Dへの影響を考える.もし,複数の力学パ ラメータの複合効果の代わりに,一つの力学パラメ ータだけの純粋な効果を知りたければ,一連の試験 を通して,他の力学パラメータとすべての形状パラ メータとを一定の値に保つ様に実験状況を制御し なければならない.

Fig. 5は、WeとS_Dとの関係を示す. すなわち、 Fig. 5では三つの場合についての結果が、円形と菱 形、三角形で表わされている. それぞれの場合にお いて、WeとBo以外のすべての支配パラメータが一 定に保たれている. どの場合においてもS_Dの値が ほぼ同じになることがわかる. この結果は、S_Dへ のWe効果が調査されたWe範囲内で無視できること、 または、S_DへのBo効果が調査されたBo範囲内で無 視できることを示す. よって、We > 12において、 式(6)は次式となる.

 $S_{c}/D = \Phi_{3}(Fr, Re, B/D, X/D, Z/D).$ (8) または, Bo > 95において, 式(7)は次式となる.

S_c/D = *Φ*₄ (*Fr*, *Re/Fr²*, *B/D*, *X/D*, *Z/D*). (9) 厳密に述べると,以下に述べる二つの観点から, 以上の二つの規範*We* > 12と*Bo* > 95は過剰である. 第一に、すべての実験がWe > 12かつBo > 95で行わ れているため、We や Boがより小さい時の知識を欠 いている.第二に、本実験では、Frが 10^0 のオーダ ーである.もし、 $Fr \ll 1$ でさらに実験を行えば、よ り正確なWe規範を見出し得るだろう.また、 $Fr \gg 1$ でさらに実験を行えば、より正確なBo規範を見出し 得るだろう.

同様に厳密に述べると、たとえ、より正確な規範 を見い出したとしても、式(8)に対するWe規範の閾 値が、理論的にFrやRe、B/D、X/D、Z/Dのような他 の支配パラメータに依存することや、式(9)に対する Bo規範の閾値が理論的にFrやRe/Fr²、B/D、X/D、 Z/Dのような他の支配パラメータに依存することに 注意しなければならない.以上は、本研究では対象 範囲外であるが、式(10)で関連した話題について議 論する.

ちなみに, Fig. 5で, We効果を無視できる様なWe 範囲の下限界に関して, 他の研究者の規範の閾値も 示している. これらの規範は, "vertical orifice"や "horizontal orifice"のような簡単な流れ場に関する ものであるが, それらはWe > 12という規範とさほ ど異ならない. Boに関しては, 他の研究者の規範の いくつかが, 論文中に明記されていない為, 記述さ れていない. Anwar et al. (1978) ではBo > 1100であ

Fig. 6. Critical submergence S_c/D versus Reynolds number Re, for several value of suction-sump breadth B: \blacklozenge , B/D = 1.43, X/D = 2.11, Z/D = 0.71, Fr = 1.9 and We = 15-27 (Bo = 62-198); \blacksquare , B/D = 2.11, X/D = 2.11, Z/D = 0.71, Fr = 1.9 and We = 8.7-27 (Bo = 20-198); \blacktriangle , B/D = 3.57, X/D = 2.11, Z/D = 0.71, Fr = 1.9 and We = 8.7-24 (Bo = 20-155); \blacklozenge , B/D = 4.21, X/D = 2.11, Z/D = 0.71, Fr = 1.9 and We = 8.7-24 (Bo = 20-155); \blacklozenge , B/D = 4.21, X/D = 2.11, Z/D = 0.71, Fr = 1.9 and We = 8.7-24 (Bo = 20-155).

り, Bo > 95なる本評価基準とはかなり異なるが, Jain et al. (1978) によるBo > 55 なる規範は本規範 に充分近い.

Fig. 6~Fig. 8は, *Re*または*Re/Fr*²に対する*S_o/D*に示 す.明確に述べると, Fig. 6およびFig. 7, Fig. 8は, それぞれ,値の異なる四つの*B/D*,および,二つの *X/D*,三つの*Z/D*に関するものである.もちろん,各々 の場合で,*We*と*B*oを除き,*Fr*とすべての形状パラ メータを一定の値に固定している.よって,各図で は、WeとBoは、一定に保たれておらず、Reあるい はRe/Fr²の値に応じて、それらの値を変える.しか しながら、結果の大部分がWe > 12であり、結果の 大半がBo > 95である.なお、図中の破線が、これ らの閾値を示す.従って、以下の議論では、We効 果またはBo効果を無視する.なぜならば、以下の議 論では、We > 12 または Bo > 95の結果だけを考察 対象にして、それぞれ、Re効果またはRe/Fr²効果の みを専ら考える為である.

Fig. 7. Critical submergence S_{o}/D versus Reynolds number *Re*, for several value of back clearance *X*: \bigoplus , B/D = 3.57, X/D = 2.11, Z/D = 0.71, Fr = 1.9 and We = 8.7-27 (*Bo* = 20–198); \blacktriangle , B/D = 3.57, X/D = 2.52, Z/D = 0.71, Fr = 1.9 and We = 8.7-27 (*Bo* = 20–198); \bigstar , B/D = 3.57, X/D = 2.52, Z/D = 0.71, Fr = 1.9 and We = 8.7-27 (*Bo* = 20–198).

Fig. 8. Critical submergence S_o/D versus Reynolds number Re, for several value of bottom clearance Z: \blacklozenge , B/D = 3.57, X/D = 2.11, Z/D = 0.26, Fr = 1.9 and We = 8.7-21 (Bo = 20-124); \blacksquare , B/D = 3.57, X/D = 2.11, Z/D = 0.71, Fr = 1.9 and We = 8.7-21 (Bo = 20-124); \blacktriangle , B/D = 3.57, X/D = 1.43, Fr = 1.9 and We = 8.7-24 (Bo = 20-155).

まず, Fig. 6を見る. *Re*が零から約3×10⁴まで増 加する時, *S*_c/*D*は単調増加し, *Re*>3×10⁴の範囲で は, *S*_c/*D*は一定値を保つ.また, *Re*/*Fr*²がゼロから 約8×10³まで増加する時, *S*_c/*D*が単調増加し, *Re*/*Fr*² >8×10³の範囲では, *S*_c/*D*は一定値を保つ.よって, *S*_c/*D*への*Re*効果が, *Re*>3×10⁴の範囲で無視できる ことがわかる.または, *S*_c/*D*への*Re*/*Fr*²効果が, *Re*/*Fr*²>8×10³の範囲で無視できることが分かる.

Reに関する規範は、実験範囲が $Re > 1.4 \times 10^{5}$ に対 するOdgaard (1986)による $Re > 1.4 \times 10^{5}$ なる規範を 除くと、Anwar et al (1978)による $Re > 3.0 \times 10^{4}$ なる 規範やDagget & Keulegan (1974) による $Re > 3.2 \times$ 10^{4} なる規範に、よく一致する.Fig. 7とFig. 8とは、 Fig. 6と異なる形状パラメータに注目した結果であ る.Fig. 7とFig. 8とでは、Fig. 6と同様な傾向および 同じ規範を確認できる.従って、式(8)と式(9)とは、 $Re > 3 \times 10^{4}$ あるいは $Re/Fr^{2} > 8 \times 10^{3}$ の条件下で、次式 と見なせる.

 $S_c/D = \Phi_5(Fr, B/D, X/D, Z/D).$ (10) 厳密に述べると、WeとBoに関する規範と同様に、 Re > 3×10⁴とRe/Fr² > 8×10³のような2つの規範は過 剰である. なぜならば、Fig. 6~Fig. 8のすべての実 験はFr = 1.9であり、10⁰のオーダーである.もし、 Fr « 1で追加実験を行えば, Reに関して,より正確 な規範を見出し得るだろう.もし, Fr » 1,で追加 実験を行えば, Re/Fr²に関して,より正確な規範を 見出し得るだろう.

同様に、厳密に述べると、たとえ式(10)における ReやRe/Fr²の規範の正確な閾値が分かったとして も、それらの閾値は理論的に他の支配パラメータに 依存することに注意すべきである.事実,Fig.8で はZ/Dの増加に従い, ReとRe/Fr²との両閾値がわず かに増加することを確認できる. ただし, Fig. 6と Fig. 7とにおける閾値がそれぞれB/DとX/Dとの明確 な影響を受けているとは、認め難い. そして、式(8) と式(9)とについての以前の議論と同様, Frが両閾値 に及ぼす影響は、B/DやX/D, Z/Dが両閾値に及ぼす 影響と共に、本論の考察範囲外である.一般に、Fr の増加に伴い, Reの閾値は増加すると考えられる. なぜならば、Frの増加は、一定のReでの粘性力に対 する重力の相対的減少を引き起こすからである.対 照的に, Frの増加に伴い, Re/Fr²の閾値は減少する と考えられる.なぜならば、Frの増加は、一定の Re/Fr²での粘性力に対する慣性力の相対的増大を引 き起こすからである.

Fig. 9. Critical submergence S_c/D versus Froude number *Fr*, for several value of suction-sump breadth *B*: \blacklozenge , B/D = 2.11, Z/D = 2.11, Z/D = 0.71, $Re = 3.8 \times 10^4$ and We = 20-26 (Bo = 105-309); \blacksquare , B/D = 3.57, X/D = 2.11, Z/D = 0.71, $Re = 3.8 \times 10^4$ and We = 20-26 (Bo = 105-309); \blacklozenge , B/D = 4.21, X/D = 2.11, Z/D = 0.71, $Re = 3.8 \times 10^4$ and We = 20-26 (Bo = 105-309); \blacklozenge , B/D = 4.21, X/D = 2.11, Z/D = 0.71, $Re = 3.8 \times 10^4$ and We = 20-26 (Bo = 105-309); \blacklozenge , B/D = 4.21, X/D = 2.11, Z/D = 0.71, $Re = 3.8 \times 10^4$ and We = 20-26 (Bo = 105-309); \blacklozenge , B/D = 4.21, X/D = 2.11, Z/D = 0.71, $Re = 3.8 \times 10^4$ and We = 20-26 (Bo = 105-309); \blacklozenge , B/D = 4.21, X/D = 2.11, Z/D = 0.71, $Re = 3.8 \times 10^4$ and We = 20-26 (Bo = 105-309). \frown and \frown . \frown , Reddy & Pickford (1972); \frown . \frown , the 1998 HI Standard; \cdots , Werth & Frizell (2009).

よって、以降に示す全ての結果は $Re > 3 \times 10^4$ のもの である. つまり、Re効果の議論を避ける為、 3×10^4 より充分大きなReを考える. 同様に、以降に示す全 ての結果は Re/Fr^2 効果の議論を避ける為、Fig. 9を除 き、 $Re/Fr^2 \gg 8 \times 10^3$ のものである.

補足すると、Fig. 6およびFig. 7、Fig. 8では、それ ぞれ、*B/D*および*X/D、Z/DのS*_c/Dへの効果を確認で きる.次の節では、そのような形状効果を詳細に議 論する.Fig. 6~Fig. 8中の $Re > 3 \times 10^4$ あるいは $Re/Fr^2 > 8 \times 10^3$ で、 S_c/D が取り得る値の範囲を比較す ると、*B/D*効果と*Z/D*効果は、*X/D*効果より一見して 強そうである.そして、三つの効果とも、一見して 複雑ではなさそうである.なぜならば、*B/D*の増加 につれても(Fig. 6を参照)、あるいは、*X/D*の減少に つれても(Fig. 7を参照)、*Z/D*の減少につれても(Fig. 8を参照)、*S_c/D*は単調増加する.しかしながら、以 上の結論は、*B/DやX/D、Z/D*などのパラメータの試 験範囲に依存する(同様に次の節を参照).

 $Re < 3 \times 10^4$ あるいは $Re/Fr^2 < 8 \times 10^3$ での結果を考 慮するときは、粘性効果の為に、他に別の注意が必 要になる. すなわち、 $Re \stackrel{e}{Re/Fr^2}$ の値に依存する様 な結果は、一般性が乏しい.例えば、Fig. 6におい て、 3×10^4 以下のある一定のReで、または、 8×10^3 以下のある一定の Re/Fr^2 で、 S_c/D はB/D = 2.11で極小 値を示す.対照的に、(後に示されるが)粘性効果 を無視できるくらい大きい Re/Fr^2 あるいはReにお いては、あるB/Dの値で S_c/D は極大値を示す.

上の段落を補足すると、極小さい値の*Re*または *Re/Fr*²では、それらの値が減少するにつれて、*S*_c/*D* は、単調減少傾向を示すのではなく、むしろ、約0.5 の一定値を保つ傾向を示す(Fig. 6とFig. 8とを参照). この*S*_c/*D*が一定値をとる傾向は、タイプ(d)の空気吸 込の発生に関係づけられることを確認した.

Fig. 9は、異なるB/Dの三つのケースにおける、Frと S_o/D との関係を示す. もちろん、各ケース毎に、 Re/Fr^2 およびWe, Boを除き, 他の支配パラメータ (ReやB/D, X/D, Z/D) は一定値に保つ. 全ての結果は、 We > 12かつBo > 95であるので、We効果とBo効果は 共に無視できる. しかしながら、いくつかの結果は $Re/Fr^2 < 8 \times 10^3$ であり、 Re/Fr^2 効果は常に無視出来る 訳ではない. 従って, $Re/Fr^2 < 8 \times 10^3$ に対応するFr > 2では, 純粋なFr効果が現れておらず, 粘性効果 に影響を受けたFr効果が現れている可能性がある. 実際, Fig. 9では, Fr > 2で, Frの増加に伴う S_c/D の 増加率が減少しているが, この傾向は, Re/Fr^2 効果 に関係づけられるかもしれない.

一般に、Frは、自由表面を有する様々な流体運動 現象において、最も重要な力学パラメータの1つで ある(Iversen (1953) とFarell & Cuomo (1984)を参 照). Fr < 2では、 $Fr \dot{\sigma} S_c / D$ に及ぼす純粋な効果を確 認できる. つまり、 $Fr \dot{\sigma} S_c / D$ に及びす純粋な効果を確 認できる. つまり、 $Fr \dot{\sigma} S_c / D$ は 単調増加する. しかしながら、Fr > 2では、純粋な Fr効果が観測できているとは限らず、Fr効果と Re/Fr^2 効果の複合効果を観測しているかもしれない. そして、この複合効果は、多くの実際のモデル試験 で、容易に起こり得る.

なお、Fig. 9には、他の研究者による、 $Fr \geq S_o / D$ との関係式も示している. その内で、Reddy & Pickford (1972) による $S_o / D = Fr$ なる経験式は、本実 験とのよい近似を示す. 他の三つの経験式、特に HI Standard (1998) と、Werth & Frizell (2009) は、過 剰な S_o / D を示す. なお、Werth & Frizellの経験式にも、 本研究と同様に、Frの増加に伴う S_o / D 増加率の減少 傾向が見られるが、彼らの減少傾向は、 Re / Fr^2 効果 ではなく、用いたGulliver & Rindels (1987) による実 験結果のばらつきを反映していると思われる.

ところで, Fig. 9では, B/Dが S_c/D へ及ぼす効果を 確認することができる. 次の節では, そのような形 状効果について詳しく議論する. 一見して, B/D効 果は複雑ではなさそうである. 実際, Fig. 9では, $Re/Fr^2 > 8 \times 10^3$ に注目すると, B/Dの増加につれて S_c/D が単調増加する. しかしながら, この単調さは, テストされた範囲のB/Dに依存することを後に示す. (次の節を参照).

3.3 形状パラメータの影響

次に,三つの形状パラメータ*B/D*および*X/D*,*Z/D*の*S_c/D*への効果を考える.

Fig. 10は, *B*/*D*と*S*/*D*との関係を示す.ここでは, 異なる*X*/*D*の二つのケースを調べ,それらを図中の 中実菱形と中実正方形とで示す. もちろん, それぞ れのケースで, B/D以外の全ての支配パラメータは 一定に保つ. 両ケースで, 四つの規範, すなわち, $We > 12 \ge Bo > 95$, $Re > 3 \times 10^4$, $Re/Fr^2 > 8 \times 10^3 \varepsilon$ 全て 満足していることに注意すべきである. よって,本 結果は, 一般性が保障されている. すなわち, We > 12かつBo>95, Re>3×10⁴, Re/Fr²>8×10³での,得 られる結果は全て同じになると考えられる.ちなみ に,図10中の中空菱形と中空正方形は,それぞれ, Kitamura & Kida (1971)とTagomori (1976)など他 の研究者の実験結果を示す.

Fig. 10. Critical submergence S_c/D versus suction-sump breadth *B*, for several value of back clearance *X*: \blacklozenge , *X/D* = 0.79, *Z/D* = 0.71, *Fr* = 1.6, *Re* = 3.8×10^4 and *We* = 22.4 (*Re/Fr²* = 1.5×10^4 , *Bo* = 197); \blacksquare , *X/D* = 1.32, *Z/D* = 0.71, *Fr* = 1.6, *Re* = 3.8×10^4 and *We* = 22.4 (*Re/Fr²* = 1.5×10^4 , *Bo* = 197); \diamondsuit , Kitamura & Kida (1971), *X/D* = 0.95, *Z/D* = 0.48, *Fr* = 0.68–0.75 and *Re* = 1.3×10^5 ; \Box , Tagomori (1976), *X/D* = 0.92, *Z/D* = 0.58, *Fr* = 0.68 and *Re* = 1.0×10^5 .

Fig. 11. Critical submergence S_c/D versus back clearance X, for several value of sump breath B: \blacklozenge , B/D = 3.16, Z/D = 0.71, Fr = 1.6, $Re = 3.8 \times 10^4$ and We = 22.4 ($Re/Fr^2 = 1.5 \times 10^4$, Bo = 197); \blacksquare , B/D = 4.21, Z/D = 0.71, Fr = 1.6, $Re = 3.8 \times 10^4$ and We = 22.4 ($Re/Fr^2 = 1.5 \times 10^4$, Bo = 197); \diamondsuit , Isohata et al. (1975), B/D = 2.5, Z/D = 0.60, Fr = 0.68 and Re = unknown; \Box , Tagomori (1976), B/D = 2.3, Z/D = 0.58, Fr = 0.68 and $Re = 1.0 \times 10^5$.

本実験の両ケースとも、B/Dが零から増えるにつ れて、S_/Dは増加する.その後、あるB/Dで、S_/D は最大値に達する.さらに、B/Dが増すと、逆に、 B/Dの増加につれてS_/Dは減少する.この様なB/D効 果は、複雑である.例えば、Tagomoriによると、B/D の増加につれて、S_/Dは単調減少する.一方、 Kitamura & Kidaによると、逆に、B/Dの増加につれ てS_/Dは単調増加する.今回の結果と彼らの結果と の不一致は、支配パラメータの不一致に加え、彼ら のB/D範囲が限られた狭さであることにより生じた と考えられる.

B/Dの増加に伴うS_/Dの増加傾向を,直接説明す ることは難しそうである.この傾向は,吸込管下流 近傍での渦形成への吸込水槽側壁の干渉が関係し ていることも考えられ (Funaki et al. (2008)を参 照),今後のより詳細な研究が必要であろう.一方, B/Dの更なる増加に伴う,S_/Dの減少傾向について は、もしFig.9で見られるS_/Dに対する(全体的) Fr効果を想定するならば,その理解は容易そうであ る.すなわち,B/Dの増加に伴い,吸込管入口近く の局所流速が減少することはありがちであろう.局 所流速の減少は対応する局所フルード数の減少を 引き起こす.もし適当な位置での局所フルード数が S_/Dに及ぼす効果も(全体)フルード数がS_/Dに及 ぼす効果と同傾向であると仮定するなら,B/D増加 に伴うS_/Dの減少傾向は容認されよう.なぜなら, 空気吸込には,全体的フルード数よりも吸込管入口 近くの局所的フルード数のほうが,より決定的かつ 効果的であると考えられるからである.

Fig. 11は, X/DとS_o/Dとの関係を示す. ここでは, 異なるB/Dの二つのケースを調べ, それらを図中の 中実菱形と中実正方形とで示す. もちろん, それぞ れのケースで, X/D以外の全ての支配パラメータは 一定に保つ. より広い適用可能性を保障するため, 両ケースで, 四つの規範, すなわち $We > 12 \ge Bo > 95$, $Re > 3 \times 10^4$, $Re/Fr^2 > 8 \times 10^3 \& 2 \le 10^3 \&$

それぞれのケースで, X/Dが零から増すにつれて, S_c/Dは増加する. そして,あるX/Dで,S_c/Dは最大 値に達する. X/Dがさらに増加するとき, X/Dの増 加につれてS_c/Dは一定値に近づきながら減少する. この様なX/D効果は, Tagomori (1976)と定性的に同 様であり, Isohata et al. (1975)よりも複雑である. つまり, Isohata et al.では, X/Dの増加につれてS_c/D が単調増加する. 今回の結果と彼らの結果との不一 致は,支配パラメータの不一致に加え,彼らのX/D 範囲が限られた狭さであることにより生じたと考 えられる.

Fig. 12. Critical submergence S_c/D versus bottom clearance Z: \diamondsuit , B/D = 3.16, X/D = 2.11, Fr = 1.6, $Re = 3.8 \times 10^4$ and We = 22.4 ($Re/Fr^2 = 1.5 \times 10^4$, Bo = 197); \Box , B/D = 3.16, X/D = 2.52, Fr = 1.6, $Re = 3.8 \times 10^4$ and We = 22.4 ($Re/Fr^2 = 1.5 \times 10^4$, Bo = 197); ---, Kondo & Maru (1972), B/D = 2.50, X/D = 1.40, Fr = 1.3 and $Re = 2.4 \times 10^5$.

(14)

*B/D*が零からある値まで増加するにつれて,*S*_c/*D* が増加する傾向(Fig. 10を,参照)と同様に,上述 の複雑な*X/D*効果を直接説明することは難しそうで ある.この複雑な効果を理解するためには,吸込管 下流近傍での渦形成への吸込水槽背壁との干渉,あ るいは,渦形成の背壁による増幅に関する更なる詳 細な調査が必要であろう.(Funaki et al. (2008)を, 参照).

Fig. 12は, Z/DとS_/Dとの関係を示す. ここでは, 異なるX/Dの二つケースを調べ,それらを図中の中 空菱形と中空正方形とで示す. もちろん,それぞれ のケースで,Z/D以外の全ての支配パラメータは一 定に保つ.より広い適用可能性を保障するため,両 ケースで,四つの規範,すなわちWe > 12とBo > 95, Re > 3×10^4 , Re/Fr² > 8×10^3 を全て満足していること に注意すべきである.ちなみに,Fig. 12中の破線は, 他の研究者,すなわち,Kondo & Maru (1972)の実験 結果を示す.

*B/D*がある値を超えてさらに増加するにつれて *Sc/D*が減少する傾向と同様(Fig. 10を,参照), *Z/D* の増加につれて*Sc/D*が減少する傾向を理解するこ とは、もしFig.9で見られる*Sc/D*に対する(全体的) *Fr*効果を想定するならば、その理解は容易そうであ る.なぜならば、吸込管入口と吸込水槽底壁との間 隙が広がるほど、局所流速は低下しがちになるから である.局所流速の低下は、対応する局所フルード 数の減少を引き起こす.よって同様に、もし適当な 位置での局所フルード数が*Sc/D*に及ぼす効果も、

(全体)フルード数が*S*_c/*D*に及ぼす効果と同傾向で あると仮定するなら,*Z*/*D*増加に伴う*S*_c/*D*の減少傾 向は容認されよう.

更に述べると、Z/D > 2.5で、 S_{o}/D は、小さな値を 示す傾向がある.そして、その値は、Z/Dによらず ほぼ一定である.このことは、ある程度大きなZ/Dでは、吸込水槽底壁の存在の影響を無視できること を示唆している.

4. おわりに

vertical wet-pit pump形状を持つ吸込水槽/吸込管 系での吸込管への空気吸込を考えた.空気吸込発生 についての最重要かつ慣例的指標である臨界没水 深さ*S*_cに関して,多くの実験を実施して,主要な力 学および幾何学パラメータが*S*_cへ及ぼす影響を明 らかにした.結果は以下のとおりである.

(1) $S_c/D \sim 0Fr$, Re, $We 0 \equiv 00$ 力学パラメータ 効果を考えるとき, Re効果は $Re > 3 \times 10^4$ で無視でき, We効果はWe > 12で無視できる. 一方, Re/Fr^2 効果 は $Re/Fr^2 > 8 \times 10^3$ で無視でき, Bo効果はBo > 95で無 視できる. 前者は, $Fr \ll 1$ で, 適当と考えられる. 後者は, $Fr \gg 1$ で, 適当と考えられる. 実用的な観 点からすると, Fr は多くの場合1よりもずっと大き くなることはないので, 前者のみを考えればよいで あろう. よって, 通常, $Re > 3 \times 10^4$ かつWe > 12な る二つの規範の下で, ただ一つの力学パラメータFrのみを考えればよい.

(2) 幾何学パラメータX/D, B/D, Z/DのS_c/Dへの 効果を考えるとき,X/D効果とB/D効果に関しては, あるX/DまたはあるB/Dで,S_c/Dは最大値を示す.一 方,Z/D効果は単調であるが,Z/D > 2.5のときS_c/D はZ/Dに依存しない一定の小さな値をとる.

これらの形状効果のいくつかの局面は, *S*_e/*D*に対 する(全体的)*Fr*効果を想定すると,容易に説明で きる.一方,他のいくつかの局面は,直接説明する ことが現段階では難しそうである.これらの局面を 理解するためには,吸込水槽内の複雑な流れ構造に ついての解明とその為の更なる詳細な調査が必要 である.

本論文の編集には、同志社大学、山口達郎氏と加 治大伸氏の援助を受けた.ここに記して、感謝の意 を表す.

参考文献

- Iversen, H. W., "Studies of Submergence Requirement of High Specific Speed Pumps," *Trans. of ASME*, Vol. 75, pp. 635-641 (1953).
- Fraser, W. H. and Harrison, N. J., "Hydraulic Problems Encountered in Intake Structures of Vertical Wet-Pit Pumps and Methods Leading to Their Solution," *Trans. of ASME*, Vol. 75, No. 4, pp. 643-652 (1953).
- Denny, D. F., "An Experimental Study of Airentraining Vortices at Pump Sumps," *Proc. of IMechE*, Vol. 170, No. 2, pp. 106-116 (1956).

- Stevens, J. C. and Kolf, R. C., "Vortex Flow through "horizontal Orifices," *Journal of the Sanitary Engineering Division, Proc. of ASCE*, Vol. 83, No. SA6, pp. 1-22 (1957).
- Hattersley, R. T., "Hydraulic Design of Pump Intakes," Journals of the Hydraulics Division, Proc. of ASCE, Vol. 91, No. HY2, pp. 223-248 (1965).
- Granger, R., "Steady Three-Dimensional Vortex Flow," *Journal of Fruid Mechanics*, Vol. 25, No. 3, pp. 557-576 (1966).
- Anwar, H. O., "Formation of a Weak Vortex," *Journal of Hydraulics Research*, Vol. 4, No. 1, pp. 1-16 (1966).
- 8) Marris, A. W., "Theory of the Bathtub Vortex," *Journal of Applied Mechanics*, March, pp. 11-15 (1967)
- Zielinski, P. B., and Villemonte, J. R., "Effect of Viscosity on Vortex-Orifice Flow," *Journal of the Hydraulics Division, Proc. of ASCE*, Vol. 94, No. HY3, pp. 745-752 (1968).
- Anwar, H. O., "Prevention of Vortices at Intakes," *Water Power*, October, pp. 393-401 (1968).
- Domm, U., Rosemann, P. and Siekmann, H., "Modelluntersuchung der Einlaufstromung einer groben Kuhlwasserpumpe," Z. Flugwiss., 19, Heft 8/9, pp. 374-379 (1971).
- 12) Kondo, M. and Maru, S., "Submergence Requirements of Pumps in Rectangular Open Sumps," *Hitachi Hyoron*, Vol. 54, No. 6, pp. 511-515 (1972). (in Japanese)
- Reddy, Y. R. and Pickford, J.A., "Vortics at Intakes in Conventional Sumps," *Water Power*, March, pp. 108-109 (1972).
- 14) Levi, E., "Experiments on Unstable Vortices," *Journal of the Engineering Mechanics Division, Proc. of ASCE*, Vol. 98, No. EM3, pp. 539-559 (1972).
- 15) Dagget, L. L., and Keulegan, G. H, "Similitude in Free-Surface Vortex Formation," *Journal of the Hydraulics Division, Proc. of ASCE*, Vol. 100, No. HY11, pp. 1565-1581 (1974).
- 16) Baum, M.R., "Gas Entrainment at the Free Surface of a Liquid: Entrainment Inception at a Laminar Vortex," *Journal of British Nuclear Engineering System*, Vol. 13, pp. 203-209 (1974).
- 17) Baum, M. R. and Cook, M. E., "Gas Entrainment at the Free Surface of a Liquid: Entrainment Inception at a Vortex with an Unstable Gas Core," *Nuclear Engineering and Design*, Vol. 32, pp 239-245 (1975).
- 18) Anwar, H. O., Weller, J. A. and Amphlett, M. B., "Similarity of Free-Vortex at Horizontal Intakes," *Journal of Hydraulic Research*, Vol. 16, No. 2, pp. 95-105 (1978).

- 19) Jain, A. K., Ranga Raju, K. G. and Garde, R. J., "Vortex Formation at Pipe Intakes," *Journal of the Hydraulic Division*, *Proc. of ASCE*, Vol. 104, No. HY10, pp. 1429-1445 (1978).
- 20) Hecker, G. E., "Model/Prototype Comparison of Free Surface Vortices," *Journal of the Hydraulic Division*, *Proc.* of ASCE, Vol. 107, No. HY10, pp. 1243-1259 (1981).
- 21) Farell, C. and Cuomo, A. R., "Characteristics and Modeling of Intake Vortices," *Journal of Engineering Mechanics*, ASCE, Vol. 110, No. 5, pp. 723-742 (1984).
- 22) Padmanabhan, M. and Hecker, G. E., "Scale Effect in Pump Sump Models," *Journal of Hydraulic Engineering*, *ASCE*, Vol. 110, No. 11, pp. 1540-1556 (1984).
- 23) Odgaard, A. J., "Free Surface Air Core Vortex," *Journal of Hydraulic Engineering, ASCE*, Vol.112, No.7, pp. 610-620 (1986).
- 24) Gulliver, J. S. and Rindels, A. J., "Weak Vortices at Vertical Intakes," *Journal of Hydraulic Engineering*, ASCE, Vol. 113, No. 9, pp. 1101-1116 (1987).
- 25) Takahashi, M., Inoue, A, and Aritomi, M,"Gas Entrainment at Free Surface of Liquid (I)," *Journal of Nuclear Science and Technology*, Vol. 25, No. 2, pp. 131-142 (1988).
- 26) Takahashi, M., Inoue, A. and Aritomi, M., "Gas Entrainment at Free Surface of Liquid (II)" *Journal of Nuclear Science and Technology*, Vol. 25, No. 3, pp. 245-253 (1988).
- 27) Hite Jr., J. E. and Mih, W. C., "Verocity of Air-Core Vortics at Hydraulic Intakes," *Journal of Hydraulic Engineering, ASCE*, Vol. 120, No. 3, pp. 284-297 (1994).
- 28) Yildirim, N. and Kocabas, F., "Critical Submergence for Intakes in Open Channel Flow," *Journal of Hydraulic Engineering, ASCE*, Vol. 121, No. 12, pp. 900-905 (1995).
- 29) Yildirim, N. and Kocabas, F., "Critical Submergence for Intakes in Still-Water Reservoir," *Journal of Hydraulic Engineering, ASCE*, Vol. 124, No. 1, pp.103-104 (1998).
- Werth, D. and Frizzell, C., "Minimum Pump Submergence to Prevent Surface Vortex Formation," *Journal of Hydraulic Research*, Vol. 47, No. 1, pp. 142-144 (2009).
- 31) Fujita, K. and Oya, K., "Suction Water Tank of the Pump," *Hitachi Hyoron*, Vol. 45, Suppl., pp. 41-46 (1962). (in Japanese)
- 32) Kyogoku, T., "Suction Sump of Diagonal Pump with Vertical Axis – Part 2," *Pump Kougaku*, Vol. 1, No. 3, pp. 160-165 (1965). (in Japanese)
- 33) Kitamura, N. and Kida, K, "Problems in Planning of Pump Suction Sump," *Journal of JSME*, Vol. 74, No. 630, pp.

814-820 (1971). (in Japanese)

- 34) Isohata, E., Morigaki, S., Munemi, S. and Sawada, K., "Problems and Their Solutions in Designing a Pump Intake," *Mitsubishi-Ju-Ko Giho*, Vol. 12, No. 1, pp. 33-40 (1975). (in Japanese)
- 35) Tagomori, M., "Flow Patterns and Airentraining Vortices in Suction Sumps (the Effects of Bell-Mouth Diameter and Sump's Dimensions)," *Turbo Kikai*, Vol. 7, No. 8, pp. 451-460 (1957). (in Japanese)
- 36) Kubota, N., "Influence of Sump Profile on Mixed Flow Pump Characteristics (Concerning Characteristics at Partial Capacities)," *Dengyosha Kikai*, Vol. 2, No. 2, pp. 30-35 (1978). (in Japanese)
- 37) Shinhama, H., Tsunoda, T. and Yamamoto, Y., "An Experimental Study of Open Channel Pump Sumps," *Kubota Technical Report*, No. 15, pp. 1-7 (1983)
- 38) Okamoto, H., Kamemoto, K. and Nakaguchi, I., "Intermittence of the AiRentraining Vortex and the Submerged Vortex in a Suction Sump," *Trans. of JSME* (*Series B*), Vol. 57, No. 536, pp. 1210-1213 (1991). (in Japanese)
- 39) Tagomori, M. and Ueda, H., "An Experimental Study on Submerged Vortices and Flow Pattern in the Pump Sump," *Trans. of JSME (Series B)*, Vol. 57, No. 543, pp. 3641-3646 (1991). (in Japanese)
- 40) Arboleda, G. and El-Fadel, M., "Effects of Approach Flow Conditions on Pump Sump Design," *Journal of Hydraulic Engineering, ASCE*, Vol. 122, No. 9, pp. 489-494 (1996).
- 41) Costantinescu, G. S. and Patel, V. C., "Numerical Model for Simulation of Pump-Intake Flow and Vortices," *Journal of Hydraulic Engineering*, *ASCE*, Vol. 124, No. 2, pp. 123-134 (1998).
- 42) Funaki, J., Neya, M., Hattori, M., Tanigawa, H. and Hirata, K., "Flow Measurements in a Suction Sump by UVP," *Journal of Fluid Science and Technology, JSME*, Vol. 3, No. 1, pp. 68-79 (2008).
- 43) Hirata, K., Saito, K., Hattori, M., Nakatani, Y. and Funaki, J., "Occurrence-Time-Ratio Measurements on Airentrainment in a Suction Sump," *Journal of Fluid Science and Technology, JSME*, Vol. 4, No. 1, pp. 47-61 (2009).
- 44) Prosser, M. J., *The Hydraulic Design of Pump Sumps and Intakes*, BHRA, Canfield, Bedford, UK (1977).
- 45) Toyokura, T. et al., "Standard Method for Model Testing the Performance of a Pump Sump," JSME Standard JSME S 004, Tokyo, Japan (1984).
- 46) Claxton, J. et al., American National Standard for Pump Intake Design (the 1988 HI Standard), ANSI/HI 9.8-1998,

Hydraulic Institute, Parsippany, New Jersey, USA (1998).

	主な記号	
B Bo	:吸込管幅 :ボンド数	[m] (= $\rho g D^2 / \sigma$)
D d Fr	:吸込管の外径 :吸込管の内径 :フルード数	[m] [m] $(= V_i/(gD)^{0.5})$
g	:重力加速度	[m/s ²]
Η	:水位	[m]
Q	:流量	$[m^3/s]$
Re	:レイノルズ数	$(=V_{\rm i}D/\nu)$
S	:没水深さ	[m]
S _c	:臨界没界深さ	[m]
V _i We	:吸込管入口の流速 :ウェーバー数	$[m/s]$ $(=V_i(\rho D/\sigma)^{0.5})$
X	:背面間隙	[m]
Ζ	:底面間隙	[m]
ν	:動粘度	$[m^3/s]$
ρ	:粘度	$[1/m^3]$
σ	:表面張力	[N/m]