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A new class of discrete variable methods for numerical solution of initial-value problem of ordinary differential equations

is proposed. This is an extension of linear multistep methods by a “look-ahead” manner. Basically it consists of a pair of

predictor and corrector, including the function value at one more step beyond the present step. Starting with the initial idea

of the method, its examples, convergence analysis and stability analysis are described. Future works for establishment of the

proposed method are also mentioned.
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1. Introduction

We are concerned with numerical solutions of

initial-value problem of ordinary differential equations

(ODEs) given by

dy

dx
= f(x, y) (a ≤ x ≤ b), y(a) = yI . (1)

Here the unknown function y is a mapping [a, b] → R
d,

the right-hand side function f is [a, b] × R
d → R

d and

the initial vector yI is given in R
d.

We are particularly interested in the discrete vari-

able methods (DVMs) with the constant step-size h to

generate the approximate solution yn of (1) on the step-

point xn = a + nh. Many existing discrete variable

methods like as

Euler method whose numerical scheme is given

by yn+1 = yn + hf(xn, yn),

Runge-Kutta methods by
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Yi = yn + h

i−1∑
j=1

aij f (xn + cj h, Yj) ,

yn+1 = yn + h

s∑
i=1

bi f (xn + ci h, Yi) ,

linear multistep methods by

k∑
j=0

αj yn+j = h

k∑
j=0

βj f(xn+j , yn+j)

fall into this category. Note that in the above formula-

tion the parameters aij , bi, ci, αj , βj characterize a par-

ticular method together with the number of stages s in

the Runge-Kutta case or with the number of steps k in

the linear multistep case. The above-referenced meth-

ods are most popular because of their flexible capability

for the solution of (1).

We must pay attention to the fact that a method

should be ‘linear’ with respect to the functional values
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of y and f to cope with a system of ODEs straightfor-

wardly. Also the step-size h is assumed to be constant,

however an adaptive step-size control is significant for

practice. A good source of reference to the theory and

the practice of numerical solutions of ODEs is the two-

volume book by Hairer et al.1, 2)

Numerical analysis is still pursuing a new method

in DVM with better performance and higher reliability.

The present note proposes a variant of the linear multi-

step method (LMM) in a look-ahead manner. We call it

a “look-ahead” linear multistep method, abbreviated to

LALMM, and will describe a general framework of the

method in the present note. We remark that the idea

“looking ahead” can be seen in a different context3),

which is rather concerned with numerical integration of

functions, that is, with the case f(x) in place of f(x, y)

of (1).

2. What is LALMM

Assume that we look for the numerical solution

of the (n + k)-th step-point when the back-values

yn, yn+1, . . . , yn+k−1 and a preassigned initial guess

y
[0]
n+k are available. First, we look ahead for the

(n + k + 1)-st step-point by

y
[0]
n+k+1 + αky

[0]
n+k +

k−1∑
i=0

αiyn+i =

h

(
βkf(xn+k, y

[0]
n+k) +

k−1∑
i=0

βif(xn+i, yn+i)

)
,(2)

which can be regarded as a predictor. Then, correct

the look-for value by

y
[1]
n+k +

k−1∑
i=0

α∗
i yn+i =

h
(
β∗

k+1f(xn+k+1, y
[0]
n+k+1) + β∗

kf(xn+k, y
[0]
n+k)

+
k−1∑
i=0

β∗
i f(xn+i, yn+i)

)
. (3)

When a (local) convergence attains, i.e., the estimation

‖y[1]
n+k − y

[0]
n+k‖ ≤ δTOL

holds for a pre-assigned error tolerance δTOL, we com-

plete the current step and advance to the next step.

Otherwise, we replace y
[0]
n+k by y

[1]
n+k and iterate (2) and

(3). Note that generally we assume αj �= α∗
j , βj �= β∗

j .

The mechanism of LALMM is shown in Fig.1.

When the current step iteration is completed suc-

cessfully by m times local iteration, we shift to the right

according to the following diagram

· · · , (xn+k, y
[m+1]
n+k ), (xn+k+1, y

[m]
n+k+1)

→ (xn+k, yn+k), (xn+k+1, y
[0]
n+k+1), (xn+k+2, yn+k+2)

by taking y
[m]
n+k+1 of the current step as the initial guess

for the next step and the process is repeated till the end

of the integration interval.

In fact several examples have been already known,

even though they are not called LALMM. The scheme

by Usmani and Agarwal4)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

y
[�]
n+2 = 5yn − 4y

[�]
n+1

+2h
{

f(xn, yn) + 2f(xn+1, y
[�]
n+1)

}
,

y
[�+1]
n+1 = yn +

h

12

{
5f(xn, yn) + 8f(xn+1, y

[�]
n+1)

−f(xn+2, y
[�]
n+2)

}
(4)

can be regarded as an LALMM of the case for k = 1.

They claimed that the method possesses a third-order

convergence as well as an A-stability. By referring to

their work, a new pair of predictor-corrector (PC) was

proposed by Jacques5).⎧⎪⎪⎪⎨⎪⎪⎪⎩
y
[�]
n+2 = yn + 2hf(xn+1, y

[�]
n+1),

y
[�+1]
n+1 = yn +

h

12

{
5f(xn, yn) + 8f(xn+1, y

[�]
n+1)

−f(xn+2, y
[�]
n+2)

}
(5)

Note that his predictor equation is nothing but the mid-

point rule, while his corrector coincides with that of (4).

This can be regarded as an LALMM with k = 1, too.

The “extended” backward differentiation formula

(EBDF) methods of Cash6) can also be seen as an

LALMM. More earlier than him, Urabe7) proposed
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Fig. 1. Mechanism of LALMM .

a new type of DVM. One of its feature is to incorporate

the second derivative evaluation of y(x) of (1) given by

g(x, y) =
∂f

∂x
(x, y) +

∂f

∂y
· f(x, y).

Then Urabe’s method can be expressed in the single-

step PC pair given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y
[�]
n+2 = −31yn + 32y

[�]
n+1

−h
{

14f(xn, yn) + 16f(xn+1, y
[�]
n+1)

}
+h2

{
−2g(xn, yn) + 4g(xn+1, y

[�]
n+1)

}
,

y
[�+1]
n+1 = yn

+
h

240

{
101f(xn, yn) + 128f(xn+1, y

[�]
n+1)

+11f(xn+2, y
[�]
n+2)

}
+

h2

240

{
13g(xn, yn) − 40g(xn+1, y

[�]
n+1)

−3g(xn+2, y
[�]
n+2)

}
.

(6)

The predictor equation is of order 6, while the correc-

tor of order 5, and Mitsui8) showed that the method

is A-stable. Although the method is often referred as

a method utilizing the second derivative, its another

aspect lies in the fact that it takes the idea of “look-

ahead”.

More recently, several LALMMs of actually multi-

step nature have been derived by Yanagiwara’s group.

For instance, Inamasu et al. 9) gave the schemes in the

case k = 4 and 5 as follows.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y
[�]
n+5 = yn+2 +

h

80

(
27fn − 138fn+1 + 312fn+2

−198fn+3 + 237f(xn+4, y
[�]
n+4)

)
,

y
[�+1]
n+4 = yn+3 +

h

1440

(
− 11fn + 77fn+1

−258fn+2 + 1022fn+3

+637f(xn+4, y
[�]
n+4) − 27f(xn+5, y

[�]
n+5)

)
(7)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y
[�]
n+6 = yn+3 +

h

160

(
− 51fn + 309fn+1

−786fn+2 + 1134fn+3 − 651fn+4

+525f(xn+5, y
[�]
n+5)

)
,

y
[�+1]
n+5 = yn+3 +

h

3780

(
5fn − 30fn+1

+33fn+2 + 1328fn+3 + 4863fn+4

+1398f(xn+5, y
[�]
n+5) − 37f(xn+6, y

[�]
n+6)

)
(8)

Here the symbol fn+j stands for f(xn+j , yn+j). Note

that in their papers they listed the schemes for another

context of implementation.
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3. Convergency of LALMM

These examples suggest a potential of LALMM in

the DVM class. To establish a new class, however, sev-

eral fundamental issues should be analyzed. The initial

steps are for the analysis of convergence and stability of

LALMM. We remark that in this stage we will consider

an LALMM without the second derivative involved in

it.

It is conventional to put the following assumption.

Assumption 1 In the ODE (1), the function f belongs

to C1-class, and therefore, satisfies the Lipschitz condi-

tion with the constant L. That is, the estimation

‖f(x, y) − f(x, ỹ)‖ ≤ L‖y − ỹ‖

holds.

First is a convergency analysis. To this end we formu-

late an LALMM pair as follows. Assume the predictor

equation is

y
[�]
n+k+1 + αky

[�]
n+k +

k−1∑
i=0

αiyn+i =

h

(
βkf(xn+k, y

[�]
n+k) +

k−1∑
i=0

βifn+i

)
,

(9)

while the corrector

y
[�+1]
n+k +

k−1∑
i=0

α∗
i yn+i =

h
(
β∗

k+1f(xn+k+1, y
[�]
n+k+1) + β∗

kf(xn+k, y
[�]
n+k)

+
k−1∑
i=0

β∗
i fn+i

)
.

(10)

With the pair we associate the modified characteristic

polynomials given by

ρ(ζ) =
k∑

i=0

αiζ
i, σ(ζ) =

k∑
i=0

βiζ
i,

ρ∗(ζ) = ζk +
k−1∑
i=0

α∗
i ζ

i, σ∗(ζ) =
k∑

i=0

β∗
i ζi.

(11)

Then, by denoting the shift operator with the reference

step-size h by S, the predictor and corrector equations

are expressed with{
Sk+1 + ρ(S)

}
yn = hσ(S)fn (12)

and

ρ∗(S)yn = h
{
β∗

k+1S
k+1 + σ∗(S)

}
fn, (13)

respectively. We assume a sufficiently smooth solution

y(x) of (1).

Definition 1 Predictor is said to be accurate of order

p when it satisfies{
Sk+1 + ρ(S)

}
y(x) − hσ(S)y′(x) = Chp+1 + O(hp+2).

Corrector is said to be accurate of order q when

ρ∗(S)y(x) − h
{
β∗

k+1S
k+1 + σ∗(S)

}
y′(x)

= C̃hq+1 + O(hq+2).

Here, the constants C and C̃ may depend on the IVP

and x but does not on h.

We will call a predictor or a corrector is consistent when

it is accurate of more than first order. A preliminary

power series expansion with respect to h for the predic-

tor eq.

y(x + (k + 1)h) + αky(x + kh)

+
k−1∑
i=0

αiy(x + ih) − h
k∑

i=0

βiy
′(x + ih)

= y(x) + (k + 1)hy′(x) + αk(y(x) + khy′(x))

+
k−1∑
i=0

αi(y(x) + ihy′(x)) − h

k∑
i=0

βiy
′(x) + O(h2)

=

(
1 + αk +

k−1∑
i=0

αi

)
y(x)

+h

{
(k + 1) + kαk +

k−1∑
i=0

iαi −
k∑

i=0

βk

}
y′(x)

+O(h2)

leads to the condition that the predictor is consistent

iff

1 + αk +
k−1∑
i=0

αi = 0

and

(k + 1) + kαk +
k−1∑
i=0

iαi −
k∑

i=0

βk = 0.

Taketomo MITSUI184



（　  ）49

This is equivalent to

1+ρ(1) = 0 and k +1+ρ′(1)−σ(1) = 0. (14)

Similarly, the condition that the corrector is consistent

is

1+
k−1∑
i=0

α∗
i = 0 and k+

k∑
i=0

α∗
i−β∗

k+1−
k∑

i=0

β∗
i = 0,

or, equivalently

ρ∗(1) = 0 and ρ∗′(1)− β∗
k+1 − σ∗(1) = 0. (15)

Let us confirm the consistency conditions for the above-

referenced schemes. For Usmani-Agarwal’s (4) (k = 1)

we can easily derive

ρ(ζ) = 4ζ − 5, σ(ζ) = 4ζ + 2,

ρ∗(ζ) = ζ − 1, σ∗(ζ) =
8
12

ζ +
5
12

and β∗
2 = − 1

12
.

Consequently the conditions (14) and (15) obviously

hold. Similarly Jacques’ (5) has

ρ(ζ) = −1, σ(ζ) = 2ζ,

ρ∗(ζ) = ζ − 1, σ∗(ζ) =
8
12

ζ +
5
12

and β∗
2 = − 1

12
,

and enjoys the same conditions.

The scheme (7), which corresponds to k = 4, has

the modified characteristic polynomials⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ρ(ζ) = −ζ2,

σ(ζ) =
1
80

(
27 − 138ζ + 312ζ2 − 198ζ3 + 237ζ4

)
,

ρ∗(ζ) = ζ4 − ζ3,

σ∗(ζ) =
1

1440
(−11 + 77ζ − 258ζ2 + 1022ζ3 + 637ζ4

)
(16)

and the coefficient β∗
5 = − 27

1440
. Thus simple calcula-

tions confirm the consistency conditions.

The scheme (8), which corresponds to k = 5, has

the modified characteristic polynomials⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ(ζ) = −ζ3,

σ(ζ) =
1

160
(−51 + 309ζ − 786ζ2 + 1134ζ3

−651ζ4 + 525ζ5
)
,

ρ∗(ζ) = ζ5 − ζ3,

σ∗(ζ) =
1

3780
(
5 − 30ζ + 33ζ2 + 1328ζ3

+4863ζ4 + 1398ζ5
)

(17)

and the coefficient β∗
6 = − 37

3780
. Again simple calcula-

tions confirm the consistency conditions.

Next we assume that the correction-to-convergence

mode is taken for the LALMM. Consequently the nu-

merical solution satisfies the identities

{
Sk+1 + ρ(S)

}
yn = hσ(S)fn,

ρ∗(S)yn = h
{
β∗

k+1S
k+1 + σ∗(S)

}
fn

On the other hand the exact solution satisfies⎧⎪⎪⎪⎨⎪⎪⎪⎩
{
Sk+1 + ρ(S)

}
y(xn) = hσ(S)f(xn, y(xn)) + Tn,

ρ∗(S)y(xn) = h
{
β∗

k+1S
k+1 + σ∗(S)

}
f(xn, y(xn))+

T̃n,

(18)

where Tn and T̃n denote the local truncation errors of

the predictor and of the corrector, respectively. Fur-

ther we suppose the predictor and the corrector are

consistent and let en denote the local error at xn, i.e.,

en = y(xn) − yn. We will derive a difference equation

which is satisfied by the local truncation error (LTE).

From the predictor equation we have

en+k+1 + αken+k +
k−1∑
i=0

αien+1

= h

{
βk(f(xn+k, y(xn+k)) − f(xn+k, yn+k))

+
k−1∑
i=0

βi(f(xn+i, y(xn+i)) − f(xn+i, yn+i))

}
+Tn,

which, by introducing the Jacobian matrix fy,n+i of f

with respect to y evaluated at a certain intermediate

point, can be written by

en+k+1 + αken+k +
k−1∑
i=0

αien+1

= h

{
βkfy,n+ken+k +

k−1∑
i=0

βify,n+ien+i

}
+ Tn.

Thus we arrive at the difference equation

{
Sk+1 + ρ(S)

}
en = hσ(S)fy,nen + Tn. (19)
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Similarly, the corrector equation derives

ρ∗(S)en = h
(
β∗

k+1S
k+1 + σ∗(S)

)
fy,nen + T̃n. (20)

Substituting the former (19) into the latter (20) yields

ρ∗(S)en = h2β∗
k+1fy,n+k+1σ(S)fy,nen

+h
{−β∗

k+1fy,n+k+1ρ(S) + σ∗(S)fy,n

}
en

+T̃n + hTn.

Its rearrangement reads(
I + h

(
αkβ∗

k+1fy,n+k+1 − β∗
kfy,n+k

)
−h2βkβ∗

k+1fy,n+kfy,n+k+1

)
en+k

=
k−1∑
i=0

(−α∗
i − hβ∗

k+1αi + hβify,n+i

+h2β∗
k+1βify,n+k+1fy,n+i

)
en+i

+T̃n + hTn,

(21)

which is nothing but a recurrence relation of LTE.

To show the convergence of LALMM, we need sev-

eral assumptions.

Assumption 2 The predictor is consistent but less ac-

curate than the corrector by order one, that is, p =

q − 1 ≥ 1.

The above assumption means that there is a certain

positive constant K satisfying ‖T̃n‖+ h‖Tn‖ = Khq+1.

Assumption 3 For a certain 	 between 0 to (k − 1),

α∗
� = 1 holds and the other α∗

i ’s vanish.

Note that this is a technical assumption, and, unfortu-

nately, excludes Cash’s EBDF methods from our anal-

ysis. Further we introduce the following constants.

a = |αkβ∗
k+1|, b = |βkβ∗

k+1|,
β = max

i=0,...,k
(|β∗

i | + |β∗
k+1αi|) and γ = max

i=0,...,k
|β∗

k+1βi|

Then we can see for sufficiently small h the coefficient

matrix in the left-hand side of (21) is invertible, and

arrive at the key inequality

‖en+k‖ ≤ 1 + βhL + γh2L2

1 − ahL − bh2L2
‖en+�‖

+
hL(βL + γhL)

1 − ahL − bh2L2

k−1∑
i=0,i �=�

‖en+i‖

+
1

1 − ahL − bh2L2
Khq+1.

(22)

Here the index 	 is that which is referred to in As-

sumption 3. Note that the common denominator

1 − ahL − bh2L2 can be bounded below for sufficiently

small h and that the second term in the right-hand

side is always a summation at most over fixed k with

the multiplication factor h. Therefore, due to the con-

ventional error analysis, we obtain our main theorem

by summing up the above results.

Theorem 1 Assume that the following conditions

hold.

(1) The predictor and the corrector are consistent.

(2) The corrector is of order q.

(3) For a certain 	 α∗
� = −1 holds and other α∗’s

vanish.

(4) The correction-to-convergence mode is em-

ployed.

Then, the method is convergent of order q for suffi-

ciently small h even if the predictor is of order q − 1.

Let us see how the theorem works for the schemes

which are listed in the previous section. Table 1 shows

the constants, the index and the local truncation er-

ror terms which feature the convergence of individual

scheme. Note that in the row for Tn and T̃n the higher

derivative y
(m)
n or y

(m)
n may refer to a different x-value

lying in the integration interval.

4. Stability of LALMM

Stability analysis of LALMM runs as follows.

When the PC pair of LALMM is applied to the linear

test equation

dy

dx
= λy, λ ∈ C, �λ < 0 (23)
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(4) (5) (7) (8)

k 1 1 4 5

	 (none) (none) 3 3

a
1
3

0 0 0

b
1
3

1
6

711
12800

37
1152

β 1
1
6

19
96

13
36

γ
1
3

1
6

117
1600

11
1600

Tn −1
6
h4y(4)

n

1
3
h3y(3)

n

51
160

h6y(6)
n

137
448

h7y(7)
n

T̃n − 1
12

h4 y(4)
n − 1

12
h4 y(4)

n

27
604800

h7 y(7)
n

1
756

h8 y(8)
n

order of

convergence
3 3 6 7

Table 1. Convergence features .

with a fixed positive step-size h, it yields

y
[0]
n+k+1 + αky

[0]
n+k +

k−1∑
i=0

αiyn+i

= z

(
βky

[0]
n+k +

k−1∑
i=0

βiyn+i

)
,

y
[1]
n+k +

k−1∑
i=0

α∗
i yn+i

= z

(
β∗

k+1y
[0]
n+k+1 + β∗

ky
[0]
n+k +

k−1∑
i=0

β∗
i yn+i

)

with z = λh. Deleting y
[0]
n+k+1 from both equations

leads to

y
[1]
n+k +

k−1∑
i=0

α∗
i yn+i

= z
(
(−αkβ∗

k+1 + β∗
k + βkβ∗

k+1z)y[0]
n+k

+
k−1∑
i=0

(−β∗
k+1αi + β∗

i + β∗
k+1βiz)yn+i

)
.

(24)

Equating y
[1]
n+k and y

[0]
n+k of either side of (24) (this

means the correction-to-convergence mode for the PC

pair) brings the linear difference equation(
1 − z(−β∗

k+1αk + β∗
k) − z2β∗

k+1βk

)
yn+k

+
k−1∑
i=0

(α∗
i − z(−β∗

k+1αi + β∗
i ) − z2β∗

k+1βi)yn+i = 0,

(25)

whose characteristic equation becomes to

ρ∗(ζ) − zσ∗(ζ) + β∗
k+1zρ(ζ) − β∗

k+1z
2σ(ζ) = 0

by employing the modified characteristic polynomials

ρ, σ, ρ∗ and σ∗. Therefore we can define the stability

polynomial π(ζ; z) by

π(ζ; z) = ρ∗(ζ) − zσ∗(ζ) + β∗
k+1zρ(ζ) − β∗

k+1z
2σ(ζ).

(26)

Thus we arrive at the following definition.

Definition 2 The totality of z ∈ C which gives the

roots ζ(z) of π(ζ; z) all being less than unity in magni-

tude is said to be the region of absolute stability of the
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scheme. When the region includes the left half-plane of

C, the scheme is said to have A-stability.

For Usamani-Agarwal’s scheme (4), the modified

characteristic polynomials are listed in the previous sec-

tion. Then we can easily obtain

ρ∗(ζ) − zσ∗(ζ) + β∗
k+1zρ(ζ) − β∗

k+1z
2σ(ζ)

=
(

1 − z +
1
3
z2

)
ζ −

(
1 − 1

6
z2

)
,

which implies that the set{
z ∈ C;

∣∣∣∣ 1 − z2/6
1 − z + z2/3

∣∣∣∣ < 1
}

(27)

is the region of absolute stability of the scheme. This

rightly coincides with their analysis in their paper4),

where they claim the method is A-stable. On the other

hand, Jacques’ scheme (5) yields

π(ζ; z) =
(

1 − 2
3
z +

1
6
z2

)
ζ −

(
1 +

1
3
z

)
,

which leads the region of absolute stability{
z ∈ C;

∣∣∣∣ 1 + z/3
1 − 2z/3 + z2/6

∣∣∣∣ < 1
}

. (28)

Similarly to (27), the root of π(ζ; z) has singular points

2± i
√

2 lying in the right half-plane and its magnitude

on the imaginary axis (z = i y) is less than unity in

magnitude except the origin (z = 0). Therefore due to

the maximum principle, the scheme is again A-stable

and, moreover by the expression of the root, is L-stable.

When k exceeds 1, the stability analysis is getting

more difficult due to the nature that the root of the

stability polynomial is no longer single. Moreover, since

Eq. (26) has the z2-term, the conventional methods

for the stability analysis of the liner multistep methods

are powerless, too. Then, we can apply the following

criteria to the analysis.

• Schur criterion

• Routh-Hurwitz criterion

As for a reference, the Schur criterion is described here.

Suppose that φ(ζ) is a complex polynomial of es-

sentially degree n. That is, given

φ(ζ) = cnζn+cn−1ζ
n−1+· · ·+c1ζ+c0, (cj ∈ C) (29)

neither cn nor c0 vanishes. When all the roots of

φ(ζ) are less than unity in magnitude, it is called a

Schur polynomial. According to the suggestion by

Lambert10), the Routh-Hurwitz criterion is most use-

ful (also refer to Hairer et al.1)). The process is as

follows. First, we introduce the transformation ζ → ξ

by

ξ =
ζ − 1
ζ + 1

⇔ ζ =
1 + ξ

1 − ξ

which maps the inside of the unit circle {ζ ∈ C; |ζ| < 1}
onto the left half-plane {ξ ∈ C : Re ξ < 0}. Then we

define the transformed polynomial Φ(ξ) by

Φ(ξ) = (1 − ξ)nφ

(
1 + ξ

1 − ξ

)
= p0ξ

n + p1ξ
n−1 + · · · + pn.

(30)

Theorem 2 (Routh-Hurwitz) Let n × n matrix Q

be defined through the coefficients of (30) by

Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p1 p3 p5 · · · p2n−1

p0 p2 p4 · · · p2n−2

0 p1 p3 · · · p2n−3

0 p0 p2 · · · p2n−4

...
...

...
...

0 0 0 · · · pn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where pj should be taken zero when j > n. The polyno-

mial (30) has all the roots lying in the left half-plane if

and only if all leading principal minors of Q be positive.

Note that the condition for the polynomial (30) in The-

orem is equivalent to that of (29) being Schur. The

criterion can avoid the complex conjugate of ζ in (29)

which appears in the Schur criterion. It will enable us

fully to utilize the properties of analytic function. How-

ever, an application of the Routh-Hurwitz criterion will
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require a tedious task of algebraic manipulations, which

can be carried out with a computer algebra system.

5. Concluding remarks and future works

In this note, we propose “look-ahead” linear multi-

step methods (LALMMs), a new class of DVM, and

give an analysis on their convergency and stability. As

explained in the previous sections, LALMM appears to

be promising for its good stability as well as its high

accuracy when compared with the number of steps.

However, many open problems must be solved in

the future. A partial list of such problems is given be-

low.

Mode of local iteration The present description fo-

cuses on the mode that the local predictor-

corrector iteration is carried out till its convergence

attains with a reasonable error tolerance. How-

ever, from the practical point of view, it is signifi-

cant what mode of local iteration can be employed.

What happens when we employ a single PC-mode

without local convergence by a sufficiently small

step-size? The problem will relate with other is-

sues.

Global convergence analysis The problem will be

discussed according to the mode of local iteration.

Stability analysis In particular for the case k ≥ 2, a

more compact criterion of stability is called for. It

will also give a guideline in developing new schemes

of LALMM. Another analysis for stability will be

required according to the mode of local iteration.

A-posteriori error estimator To make LALMM

schemes competitive with the conventional meth-

ods, their a-posteriori error estimator is inevitable.

Step-size control strategy An adaptive step-size

control strategy is also significant for a competi-

tive LALMM scheme. Even in the case of k = 1, an

LALMM scheme passes over multiple steps. Hence

an efficient strategy will be a crucial issue of the

method.

Second derivative inclusion An inclusion of the

second derivative evaluation may increase the per-

formance of LALMM, as proposed by Urabe. In

that case, theoretical as well as practical issues

listed above will be discussed, too.

Many numerical practices Since a good set of test

problems has been compiled by the numerical ODE

community, a developed LALMM scheme should

be practised through such a set to establish its re-

liability. Total performance is most significant for

a numerical solution of ODEs.
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