
16

THE SCIENCE AND ENGINEERING REVIEW OF DOSHISHA UNIVERSITY, VOL. 51, NO. 1 April 2010

Embedded Device Cooperative System Using Java Bytecode

Instrumentation

Ryota AYAKI* , Kohei KADOWAKI* , Hideki SHIMADA** and Kenya SATO*

(Received January 19, 2010)

Recently, various embedded devices have become equipped with network functions for communication among

themselves. In a network middleware with embedded devices (e.g. Jini) to cooperate with each other on networks,

a device can use functions provided by other devices. However, because the function is defined by its interface, all

programming interfaces of certain functions must be built into a client device beforehand so that the client device

can use the functions. Therefore, already existing client devices cannot exploit newly released functions. In this

paper, we propose an embedded device cooperative system to solve the problems by adapting dynamic program

generation using Java bytecode instrumentation technology. We implemented the proposed system and evaluated its

performance from processing time and memory usage perspectives.

Key words ： network middleware, Java bytecode instrumentation, embedded device

1. Introduction

Recently, such various embedded devices as

home appliances, mobile phones, and PDAs are often

equipped with network functions for communication

among themselves by using a network middleware

(e.g. UPnP/DLNA 1), Jini 2), HAVi 3)). In the fu-

ture these devices are expected to automatically and

dynamically compose a network. New functions can

be generated if embedded devices are connected to

each other through a network. The network middle-

ware is required to allow embedded devices to coop-

erate with other devices through a network regardless

of hardware and OS. However, because a “function”

is defined by its “interface”, all programming inter-

faces of certain functions must be built into a client

device beforehand so that the client device can use

the functions. Therefore, already existing client de-

vices cannot exploit newly released functions. More-

over, there is no method by which to apply a new

function provided by another device to the device’s

input operation when using the function, because

function expandability is not defined in the network

* Graduate School of Science and Engineering, Doshisha University, Kyoto
Telephone:+81-774-65-7564, Fax:+81-774-65-6801, E-mail:dtj0703@mail4.doshisha.ac.jp

** Faculty of Science and Engineering, Doshisha University, Kyoto

middleware. In this paper, we propose an embedded

device cooperative system to solve the problems with

the current network middleware with embedded de-

vices by adapting dynamic program generation using

Java bytecode instrumentation technology.

2. Network middleware with embedded devices

2.1 Network architecture

The network middleware for cooperation

among devices on networks (e.g. Jini), features low

platform dependency because it is a Java-based tech-

nology. A function provided by a device with the

Java-based network middleware is defined as a “ser-

vice”. A device can cooperate mutually with other

devices using services. The network middleware is

composed of the following four elements: Service

Provider (device providing a service), Client (device

using a service), Lookup Service (device managing all

services on networks), and Codebase (HTTP server

device containing files required for using services).

Figure 1 shows the network architecture for coop-

eration among devices when a client uses a service

provided by a service provider.

17

�������	�
���
�

���������������

�����
��

��	��

��������������

�������

������

������� ��������

�������

������
��

�������

������

��	��

�	����

�������

������
��

�������

������

��	��

����

��� �
����
��������

���������������

���!�	�
���
���	��

"���
����

"������	�
���
���	��

#��$������
��������

Fig. 1. Current network architecture for coopera-

tion among devices.

1. Advance preparation

A client needs to prepare a unique interface in

Java language specification called “service inter-

face” for using a service. Moreover, a service

provider must store necessary files in a codebase

so that the client can invoke the service.

2. Registration of service objects

The service provider registers a service object

generated from the service provided on a lookup

service.

3. Downloading service objects

The client downloads the desired service object

from the lookup service.

4. Deserializing service objects

The service object is serialized when it is trans-

ferred from the service provider to the client on

networks. Therefore, the service object must be

deserialized so that the client can use the ser-

vices. The client can deserialize the service ob-

ject with casting in Java language specification

it using the service interface and the necessary

files downloaded from the codebase.

5. Invoking service

The client and the service provider communi-

cate with each other by Remote Method Invo-

cation (RMI), and the client invokes the service

provided by the service provider with functions

defined by the service interface.

2.2 Problems

The current network middleware with em-

bedded devices has two problems with cooperation

among devices and managing services on networks.

The first is that beforehand, all programming

interfaces of certain functions must be built into a

client device so that the client device can use the

functions, because the function is defined by its inter-

face. Therefore, already existing client devices can-

not exploit newly released functions. In this paper,

we call this the “adapting to undefined services prob-

lem”.

The second is that there is no method by which

to apply a new function provided by another device

to an input operation of the device when using the

function, because function expandability is not de-

fined in the network middleware. Therefore users

cannot apply the desired functions to desired input

units. In this paper, we call this the “applying func-

tions to input operation problem”.

3. Proposed system

3.1 Java bytecode instrumentation

In this paper, we propose an embedded device

cooperative system to solve the problems by adapt-

ing dynamic program generation using Java bytecode

instrumentation technology. Generally, it is neces-

sary to re-compile after modifying the source code

(.java) for changing the bytecode (.class) in Java.

However, Java bytecode instrumentation can directly

modify the bytecode without re-compile. The pro-

posed system can dynamically generate and modify

the necessary programs for invoking the service by

using it. We explain the proposed system using Fig-

ure 2, which shows the three devices: “device C with

client function”, “device S with service provider func-

tion”, and “device L with lookup service”.

In the proposed system, since all devices need

to transfer files, they must have the codebase func-

tion in the network middleware. Device L must have

Java bytecode instrumentation library. Moreover,

device C needs to prepare “operation template” and

device S needs to prepare “function block” as follows.

The methods invoked when device C’s input

unit is operated are defined in the operation tem-

plate. For instance, when buttons are input units of

17

18

Lookup service

Device L

Bytecode
instrumenta�on library

Codebase

Codebase

Service provider

Device S

Func�on block

Codebase

Client

Device C

Opera�on
template

Network

Fig. 2. Composition of Java bytecode instrumenta-

tion.

device C, the methods of the same number as the

buttons in the operation template must be defined,

and each button corresponds to one method as an

event handler when operated. Information can be

shown about the input unit of device C to other de-

vices and users with the operation template.

The methods to invoke the functions provided

by device S are defined in the function block. For

instance, when there is a speaker service as a service

provider, the former provides the function “play mu-

sic”. If the function is executed by the play method,

the method must be defined in the function block,

which can be used to show information about the

function provided by device S to other devices and

users.

These two programs only define the input oper-

ation of device C and the function provided by device

S. Device L with the Java bytecode instrumentation

library needs to build the functions defined by the

function block into an operation template based on

adaptation information chosen by users.

3.2 Operation procedure

In the current network middleware, coopera-

tion between client and service provider device is

possible by transferring a service object provided by

the service provider to the client through the lookup

service. On the other hand, the proposed system

does not need to transfer service objects. Instead,

in the proposed system, the client in device C and

the service provider in device S must register URLs

that indicate the operation template and the func-

tion block stored in their codebases to the lookup

service in device L.

Figure 3 shows the operation procedure and

the details when a client uses a service provided by

a service provider.

��������

�	
���

��
����

������
���

����	���

�����������
��

��
����

���������

�����������
�� 	
�����

��������

��
����

�����
��

�	���

����
��

��������

����������

�������

����
��

��������

��������

����
�������
���

� �!"�����
�����
�� � �!"�����
�����
��

�
�$�	���
���

�����
����	����

% �&������
��

' �
����
��

�������
�����

��������

(�)����
�������
��

�
�$�	���
��

������
�������	���

�����
��

�	���

������
���

����	���

Fig. 3. Operation procedure of proposed system.

1. URL registration

A client of device C registers a URL that in-

dicates an operation template in a codebase in

device L. Similarly, a service provider in device S

registers a URL that indicates a function block.

2. Downloading files

The lookup service in device L downloads the

operation template and the function block from

each codebase based on the registered URLs.

3. Applying functions to an operation template

Device L displays the operation list of device C

obtained from the operation template and the

function list of device S obtained from the func-

tion block on the GUI. Users apply the desired

functions to the input operation by GUI.

4. Dynamic generation of programs

With the Java bytecode instrumentation li-

brary, device L builds the functions defined

by the function blocks into the operation tem-

plate based on adaptation information decided

by users. Moreover, device L generates the nec-

essary service interface for invoking the service

based on the function blocks. Then the opera-

tion template that is dynamically built in func-

tions and the service interfaces are stored in the

codebase of device C.

18

19

5. Invoking service

Device C communicates with device S with RMI

using the generated programs. At this time,

when users operate device C’s input unit, de-

vice S’s function defined in the service interface

can be invoked.

4. Evaluation

4.1 Implementation

We implemented our proposed system by con-

necting three computers with the functions of devices

C, S, and L with the system configuration explained

in Section 3. Table 1 shows the evaluation envi-

ronment of the proposed system. It includes BCEL
4), ASM 5), and Javassist 6) as a Java bytecode in-

strumentation library. We adopted Javassist because

its abstraction level of API is high and it internally

maintains the compiler.

Table 1. Evaluation environment.

OS Windows XP Professional SP2

CPU Pentium 4，3.00 GHz

Memory 1 GBytes

Java JDK 1.6.0 05

Jini Jini Starter Kit 2.1

4.2 Processing performance

In the proposed system, processing that gener-

ates the operation template that is dynamically built

in functions and the service interface by Java byte-

code instrumentation is added to solve the original

problems. Therefore, to consider the practicality of

the proposed system, we evaluated the generation

processing on the lookup service device. Figure 4

shows the relation of the number of built-in func-

tions and the processing time. Next, Figure 5 shows

the relation of the number of built-in functions and

memory usage.

4.3 Analysis

Implementation was based on the design of the

proposed system, and we confirmed that the system

worked as proposed. Figure 4 shows that process-

ing time is long with an increase in the number of

Fig. 4. Relation of the number of functions and the

processing time.

Fig. 5. Relation of the number of functions and the

memory usage.

functions. In general, the embedded devices do not

provide numerous functions because they are devel-

oped for a special purpose. We verified that the pro-

posed system was practical from a processing time

perspective because, when the number of built-in

functions is 1000, it can perform them in as quickly

as 656 msec. Moreover, Figure 5 shows that mem-

ory usage increased with an increase in the number

of functions. We do not assume that memory us-

age increases rapidly when the number of functions

is increased. However, we must investigate the im-

plementation method to minimize memory usage so

that devices with limited memory capacity can apply

the proposed system.

5. Related Work

In Adaptive Jini 7), which extends Jini’s func-

tion, Jini’s “adapting to undefined services problem”

is solved by storing necessary programs for services

in the service provider device’s codebase. The client

downloads it if necessary, and the “applying the func-

19

20

tion to input operation problem” is solved by provid-

ing and operating the client GUI. In systems using

Adaptive Jini, the client device must have a display

device because this system must do the input oper-

ation using the client’s GUI.

6. Conclusion

In this paper, we proposed an embedded device

cooperative system on networks and adopted Java-

based network middleware to enable embedded de-

vices to cooperate with each other. We successfully

solved the following the original problems: “adapt-

ing to undefined services problem” and “show pro-

gram lists” by adapting dynamic program generation

using Java bytecode instrumentation technology on

the original Jini. We also implemented the proposed

system, evaluated its performance, and verified its

practicability.

For future work, we will consider how to imple-

ment the proposed system on real embedded devices

to evaluate performance in real environments.

References

1) UPnP Forum, “Universal Plug and Play Device

Architecture Version 1.0” (2008).

http://www.upnp.org/

2) J. Waldo, and K. Arnold, The Jini Specifications -

Second Edition, (Addison-Wesley, Boston, 2001).

3) The HAVi Organization, “HAVi Specification

Version 1.1” (2001).

http://www.havi.org/

4) The Apache Jakarta Project, “Byte Code Engi-

neering Library” (2003).

http://jakarta.apache.org/bcel/

5) E. Bruneton, R. Lenglet, and T. Coupaye, “ASM:

a code manipulation tool to implement adaptable

systems” (2002).

http://asm.objectweb.org/current/asm-eng.pdf

6) S. Chiba, and M. Tatsubori, “Structural Reflec-

tion by Java Bytecode Instrumentation,” IPSJ

Journal，Vol.42，No.11，pp.2752-2760 (2001).

7) K. Kadowaki, H. Hayakawa, T. Koita, and K.

Sato, “Design and Implementation of Adaptive

Jini System to Support Undefined Services,”

Communication Networks and Services Research

Conference，pp.577-583 (2008).

20

