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     Spike-timing-dependent plasticity (STDP) learning strengthens or weakens synaptic weights of a neural network, thus the 

neural network temporally evolves by the STDP rule. By estimating the characteristic path length and clustering coefficient, we 

examined how the neural network structure changes and synaptic spikes synchronize. Even if the neural networks do not have any 

initial structure, small-world characteristics emerge; the characteristic path length is as small as that of a random graph, but the 

clustering coefficient is greater. 
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     The performance of transmitting spike 

information between neurons changes temporally. This 

synaptic plasticity is considered to be an essential 

property of learning and memorizing information. 

Recent experimental studies have revealed a new 

learning rule for a neural network; this rule strengthens 

or weakens synaptic weights in the neural network 

according to the spike timing between pre-synaptic and 

post-synaptic firings. The rule is termed 

spike-timing-dependent plasticity (STDP) and has been 

observed in several real neural networks 
(1–6)

. 

     The STDP rule enables the neural network to 

temporally modify its structure to strengthen the 

synchrony of neuron firings, there by memorizing a 

large amount of information more accurately. Temporal 

changes in the distribution of synaptic weights are 

mainly discussed by employing the Fokker-Plank 

equation 
(7)

. Although these studies 
(7)

 often reveal some 

statistical aspects of synaptic distributions, we have to 

consider another important aspect—the network 

structure. One of the reasons is that neurons can be 

connected to each other by short path length and they 

are highly clustered due to STDP. Such a structure 

cannot be characterized only by the distribution of the 

synaptic weights.  

     An interesting concept in complex networks is the 

small-world network model proposed by Watts and 

Strogatz, which is more highly clustered than a random 

graph yet has as small characteristic path length as that 

of the random graph 
(8, 9)

. For example, they showed that 

a neural structure of C. elegance exhibits small-world 

network characteristics. It was also reported that the 

small-world route achieves synchronization more 

efficiently than a pure random graph 
(10)

. These results 

indicate that the STDP learning rule can transform a 

neural network structure into a small-world structure by 

dynamically modifying the synaptic weights even when 

the initial network is a random graph. 

     In this paper, we used an artificial neural network 

along with the Nagumo-Sato neuron model 
(11–13)

 to 
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examine how the network structure changes and how 

synaptic spikes synchronize by evaluating the 

characteristic path length and clustering coefficient 
(8, 9)

. 

In other words, we analyzed the dynamical change in 

the network structure, that is, the spatial structure of the 

synaptic weights. The reason for employing the 

Nagumo-Sato neuron model is that it has been studied 

as a recurrent neural network model 
(13)

 and is 

considered to be an origin of chaotic neural networks 
(14, 

15)
. However, we believe that qualitatively similar 

results would be shown for different types of neurons, 

for example, a leaky integrate-and-fire neuron In 

addition, the case of the FitzHugh-Nagumo neuron model 

has been reported by Ref. (16). 

 

   

2.1 Neural network model 

     To investigate a dynamical change in the network 

structure, we constructed a partially connected neural 

network with the Nagumo-Sato neuron model 
(12, 13)

 as 

follows:  

 

 

 

(1) 

 

 

 

where yi(t) is the internal state of the i-th neuron at time 

t, N is the number of neurons (N = 225); xi(t) is the 

output of the i-th neuron, sj decides whether the j-th 

neuron is excitatory or inhibitory (sj = 1 or sj = −1, 

respectively)—approximately 80% of neurons are 

excitatory, and wij is the synaptic weight from the j-th to 

the i-th neuron. Initial synaptic weights are uniformly 

distributed in the range of [0.9, 1.1], as shown in the 

leftmost part of Fig. 3(c); the percentage of connected 

weights (wij > 0) is approximately 20% excluding 

self-feedback connections (wii = 0). In Eq. (1), the first 

term integrates inputs from pre-synaptic neurons, the 

second term integrates external inputs, and the third 

term expresses the refractoriness of a neuron firing. If 

the sum of the three terms is greater than the threshold θ, 

the j-th neuron emits a spike. The Heaviside function is 

the activation function between the internal state yj(t) 

and output xj(t).  

     As external inputs, spatiotemporal patterns were 

produced by a Poisson process in which the probability 

of an input occurrence is 0.05, and Ii = 5 if the input 

exists, otherwise Ii = 0. The temporal epoch of the 

pattern is T. The spatiotemporal patterns were applied 

repeatedly to the neural network, as shown in Fig. 1. 

 

 

 

 

 

 

 

 

Fig. 1. Spatiotemporal patterns are repeatedly applied as external 

information learned by the neural network. The period of the pattern is 

T, and each dot represents an input Ii(t) for each neuron. The 

spatiotemporal patterns were produced by a Poisson process. 

 

2.2 STDP learning rule 

     The STDP rule 
(5)

 for modifying the synaptic 

weights wij is expressed below:  

 

 

 

 

where A is a parameter that controls the maximum 

plasticity modification (A = 0.1) and ∆tij is the temporal 

difference between a pre-synaptic event and a 

post-synaptic spike, that is, ∆tij = tj − ti . The STDP rule 

was applied only to excitatory-to-excitatory connections, 

and other connections were fixed. We used different 

time constants for potentiation and depression: τp = 10 

T

i = N

i = 1

T T

Spatiotemporal pattern Ii (t)

....

T

t
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and τn = 20. Moreover, the synaptic weights were 

limited to the range of [0, 2].  

 

        

 

3.1 Characterizing a temporal change of a network 

structure 

     We define two measures to examine the temporal 

dynamics of a neural network learned by the STDP rule. 

The first measure evaluates the degree of 

synchronization of neuron firings, the synchrony 

coefficient, and it is defined as follows:  

 

 

where           . 

     The second measure evaluates the network 

structure from the viewpoint of the small-world 

network; we introduced the characteristic path length L 

and the clustering coefficient C 
(8, 9)

. The characteristic 

path length L is defined as the average of the shortest 

path lengths dij between two vertices, which represents 

the minimum number of edges traversed from a vertex i 

to another vertex j :  

 

 

 

where G(t) represents the graph (the neural network 

structure) at time t. The clustering coefficient C is 

defined as the average of local clustering of the i-th 

node (the neuron):  

 

 

 

where Gi (t) is a subgraph of nearest neighbors of node i 

and ki is the number of nearest neighbors. Then, the 

clustering coefficient C is 

 

 

 

     In this paper, we define the degree of a 

small-world structure as follows:  

 

                                        (2) 

 

where Cr(t) is the clustering coefficient of a perfectly 

random rewired network whose synaptic weight 

distribution is the same as that of the network used for 

calculating C(t), and Lr(t) is the clustering coefficient of 

the random rewired network. In addition, only 

excitatory-to-excitatory connections were used for 

calculating C(t), Cr(t), L(t), Lr(t), and S(t). If a network 

has a small-world structure, S(t) becomes greater than 1 

because this structure is more highly clustered than a 

random network. Although Eq. (2) is useful for 

evaluating the structure, we still have to consider an 

important difference between the neural network and 

the undirectional and unweighted graph analyzed in Ref. 

(8, 9): the synaptic weights are usually analog values. 

Therefore, we should essentially evaluate the 

small-world index (Eq. (2)) for a directed and weighted 

graph.  

     However, because there is no accepted measure of 

the clustering coefficient for a directed and weighted 

connection, we simplified the network connections. We 

reduced the neural network structure into the simplest 

one, as shown in Fig. 2, without losing the essence of a 

temporal change in the neural network structure.  
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FIG. 2: Simplification of connections of the neural network into an 

undirected and unweighted graph for characterizing the network 

structure. For this simplification, weakened connections (dashed 

arrows) after a temporal evolution were considered to disappear if wij 

<0.5. 

 

 

3.2 Simulation results 

     By employing the numerical techniques described 

above, we investigated how the network structure 

learned by the STDP rule temporally changes and how 

the synaptic spikes synchronize. The simulation results 

are shown in Fig. 3.  

     Figures 3(a) and 3(b) show the response due to 

the repeatedly applied spatiotemporal patterns shown in 

Fig. 1. Synchronous firing gradually emerges as the 

learning proceeds. Figure 3(c) shows the temporal 

evolution of the synaptic weight distribution. As time 

evolves, the synaptic weights are polarized; they are 

either strengthened or weakened. Because the condition 

for maintaining the connection of wij is wij ≥ 0.5, the 

number of weakened connections reduces gradually. 

Thus, only those connections essential for learning are 

retained and they are strengthened. In other words, the 

structure of the neural network is optimized for coding 

input information. Moreover, we confirmed that the 

optimized network is transformed from an initial 

random network to a small-world network whose value 

of S becomes greater than 1, as shown in Fig. 3(d). That 

is, the characteristic path length is as small as that of a 

random graph, but the clustering coefficient is greater. 

The important point is that although none of the initial 

conditions of the neural network have any order, that is, 

the network has a random structure and the input 

spatiotemporal patterns are random, the order of the 

structure is characterized by the small-world network 

after the learning.  

 

   

 

     We focused on the temporal dynamical change of 

a neural network structure learned by the STDP rule. 

The contributions of this paper are summarized as 

follows. First, we exhibited the enhancement in the 

synchronization of neurons when the synaptic weights 

Fig. 3. Simulation results when N=225, τm=τs=5, τr=3, θ=4, T=100, 

A=0.1, τp=10, and τn=20. (a) Raster plot, (b) degree of 

synchronization, (c) temporal change in the synaptic weight 

distributions by the STDP learning rule, which is applied only to 

excitatory-to-excitatory connections, and (d) the small-world index. 

As S(t) exceeds 1, the small-world structure appears more clearly. 
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were polarized temporally. The polarization may 

optimize the network structure such that it can learn 

external information efficiently. Next, we investigated 

how such a network changes from the viewpoint of a 

small-world network. We confirmed that through the 

STDP learning rule, the network is autonomously 

transformed from an initial random network to a 

small-world network, that is, an optimized network.  

     In future study, it is important to generalize 

measures for characterizing the network structures of 

directed, weighted, and multiple connections.  
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