Study on the Hardness of Curved Rebar by a Simple Bending Machine

Satoshi HIGAKI,* Ikuho MATSUKUMA,** Tomoki GO,** Masahiro SASADA,** and Tatsuya TANAKA***

(Received April 12, 2024)

Rebars are used by bending according to the purpose. The material properties of bent portion of rebars change due to work hardening. In civil engineering work, it is important to understand the changes in material properties because bent portion are sometimes further bent. The purpose of this research was to clarify the hardness distribution of a rebar after bending as a first step in understanding the changes in material properties due to processing. In this research, rebars bent at three different rotation angles were divided into four areas for hardness test. The area that is pressed against the fulcrum roller and bent does not change much in hardness as the rotation angle increases. In the area between the rebar receiver and the fulcrum roller and between the fulcrum roller and the circular roller, the closer to the fulcrum roller, the greater the hardness measurement.

Keywords: rebar, bending, hardness test, axial displacement

キーワード: 異形棒鋼, 曲げ, 硬さ試験, 軸方向変位

簡易曲げ加工機により曲げられた異形棒鋼の硬さに関する研究

桧垣 智史, 松熊 郁甫, 呉 其樹, 笹田 昌弘, 田中 達也

1. 緒言

異形棒鋼は用途に応じて曲げ加工され,コンクリ ートとともに利用される.1 か所を所定の角度まで 曲げる場合だけでなく,柱や梁に使用される帯筋や あばら筋と呼ばれるものは複数か所を曲げ加工する. 曲げ加工された部分は,塑性変形が進むことから加 工硬化が起こり,材料特性が変化する.土木で使わ れる異形棒鋼の中には,一度曲げられた部分に対し てさらに曲げ加工する場合があり,加工にともなう 材料特性の変化を把握することは重要である.また, 異形棒鋼の材料特性は建造物の強度と関係するため, 材料特性の変化について明らかにすることは,建造 物の耐震性を向上することや,寿命計算を高精度化 することに有益である.

曲げ加工にはいくつかの方法がある.本研究で対 象とする簡易曲げ加工機では,支点ローラ,力点ロ ーラ,棒鋼受けにより加工する.支点ローラを中心 として,力点ローラが回転運動する.支点ローラと 力点ローラの間に配置された異形棒鋼が,力点ロー ラにより支点ローラへ押し付けられ,このとき異形 棒鋼の他端が棒鋼受けに接触することにより異形棒 鋼の回転運動を抑制する.このように曲げられた異 形棒鋼には,支点ローラに押し付けられて曲げられ る部分と,工具に接触することなく曲げられる部分 が混在する.工具に接触せずに曲げられる部分があ

^{*}TOYO KENSETSU KOHKI CO., LTD., Osaka

Telephone : +81-6-6552-0341, E-mail : s_higaki@toyokensetsukohki.co.jp **Department of Mechanical Engineering, Doshisha University, Kyoto Telephone : +81-774-65-6556, E-mail : msasada@mail.doshisha.ac.jp ***Department of Mechanical Engineering, Doshisha University, Kyoto Telephone : +81-774-65-6465, E-mail : tatanaka@mail.doshisha.ac.jp

ること,力点ローラの回転運動により逐次的に加工 が進むため異形棒鋼と力点ローラの接触位置が変化 することから,加工中の材料変形が部分ごとに異な ることが考えられる.つまり,加工硬化の程度が, 力点ローラの回転角度ならびに異形棒鋼の部分ごと に異なることが考えられる.

これまでに異形棒鋼の曲げ加工に関しては、曲げ 戻し加工による破断に関する研究¹⁾、曲げ加工部分 の耐衝撃性に関する研究²⁾などが報告されている. 成形後の異形棒鋼に関する有益な報告があり、曲げ 加工後の異形棒鋼の材料特性の把握が重要であるこ とがわかる.一方、硬さ試験は、物理的意味は明確 でないが、引張強さと相関があるため広く利用され ている³⁾.また、ビッカース硬さとひずみ *ε*=0.08 で の変形抵抗の関係がほぼ比例関係にあることが報告 されている⁴⁾.硬さ試験であれば、成形後の異形棒 鋼の各部分の材料特性の変化を確認できる.加工に よる材料特性の変化を把握する第一歩として、簡易 曲げ加工機による成形後の異形棒鋼の硬さを測定し、 カ点ローラの回転角度ならびに異形棒鋼の部分ごと の違いを明らかにすることが有用と考える.

以上より、本研究の目的は、対象とする加工方法 により曲げ加工された異形棒鋼の各部分の材料変形 ならびに硬さを明らかにすることである.

2. 実験方法

2.1. 試験片

使用した異形棒鋼の概略を Fig. 1 に示す. 呼び名 D10, 種類 SD345 (JIS G 3112) を使用した. 降伏点 は 422MPa であり, 全長は 400mm である.

2.2. 簡易曲げ加工機

本実験に使用した曲げ加工機の概略と主要な寸法 を Fig. 2 に示す.加工中の試験片の変形を高速度カ メラにより撮影した.試験片を配置した曲げ加工機 の定盤より真上に 290mm 離れた位置より撮影を行 った.解像度は 1024×1024pixel,フレームレートは 250fps とした.撮影された動画をもとに運動解析ソ フトにより加工中の試験片の変位を確認した.変位

Fig. 1. Schematic diagram of rebar.

Fig. 2. Schematic diagram of bending machine.

を求めるために追尾した点の位置は,異形棒鋼の支 点ローラに接触する側にある横方向節と縦方向節の 交点である.

Figure 2 に示すように、異形棒鋼を支点ローラと 棒鋼受けに接触するよう配置する.このとき、支点 ローラの中心から力点ローラの回転方向側の異形棒 鋼端までの長さを 150mm とする.また、高速度カ メラで観察される異形棒鋼の節が Fig.1 の状態とな るように配置する.この状態で、支点ローラの中心 を回転中心として力点ローラを所定の回転角度 θ_F ま で回転運動させて加工を行う.このとき、力点ロー ラと逆側の異形棒鋼端は、棒鋼受けにより Y 方向変 位が拘束される.その後、力点ローラを初期位置ま で逆回転させて加工を完了する.なお、力点ローラ は軸受が組み込まれており自転できるが、支点ロー ラは自転できない構造である.力点ローラの回転角 度 θ_F を 90°、130°および 180°とした.

2.3. 硬さ試験

曲げ加工された異形棒鋼の断面の硬さをマイクロ ビッカース硬さ試験機により測定した.本実験では, 異形棒鋼を Fig.3 に示す A から D の 4 領域に分け

Fig. 3. Zoning based on deformation of bent rebar.

た.領域Aは異形棒鋼の棒鋼受けとの接触点から支 点ローラとの接触点までの間の部分,領域Bは支点 ローラに押し付けられて曲げられた部分,領域Cは 異形棒鋼の支点ローラとの接触点から力点ローラと の接触点の間の部分,領域Dは棒鋼受けと接する部 分である.各 θ_F において,領域Aから2か所,領域 Bから1か所,領域Cから2か所,領域Dから1か 所の合計6か所を対象として硬さを測定した.測定 位置は,Table1に示すように棒鋼受けの端部からの 距離 L_S 離れた位置とした.硬さ試験の試験力Fは 2.942N(HV0.3)とした.測定点の位置は規格(JIS Z 2244)に則り測定対象面の端から0.8mm間隔とし, Fig.4に示される10か所とした.

3. 結果および考察

3.1. 加工中の異形棒鋼の変形

カ点ローラの回転角度 *θ_F*=180°とした場合の加工 途中ならびに加工完了後の材料変形を Fig. 5 に示す. *θ_F*=45°では,力点ローラが異形棒鋼を支点ローラに 接触するように押しており,異形棒鋼の他端が棒鋼 受けに接触している.*θ_F*=45°の材料変形より,Fig. 3 に示した領域Aから領域Dに分けて考えることとし た.棒鋼受けに接している部分(領域 D)は,大き な変形がない.棒鋼受けと支点ローラの間の部分 (領域 A)は,工具に接触することなく,曲げ変形 が発生している.支点ローラに押し付けられた部分 (領域 B)は,支点ローラの外径に近づくように変 形している.支点ローラと力点ローラの間の部分 (領域 C)にも,工具に接触することなく曲げ変形 が発生している.なお,領域Aと領域Cは長さが異

Table 1. Distance L_S from the rebar receiver end to the surface to be measured.

$ heta_F$	90°	130°	180°
Area A-1 [mm]	154	154	154
Area A-2 [mm]	160	160	160
Area B [mm]	172	184	172
Area C-1 [mm]	206	218	236
Area C-2 [mm]	212	224	242
Area D [mm]	10	22	22

Fig. 4. Measurement points for hardness test.

(c) $\theta_F = 180^\circ$ (d) Completed bending Fig. 5. Deformation of rebar in bending for $\theta_F = 180^\circ$.

なるため、曲げ変形の大きさが異なる. θ_F =45°から θ_F =120°ならびに θ_F =120°から θ_F =180°へ力点ローラ の回転角度が増加すると、支点ローラに押し付けら れて曲げられた部分(領域 B)が長くなる. このよ うに力点ローラと異形棒鋼の接触位置が変化しなが ら、カ点ローラにより異形棒鋼が支点ローラに押し 付けられて逐次的に曲げ加工が行われている。加工 初期に θ_F の増加にともない領域Aの曲げ変形は増加 すると考えられ、 θ_F がある程度増加すると領域Aの 曲げ変形が増加し難くなることが推察できる。 Figure 3 に示した領域ごとならびに θ_F ごとに材料変 形と硬さを確認することが必要と考えられる。

3.2. 加工中の異形棒鋼の長手方向への変位

曲げ加工中に異形棒鋼が長手方向に移動する軸方 向変位が発生することが知られている⁵⁾. 先に述べ たように Fig. 3 に示した 4 つの領域に関して材料変 形ならびに硬さを評価する場合に,軸方向変位の大 きさを確認することが必要である.加工初期から加 工完了までの間に,領域の分類が変わる可能性があ るためである.例えば,加工初期は領域Aに分類さ れるとしても,一部分が軸方向変位により支点ロー ラと接触することとなり,加工完了時には領域Bに 分類される部分があると推察される.

運動解析ソフトにより,撮影した動画から軸方向 変位を求めた. Figure 2 に示した点 a の X 軸方向へ の変位を軸方向変位 u とし,力点ローラの回転角度 θ_F =180°までの結果を Fig. 6 に示す. θ_F が増加すると u も増加し,最大で 3.1mm の軸方向変位が発生する. θ_F =19°までは軸方向変位が発生していない.この間 は力点ローラが異形棒鋼に接触していないためであ る.異形棒鋼と力点ローラの接触後に u が増加し始 め, θ_F =140°以降は u が増加し難くなる.

3.3. 加工中の領域ごとの材料変形

曲げ加工中の異形棒鋼について更に詳しく観察を 行うため、軸方向変位 u の増加を参考として変形形 状を確認することとした.力点ローラが異形棒鋼に 接触した後から u が大きく増加していることから、 θ_F =42.96°の変形形状を確認した.また、 θ_F =150°程 度までは緩やかにuが増加することから、 θ_F =150°の 変形形状を確認した.最後に、加工が完了する θ_F =180°の変形形状を確認した. θ_F =42.96°における変形形状を Fig. 7 (a) に示す. また,異形棒鋼の縦方向の節をもとに描いた線を Fig. 7 (b) に示す.比較のため, θ_F =180°における変 形形状をもとに描いた線も合わせて示す. θ_F =42.96° では,支点ローラと接触する部分はわずかであり, 異形棒鋼の支点ローラとの接触点から棒鋼受けとの 接触点の間が曲げ変形することがわかる.また, θ_F =180°における支点ローラと棒鋼受けの間の変形

Fig. 6. Relationship between rotation angle θ_F and axial displacement u.

(a) Deformed shape

⁽b) Trace lines of longitudinal rib

Fig. 7. Deformed shape of rebar for θ_F =42.96°.

(a) Deformed shape

(b) Trace lines of longitudinal rib Fig. 8. Deformed shape of rebar for $\theta_F=150^\circ$.

形状は θ_F =42.96°のものとあまり違いがない.

Figure 6 より θ_F =42.96°までと比較して、軸方向変位 $u \circ \theta_F$ に対する傾きは緩やかとなる.加工初期では、 支点ローラと棒鋼受けの間の曲げ変形が増加するた め、棒鋼受けに作用する反力が増加すると考えられ る.また、 θ_F が大きくなると、力点ローラと異形棒 鋼の接触点に作用する力の方向が変化する.このよ うなことから、 θ_F =42.96°程度までは軸方向変位が大 きく増加し、その後は増加し難くなると考えられる.

(a) Deformed shape

Fig. 9. Deformed shape of rebar for $\theta_F = 180^\circ$.

は、支点ローラと力点ローラの間の部分を支点ロー ラに押し付けるように曲げている.また、支点ロー ラと棒鋼受けの間の変形形状は θ_F=150°の場合とあ まり違いがない.

以上より, Fig. 3 に示した各領域で変形形状を比 較すると,領域 B の長さが増加すること以外は, $\theta_F=90^\circ$, 130°, 180°で大きな違いはないと考えられる.

3.4. 加工後の異形棒鋼の硬さ分布

加工後の硬さを評価するため, Fig.3に示した4領 域を対象として硬さ試験を行った.また,各領域内 でも中央部分と境界に近い部分で変形形状が変化す ることが推察される.例えば,領域Aにおいても, 異形棒鋼には節があることで曲げ変形しやすい部分 があることから,一様な変形とならないことが考え られる.このため,工具に接触することなく曲げら れていた領域Aならびに領域Cにおける硬さはそれ ぞれ2か所を対象として測定した.領域Bならびに 領域Dは,工具に押し付けられていたことからそれ ぞれ1か所を対象として測定した.

加工後の異形棒鋼の形状を確認しながら節ごとに 切断し、Table 1 に示した断面の硬さ試験を行った. Lsは棒鋼受けの端からの距離であり、領域Dの2か 所は10mm あるいは22mm とした. 棒鋼受けの長さ は130mm であり, Fig. 6 に示した軸方向変位の最大 値が 3.1mm であることから、本実験条件の θ_F にお いて領域 D における測定対象面の位置は、加工完了 時まで棒鋼受けに接触していると考えられる.領域 A の 2 か所は L_s が 154mm あるいは 160mm である. 棒鋼受けの長さが130mm であり, Fig. 2 より棒鋼受 けの端から支点ローラの中心までの距離の水平方向 成分が170mmである.加えて, Fig.6に示した軸方 向変位の最大値が3.1mmであることから、本実験条 件の θ_F において領域 A における測定対象面の位置 は、工具に接触することなく曲げ変形していたと考 えられる. 領域 B ならびに領域 C については、 θ_F の 増加にともない領域 C であった部分が支点ローラに 押し付けられることとなるため、加工後の異形棒鋼 の形状を確認しながら断面を確認することとした.

大きな変形が見られなかった領域Dの硬さ試験の

Fig. 10. Variation of hardness in area D.

Fig. 11. Variation of hardness in area B.

結果を Fig. 10 に示す. 横軸は Fig. 4 に示した断面の 外側から測定点までの距離である. θ_F によらず,全 ての測定点において硬さが 180HV から 190HV 程度 である. 表面と中心部分の硬さに大きな違いがない ことから,領域 D は曲げ加工の影響を受けていない と考えられる.

支点ローラに押し付けられて曲げられた領域 Bの 硬さ試験の結果を Fig. 11 に示す. 中心付近に比べて, 曲げ変形による伸びあるいは縮みが大きい表面に近 づくと硬さが増加する.曲げ加工の影響を受けてい ないと考えられる領域 D の硬さが 180HV から 190HV程度であったことに比べて、領域Bでは表面 付近の硬さが270HV程度となっており、加工により 硬さが増加している. Table 1 に示したように, θr=90°および 180°における棒鋼受けの端から測定対 象面までの距離は Ls=172mm であることに対して, $\theta_{F}=130$ °ではLs=184mmと異なるにも関わらず、硬さ 分布に大きな違いが見られない. Fig. 9 に示されて いるように、領域 B は支点ローラに押し付けられる ように変形するため、領域 B 内の位置が異なる部分 の変形形状を比較すると大きな違いはない. このよ うなことから、本実験の領域 B 内の異なる測定対象 面の位置では,硬さ分布に大きな違いがあらわれな いと考えられる.また、*θ*Fが増加しても硬さ分布が 同じ傾向を示すことも、領域 B は支点ローラに押し 付けられるように変形するためと考えられる.

工具に接触することなく曲げ変形する領域 A の硬 さ試験の結果を Fig. 12 に示す.領域 A は棒鋼受けと 支点ローラの間の部分だが,A-1 と A-2 で同じ θ_F の 場合を比較しても場所により硬さが異なる.また, 内部から表面に近づくほど硬さが増加する傾向は領 域 B と同様であるが,領域 B の表面の硬さよりも領 域 A の表面の硬さの値は小さい.しかし,領域 D の 硬さが 180HV から 190HV 程度であることから,曲 げ加工により A-1 の部分では表面付近の硬さが増加 していることがわかる.さらに支点ローラに近づい た A-2 の部分では表面付近の硬さがさらに増加する. Figure 9 からわかるように,支点ローラに押し付け られて曲げられた領域 B よりも,工具に接触するこ となく曲げられた領域 A の材料変形は小さい.この

Fig. 12. Variation of hardness in area A.

ような材料変形の違いから、領域 B に比べて領域 A の表面の硬さは小さい値となると考えられる.また、領域 B に近い A-2 の方が A-1 よりも表面の硬さが大きい値となると考えられる.

Figure 12 に示したように、A-1 の θ_F =90°のときの 表面の硬さは最大 199HV であり、 θ_F =180°では最大 226HV となる. 領域 B の表面の硬さまでは増加しな いが、 θ_F が増加すると領域 A の表面の硬さが増加す る. A-2 の表面の硬さについては、 θ_F =90°における 硬さの最大値は 227HV であり、 θ_F =180°における硬 さの最大値は 254HV である. 一方、Fig.7 (b) に示 した形状の比較では、 θ_F =42.96°以降では領域 A の変 形形状は大きくは変化しない. 領域 A は、加工初期 に大きく変形すると考えられ、その後の θ_F の増加に よる変形の変化は小さくなると考えられる. なお、 実験ごとの節の位置や切断位置の影響も考えられる ことから、 θ_F の増加にともなう領域 A の変形につい ては、今後より詳細な検討が必要と考える.

工具に接触することなく曲げ変形する領域 C の硬 さ試験の結果を Fig. 13 に示す. 領域 C は支点ローラ と力点ローラの間の部分である. 同じ θ_Fの場合を比

Fig. 13. Variation of hardness in area C.

較すると、C-1の硬さの増加がC-2と比べてかなり 大きい、C-2よりもC-1は、変形が大きい領域Bに 近いことが影響していると考えられる.また、C-2 に示す表面の硬さの値は領域Bに比べてかなり小さ く、領域Dの硬さ分布と比較するとC-2の内部と表 面の硬さの変化はわずかである.領域Aと比べて領 域の長さが短いため曲げ変形は起こり難いと考えら れ、C-2付近の変形は小さいためと考えられる.

以上より,本実験条件では回転角度が変化しても, 工具に押し付けられながら曲げられた領域の硬さに 大きな違いがないことを明らかにした.また,工具 に接触することなく曲げられた領域については位置 により硬さが異なることを明らかにした.

4. 結論

簡易曲げ加工機により異形棒鋼を曲げ加工し,力 点ローラの回転角度の増加にともなう材料変形を観 察した.また,加工中の軸方向変位ならびに加工後 の異形棒鋼の断面における硬さを測定した.以下の 結論を得られた.

- (1) 簡易曲げ加工機では、変形形状により異形棒鋼 を4つの領域に分けることができる.支点ロー ラに押し付けられて曲げられる領域を除き、回 転角度が90°,130°,180°では各領域の変形形状 に大きな違いはない.本実験条件では、力点ロ ーラと異形棒鋼の接触後、回転角度の増加にと もない軸方向変位の増加が緩やかとなった.
- (2) 簡易曲げ加工機により曲げられた異形棒鋼の硬 さは、棒鋼受けに接する領域、棒鋼受けと支点 ローラの間の領域、支点ローラに押し付けられ て曲げられる領域ならびに支点ローラと力点ロ ーラの間の領域ごとに異なる。
- (3)加工前の異形棒鋼の硬さに比べて、回転角度の 大きさに関係なく支点ローラに押し付けられて 曲げられた領域の硬さの測定値は大きくなる. 一方、棒鋼受けと支点ローラの間の領域ならび に支点ローラと力点ローラの間の領域は、測定 位置が支点ローラに近づくにともなって硬さの 測定値が大きくなる.

参考文献

- 沖本 弘, 鶴岡 孝輔, "曲げ戻し加工による異形鉄筋の 破断特性に関する実験的研究", 日本建築学会構造系論 文報告集, 442, 33-41 (1992).
- 三浦尚, 舩本浩二, 瀬戸謙一郎, "極低温下での鉄筋の曲げ加工部における耐衝撃性", 土木学会論文集, 34 [557], 15-22 (1997).
- 瀬沼 武秀, 樋渡 俊二, 菊池 正夫, 新塑性加工技術シ リーズ2金属材料, (コロナ社, 東京, 2016), 123-124.
- 4) 中村 雅勇, 戸澤 康壽, "かたさ値と圧こんに現れる現 象-押込みかたさに関する金属塑性学的研究I-", 塑 性と加工, 16 [175], 668-675 (1975).
- S. Higaki, H. Nishida, Y. Koike, M. Sasada, T. Tanaka, "Effect of Transverse Ribs on Axial Displacement of Rebars in Bending", *Procedia Manufacturing*, **50**, 253-256 (2020).