がん細胞選択的毒性を発現する二核銅錯体の開発 及びその構造機能相関の解明

(博士論文)

同志社大学大学院 理工学研究科 応用化学専攻 博士課程(後期) 2021年度1701番 畑 真知

第一章:序章	1
1-1. はじめに	1
1-2. がん細胞	1
1-2-1. がん細胞のミトコンドリア	1
1-2-2. がん細胞の ER	4
1-2-3. がん細胞の Golgi 体	4
1-3. 様々な標的能を有する金属錯体	5
1-3-1.DNA を標的とする金属錯体および臨床利用されている抗がん剤	5
1-3-2. ミトコンドリアを標的とする金属錯体	7
1-3-3.ER を標的とする金属錯体	
1-3-4.Golgi 体を標的とする金属錯体	9
1-4. 銅錯体	
1-5. 当研究室の先行研究	11
1-6. 研究概要	14
	16
1-7. 参考文献	
1-7. 参考文献 第二章:Enhancement of Cancer-cell-selective Cytotoxicity by a Dicopper Co Phenanthrene Amide-tether Ligand Conjugate via Mitochondrial Apoptosis	mplex with a
 1-7. 参考文献 第二章: Enhancement of Cancer-cell-selective Cytotoxicity by a Dicopper Co Phenanthrene Amide-tether Ligand Conjugate via Mitochondrial Apoptosis 2-1. 要旨 	mplex with a
 1-7. 参考文献 第二章: Enhancement of Cancer-cell-selective Cytotoxicity by a Dicopper Co Phenanthrene Amide-tether Ligand Conjugate via Mitochondrial Apoptosis 2-1. 要旨 2-2. 緒言 	mplex with a 21 22
1-7. 参考文献 第二章: Enhancement of Cancer-cell-selective Cytotoxicity by a Dicopper Co Phenanthrene Amide-tether Ligand Conjugate via Mitochondrial Apoptosis 2-1. 要旨 2-2. 緒言 2-3. 結果と考察	mplex with a 21 22 24
 1-7. 参考文献 第二章: Enhancement of Cancer-cell-selective Cytotoxicity by a Dicopper Co Phenanthrene Amide-tether Ligand Conjugate via Mitochondrial Apoptosis 2-1. 要旨 2-2. 緒言 2-3. 結果と考察 2-3-1. 配位子と二核銅(II)錯体の合成 	mplex with a 21 22 24 24
 1-7. 参考文献 第二章: Enhancement of Cancer-cell-selective Cytotoxicity by a Dicopper Co Phenanthrene Amide-tether Ligand Conjugate via Mitochondrial Apoptosis 2-1. 要旨 2-2. 緒言 2-3. 結果と考察 2-3-1. 配位子と二核銅(II)錯体の合成 2-3-2. 二核銅(II)錯体の構造 	mplex with a 21 22 24 24 24
 1-7. 参考文献 第二章: Enhancement of Cancer-cell-selective Cytotoxicity by a Dicopper Co Phenanthrene Amide-tether Ligand Conjugate via Mitochondrial Apoptosis 2-1. 要旨 2-2. 緒言 2-3. 結果と考察 2-3-1. 配位子と二核銅(II)錯体の合成 2-3-2. 二核銅(II)錯体の構造 2-3-3. 1 および 1^{P2}の DNA 結合能力 	mplex with a 21 22 24 24 24 26 28
 1-7.参考文献 第二章: Enhancement of Cancer-cell-selective Cytotoxicity by a Dicopper Co Phenanthrene Amide-tether Ligand Conjugate via Mitochondrial Apoptosis 2-1.要旨 2-2.緒言 2-2.緒言 2-3.結果と考察 2-3-1.配位子と二核銅(II)錯体の合成 2-3-2.二核銅(II)錯体の構造 2-3-3.1および 1^{P2}の DNA 結合能力 2-3-4.1および 1^{P2}の酸化的 DNA 切断活性 	mplex with a 21 22 24 24 26 28 29
 1-7.参考文献 第二章: Enhancement of Cancer-cell-selective Cytotoxicity by a Dicopper Co Phenanthrene Amide-tether Ligand Conjugate via Mitochondrial Apoptosis 2-1.要旨 2-2.緒言 2-3.結果と考察 2-3-1.配位子と二核銅(II)錯体の合成 2-3-2. 二核銅(II)錯体の構造	mplex with a 21 22 24 24 24 24 26 28 29 29 29
 1-7. 参考文献 第二章: Enhancement of Cancer-cell-selective Cytotoxicity by a Dicopper Co Phenanthrene Amide-tether Ligand Conjugate via Mitochondrial Apoptosis 2-1. 要旨 2-2. 緒言 2-3. 結果と考察 2-3. 結果と考察 2-3-1. 配位子と二核銅(II)錯体の合成 2-3-2. 二核銅(II)錯体の構造 2-3-3. 1 および 1^{P2}の DNA 結合能力 2-3-4. 1 および 1^{P2}の酸化的 DNA 切断活性 2-3-5. 1 および 1^{P2} の細胞毒性 	mplex with a 21 22 24 24 24 24 26 28 29 32
 1-7.参考文献 第二章: Enhancement of Cancer-cell-selective Cytotoxicity by a Dicopper Co Phenanthrene Amide-tether Ligand Conjugate via Mitochondrial Apoptosis 2-1.要旨 2-2.緒言 2-2.緒言 2-3.結果と考察 2-3-1.配位子と二核銅(II)錯体の合成 2-3-2. 二核銅(II)錯体の構造 2-3-3.1および 1^{P2} の DNA 結合能力 2-3-4.1および 1^{P2} の酸化的 DNA 切断活性 2-3-5.1および 1^{P2} の細胞毒性 2-3-7.1および 1^{P2} の細胞肉への取り込み 	mplex with a 21 22 24 24 24 24 26 28 29 32 35 37
 1-7. 参考文献 第二章: Enhancement of Cancer-cell-selective Cytotoxicity by a Dicopper Co Phenanthrene Amide-tether Ligand Conjugate via Mitochondrial Apoptosis 2-1. 要旨 2-2. 緒言 2-2. 緒言 2-3. 結果と考察 2-3-1. 配位子と二核銅(II)錯体の合成 2-3-2. 二核銅(II)錯体の構造 2-3-3. 1 および 1^{P2}の DNA 結合能力 2-3-4. 1 および 1^{P2}の 酸化的 DNA 切断活性 2-3-5. 1 および 1^{P2} の 細胞内局在 2-3-8. 1^{P2}の細胞内局在 	mplex with a 21 22 24 24 24 24 26 28 29 32 35 37 38
 1-7.参考文献	mplex with a 21 22 24 24 24 26 28 29 29 35 37 38 39

目次

2-4.	結論	۲ ۲	44
2-5.	実懸	方法	45
2-	-5-1.	試薬	45
2-	-5-2.	測定装置	45
2-	-5-3.	配位子(HL1 ^{P2})およびその二核銅(II)錯体(1 ^{P2})の合成	46
2-	-5-4.	EtBr 法	52
2-	-5-5.	DNA 切断実験	52
2-	-5-6.	μ-1,1-hydroperoxodicopper(II)錯体 2,2 ^{P2} と ct-DNA の反応	52
2-	-5-7.	細胞株とその培養条件	53
2-	-5-8.	3-(4,5-dimethylthiazole)-2,5-diphenyltetrazolium bromide (MTT) assay	53
2-	-5-9.	ICP MS による HeLa 細胞内の銅イオン濃度の定量	54
2-	-5-10.	フラスコ振盪法による分配係数 (log P ow)の測定の測定	54
2-	-5-11.	共焦点顕微鏡による細胞内イメージング	54
2-	-5-12.	Apoptosis assay	55
2-	-5-13.	Caspase-3/7 活性	55
2-	-5-14.	Caspase-9 活性	56
2-6.	参考	「文献	57
2-7.	Sup	porting Information	60
第三	章:	Roles of DNA Target in Cancer Cell-Selective Cytotoxicity by Dicopper Complex	tes
with	n DNA	A Target/Ligand Conjugates	
3-1.	要旨		65
3-2.	緒言	<u>.</u>	66
3-3.	結果	と考察	69
3-	-3-1.	配位子と二核銅(II)錯体の合成	69
3.	-3-2.	二核銅(II)錯体の構造	71
3-	-3-3.	1 および 1 ^x の DNA への結合能力	75
	•		

3-3-4.	μ-1,1-hydroperoxodicopper(II)錯体の分光学的測定	77
3-3-5.	1 ^x による酸化的 DNA 切断活性	81
3-3-6.	1 ^x の細胞内取込量と親油性	86
3-3-7.	1 ^x の細胞毒性	87
3-3-8.	1 ^{P1-3} の細胞内局在	.92
	3-3-4. 3-3-5. 3-3-6. 3-3-7. 3-3-8.	 3-3-4. μ-1,1-hydroperoxodicopper(II)錯体の分光学的測定 3-3-5. 1^xによる酸化的 DNA 切断活性

3-3-9. Apoptosis assay
3-3-10. カスパーゼ活性アッセイ
3-3-11. 1 ^{Pn} とミトコンドリア標的単核銅(II)錯体のがん細胞選択的毒性の比較99
3-4. 結論
3-5. 実験方法
3-5-1. 試薬
3-5-2. 測定装置101
3-5-3.配位子(HL1 ^x)とその二核銅(II)錯体(1 ^x) (X = Pn and Mn (n = 1–3))の合成 102
3-5-4. EtBr 法111
3-5-5. DNA 切断実験111
3-5-6.µ-1,1-hydroperoxodicopper(II)種形成の確認112
3-5-7.細胞株とその培養条件112
3-5-8. 3-(4,5-dimethylthiazole)-2,5-diphenyltetrazolium bromide (MTT) assay 112
3-5-9.ICP MS による HeLa 細胞内の銅イオン濃度の定量113
3-5-10.親水性フラスコ振盪法による分配係数 (log Pow)の測定
3-5-11.共焦点顕微鏡による細胞内イメージング114
3-5-12. Apoptosis assay 114
3-5-13. Caspase-9 活性 115
3-5-14. Caspase-3/7 活性115
3-6. 参考文献 117
3-7. Supporting Information 120
第四章:Synthesis, Structures, and Cytotoxicity of Dicopper Complexes with p-Cresol-2,6-
Bis(Amide-Tether-dpa ^{4-X}) Ligands (X = MeO and Cl): Electronic and Hydrophobic Effects
of MeO and Cl on Selective ROS Generation and Cytotoxicity Enhancement.
4-1. 要旨
4-2. 緒言
4-3. 結果と考察
4-3-1.配位子と二核銅(Ⅱ)錯体の合成130
4-3-2.二核銅(II)錯体の結晶構造132

4-3-2.	後朝(Ⅱ)	132
4-3-4.	二核銅(II)錯体の親油性	140
4-3-5.	二核銅(II)錯体の酸化還元挙動	140

4-3-6. 二核銅(II)錯体の還元的 O₂活性化	143
4-3-7.二核銅(II)錯体の細胞毒性	145
4-3-8.二核銅(II)錯体の細胞内での ROS 生成	146
4-4. 結論	158
4-5. 実験方法	159
4-5-1. 試薬	159
4-5-2. 測定装置	159
4-5-3.配位子(HL3 ^{4-x})とその二核銅(II)錯体(3 ^{4-x}) (X = MeO, Cl)の合成	159
4-5-4.3,3b ^{4-MeO} ,3b ^{4-Cl} の Cyclic Voltammetry (CV)測定	166
4-5-5.3,3b ^{4-MeO} ,3b ^{4-Cl} の Square Wave Voltammetry (SWV)の測定	166
4-5-6.3b ^{4-MeO} ,3b ^{4-Cl} を AscNa と反応させた際の電子スペクトル測定	166
4-5-7.coumarin を用いた 3b ^{4-MeO} ,3b ^{4-CI} による HO•生成の検出	166
4-5-8.PFBS を用いた 3b ^{4-MeO} ,3b ^{4-Cl} による H ₂ O ₂ 生成の検出	166
4-5-9. 細胞株とその培養条件	167
4-5-10. 3-(4,5-dimethylthiazole)-2,5-diphenyltetrazolium bromide (MTT) assay	167
4-5-11.共焦点顕微鏡による細胞内 ROS の確認	168
4-5-12.共焦点顕微鏡による細胞取込経路の確認	168
4-5-13.共焦点顕微鏡による細胞内 H2O2の確認	169
4-6. 参考文献	170
第五章:Burst of DNA Double-Strand Breaks by Dicopper(II) Complex with a p-Creso	ol-2,6-
Bis(amide-tether-dpa) Ligand via Reductive O ₂ -Activation	
5-1. 要旨	172
5-2. 緒言	173
5-3. 結果と考察	175
5-3-1.AscNa を用いた還元的 O₂活性化による 3-5 の酸化的 DNA 切断活性	175
5-3-2.3,4 および 5 の酸化還元挙動	181

5-3-3.	3 および 5 の還元的 O2 活性化	186
5-3-4.	3 および 5 の DNA 結合能力	190
5-4. 結論	<u>ж</u> а	193
5-5. 実験	专方法	194
5-5-1.	試率	194

5-5-2. 測定装置	
5-5-3.DNA 切断実験	194
5-5-4.3 および 4 を AscNa と反応させた際の電子スペクトル測定	195
5-5-5. 3,4 および 5 の Cyclic Voltammetry (CV)測定	195
5-5-6.3 のバルク電解中における電子スペクトル測定	195
5-5-7.テレフタル酸(TA)を用いた HO•生成の検出	196
5-5-8. 等温滴定型熱量(ITC)測定	196
5-5-9.ct-DNA 存在下での 3 の IR スペクトル測定	196
5-5-10.ct-DNA 存在下での 3 の電子スペクトル測定	196
5-6. 参考文献	197
5-7. Supporting Information	199

第六章:Burst of DNA Double-Strand Breaks by Dicopper(II) Complexes

6-1.	要旨	ය =	215
6-2.	緒言	言	216
6-3.	結	果と考察	219
6-	3-1.	AscNa 存在下での 3,3b ^{4-MeO} ,3b ^{4-Cl} の DNA 二本鎖切断	219
6-	3-2.	3, 3b ^{4-MeO} , 3b ^{4-Cl} の還元的 O ₂ 活性化	225
6-	3-3.	3, 3b ^{4-MeO} , 3b ^{4-Cl} の DNA 結合能力	229
6-4.	結調	侖	232
6-5.	実馴	黄方法	233
6-:	5-1.	試薬	233
6-:	5-2.	測定装置	233
6-:	5-3.	DNA 切断実験	233
6-:	5-4.	3b ^{4-C1} の Cyclic Voltammetry (CV)測定	234
6-:	5-5.	coumarin を用いた HO•生成の検出	234
6-:	5-6.	等温滴定型熱量(ITC)測定	234
6-:	5-7.	ct-DNA 存在下での Circular Dichroism (CD)スペクトル測定	235
6-:	5-8.	ct-DNA 存在下での 3, 3b ^{4-MeO} および 3b ^{4-Cl} の電子スペクトル測定	235
6-6.	参考	考文献	236
6-7.	Sup	oporting Information	238

phen	anth	rrene amide-tether ligand conjugate	
7-1.	要旨	f	60
7-2.	緒言	<u>ة</u> 2	61
7-3.	結界	ミと考察2 0	63
7-3	8-1.	配位子と二核銅(II)錯体の合成	63
7-3	8-2.	二核銅(II)錯体の構造	64
7-3	3-3.	AscNa 存在下での 3 ^P および 3 ^M の DNA 酸化切断活性	66
7-3	8-4.	3, 3 ^P および 3 ^M の酸化還元挙動	68
7-3	8-5.	3, 3 ^P および 3 ^M の還元的 O₂活性化	70
7-3	8-6.	3, 3 ^P および 3 ^M の DNA 結合	72
7-4.	結論	帝	74
7-5.	実験	方法	75
7-5	5-1.	試薬2	75
7-5	5-2.	測定装置22	75
7-5	5-3.	配位子 (HL3 ^x)およびその二核銅(II)錯体 (3 ^x)の合成	75
7-5	5-4.	DNA 切断実験	78
7-5	5-5.	3 ^P , 3 ^M の Cyclic Voltammetry (CV)測定	78
7-5	5-6.	coumarin を用いた HO•生成の検出2'	78
7-5	5-7.	Pentafluorobenzenesulfonyl Fluorescein (PFBS)を用いた H2O2 生成の検出 2	78
7-5	5-8.	等温滴定型熱量(ITC)測定	79
7-5	5-9.	ct-DNA 存在下での 3 ^P の電子スペクトル測定	79
7-6.	参考	文献2	80
7-7. S	Supp	porting Information	81
第八道	章:	総括29	92

第七章: Enhancement of DNA double-strand breaks by a dicopper complex with a

謝辞

第一章:序章

1-1. はじめに

近年,人類の長寿命化に伴い,日本だけでなく世界中でがん罹患者数は増加し続けて いる^[1].そのため,新たながん治療法の研究・開発が盛んに行われている.現在,主に 臨床利用されているがん治療法としては,手術療法,放射線療法,薬物療法,免疫療法 の4つが挙げられる.また,2020年に日本が世界で初めて承認した光免疫療法も第5の 治療法^[2]として注目を集めている.その中でも薬物療法には,細胞障害性薬,分子標的 薬,ホルモン療法薬など様々な種類の抗がん剤が存在し,それぞれがん細胞への攻撃の 仕方が異なる.細胞障害性薬は細胞の増殖の仕組みに着目することで細胞死を誘導する 抗がん剤であるため,適用範囲が広く,高い抗がん活性を示し,予後の治療にも有効な 優れた抗がん剤である.しかし,がん細胞だけでなく正常細胞にも作用するため,強い 副作用が問題となっている.そのため,がん細胞に選択的に作用する細胞障害性薬の開 発が望まれている.

1-2. がん細胞

がん細胞を選択的に細胞死へと誘導する抗がん剤の開発に向けて,本研究では正常細 胞とは異なるがん細胞の微小環境に着目した.次にそれらを述べる.

1-2-1. がん細胞のミトコンドリア

ミトコンドリアは、好気呼吸に伴う代謝系を担っており、細胞の活動に必要なエネル ギー源となるアデノシン三リン酸(ATP)の産生を行う細胞小器官である. ATP は、アデ ノシンのリボースに3つのリン酸が酸無水物として結合し、2 個の高エネルギーリン酸 結合をもつヌクレオチドである. ATP がアデノシン二リン酸(ADP)になる反応は、様々 な生体反応と協奏して自由エネルギー(*AG*)を獲得することで生体内の反応を進行させ る. 好気性条件下の正常細胞では、ATP 産生には、解糖系、TCA 回路、および電子伝 達系(mitochondrial electron transport, ETC)による酸化的リン酸化が関わっている(Figure 1-1). 解糖系は、細胞質内でグルコースがヘキソキナーゼによってグルコース-6-リン酸 となった後、ピルビン酸を生じる(Figure 1-1 (A))^[3]. この反応系では酸素(O₂)は消費され ず、嫌気性条件下でも反応が進行する. この場合、ピルビン酸は乳酸に変換される^[4]. 解糖系では、高エネルギーリン酸化合物による ADP のリン酸化で、最終的にグルコー ス1分子当たり2分子の ATP が生成する. さらに、解糖系で生成したビルビン酸は、 好気性条件下では、ミトコンドリアへ移行して脱炭酸によりアセチル CoA へと変換さ れた後, TCA 回路を経て, NADH, FADH₂及び CO₂となる(Figure 1-1 (B))^[5]. ここで生 成した高い還元力を有する NADH と FADH₂の水素は, ミトコンドリアのマトリックス において電子(e)とプロトン(H⁺)に分かれる. ミトコンドリアのマトリックス膜に存在 する電子伝達系の複合体群(Complex I–V)により電子が伝達される際に, 3 つの複合体 (Complex I, III, IV)でプロトンポンプ機構やスカラー反応により, 膜内外に H⁺濃度勾配 が作られる. これを利用して ATP 合成酵素が ADP をリン酸化して ATP を産生する (Figure 1-1 (C))^[6]. この反応系は, 解糖系とは異なり O₂を要求し, 酸化的リン酸化と呼 ばれる. 酸化的リン酸化は, 解糖系より効率がよく, 最大でグルコース 1 分子から 36 分 子の ATP が生成する. 正常細胞は, 主に電子伝達系で ATP を産生する. しかし, がん 細胞では, 好気性条件下においても効率的なミトコンドリアの酸化的リン酸化ではなく 嫌気的な解糖系による ATP 産生が増加している. この特性は, Warburg 効果と呼ばれて いる^[7]. そのため, がん細胞内では NADH が正常細胞よりも多く蓄積している^[8]. また, この嫌気的解糖系で生成する乳酸や, 乳酸が生成する際に生じる H⁺により, 細胞内の pH は低下する. さらに, 細胞内 pH を一定に維持するため, 膜タンパク質が乳酸や H⁺ を細胞外に排出するので, 細胞外 pH も正常細胞と比較して弱酸性になる^[9].

また,がん細胞は正常細胞と比較して活性酸素種(ROS)濃度が高い^[10]. ROS は、ミト コンドリアの電子伝達系での酸素分子の不完全な還元で、細胞内で常に生成している. 正常細胞のミトコンドリアでは、O2が Complex IV のシトクロム c オキシダーゼで 4 電 子還元されて H₂O を生成する.しかし、この反応過程は完全ではなく、電子伝達系の Complex I, II, III から電子の一部が漏れ出て、この漏れ出た電子が取り込まれた酸素の 約 0.2-2%と反応して ROS の一種であるスーパーオキシドアニオン(O2-)を生成する (Figure 1-1 (C))^[11]. 生成した O₂⁻は, スーパーオキシドディスムターゼ(SOD)により O₂ と過酸化水素(H₂O₂)に変換される. さらに, H₂O₂はカタラーゼにより酸素と水に不均化 される.ある程度のROSは自己複製に必要であるが,過剰なROSは細胞の急増や老化, アポトーシス誘導, 腫瘍形成に関与する^[12]. そのため, 細胞内の ROS 濃度は前述の SOD やカタラーゼなどの抗酸化酵素によって分解されて制御されている[11].しかし、ミトコ ンドリアの Complex II のサブユニット B, C 及び D に変異が起こると、電子の蓄積及び それに伴う O₂⁺と H₂O₂ の生成量が増加する. このような変異は, がん細胞のミトコン ドリアで報告されており^[13],細胞のがん化や,がん細胞の ROS 濃度が正常細胞と比較 して高いことの原因の一つであると考えられている^[9].また、細胞内の恒常性を維持す るため, 前述のように ROS 濃度が高いがん細胞中では, 抗酸化剤(還元剤)濃度も正常細 胞と比較して高くなっている.

2

Figure 1-1. Flow of glycolysis (A), citric acid cycle (B), and electron transport chain (C).

1-2-2. がん細胞の ER

小胞体(endoplasmic reticulum, ER)は、細胞小器官や膜を構成するタンパク質の合成と 折りたたみ、成熟化、カルシウム貯蔵などを担う細胞小器官である^[14, 15]. ER は、細胞 質を横断するようにして核膜までつながっており、袋状の膜構(cisternae, ER 槽)によっ て構成されている. ER 内のカルシウム枯渇や、細胞への酸化ストレス、低酸素や低栄 養などの生理的ストレスにさらされると、ER 内に折りたたみ不全タンパク質が蓄積し た状態となる. この状態は、ER ストレスと呼ばれる^[16,17]. ER ストレスは細胞の生理機 能を妨げるため、この状態を回避するためのシステムが細胞には備わっている. ER 膜 に存在するセンサータンパク(PERK, ATF6, IRE1)が ER ストレスを感知し、ER から核へ と至るシグナル経路である ER ストレス応答(unfolded protein response, UPR)が引き起こ される^[18-20]. 各 ER ストレスセンサーによって引き起こされる UPR には、mRNA の翻 訳の抑制や ER 分子シャペロンの転写の誘導、ER 関連分解(ER-associated degradation, ERAD)の活性化があり、細胞内の恒常性を維持するように働く.しかし、UPR が正常に 機能しない場合や過度の ER ストレスがかかった場合には、アポトーシスにより細胞は 死に至ることが知られている^[19,21].

がん細胞では,低酸素^[21]や低栄養といった ER ストレスを誘発する微小環境が生じて おり,それに応答して ER ストレスマーカーががん細胞内で過剰発現している^[23,24].ま た,がん細胞ではシャペロンタンパクの発現が活性化しており,低酸素等によって誘導 される ER ストレスに対応している.このように,UPR ががん細胞の生存に寄与してい ることが報告されている.

1-2-3. がん細胞の Golgi 体

Golgi 体は、細胞外へ分泌されるタンパク質の糖鎖修飾や輸送などを担う細胞小器官 である^[25, 26]. がん細胞では、Golgi 体に存在するタンパク質糖転移酵素の活性化や様々 な受容体の発現亢進が報告されている.また、ER と同様に、Golgi 体にもストレスを回 避するための Golgi 体の量的調節機構である Golgi 体ストレス応答が備わっていること が報告されている^[27].

4

1-3. 様々な標的能を有する金属錯体

これまで,がんの治療に向けて様々な抗がん剤が開発されてきた.そして,現在でも, 抗がん剤の副作用軽減や既存の抗がん剤への耐性を有するがんへの新たな治療法開発 を目指して,日夜研究が行われている.次にそれらの一部を述べる.

1-3-1. DNA を標的とする金属錯体および臨床利用されている抗がん剤

臨床利用されている抗がん剤の一つに Bleomycin (BLM) (Figure 1-2)^[28]がある. BLM は DNA 結合部位と金属結合部位をもち,投与後に体内で鉄と錯形成して Fe^{II}(BLM)を 形成する. その後, O₂や H₂O₂と反応して activated bleomycin と呼ばれる中間体 Fe(III)-OOH species (ABLM)を生成する^[27b, c]. そして,ABLM が DNA を酸化的に一本鎖切断 (single-strand breaks, ssb)ないしは二本鎖切断(double-strand breaks, dsb)を誘導する(Figure 1-3). ssb と dsb の比率は 1:3 から 1:20 であると報告されている^[29]. しかし,ABLM に よる DNA 切断機構は完全には解明されていない.BLM のビチアゾールを含む DNA 結 合部位は,DNA 二重螺旋構造の塩基対間に平行挿入するインターカレーターまたは DNA の副溝に結合する minor groove binder として働くことが知られている. この部位 で BLM は DNA との親和性が高められており,これがなければ DNA 切断活性は約 10 分の 1 に減少する.また,この部位は BLM の DNA ssb と dsb の比率にも影響を与えて いる.このようにして BLM は高い抗がん活性を示すが,正常細胞とがん細胞のどちら にも作用するため,長期使用では肺に対して副作用を示すことが問題視されている^[30].

上記の様に,BLM はインターカレーターや minor groove binder として働くDNA 結合 部位をもち,その高いDNA 切断活性に寄与している^[28].また,臨床利用されているア ントラサイクリン系抗生物質(Figure 1-4)は,インターカレーターとしてDNA の塩基対 間に挿入することでDNA や RNA の生合成を抑制し,抗がん活性を示す^[31].この様に DNA と結合する化合物は,自身のみで抗がん活性を示したり,その導入で抗がん活性 を向上させたりするため,注目を集めており,DNA と強く結合する化合物はこれまで に数多く研究されている.DNA と化合物との結合箇所は様々であり,DNA に結合する 分子は結合様式の違いから,DNA の主溝に結合する major groove binder,副溝に結合す る minor groove binder,そして,DNA の塩基対間に平行挿入するインターカレーターな どがある^[32].

Figure 1-4. Structures of Anthracycline antibiotics.

インターカレーターとしては、phenanthroline^[33]や dipyridophenazine (dppz)^[34]などの多 環芳香族化合物が多数存在する(Figure 1-5)^[32, 35]. これらの化合物は、 $10^{5}-10^{6}$ M⁻¹ 程度 の結合定数を示すことが報告されている.また、これらを有する合成金属錯体も多数報 告されており、錯体による DNA 切断活性の向上に寄与している.例えば、dpoq を有す るルテニウム錯体[Ru(phen)₂(dpoq)]²⁺ (Figure 1-5)は、(7.22 ± 0.72) × 10⁵ (M⁻¹)の結合定数 を示すことが報告されている^[33a]. dppz を有する銅錯体[Cu(L¹)(dppz)](ClO₄) (Figure 1-5) は、 4.6×10^{4} (M⁻¹)の結合定数を示し、光照射により DNA 切断活性を示すことが報告さ れている^[34a].

Figure 1-5. Structures of intercalator and complexes having intercalator.

1-3-2. ミトコンドリアを標的とする金属錯体

本章の 1-2-1 で述べたように、正常細胞よりもがん細胞では pH が低く、ROS および 抗酸化剤濃度が高い微小環境が形成されている.抗がん剤の副作用軽減を目指し,前述 の環境を標的とする抗がん剤の開発がなされている^[36,37].特に, ROS を生成する小器官 であるミトコンドリアを標的とする様々な金属錯体が開発されている^[38,39].しかし、ミ トコンドリアの二重膜は、多孔質の外膜とタンパク質豊富な内膜から構成されており、 代謝を厳密に制御し,異物の侵入を防いでいるため,化合物の局在は困難である^[40].そ こで注目されているのが非局在化した正電荷を持つ化合物であり,この化合物は膜を透 過してミトコンドリアに効率よく侵入することが報告されている^[41].また,がん細胞の ミトコンドリア膜(-220 mV)は正常細胞のミトコンドリア膜(-160 mV)と比べて過分極 しているため,正電荷を帯びた化合物はがん細胞のミトコンドリア特異的に局在しやす い^[42]. ミトコンドリア標的化合物として最もよく研究されている化合物は、トリフェ ニルホスホニウムイオン(TPP)である(Figure 1-6 (a)). TPP は,正電荷だけでなく,疎水 性のミトコンドリア内膜との相互作用に有利な疎水性構造も併せ持つため、ミトコンド リアへの局在を促進することできる。細胞質内の TPP イオンの濃度は細胞外の約 5-10 倍, ミトコンドリア内への蓄積は細胞質の約 100-500 倍と報告されている^[43]. また, mitochondria-penetrating peptides (MPPs)として Szeto-Schiller (SS)ペプチド^[44]などが知ら れており(Figure 1-6 (b)), 疎水性の高い残基とアルギニン(R)やリジン(K)のような正電荷 を有する残基が交互に並ぶことが特徴である[45,46]. このように様々なミトコンドリアを 標的とする化合物が報告されており、これらを導入した金属錯体も開発されている.例 えば、 ミトコンドリア標的として TPP を導入した terpyridine 配位子(ttpy)に tetraphenyl phosphonium 基(tpp)を結合させた単核銅(II)錯体[Cu(ttpy-tpp)Br2]Br (Figure 1-6 (c))は、ミ トコンドリアを介したアポトーシスによってがん細胞に対して高い細胞毒性を示すこ とが報告されている^[47]. [Cu(ttpy-tpp)Br₂]Br のがん細胞選択的毒性は, 高い細胞内取り 込みとミトコンドリア局在化によって達成されていることも明らかとなっている.

Figure 1-6. Chemical Structures of TPP (a), and SS peptide (b), and Cu complex (c).

1-3-3. ER を標的とする金属錯体

本章の1-2-2で述べたように, ER では酸化ストレスなどにより UPR が引き起こされ, 過度のストレスの場合には細胞死が誘導される^[18,19]. 金属錯体には抗酸化剤との反応や 光照射により ROS を生成することが可能なものがある. そのため, そのような金属錯 体を ER に局在させることは,効果的な抗がん剤になると考えられる.

これまでに、様々な金属錯体が ER に局在することで細胞死を誘導することが報告さ れてきた^[18,38]. 置換不活性なシクロメタル化ポリピリジル Ir 錯体が ER ストレスを引き 起こすことが報告されている. このタイプの Ir 錯体は、ROS 生成を媒介とする光細胞 毒性を有する. その代表例である[Ir(ppy)₂(bpy)]⁺(Figure 1-7 (a))は、光毒性 ER ストレス 誘導剤であり、光照射により ¹O₂とスーパーオキサイドの両方を生成することが報告さ れている^[48]. さらにこの錯体は、光誘起電子伝達とエネルギー伝達の両方を介して、タ ンパク質を光架橋や光酸化することが明らかとなっており、細胞内の様々なタンパク質 を標的としている. また、[Ir(tpy)(pbpz)Cl]⁺(Figure 1-7 (b))は、光照射により ER ストレ スを誘発することが報告されている^[48]. この錯体の細胞死誘導機構は、光照射後に細胞 質 Ca²⁺レベルの上昇が確認されたことから、この錯体によって発生した ROS が、ER の Ca²⁺輸送機構を直接攻撃していると考えられている. Pd 錯体[Pd(acac)₂]も、詳細な経路 は明確になっていないが、ER から Ca²⁺を放出することで ER ストレスを誘導し、抗が ん活性を誘導することが報告されている^[50].

Figure 1-7. Chemical Structures of Ir complex ((a), (b)) and Pd complex (c).

1-3-4. Golgi 体を標的とする金属錯体

本章の 1-2-3 で述べたように, Golgi 体はタンパク質の輸送に関わる重要な小器官だ が,未解明な部分も多い. Golgi 体の機能への理解を深めるために, Golgi 体に局在し, 蛍光を有する金属錯体が開発されてきた^[38]. Policar らは,発光特性と赤外吸収特性を組 み合わせたイメージング用シングルコアマルチモーダルプローブ(SCoMPI)として, Re のトリスカルボニル誘導体[ReCl(CO)₃-pyta-C₁₂N₃]を開発し(Figure 1-8 (a)), Golgi 体に局 在することを明らかにした^[51]. また,細胞において重要な機能を担う Golgi 体における 障害は細胞死を誘導すると考えられる. Lo らは,樹枝状シクロメタル化 Ir(III)ポリピリ ジン錯体[{Ir(N^C)}₈(bpy-8)]⁸⁺と[{Ir(N^C)}₈(bpy-8)]⁸⁺を開発し(Figure 1-8 (b)), これらの錯 体が Golgi 体に局在し,現在臨床利用されている白金錯体の抗がん剤である Cisplatin よ りも高い細胞毒性を示すことを明らかにした^[52].

Figure 1-8. Chemical Structures of Re complex (a) and Ir complex (b).

1-4. 銅錯体

1-3 にも示すように、Pt, Au, Ir, Ru, Cu など様々な金属を用いた金属錯体が抗がん 剤として開発されている^[53].現在臨床利用されている Cisplatin (Figure 1-9)は白金錯体の 抗がん剤であり、汎用性が高いことから様々ながん細胞種の治療に用いられている.し かし、嘔吐や腎障害などの副作用を引き起こす^[54-56]. Cisplatin の副作用軽減に向けて開 発されたのが Carboplatin (Figure 1-9)であるが、依然として副作用が問題となっている ^[57].また、白金製剤は、副作用だけでなく、使用によりがん細胞が白金製剤耐性をもち やすいことや、予後不良なども問題視されている.これらの原因としては、Pt が酸化還 元不活性な金属であり、正常細胞とがん細胞の両者に同等に作用することや、生体内に 存在しない金属であり、蓄積することなどが挙げられる^[55, 56].

その点、内在性の金属であり、生体内に代謝機構が存在し、細胞内での恒常性が厳密 に保たれている Cu を用いた金属錯体による抗がん剤は、正常細胞に対して毒性が低く、 予後不良も引き起こしにくいと考えられる.しかし、生体内の銅錯体の働きは研究され てきたにもかかわらず、実際に抗がん剤として臨床研究されている銅錯体は未だにない. また、銅錯体は酸化還元活性な金属であり、その活性が生物学的活性にも部分的に関与 していることが報告されている^[58, 59].銅錯体は、生体内チオールである Glutathione (GSH)や Dithiothreitol (DTT)、Thioredoxin (Trx)などの抗酸化剤と付加体を形成した後、 Cu(II)から Cu(I)に還元される.そして、Fenton 型反応により ROS を生成することが可 能である^[60-62].この反応による細胞内 GSH などの枯渇は ROS レベルの増加、ひいては 酸化ストレスを誘導することが分かっている.このように酸化還元活性な銅錯体は、が ん細胞の微小環境に応答し、がん細胞選択的に細胞毒性を示す可能性がある.

Figure 1-9. Chemical Structures of Pt complexes.

1-5. 当研究室の先行研究

当研究室では, *p*-cresol の 2,6 位に 2 つの 1,4,7,10-tetraazacyclododecane (cyclen)を amide tether で導入した二核化配位子 HL1 (Figure 1-10)とその二核銅錯体 [Cu₂(μ -OH)(L1)](ClO₄)₂ (1) (Figure 1-10)を開発し,その DNA 切断や細胞毒性を報告した^[63]. 1 は, H₂O₂ と反応して活性種として μ -1,1-hydroperoxodicopper(II)錯体[Cu₂(μ -O₂H)(L1)]²⁺(2) (Figure 1-10)を生成する.また H₂O₂存在下で DNA の酸化切断を加速し,その切断活性 は H₂O₂濃度が高い程増加することを見出した(Figure 1-11 (a)).一方,ヒト子宮頸がん細 胞である HeLa 細胞に対する 1 の細胞増殖 50%阻害濃度(IC₅₀)は 1740 μ M で,既存の抗 がん剤と比較して細胞毒性は低かった(Figure 1-11 (b)).この原因として,DNA 切断活性 が十分には高くないことや,錯体の親水性の高い構造により疎水性の細胞膜を透過しに くく,細胞内取込量が少ないことなどが考えられる.したがって,錯体の DNA 標的能 力の向上による DNA 切断活性の向上や疎水性の向上による細胞内取込量の向上は細胞 毒性の向上に有効であると考えられる.

Figure 1-10. Structures of HL1, $[Cu_2(\mu-OH)(L1)]^{2+}(1)$, and $[Cu_2(\mu-O_2H)(L1)]^{2+}(2)$.

(b) Cytotoxicity for HeLa cells (24 h)

Complex	IC ₅₀ (μM) (Mean ± SD) HeLa (cancer)	
1	1740 ± 110	

Figure 1-11. (a) H_2O_2 concentration-dependent (0–500 μ M) profile for DNA cleavage promoted by **1** (50 μ M). Time courses for the decrease of % of Form I at pH 6.0. (b) Cytotoxicity of **1** against HeLa cells by means of MTT assay (24 h).

さらに、当研究室では、2,6-bis(amide-tether dpa)-*p*-cresol (HL3) (Figure 1-12)とその二核 銅錯体[Cu₂(µ-1,1-OAc)(µ-1,3-OAc)(L3)](OAc) (3) (Figure 1-12)を開発し、3が H₂O₂による DNA 酸化切断を加速し、がん細胞選択的毒性を示すことを見出した(Figure 1-13)^[64]. し かし、3 の細胞毒性は Cisplatin と比べて低く、抗がん剤としての利用には不十分だった. また 3 の細胞毒性発現機構は十分には解明されていない. そこで、3 の細胞毒性の向上 と細胞毒性の発現機構の解明のためには、3 の細胞内挙動を明らかにする必要があり、 3 に蛍光分子である Bodipy を導入した 3-Bodipy 結合体(Figure 1-14)を合成し、その細胞 内挙動を共焦点顕微鏡で追跡した. その結果、3-Bodipy 結合体はミトコンドリアと核小 体に分布することがわかった(Figure 1-14). しかし、これは 3-Bodipy 結合体の挙動であ り、3 の細胞内挙動は不明である. また、その DNA 切断活性や細胞毒性は、既存の抗 がん剤である BLM と比較してもまだ低く、改善の余地がある.

Figure 1-12. Structures of HL3 and [Cu₂(µ-1,1-OAc)(µ-1,3-OAc)(L3)]⁺ (3).

(a) DNA cleavage activity

(b) Cytotoxicity for cancer and normal cells (24 h)

	IC	₅₀ (µM) (Mea	n ± SD)	
Complex	Cervical		Lung	
	HeLa (cancer)	A549 (Cancer)	WI-38 (Normal)	SF
3	72.8 ± 2.1	92.7 ± 1.4	121 ± 11	1.3
Cisplatin	2.33 ± 0.23	5.35 ± 0.82	6.33 ± 0.13	1.2

Figure 1-13. (a) H_2O_2 concentration-dependent (0–50 μ M) profile for DNA cleavage promoted by 3 (30 μ M). Time courses for the increase of % of Form III at pH 6.0. (b) Cytotoxicity of 3 and Cisplatin against cancer and normal cells by means of MTT assay (24 h).

Figure 1-14. (a) Structure of **3-Bodipy**. (b) Confocal luminescence microscopy images of HeLa cells with treatments of **3-Bodipy** (100 μ M) (green) for 24 h, stained with Hoechst 33342 (blue) and Mito Tracker (red), as well as merged images. Scale bars represent 20 μ m.

1-6. 研究概要

本論文では, *p*-cresol から誘導される様々な二核化配位子の二核銅錯体を開発し, これら金属錯体の DNA 切断活性や細胞毒性などの抗がん活性について詳細に検討した. ここで得られた知見は, 副作用の少ない抗がん剤の開発に向けて研究基盤を提供できる 有益なものであると考える.以下に, 各章の概要を述べる.

第二章では、当研究室で開発した *p*-cresol の 2,6 位にペンダント基として環状アミン 1,4,7,10-tetraazacyclododecane (cyclen)を持つ amide-tether 型配位子の二核銅錯体[Cu₂(μ -OH)(L1)](ClO₄)₂(1)の 4 位メチル基を-CONH(CH₂CH₂O)₂CH₂CH₂NHCO-phenanthrene で置 換した DNA 標的部位を持つ二核銅錯体[Cu₂(μ -OH)(L1^{P2})](ClO₄)₂(1^{P2})を新たに開発した. 分光学測定から、1^{P2}は1と同様に H₂O₂との反応で安定な μ -1,1-hydroperoxodicopper(II) 錯体(2^{P2})を形成することが示された. そして、DNA 結合能力、DNA 切断活性、細胞毒 性の測定を通して、phenanthrene の導入による効果を明らかとした. さらに、FACS や 共焦点顕微鏡を用いた測定を通して、1^{P2} の細胞死経路がミトコンドリア経由のアポト ーシスであり、DNA 標的部位として phenanthrene を導入することがその細胞死経路を 促進し、がん細胞選択的細胞毒性を向上させることを見出した.

第三章では、第二章で見出された phenanthrene による DNA 標的の抗がん活性機能の 解明とその向上を目指し、-CONH(CH₂CH₂O)_nCH₂CH₂NHCO-phenanthrene (P-リンカー)の 鎖長を変化させた二核銅錯体[Cu₂(μ -OH)(L1^{Pn})](ClO₄)₂ (1^{Pn} (n=1,3))と phenanthrenyl 基を methyl で置換した-CONH(CH₂CH₂O)_nCH₂CH₂NHCO-methyl (M-リンカー)を導入した二核 銅錯体[Cu₂(μ -OH)(L1^{Mn})](ClO₄)₂ (1^{Mn} (n=1,2,3))を新たに開発した. DNA 結合能力、DNA 切断活性、細胞毒性、細胞内取り込み量の測定により、P-リンカーは細胞内においても 特異的に DNA に結合して細胞毒性を大きく向上させるが、M-リンカーは DNA 特異性 がないために向上させないことが明らかになった。本章を通して、DNA 標的部位の導 入における有益な知見が得られた。

第四章では、p-cresol の 2,6 位にペンダント基として dipyridylmethylamine (dpa)を有す る amide-tether 型二核銅錯体[Cu₂(µ-1,1-OAc)(µ-1,3-OAc)(L3)](OAc) (**3**)の dpa の 4 位に置 換基(電子供与 MeO 基および電子求引 Cl 基)を導入した二核銅(II)錯体[Cu₂(µ-1,1-OAc)(µ-1,3-OAc)(L3^{4-MeO})][Y] [Y = PF₆ (**3a^{4-MeO}**), OAc (**3b^{4-MeO}**)], [Cu₂(µ-1,3-OAc)₂(L3^{4-Cl})][Y] [Y = ClO₄ (**3a^{4-Cl}**), OAc (**3b^{4-Cl}**)]を合成した.分光学的測定と結晶構造解析の結果,置換基の電 子効果で銅の配位構造が変化することが示された.この電子効果により、AscNa との反 応で生成する ROS の種類が **3b^{4-MeO}** では H₂O₂ が優勢であり、**3b^{4-Cl}** では HO•が優勢であ った.また、細胞を用いた測定から、**3b^{4-MeO}**、**3b^{4-Cl}** は ER、Golgi 体に集積して ROS を 生成して細胞死を誘導することが明らかとなった. さらに, がん細胞中でしか ROS 生成を確認できなかった 3 と 3b^{4-MeO} はがん細胞選択的な細胞毒性を示したことから, 細胞選択的毒性にはがん細胞と正常細胞の環境に応答した ROS 生成が重要であることが示唆された.

第五章では、**3**が、空気下、アスコルビン酸ナトリウム(AscNa)による還元的酸素活性 化で supercoiled plasmid pUC19DNA の 26%を 1 分間で直鎖状 DNA に変換する、**3** の DNA 二本鎖切断(dsb)の burst の反応機構を解明した. Robson 型二核銅(II)錯体[Cu₂(µ-OH)(bpmp)](ClO₄)₂ (**4**), BLM の金属結合部位の模倣配位子である N4Py の鉄(II)錯体 [Fe(MeCN)(N4Py)](ClO₄)₂ (**5**)を比較とし、DNA 切断活性や DNA 結合能力、HO•生成能 力などを測定することで、**3** の速い HO•生成と DNA 結合様式が、DNA dsb の burst を可 能にする重要な特徴であることが明らかとなった.

第六章では、 $3b^{4-MeO}$ 、 $3b^{4-Cl}$ の AscNa 存在下の DNA 切断活性を評価して、第五章で 見出した 3 による DNA dsb の burst の機構解明と要件の裏付けを行った. DNA dsb 活性 は $3b^{4-Cl} < 3 < 3b^{4-MeO}$ であり、この関係は短時間での HO•の生成量と一致し、電子効果に 起因することが明らかとなった. DNA 結合能力の測定から、 $3b^{4-MeO}$ は DNA に自由度 が最も低い状態で強く結合しており、その結合状態が低濃度で DNA dsb の burst を可能 にすることが示唆された.

第七章では、低濃度での DNA dsb の burst には DNA との強い結合が重要であること を踏まえ、**3** の 4 位に P-リンカー、M-リンカーを持つ二核銅(II)錯体[Cu₂(μ -1,1-OAc)(μ -1,3-OAc)(L3^x)](OAc) (**3**^x (X = P, M))を開発した. AscNa 存在下で DNA 切断活性を評価し たところ、**3**^P は **3** よりも高い DNA dsb 活性を示したが、**3**^M は **3** よりも活性が低かった. さらに、DNA 結合能力の測定から、**3**^P は phenanthrene 部位で DNA に対してエンタルピ ー駆動で結合することが明らかとなった.以上の結果より、DNA dsb 活性の向上に必要 な要件が速い HO•生成と DNA 結合様式であることが裏付けられた.

第八章では、本博士論文における総括を述べる.

15

1-7. 参考文献

[1] (a) C. Martel, D. Georges, F. Bray, J. Ferlay, and M. G. Clifford, *Lancet Glob. Health.* 2020, *8*, e180–e190. (b) L. Lin, L. Yan, Y. Liu, F. Yuan, H. Li, and J. Ni, *J. Hematol. Oncol.* 2019, *12*:96.
(c) Bray, F.; Ferlay, J.; Soerjomataram, I.; Siefel, R. L.; Torre, L. A.; Jemal, A. *CA Cancer J. Clin.* 2018, *68*, 394–424.

[2] (a) T. Kato, H. Wakiyama, A. Furusawa, P. L. Choyke, and H. Kobayashi, *Cancer*, 2021, 13, 2535. (b) H. Kobayashi, and P. L. Choyke, *Acc. Chem. Res.* 2019, *52*, 2332–2339

[3] A. L. Fothergill-Gilmore, and A. M. P. Michels, Prog. Biophys. Mol. Biol. 1993, 59, 105–235.

[4] (a) A. Marín-Hernández, C. J. Gallardo-Pérez, S. Rodríguez-Enríquez, R. Encalada, R. Moreno-Sánchez, and E. Saavedra, *Biochim Biophys Acta Bioenerg* 2011, *1807*, 755–767. (b) A. R. Gatenby, and J. R. Gillies, *Int. J. Biochem. Cell Biol.* 2007, *39*, 1358–1366.

[5] I. Martínez-Reyes, P. L. Diebold, H. Kong, M. Schieber, H. Huang, T. C. Hensley, M. M. Mehta, T. Wang, H. J. Santos, R. Woychik, E. Dufour, J. N. Spelbrink, E. S. Weinberg, Y. Zhao, J. R. DeBerardinis, and S. N. Chandel, *Mol. Cell* 2016, *61*, 199–209.

[6] (a) A. Boveris, *Adv. Exp. Med. Biol.* 1977, *78*, 67–82. (b) B. Chance, H. Sies, and A. Boveris, *Physiol. Rev.* 1979, *59*, 527–605. (c) H. J. Forman, and J. A. Kennedy, *Biochem. Biophys. Res. Commun.* 1974, *60*, 1044–1050. (d) H. J. Forman, and J. A. Kennedy, *J. Biol. Chem.* 1975, *250*, 4322–4326. (e) I. Fridovich, *Science* 1978, *201*, 875–880. (f) S. R. Balaban, S. Nemoto, and T. Finkel, *Cell* 2005, *120*, 483–495. (g) T. Finkel, and N. J. Holbrook, *Nature* 2000, *408*, 239–247.
[7] (a) J.-W. Kim, and C. V. Dang, *Cancer Res.* 2006, *66*, 8927–8930. (b) O. Warburg, *Science* 1956, *123*, 309–314.

[8] (a) A. G. Maynard, and N. Kanarek, *Cell Metab* 2020, *31(4)*, 660–662. (b) L. Yang, J. C. G. Canaveras, Z. Chen, L. Wang, L. Liang, C. Jang, J. A. Mayr, Z. Zhang, J. M. Ghergurovich, L. Zhan, S. Joshi, Z. Hu, M. R. McReynolds, X. Su, E. White, R. J. Morscher, and J. D. Rabinowitz, *Cell Metab* 2020, *31*, 809–821.

[9] (a) Y. Kato, S. Ozawa, C. Miyamoto, Y. Maehata, A. Suzuki, T. Maeba, and Y. Baba Y. *Cancer Cell Int.* 2013, *13*:89. (b) H.-J. Lin, P. Herman, and J. R. Lakowicz, *Cytometry A* 2003, *52*, 77–89. (c) R. J. Gillies, N. Raghunand, G. S. Karczmar and Z. M. Bhujwalla, *J. Magn. Reson. Imaging* 2002, *16*, 430–450.

[10] N. Aykin-Burns, I. M. Ahmad, Y. Zhu, L. W. Oberley, and D. R. Spitz, *Biochem. J.* 2009, *418*, 29–37.

[11] (a) I. M. Ahmad, N. Aykin-Burns, J. E. Sim, S. A. Walsh, R. Higashikubo, G. R. Buettner, S. Venkataraman, M. A. Mackey, S. W. Flanagana, L. W. Oberley, and D. R. Spitz, *J. Biol. Chem.* **2005**, *280*, 4254–4263. (b) A. Boveris, and E. Cadenas, *CRC Press, Boca Raton*, **1982**, 15–30. (c) A. Boveris, *Adv. Exp. Med. Biol.* **1977**, *78*, 67–82.

[12] (a) K. Umezawa, M. Yoshida, M. Kamiya, T. Yamasoba, and Y. Urano, *Nat. Chem.* 2017, *9*.
279–286. (b) M. Schieber, and N. S. Chandel, *Curr. Biol.* 2014, *24*, R453–R462. (c) I. Harris, S. McCracken, and T. W. Mak, *Cell Res.* 2012, *22*, 447–449. (d) Foyer, C. H.; Halliwell, B. *Planta* 1976, *133*, 21–25.

[13] (a) K. M. Owens, N. Aykin-Burns, D. Dayal, M. C. Coleman, F. E. Domann, and D. R. Spitz, *Free Radic. Biol. Med.* 2012, *52*, 160–166. (b) N. Aykin-Burns, B. G. Slane, A.T. Liu, K. M. Owens, M. S. O'Malley, B.J. Smith, F. E. Domann, and D. R. Spitz, *Radiat. Res.* 2011, *175*, 150–158. (c) B. G. Slane, N. Aykin-Burns, B. J. Smith, A. L. Kalen, P. C. Goswami, F. E. Domann, and D. R. Spitz, *Cancer Res.* 2006, *66*, 7615–7620. (d) N. Ishii, M. Fujii, P. S. Hart-man, M. Tsuda, K. Yasuda, N. Senoo-Matsuda, S. Yanase, D. Ayusawa, and K. Suzuki, *Nature* 1998, *394*, 694–697.

[14] S. Wang, and R. J. Kaufman, J Cell Biol. 2012, 197, 857–867.

[15] A. J. Dorner, L. C. Wasley, and R. J. Kaufman, J. Biol. Chem. 1989, 264, 20602-7.

- [16] M. J. Gething, and J. Sambrook, *Nature* **1992**, 355, 35–45.
- [17] K. Zhang, and R. J. Kaufman, *Nature* 2008, 454(7203), 455–62.
- [18] M. Schröder, and R. J. Kaufman, Mutation research 2005, 569, 29-63.
- [19] A. P. King, and J. J. Wilson, Chem. Soc. Rev. 2020, 49, 8113-8136
- [20] S. Cao, J. Tang, Y. Huang, G. Li, Z. Li, W. Cai, Y. Yuan, J. Liu, X. Huang, and H. Zhang, *Front. Mol. Biosci.* **2021**, *8*, 620514.

[21] H. Zinszner, M. Kuroda X. Wang, N. Batchvarova, R. T. Lightfoot, H. Remotti, J. L. Stevens, and D. Ron, *Genes Dev.* **1998**, *12*, 982–95.

- [22] W. A. Denny, Lancet 2000, 1, 25–29.
- [23] M. Bi, C. Naczki, M. Koritzinsky, D. Fels, J. Blais, N. Hu, H. Harding, I. Novoa, M. Varia, J. Raleigh, D. Scheuner, R. J. Kaufman, J. Bell, D. Ron, B. G. Wouters, and C. Koumenis, *Embo J.* 2005; 24, 3470–3481.
- [24] C. Koumenis, and B. G. Wouters, Mol Cancer Res. 2006, 4, 423-36.
- [25] K. Kurokawa, H. Osakada, T. Kojidani, M. Waga, Y. Suda, H. Asakawa, T. Haraguchi, and A. Nakano, J. Cell Biol. 2019, 218(5), 1602–1618.

[26] K. J. Day, L. A. Staehelin, and B. S. Glick, *Histochem Cell Biol* 2013, 140, 239–249.

[27] H. Yoshino, Seikagaku 2017, 89(2), 154–163.

[28] (a) H. Umezawa, K. Maeda, T. Takeuchi, and Y. Okami, *J. Antibiot.* 1966, *19*, 200–209. (b)
A. Decker, M. S. Chow, J. N. Kemsley, N. Lehnert, and E. I. Solomon, *J. Am. Chem. Soc.* 2006, *128*, 4719–4733. (c) L. V. Liu, C. B. Bel III, S. D. Wong, S. A. Wilson, Y. Kwak, M. S. Chow, J. Zhao, K. O. Hodgson, B. Hedman, E. I. Solomon, *Proc. Natl. Acad. Sci. U.S.A.* 2010, *107*, 22419–22424.

[29] Q. Li, T. A. van den Berg, B. L. Feringa, and G. Roelfes, *Dalton Trans.* 2010, 39, 8012.

[30] (a) S.-X. Huang, Z. Feng, L. Wang, U. Galm, E. Wendt-Pienkowski, D. Yang, M. Tao, J. M. Coughlin, Y. Duan, and B. Shen, *J. Am. Chem. Soc.* 2012, *134*, 13501–13509. (b) J. Chen, and J. Stubbe, *Nat. Rev. Cancer* 2005, *5*, 102–112. (c) U. Galm, M. H. Hager, S. G. V. Lanen, J. Ju, J. S. Thorson, and B. Shen, *Chem. Rev.* 2005, *105*, 739–758.

[31] (a) F. E. Niaki, V. T. Acker, L. Imre, P. Nánási Jr., S. Tarapcsák, Z. Bacsó, F. Vanhaecke, G. Szabó, *Sci. Rep.* 2020, *10*, 1107. (b) F. C. Thorn, C. Oshiro, S. Marsh, T. Hernandez-Boussard, H. McLeod, E. T. Klein, B. R. Altman, *Pharmacogenet. Genomics* 2011, *21*, 440–446. (c) A. DiMarco, *Antineoplastic and Immunosuppressive Agents II* 1975, 593–614.

[32] (a) J. B. Pages, L. D. Ang, P. E. Wright, and R. J. Aldrich-Wright, *Dalton Trans.*, 2015, 44, 3505–3526. (b) J. M. Hannon, *Chem. Soc.*, 2007, 36, 280–295. (c) E. K. Erkkila, T. D. Odom, and K. J. Barton, *Chem. Rev.* 1999, 99, 2777–279.

[33] (a) B. Peng, X. Chena, K.-J. Du, B.-L. Yu, H. Chao, L.-N. Ji, *Spectrochim. Acta A Mol. Biomol. Spectrosc.* 2009, 896–901. (b) K. Radhakrishnan, T. Khamrang, K. Sambantham, K. V. Sali, C. Chitgupi, F. J. Lovell, A. A. Mohammade, R. Venugopal, *Polyhedron* 2021, *194*, 114886.
[34] S. Dhar, M. Nethaji, and R. A. Chakravarty, *Inorg. Chem.* 2006, *45*, 11043–11050.

[35] (a) H.-K. Liu, and J. P. Sadler, Acc. Chem. Res. 2011, 44, 349–359. (b) S. R. Ratnayake, L. Chang, L. N. Tumey, F. Loganzo, A. J. Chemler, M. Wagenaar, S. Musto, F. Li, E. J. Janso, T. E. Ballard, B. Rago, L. G. Steele, D. W. Ding, X. Feng, C. Hosselet, V. Buklan, J. Lucas, E. F. Koehn, J. C. O'Donnell, and E. I. Graziani, *Bioconjugate Chem.* 2019, *30*, 200–209. (c) M. K. Deo, J. B. Pages, L. D. Ang, P. C. Gordon, and R. J. Aldrich-Wright, *Int. J. Mol. Sci.* 2016, *17*, 1818. (d) P. Kumar, S. Tomar, K. Kumar, and S. Kumar, *Dalton Trans.* 2023, *52*, 6961.

[36] A. K. Singh, A. Kumar, H. Singh, P. Sonawane, P. Pathak, M. Grishina, J. P. Yadav, A. Verma, and P. Kumar, *Chem. Biodiversity* **2023**, *20*, e202300061.

[37] R. Paprocka, M. Wiese-Szadkowsk, S. Janciauskiene, T. Kosmalski, M. Kulik, and A. Helmin-Basa, *Coord Chem Rev.* **2021**, *452*, 214307.

[38] (a) K. Qiu, Y. Chen, T. W. Rees, L. Ji, and H. Chao, Coord Chem Rev. 2019, 378, 66-86. (b)

C. Caporale, and M. Massi, Coord Chem Rev. 2018, 363, 71-91.

[39] M. T. Jeena, S. Kim, S. Jin, and J-H. Ryu, Cancers 2020, 12, 4.

[40] C. A. Mannella, Biochim. Biophys. Acta 2006, 1763, 542–548.

[41] M. Millard, D. Pathania, Y. Shabaik, L. Taheri, J. Deng, and N. Neamati, *PLoS ONE* **2010**, *5*, e13131.

[42] L. D. Zorova, V. A. Popkov, E. Y. Plotnikov, D. N. Silachev, I. B. Pevzner, S. S. Jankauskas,

V. A. Babenko, S. D. Zorov, A. V. Balakireva, M. Juhaszova, S. J. Sollott, and D. B. Zorov, *Anal. Biochem.* **2018**, *552*, 50–59.

[43] S. E. Weinberg, and N. S. Chandel, Nat. Chem. Biol. 2015, 11, 9–15.

[44] H. H. Szeto, *The AAPS Journal*, **2006**, *8*, E227–E283.

[45] D. Liu, F. Jin, G. Shu, X. Xu, J. Qi, X. Kang, H. Yu, K. Lu, S. Jiang, F. Han, J. You, Y. Du, and J. Ji, *Biomaterials* **2019**, *211*, 57–67.

[46] K. L. Horton, K. M. Stewart, S. B. Fonseca, Q. Guo, and S. O. Kelley, *Chem. Biol.* 2008, 15, 375–382.

[47] W. Zhou, X. Wang, M. Hu, C. Zhua, and Z. Guo, Chem. Sci. 2014, 5, 2761–2770.

[48] J. S. Nam, M.-G. Kang, J. Kang, S.-Y. Park, S. J. C. Lee, H.-T. Kim, J. K. Seo, O-H. Kwon,
M. H. Lim, H-W Rhee, and T.-H. Kwon, *J. Am. Chem. Soc.* 2016, *138(34)*, 10968–10977.

[49] B. Yuan, J. Liu, R. Guan, C. Jin, L. Jia, and H. Chao, Dalton Trans. 2019, 48, 6408–6415.

[50] (a) T. J. Carneiro, A. S. Martins, M. P. M. Marques, and A. M. Gil, Sec. Cancer Metabolism

2020, *10*, 590970. (b) Y. Wang, J. Hu, Y. Cai, S. Xu, B. Weng, K. Peng, X. Wei, T. Wei, H. Zhou, X. Li, and G. Liang, *J. Med. Chem.* **2013**, *56*, 9601–9611.

[51] S Clede, F. Lambert, C. Sandt, Z. Gueroui, M. Refregiers, M.-A. Plamont, P. Dumas, A. Vessieres, and C. Policar, *Chem. Commun.* **2012**, *48*, 7729–7731.

[52] K. Y. Zhang, H.-W. Liu, T. T.-H. Fong, X.-G. Chen, and K. K.-W. Lo, *Inorg. Chem.* 2010, 49, 5432–5443.

[53] U. Jungwirth, C. R. Kowol, B. K. Keppler, C. G. Hartinger, W. Berger, and P. Heffeter, *Antioxid Redox Signal*, **2011**, *15*, 1085–1127.

[54] (a) U. Ndagi, N. Mhlongo, and E. S. Soliman, Drug Des. Devel. Ther. Rev. 2017, 11, 599-

616. (b) T. C. Johnstone, and K. Suntharalingam, Chem. Rev. 2016, 116, 3436-3486.

[55] S. Yokoo, A. Yonezawa, S. Masuda, A. Fukatsu, T. Katsura, and K.-I. Inui, *Biochem. Pharmacol.* 2007, 74, 477–487.

[56] A.-M. Florea, and D. Busselberg, Cancers 2011, 3(1), 1351–1371.

- [57] A. J. Di Pasqua, J. Goodisman, and J. C. Dabrowiak, Inorg Chim Acta, 2012, 389, 29-35.
- [58] R. W. Byrnes, W. E. Antholine, and D. H. Petering, Free Radic Biol Med. 1992, 13, 469–478.
- [59] M. McCann, M. Geraghty, M. Devereux, D. O'Shea, J. Mason, and L. O'Sullivan, *Met Based Drugs*. **2000**, *7*, 185–193.

[60] R. W. Byrnes, M. Mohan, W. E. Antholine, R. X. Xu, and D. H. Petering, *Biochemistry*. **1990**, *29*, 7046–7053.

[61] Z. Q. Liu, Chem Rev. 2010, 110, 5675-5691.

- [62] L. A. Saryan, K. Mailer, C. Krishnamurti, W. Antholine, and D. H. Petering, *Biochem Pharmacol.* 1981, *30*, 1595–1604.
- [63] Y. Kadoya, K. Fukui, M. Hata, R. Miyano, Y. Hitomi, R. Yanagisawa, M. Kubo, and M. Kodera, *Inorg. Chem.* **2019**, *58*, 14294–14298.
- [64] Y. Kadoya, M. Hata, Y. Tanaka, A. Hirohata, Y. Hitomi, and M. Kodera, *Inorg. Chem.* 2021, 60, 5474.

第二章:Enhancement of Cancer-cell-selective Cytotoxicity by a Dicopper Complex with a Phenanthrene Amide-tether Ligand Conjugate via Mitochondrial Apoptosis

2-1. 要旨

2,6-bis(amide-tether cyclen)-*p*-cresol 配位子(HL1)と DNA 標的部位として phenanthrene を導入した新規配位子(HL1^{P2})を合成し,その二核銅(II)錯体[Cu₂(μ -OH)(Ln)](ClO₄)₂ [n = 1 (1) and 1^{P2} (1^{P2})]を得た. phenanthrene の導入で 1^{P2} は 1 と比べて DNA 結合能力が 9 倍向 上し,過酸化水素(H₂O₂)存在下での supercoiled plasmid pUC19 DNA の二本鎖切断(doublestrand breaks, dsb)活性が 9.3 倍向上した. 1^{P2} と H₂O₂の反応で μ -1,1-hydroperoxodicopper(II) 錯体 2^{P2} が生成し,これが DNA 酸化切断の活性種であることを分光学的に明らかにし た. 肺と膵臓のがん細胞に対する IC₅₀ 値は 1^{P2} が 23.8, 18.4 μ M, 1 が 284, 241 μ M であ り, 1^{P2} の細胞毒性は 1 と比べて約 12 倍向上した. 共焦点顕微鏡を用いた細胞観察や fluorescence-activated cell sorting (FACS)による細胞死経路の同定から,子宮頸がん細胞で ある HeLa 細胞に対して 1^{P2} がミトコンドリア経由のアポトーシスを誘導することを明 らかにした. この様に phenanthrene 部位は DNA 標的として作用し, 1^{P2}のミトコンドリ ア経由の内因性アポトーシスを介したがん細胞選択的毒性を大きく向上させることが 明らかになった.

Machi Hata, Itsuki Saito, Yuki Kadoya, Yoshiki Tanaka, Yutaka Hitomi, and Masahito Kodera "Enhancement of cancer-cell-selective cytotoxicity by a dicopper complex with a phenanthrene amide-tether ligand conjugate via mitochondrial apoptosis" *Dalton Trans.*, **2022**, *51*, 4720–4727.

2-2. 緒言

Cisplatin^[1,2]や Bleomycin (BLM)^[3,4]は, DNA への結合や DNA 切断を介して細胞死を誘 導する抗がん剤であり,現在臨床利用されている.しかし,これらはがん細胞と正常細 胞の両者に同様に作用するため,深刻な副作用を引き起こす.そこで,がん細胞に対し て選択的に細胞毒性を示す抗がん剤の開発が望まれている^[5,6].銅錯体は Cisplatin など の白金製剤と比べて正常細胞に対する毒性が低く,がん細胞選択的に細胞死を誘導する 副作用の少ないと考えられている^[7].また銅錯体は白金耐性ガンに対しても効果がある ので,白金製剤に代わる抗がん剤として期待されている^[8].

がん細胞では、ミトコンドリアの機能不全があり、酸素分子の還元が不十分で H₂O₂ 濃度が高いことが知られている^[9,10]. したがって、ミトコンドリア DNA を標的するとと もに H₂O₂ を活性化できる金属錯体を開発できれば、その金属錯体はミトコンドリア DNA の切断^[11]を通してミトコンドリア経由のアポトーシス^[12]を誘導できると考えられ る. これは、がん細胞選択的な細胞毒性を可能にする新しい抗がん剤の開発につながる.

当研究室の角谷らはペンダント基を amide で繋いだ amide-tether 型の 2,6-bis(amide-tether cyclen)-*p*-cresol 配位子(HL1)を開発し, その二核銅(II)錯体[Cu₂(μ -OH)(L1)]²⁺ (1) (Scheme 2-1)が H₂O₂ を活性化して DNA の酸化切断を促進することを見出した. 錯体 1 は H₂O₂ との反応で μ -1,1-hydroperoxo 錯体(μ -1,1-O₂H 錯体)を形成した^[13]. H₂O₂存在下で の酸化的 DNA 切断では, 1 は関連するペンダント基を methylene 鎖で繋いだ methylene-tether 型の Robson 配位子の二核銅(II)錯体よりもはるかに高い活性を示すと共に, この 錯体は比較的高いがん細胞選択的毒性を示した^[13]. しかし, 1 の細胞毒性は既存の抗が ん剤よりも低く, 改善する必要があった. そこで当研究室の角谷らは HL1 の cyclen を di(2-pyridylmethyl)amine に置換した五座の二核化配位子 HL3 を開発した. HL3 の二核銅 (II)錯体 3 は 1 に比べて DNA 切断活性と細胞毒性が大幅に改善したが, がん細胞選択性 については低下した^[14].

本章では、1 の DNA 切断活性とがん細胞選択的毒性の向上を目指して BLM^[15-17]の DNA 結合部位の役割を模倣して HL1 に phenanthrene 部位をエチレングリコールスペー サーで結合した新規 amide-tether 型配位子 HL1^{P2} を合成した(Figure 2-1). HL1^{P2} は二核銅 (II)錯体[Cu₂(μ -OH)(L1^{P2})](ClO₄)₂ (1^{P2})を形成した. phenanthrene は大きな π 系を持つ芳香 族化合物であり DNA 塩基対間にインターカレーターとして結合する^[18-22]. また細胞内 可視化のための蛍光プローブ^[20]としても機能する. 細胞内可視化およびカスパーゼ活性 アッセイを通して、1^{P2} がミトコンドリア経由のアポトーシスを介してがん細胞選択的

22

な細胞毒性を発揮することが明らかとなった. HL1 と HL1^{P2} およびその銅錯体 1 と 1^{P2} の化学構造を Figure 2-1 に示す.

Figure 2-1. Chemical structures of HL1, HL1^{P2}, 1, and 1^{P2}.

2-3. 結果と考察

2-3-1. 配位子と二核銅(II)錯体の合成

HL1と二核銅(II)錯体 1 は,既報の論文^[13]に従って合成した.HL1^{P2}は HL1の *p*-cresol 部位のメチル基を DNA 標的である triethylene glycol-amide tether-phenanthrene に置換し た配位子であり,その合成経路を Scheme 2-1 に示す.まず 3,5-diformyl-4-hydroxybenzoic acid に triethylene glycol をアミド結合で導入し, triethylene glycol の末端に phenanthrenyl 基(P)をアミド結合で導入した.このホルミル基を酸化してカルボキシ基に変換した後, tri-Boc-cyclen を脱水縮合で導入した.最後に cyclen 窒素に結合した Boc 基を酸性ソル ボリシスにより除去し,HL1^{P2}・6HClを得た.これを 1Mの NaOH 水溶液で pH 8.0 に調 整した後,Cu(ClO₄)₂と反応させて二核銅(II)錯体[Cu₂(μ -OH)(L1^{P2})](ClO₄)₂ (1^{P2})を合成し た.単離された錯体は,MeOH/Et₂O から再結晶して精製した.HL1^{P2}・6HCl および 1^{P2}の 詳細な合成法,元素分析,IR および ESI MS のデータを 2-5-3 の実験項に示す.

Scheme 2-1. Synthetic Route of HL1^{P2}•6HCl.

2-3-2. 二核銅(II)錯体の構造

二核銅錯体 1 の結晶構造は報告されており^[13], DNA 標的を導入した 1^{P2} の二核銅部 位の構造は 1 のそれと同様であると考えられる. 1^{P2} の溶液中の構造は次に示す分光学 的測定により同定された.電子吸収スペクトルでは, 380 nm と 640 nm に PhO⁻から Cu(II) への LMCT と d-d 遷移に帰属される吸収帯がそれぞれ観測された. これらは, 1 の 390 nm (PhO⁻から Cu(II)への LMCT)と 640 nm (d-d 遷移)の吸収帯とほぼ一致した(Figure 2-2). ESI MS スペクトル(Figure 2-3)では, 1^{P2} は m/z 1109.3 に[L1^{P2} + 2Cu(II) + OH + ClO₄]⁺ に帰属される分子イオンピークを与えた. これらの結果から, 1^{P2} は水溶液中で μ -OPh- μ -OH 架橋構造を保持していることが明らかとなった.

Figure 2-2. Electronic absorption spectra of 1 (0.25 mM) (red) and 1^{P2} (0.25 mM) (blue) in H₂O at room temperature.

Figure 2-3. ESI MS spectrum of 1^{P2} measured in H₂O at room temperature at orifice 1: 10 V, orifice 2: 10 V, ring lens voltage: 10 V.

2-3-3. 1 および 1^{P2}の DNA 結合能力

1 および 1^{P2} と仔ウシ胸腺 DNA (ct-DNA)の結合定数 K_{app} (M⁻¹)を臭化エチジウム(EtBr) 法により決定した^[26,27]. あらかじめ ct-DNA と EtBr を結合させた水溶液を調整した. こ れに 1 または 1^{P2}の溶液を添加すると EtBr が ct-DNA から放出されて蛍光強度が減衰し た. この様子を Figure 2-4 (A)および(B)に示す. また, 1 および 1^{P2} の各濃度における 601 nm の蛍光強度のプロットを Figure 2-4 (C)に示す. Figure 2-3 から, 1 および 1^{P2} の K_{app} (M⁻¹)は, それぞれ(4.3 ± 0.2) × 10⁵ および(3.9 ± 0.2) × 10⁶ と見積もられた(Table 2-1). こ の結果より, DNA 結合能力は 1^{P2} が 1 の約 9 倍であり, phenanthrene がインターカレー ターとして働き 1^{P2} の DNA 結合を促進することが示された.

Figure 2-3. Fluorescence spectral changes upon the addition of 1^{P2} (A) and 1 (B) to the ethidium bromide-bound ct-DNA. For each measurement, 1 and 1^{P2} increased by 2 μ M. (C) Plot of the fluorescence emission intensity at 601 nm vs. concentrations of 1 (red) and 1^{P2} (blue). Experimental conditions: [EtBr] = 3.3 μ M, [ct-DNA] = 20 μ M bp, [complex] = 0–300 μ M, [buffer] = 10 mM (pH 6.0 (MES)), [NaCl] = 10 mM, and $\lambda_{ex} = 510$ nm at 37°C.

Table 2-1. Λ_{app} of 1 and 1 (ivicall \pm SD		
	Complex	K_{app} (M ⁻¹)
	1	$(4.3 \pm 0.2) \times 10^5$
	1 ^{P2}	$(3.9\pm0.2)\times10^6$

Table 2-1. K_{app} of 1 and 1^{P2} (Mean \pm SD)
2-3-4. 1 および 1^{P2}の酸化的 DNA 切断活性

1 および 1^{P2} による H₂O₂ を用いた Supercoiled plasmid pUC19 DNA (Form I)の切断活性 を pH 6.0, 37℃ の条件下で測定した. 1 および 1^{P2} は H₂O₂ 存在下で DNA 切断を大きく 加速した. この反応で Form I は Form II を経て Form III に変換された. Form I, II, III はそれぞれスーパーコイルの閉環状,一本鎖切断の環状,二本鎖切断の直線状 DNA で ある^[28]. Form I, II, III の量は,アガロースゲル電気泳動法で分析・定量した.

 1^{P2} (0–50 µM)と H₂O₂ (0–500 µM)を用いた時の Form I の減少と Form III の増加の時間 変化をそれぞれ Figure 2-5, 2-6 に示す.また,これらの実験におけるゲル写真と詳細な 数値データを Figure S2-1, S2-2 および Table S2-1 に示す. 1^{P2} は1 と同様に,H₂O₂の存 在下で Form I の減少と Form III の生成を大きく加速した.Figure 2-4 の赤線で示された ように H₂O₂ 不在下でも Form I はゆっくりと減少した.これは 1^{P2} による DNA の加水分 解による切断であり,DNA 標的である phenanthrene の結合で二核銅部位が DNA に近接 した効果で加水分解も加速されたと考えられる.

Figure 2-5. H₂O₂ concentration-dependent profile for DNA cleavage promoted by 1^{P2} . Time courses for the decrease of % of Form I (A) and increase of % of Form III (B) at pH 6.0. Experimental conditions: [NaCl] = 10 mM, [buffer] = 10 mM (pH 6.0 (MES)), [pUC19 DNA] = 50 μ M bp, [complex] = 50 μ M, [H₂O₂] = 0–500 μ M at 37°C for 0, 10, 20, 30, 40, 60, 120, 180, and 300 min. Experiments were carried out at least three times.

Figure 2-6. Complex concentration-dependent profile for DNA cleavage promoted by 1^{P2} . Time courses for the decrease of % of Form I (A) and increase of % of Form III (B) at pH 6.0. Experimental conditions: [NaCl] = 10 mM, [buffer] = 10 mM (pH 6.0 (MES)), [pUC19 DNA] = 50 μ M bp, [complex] = 0–50 μ M, [H₂O₂] = 500 μ M at 37°C for 0, 10, 20, 30, 40, 60, 120, 180, and 300 min. Experiments were carried out at least three times.

1 (50 μ M)または 1^{P2} (50 μ M)と H₂O₂ (500 μ M)の反応における Form I の減少と Form III の増加の時間変化の比較を Figure 2-7 に示す. これらの反応における Form I の減少速度 の擬一次プロットを Figure 2-8 に示す. 1 および 1^{P2}の擬一次速度定数 k_{obs} (min⁻¹)はそれ ぞれ 2.3 × 10⁻² および 7.1 × 10⁻² であった. 反応開始 5 時間後における Form III の生成率 は、1 および 1^{P2} でそれぞれ 5.3%および 49.3%であった. これらの結果より、1^{P2} は 1 よ りも Form I の切断では約 3 倍高い活性を示し、Form III の生成では約 9.3 倍高い活性を 示すことが明らかとなった. この 1^{P2} による Form III の生成では約 9.3 倍の加速は 1^{P2} が 1 よ りも約 9 倍 DNA 結合能力が高い結果と一致する. これは supercoiled plasmid DNA の二 重鎖切断(double-strand breaks, dsb)が 1^{P2} の DNA 結合により加速されることを示してい る. 1^{P2} の二核銅部位は phenanthrene のインターカレーションにより DNA の特定の位置 に固定される. このために一回目の DNA 切断位置の近傍にある相補鎖に対する二回目 の DNA 切断が起こりやすくなったと考えられる. DNA の dsb はアポトーシスを介した 細胞死を引き起こすことが知られているので、この結果から 1^{P2} は 1 よりも高い細胞毒 性を示すことが期待される^[19].

Figure 2-7. Time courses for the percent decrease of Form I (A), and the percent increase of Form III (B) upon the reaction of the pUC19 DNA (50 μ M bp) with 1 (red) and 1^{P2} (blue) (50 μ M) in the presence of H₂O₂ (0.5 mM) at pH 6.0 (MES, 10 mM) at 37°C. Experiments were carried out at least three times.

Figure 2-8. Pseudo-first-order plot of the decrease of Form I in the reaction of 1 (50 μ M) (A) or 1^{P2} (50 μ M) (B) with H₂O₂ (500 μ M).

2-3-5. 1 および 1^{P2}と H₂O₂の反応

次に, DNA 切断の活性種を分光学的に同定した結果を示す. 1 および 1^{P2} は H₂O₂ と の反応で µ-1,1-hydroperoxodicopper(II)錯体[Cu₂(µ-1,1-O₂H)(Ln)]²⁺(n=1(2)および1^{P2}(2^{P2})) (Figure 2-9)を形成することが分光学的に確認された。第一章で述べたように、角谷らは 2の分光学的データを報告している^[13]. 2^{P2}の電子吸収スペクトルおよび CSI MS スペク トルは Figure 2-8, 2-9, 2-10 に示す. 2^{P2} は MeCN 中で 340 nm (ε = 5600 M⁻¹ cm⁻¹)と 400 $nm(\varepsilon = 3200 M^{-1} cm^{-1})$ に明確な吸収帯を示した(Figure 2-10). これは 2 の 340 nm ($\varepsilon = 5600$ $M^{-1} \text{ cm}^{-1}$)と 398 nm (ε = 4800 $M^{-1} \text{ cm}^{-1}$)の吸収帯とよく一致した. また, 2^{P2} の CSI MS ス ペクトルでは、[L1^{P2}+2Cu(II)+O₂H]²⁺と[L1^{P2}+2Cu(II)+O₂H+ClO₄]⁺に相当する質量ピ ークが m/z 513, 1125 に確認された(Figure 2-11). $H_2^{16}O_2$ の代わりに $H_2^{18}O_2$ を用いると, 前述のピークは4質量単位分だけシフトした質量ピークが観測された(Figure 2-12). こ の結果は、 2^{P2} の2つのO原子が H_2O_2 に由来することを示している. さらに、2および 2^{P2} と ct-DNA との反応を電子吸収スペクトルで追跡した. その結果を Figure 2-13 に示 す. 2 および 2^{P2}の減衰の時間経過をそれぞれ 390 nm と 380 nm で観察した. 2^{P2}の減衰 速度は ct-DNA の存在で大きく加速されたが、2 の減衰はあまり加速されなかった、こ の結果は、2^{P2} と DNA の反応では phenanthrene 部位が DNA 標的部位として働いて DNA との結合を通して反応が加速されたことを示す直接的な証拠である.

Figure 2-9. Chemical structures of 2 and 2^{P2}.

Figure 2-10. (A)Electronic absorption spectra of 1^{P2} (0.25 mM) (red) and hydroperoxo species 2^{P2} (purple) generated upon reaction with H₂O₂ (10 eq) in MeCN at -30°C. (B)Time courses for the formation of 2^{P2} with H₂O₂ (1–50 eq) in MeCN at -30°C, monitored at 340 nm.

Figure 2-11. CSI MS spectrum of 2^{P2} formed upon reaction of 1^{P2} with $H_2^{16}O_2$ in H_2O at 0°C. The orifice 1: 20 V, orifice 2: 5 V, ring lens voltage: 10 V. Experimental conditions: $[1^{P2}] = 0.50 \text{ mM}, [H_2^{16}O_2] = 100 \text{ mM}.$

Figure 2-12. CSI MS spectrum of 2^{P2} formed upon reaction of 1^{P2} with $H_2^{18}O_2$ in H_2O at 0°C. The orifice 1: 20 V, orifice 2: 5 V, ring lens voltage: 10 V. Experimental conditions: $[1^{P2}] = 0.50 \text{ mM}, [H_2^{18}O_2] = 100 \text{ mM}.$

Figure 2-13. (A) Time courses for the decay of 2 monitored at 390 nm at room temperature in the absence (green) and presence (orange) of ct-DNA. (B) Time courses for the decay of 2^{P2} monitored at 380 nm at room temperature in the absence (green) and presence (orange) of ct-DNA. All experiments were carried out at least three times.

2-3-6.1および1¹²の細胞毒性

HL1, HL1^{P2}, 1 および 1^{P2}の細胞毒性をさまざまな細胞を用いて MTT assay^[29, 30]で評 価した. 比較として Cisplatin の細胞毒性も評価した. 細胞増殖 50%阻害濃度(50% Inhibition Concentration, IC₅₀値)は、細胞生存率(%) vs log [X] (X=HL1, HL1^{P2}, 1, 1^{P2})を プロットしたグラフから算出した. プロットしたグラフおよび算出した IC50 値を Figure S2-3 および Table 2-2, 2-3 に示す. まず, 24 時間作用させたとき, 1 および 1^{P2} は HL1 および HL1^{P2} よりもはるかに高い毒性を示した(Table 2-2). したがって, 細胞内におい て1および1^{P2}の二核銅構造は保持されており、これが細胞毒性を発揮していると考え られる. また, Table 2-3 に示すように, 肺がん細胞 A549 および膵臓がん細胞 PK-59 に 対して 48 時間作用させたときの IC₅₀値は、1^{P2}では 23.8、18.4 µM、1 では 284、241 µM であり、1^{P2}は1よりも約12倍高い細胞毒性を示した. この結果から phenanthrene によ る DNA 標的効果が 1^{P2}の細胞毒性を大きく向上させたと言える。肺の正常細胞 WI-38 および膵臓の正常細胞 2C6 に対して 48 時間作用させたときの IC₅₀ 値は, 1^{P2} では 218, 104 µM であり、1^{P2} が正常細胞よりもがん細胞に対して約 9.2 倍および約 5.7 倍高い細 胞毒性を示し、1¹²はがん細胞選択性を示すことが明らかとなった。1もがん細胞選択性 を示し、肺と膵臓のがん細胞に対して正常細胞よりも約 2.9 倍および約 4.7 倍高い細胞 毒性を示した. がん細胞選択性という点では, 1^{P2}は p-cresol-amide-tether-dpa 配位子 HL3 を持つ二核銅(II)錯体3よりも約7倍選択性が高かった^[14].1と1^{P2}のがん細胞選択性が 高いのは, がん細胞選択的毒性が配位子と二核銅中心の配位構造に依存することを示し ている. また, 1^{P2}では細胞毒性とがん細胞選択性が共に向上した. これは phenanthrene が DNA 標的として DNA 切断を加速することで,がん細胞選択的毒性を向上させるこ とを示す結果として重要である.

35

	$IC_{50} (\mu M) (Mean \pm SD)$					
Complex	Cervical	Lung		Pancreas		
	HeLa (cancer)	A549 (cancer)	WI-38 (normal)	PK-59 (cancer)	2C6 (normal)	
1	$1,740 \pm 110$	$1,430 \pm 40$	2,960 ± 30	$1,060 \pm 10$	3,340 ± 10	
1 ^{P2}	156 ± 1	91.6 ± 10.0	269 ± 5	110 ± 3	238 ± 8	
HL1	> 10,000	> 10,000	4,000 ± 30	> 10,000	> 10,000	
HL1 ^{P2}	> 1,000	> 1,000	> 1,000	> 1,000	> 1,000	
Cisplatin	2.33 ± 0.23	5.35 ± 0.82	6.33 ± 0.13	2.66 ± 0.85	3.16 ± 0.12	

Table 2-2. Cytotoxicity of 1, 1^{P2}, HL1, HL1^{P2}, and Cisplatin against various cancer and normal cells by means of MTT assay (24 h)

Table 2-3. Cytotoxicity of 1, 1^{P2}, and Cisplatin

against various cancer and norma	al cells by means of MTT as	say (48 h)
----------------------------------	-----------------------------	------------

	IC ₅₀ (µM) (Mean ± SD)					
Complex	Cervical	Lu	ng	Pancreas		
	HeLa (cancer)	A549 WI-38 (cancer) (normal)		PK-59 (cancer)	2C6 (normal)	
1	660 ± 28	284 ± 16	838 ± 82	241 ± 4	1140 ± 50	
1 ^{P2}	56.6 ± 1.8	23.8 ± 2.4	218 ± 3	18.4 ± 1.6	104 ± 8	
Cisplatin	$\begin{array}{c} 0.925 \ \pm \\ 0.004 \end{array}$	1.83 ± 0.03	4.55 ± 0.03	2.01 ± 0.02	1.15 ± 0.08	

2-3-7. 1 および 1^{P2}の細胞内への取り込み

化合物の細胞毒性は細胞内への取り込み量に依存するため、24 時間および 48 時間作 用後の HeLa 細胞(2.5×10⁵ cells/mL)に対する 1 および 1^{P2} (25 μM)の細胞内取り込み量を ICP MS で推定した^[31]. 結果を Figure 2-14 および Table 2-4 に示す. 1 および 1^{P2} (25 μM) の ⁶⁵Cu 量(fg/cell)は、24 時間後に 28.7 および 40.2 であり、48 時間後に 31.0 および 54.0 であった. したがって、1^{P2}の細胞内取り込み量は、24 時間後および 48 時間後で 1 より 約 1.4 倍および約 1.7 倍多かった.

Figure 2-14. Cellular uptake of 1 (red) and 1^{P2} (blue) (25 μ M) in HeLa cells (2.5 \times 10⁵ cells/mL) after incubation for 24 h and 48 h.

Complex	Time (h)	⁶⁵ Cu (fg/cell)	[Cu in the cell]/[Cu in the medium during treatment] (%)
None	-	2.72	-
1	24	28.7	0.16
	48	31.0	2.04
1 ^{P2}	24	40.2	0.31
	48	54.0	4.38

Table 2-4. Cellular uptake of 1 and 1^{P2} against HeLa cells

この取り込み量の増加には化合物の疎水性が関係していると考え、フラスコ振盪法に より、1 および 1^{P2} の 1-octanol/H₂O 分配係数 log P_{ow} ^[32]を求めた.その結果を Table 2-5 に 示す.1 および 1^{P2} の log P_{ow} は-2.38 および-1.14 であり、phenanthrene のために 1^{P2} は1 よりも疎水性であると言える.一方、 1^{P2} の phenanthrene による細胞毒性向上は 12 倍で あり、細胞取り込み量の 1.7 倍の増加に比べてはるかに高いので、phenanthrene の DNA 標的としての効果が細胞毒性に対してより重要な役割を果たしていることが示された.

Complex	$\log P_{\rm ow}$		
1	-2.38 ± 0.04		
1 ^{P2}	-1.14 ± 0.06		

Table 2-5. Partition coefficient of 1 and 1^{P2} (Mean ± SD)

2-3-8. 1^{P2}の細胞内局在

 1^{P2} の細胞内小器官への局在を調べるため、共焦点顕微鏡を用いて phenanthrene 部位 の蛍光を観察した. $1^{P2}(200 \mu M)$ を含む培地中で HeLa 細胞を 1 時間インキュベートした 後、ミトコンドリア染色剤である Mito Tracker Deep Red (50 nM)で処理し、細胞内での 局在位置を調べた. 共焦点顕微鏡で撮影した画像を Figure 2-15 に示す. 赤色は染色され たミトコンドリアであり、青色は 1^{P2} の蛍光である. 細胞質内から青色の蛍光が確認で きた(Figure 2-15 (B))ことから、 1^{P2} は細胞内に取り込まれていることが明らかとなった. また 1^{P2} と Mito Tracker Deep Red の蛍光を重ね合わせた画像は紫色であり(Figure 2-15 (D))、 1^{P2} が部分的にミトコンドリアに局在していることがわかる. 従って 1^{P2} はミトコ ンドリア障害を起こして細胞死を誘導していると考えられる.

Figure 2-15. (A)–(D) Confocal microscopic images of 1^{P2} (200 µM) (blue) in HeLa cells on 1 h incubation in the dark. (A) Bright-field images. (B) Blue fluorescence indicates the fluorescence of 1^{P2} ($\lambda_{ex} = 405$ nm). (C) Red fluorescence indicates mitochondrial staining of Mitotracker Deep Red FM (50 nM) (Thermofisher) (red) ($\lambda_{ex} = 638$ nm). (D) Overlay images of (A)–(C). Scale bar is 20 µm.

2-3-9. Apoptosis assay

1 および 1^{P2} の細胞死誘導機構を解明するために,FITC を蛍光標識として有する Annexin V (Annexin V-FITC)とヨウ化プロピジウム(Propidium iodide, PI)^[33]を染色剤とし て用い,FACS で解析して細胞死形態の確認を行った.Annexin V はアポトーシス細胞 の細胞膜の外側に露出しているホスファチジルセリン(Phosphotidylserine, PS)と結合す ることにより,アポトーシス細胞の検出が可能になる.一方,PI は膜不透過性の死細胞 染色色素であり,死細胞の検出が可能である.結果を Figure 2-16 および Table 2-6 に示 す.1 および 1^{P2} (800 μM)を含む培地中で HeLa 細胞を 1 時間と 12 時間培養した.その 後,Annexin V-FITC と PI 染色液を用いて染色を行い,FACS でアポトーシス細胞の定量 を行った.1^{P2}存在下における 1 時間と 12 時間の培養を比較すると,1 時間よりも 12 時 間の培養において死滅細胞が 15.8%増加し,そのうち 85%は初期アポトーシス細胞^[34]で あった.この結果より,1^{P2} は主にアポトーシスを介して細胞死を誘導していることが 明らかとなった.また 1 でも細胞死全体の 46%が初期アポトーシスによるものであっ た.したがって,1 および 1^{P2} が誘導する細胞死はアポトーシスであるといえる.

Figure 2-16. Induction of apoptosis by 1 and 1^{P2} . Annexin V-FITC and PI fluorescence were measured by flow cytometry. Representative dot plots of dose-dependent effect of 1 and 1^{P2} (800 μ M) on apoptosis of HeLa cells treated for 1 h and 12 h. A total of 10,000 cells were collected per sample. Experiments were carried out at least three times.

Complex Time (h)	Time	Rate of cells (%)					
	(h)	Q1	Q2	Q3	Q4		
		(Annexin-/PI+)	(Annexin+/PI+)	(Annexin+/PI-)	(Annexin–/PI–)		
None	12	1.1	1.2	10.6	87.1		
1	1	0.7	1.2	8.2	89.9		
1	12	1.9	5.5	11.0	81.6		
1 P2	1	4.4	7.2	5.0	83.4		
1.2	12	5.0	8.9	18.5	67.6		

Table 2-6. Induction of apoptosis by 1 and 1^{P2} against HeLa cells

2-3-10. カスパーゼ活性アッセイ

上述したように、1^{P2}はミトコンドリアに局在し、1および1^{P2}はともにアポトーシス を誘導することが明らかとなった.そこで、1 および 1^{P2} の誘導する細胞死がミトコン ドリアを介したアポトーシスであることを確認するために、FACS を用いてカスパーゼ 活性の測定を行った.カスパーゼはアポトーシスや炎症の制御に関与するタンパク切断 酵素である.アポトーシスに関わるカスパーゼはイニシエーター・カスパーゼ(Caspase-2, -8, -9 など)とエフェクター・カスパーゼ(Caspase-3, -6, -7 など)に分類される^[35,36]. アポトーシスの開始シグナルにより自己活性化したイニシエーター・カスパーゼがエフ ェクター・カスパーゼを切断して活性化する. さらに、その活性化されたエフェクター・ カスパーゼが細胞内のタンパク質を切断し、アポトーシスが引き起こされる.そのため、 エフェクター・カスパーゼが活性化されているかを調べる事によりアポトーシスの最終 段階が起こっていることを確認できる.活性化された Caspase-3/7 はどちらも開裂部位 として Asp-Glu-Val-Asp (DEVD)^[37]を認識する. それゆえ, DEVD を有し, ペプチドが切 断された後 DNA に結合することで強い蛍光を生じる CellEvent[®] Caspase-3/7 Green Detection Reagent^[38]を測定に用いて活性化された Caspase-3/7 の定量を行った. HeLa 細 胞を1 (1740 μM)と1^{P2} (156 μM)の存在下で1時間と12時間インキュベートした.1時 間ないしは 12 時間経過後, 細胞をはがして回収し, CellEvent® Caspase-3/7 Green Detection Reagent 存在下でさらに 25 分間インキュベートした. その後, FACS で定量した活性化 された Caspase-3/7 の結果を Figure 2-17 に示す. 1 および 1^{P2} は 12 時間の作用で活性化 された Caspase-3/7 が錯体非存在下と比較して約4倍と6倍増加した.

Figure 2-17. Caspase-3/7 activity in HeLa cells measured using a caspase fluorometric assay kit when treated with 1 (red) and 1^{P2} (blue) (IC₅₀ value of 24 h) for 1 and 12 h. Results are shown as the mean \pm SD from five independent experiments. (**p < 0.001; two-tailed Student's t-test)

さらに、その Caspase-3/7 を活性化しているイニシエーター・カスパーゼの存在を調 べた. Caspase-3 は Caspase-8, -9 と相互作用することが知られている. Caspase-8 は細胞 表層にあるデスレセプターを介した外因性経路のアポトーシス誘導に, Caspase-9 はミ トコンドリアを介した内因性経路のアポトーシス誘導に関与している。今回,2-3-8 に 示した共焦点顕微鏡による細胞内局在の測定により、1 および 1^{P2} がミトコンドリアに 局在していることが示されている.そこで活性化された Caspase-9の存在を調べた.活 性化された Caspase-9 は開裂部位として Leu-Glu-His-Asp (LEHD)^[39]を認識する. そこで, 細胞膜透過性で無毒であり,活性化された Caspase-9 に不可逆的に結合する FITC-LEHD-FMK^[40]を用いて,活性化された Caspase-9 を定量した.HeLa 細胞を 1 (1740 µM)と 1^{P2} (156 µM)の存在下で1時間と12時間インキュベートした.1時間ないしは12時間経過 後,細胞をはがして回収し, FITC-LEHD-FMK 存在下でさらに 30 分間インキュベート した. FACS で定量した活性化された Caspase-9 の結果を Figure 2-13 および 2-14 に示 す. 1 および 1^{P2} は 12 時間の作用で活性化 Caspase-9 の量が錯体非存在下と比較して 3 倍以上増加した(Figure 2-18). さらに, この活性化は, Caspase 阻害剤である Z-VAD-FMK^{[41,} ⁴²¹存在下ではほぼ完全に阻害された(Figure 2-19). これらの結果は、1 および 1^{P2} が Caspase-9 を活性化したことを示している.

Figure 2-18. Caspase-9 activity in HeLa cells measured using a caspase fluorometric assay kit when treated with 1 (red) and 1^{P2} (blue) (IC₅₀ value of 24 h) for 1 and 12 h. Results are shown as the mean \pm SD from five independent experiments. (**p < 0.001; two-tailed Student's t-test)

Figure 2-19. Caspase-9 activity in HeLa cells measured using a caspase fluorometric assay kit when treated with 1 (red) and 1^{P2} (blue) (IC₅₀ value of 24 h) for 12 h in the absence and the presence of Z-VAD-FMK. Results are shown as the mean \pm SD from five independent experiments. (**p < 0.001; two-tailed Student's t-test)

これらの結果は、1 および 1^{P2} はイニシエーター・カスパーゼである Caspase-9 を活性 化し、次にその Caspase-9 がエフェクター・カスパーゼである Caspase-3/7 を活性化した ことを示している.

したがって、1 および 1^{P2} はミトコンドリア経由の内因性アポトーシス^[35, 40, 43]を誘導 すると結論できる. がん細胞ではミトコンドリアの機能不全により、H₂O₂ 濃度が正常細 胞中よりも 100 倍程度上昇し、サブ μ M になっている. 1 および 1^{P2} は特にがん細胞中 で増加している H₂O₂ と反応し、ミトコンドリアの DNA を切断するなどしてミトコン ドリアにダメージを与え、がん細胞を選択的にアポトーシスへと誘導していると考えら れる. このことが 1 および 1^{P2} の比較的高いがん細胞選択的毒性を可能にしていると考 えられる. しかし、細胞内の H₂O₂ 濃度は非常に低いため、 μ -1,1-hydroperoxodicopper(II) 錯体 2 および 2^{P2}を細胞内で検出することは困難である.

2-4. 結論

本章では、phenanthrene を DNA 標的部位として導入した新規 amide-tether 型配位子 (HL1^{P2})とその二核銅(II)錯体[Cu₂(µ-OH)(L1^{P2})](ClO₄)₂(1^{P2})を合成した. この phenanthrene 部位は 1^{P2}のインターカレーターとして DNA に結合し、H₂O₂による DNA 二本鎖切断 を大きく促進することを見出した. さらに、1^{P2}の肺および膵臓のがん細胞に対する細 胞毒性を約 12 倍向上させた. これは、1^{P2}が DNA 二本鎖切断を約 9.3 倍促進したこと と良い相関を示している. 共焦点顕微鏡用いた細胞内可視化実験の結果から、1^{P2}のミ トコンドリアへの局在が示された. FACS を用いたアポトーシスアッセイやカスパーゼ 活性の測定から、1 および 1^{P2} はいずれもミトコンドリア経由の内因性アポトーシスを 誘導することが示された. このミトコンドリア経由のアポトーシスが、1 および 1^{P2}の 比較的高いがん細胞選択的毒性の理由であると考えられる. 本研究で得られた知見は、 深刻な副作用の軽減に向けた新規抗がん剤の開発に対して新たな研究基盤を提供でき る可能性がある.

2-5. 実験方法

2-5-1. 試薬

試薬については、合成中間体や錯体を除き、高純度製品を和光純薬工業、東京化成、 シグマアルドリッチ社製から選択して購入した.溶媒については、合成に用いるものは 必要に応じて乾燥蒸留した. supercoiled plasmid pUC19 DNA は、ニッポンジーン社から 購入した試薬を使用した. 仔ウシ胸腺由来のデオキシリボ核酸ナトリウム塩 (type I, fibers)は Sigma-Aldrich から購入した. Apoptosis assay は、eBioscience[™] Annexin V Apoptosis Detection Kit FITC (Invitrogen)を使用して測定した. Caspase-3/7 活性は CellEvent[™] Caspase-3/7 Green Flow Cytometry Assay Kit を, Caspase-9 活性は CaspGLOW[™] Fluorescein Active Caspase Staining Kit を使用して測定した. 二核銅(II)錯体 1 は参考文献 ^{13-14,23-25} に従って合成した.

2-5-2. 測定装置

元素分析(C, H, N)は、Perkin-Elmer 社製 Elemental Analyzer 2400 II を用いて測定した. UV-vis 吸収スペクトルは、Agilent 社製 8454 紫外可視分光光度計を用いて測定した.pH 測定は、HORIBA 製 LAQUA electrode を標準緩衝液で校正した後に測定した.Electron spray ionization MS (ESI MS)および Cold spray ionization MS (CSI MS)スペクトルは、日本 電子製 JMS-T100CSRX the AccuTOF CS を用いて、MeOH、MeCN または H₂O を溶媒と して測定した.赤外線(IR)スペクトルは、SHIMADZU Single Reflection HATR IRAffinity-1 MIRacle 10 で測定した.¹H NMR スペクトルは、日本電子製 ECA-500RX フーリエ変 換核磁気共鳴装置(500 MHz)を使用し、基準物質として tetramethylsilane (TMS)または sodium 3-(trimethylsilyl)propionate-2,2,3,3-*d*₄ (TSP)を用いて測定した.蛍光スペクトルは、 HITACHI Spectral fluorometer F-7000 で測定した.細胞内銅の定量は、SHIMADZU Inductively Coupled Plasma Mass Spectrometer ICP MS-2030 を用いて測定した.供点. MTT assay は、Thermo Scientific™ Multiskan™ FC を用いて測定を行った.共焦点顕微鏡は、Nikon Instech 社製共焦点レーザー顕微鏡 A1 を用いた.フローサイトメトリーは、Invitrogen 社製 Attune NxT Focusing Cytometer を用いて測定を行った.

2-5-3. 配位子(HL1^{P2})およびその二核銅(II)錯体(1^{P2})の合成

Phenanthrene-9-carboxylic acid (7)の合成

500 mL 三口フラスコに窒素置換したバルーン付きの三方コックを取り付け,原料で ある 9-Bromophenanthrene (6) (5.18 g, 20.1 mmol)を入れ,セプタムおよび玉栓をそれぞれ の口に取り付け,脱気置換して窒素雰囲気下にした.シリンジを用いて窒素下で dry Et₂O (200 mL)を加え、EtOH 浴を用いて-30°C まで冷却した.-30°C に温度を保ち、シリンジ を用いて 1.6 M *n*-BuLi ヘキサン溶液(15 mL)を加えた.1時間攪拌して反応させた後、 窒素バルーンを CO₂ ガスバルーンと付け替えて,1時間 30 分激しく攪拌して反応させ た.その後、反応容器を氷浴に移し、H₂O (90 mL)を加え、一晩攪拌させた.攪拌を止 め、反応混合物に1 M NaOH を加えて pH 11 に調整した後、EtOAc (2×200 mL)と hexane (2×200 mL)で分液洗浄した後、水層を取り、これに1 M HCI を加えて pH 1 に調整する と、白色固体が析出した.これを吸引ろ過で集め、真空乾燥すると白色固体が得られた (3.87 g, Yield 86%).¹H NMR (500 MHz, DMSO-*d*₆): δ/ppm = 13.3 (brs, 1H, COOH), 8.89 (dd, *J* = 8.6, 1.4 Hz, 1H, Phen5), 8.85 (d, *J* = 8.3, 1.4 Hz, 1H, Phen8), 8.84 (dd, *J* = 7.9, 1.3 Hz, 1H, Phen4), 8.49 (s, 1H, Phen10), 8.12 (dd, *J* = 7.7, 0.96 Hz, 1H, Phen1), 7.79 (ddd, *J* = 7.0, 8.3, 1.4 Hz, 1H, Phen7), 7.69–7.79 (m, 2H, Phen3, Phen6), 7.72 (ddd, *J* = 7.7, 7.4, 1.3 Hz, 1H, Phen2).

Phenanthrene-9-carbonyl chloride (8)の合成

30 mL ナスフラスコに回転子, 7 (200 mg, 89.9 mmol), SOCl₂ (3.5 mL), そして DMF を パスツールで 2 滴加えた後,ジムロート,塩化カルシウム管を取り付け,60°C のオイ ルバスで攪拌した.3時間攪拌した後,室温に戻し,アスピレーターを用いて SOCl₂を 留去すると黄色固体が生成した.その固体に少量のベンゼンを加えると,不溶塩が生成 したので,桐山ロートと吸引瓶を用いて吸引濾過し,濾液をロータリーエバポレーター で濃縮し,真空乾燥すると卵白色の固体が得られた(206 mg, Yield 95%).¹H NMR (500 MHz, CDCl₃): δ /ppm = 8.93 (s, 1H, Phen10), 8.80 (m, 1H, Phen5), 8.76 (m, 1H, Phen4), 8.71 (d, J = 8.4 Hz, 1H, Phen8), 8.08 (dd, J = 7.6, 0.76 Hz, 1H, Phen1), 7.86 (ddd, J = 7.1, 8.4, 1.3 Hz, 1H, Phen7), 7.71–7.79 (m, 2H, Phen2, Phen6), 7.71 (ddd, J = 8.0, 6.9, 0.76 Hz, 1H, Phen3).

N,N',N"-4,7,10-Tris(tert-butoxycarbonyl)-1,4,7,10-tetraazacyclododecane (10)の合成

500 mL 三口フラスコに回転子を入れ、三方コック、バルーンを取り付けて真空乾燥 した. CHCl₃ (20 mL)に溶解させた 1,4,7,10-Tetraazacyclododecane (9) (1.80 g, 10.4 mmol)を 反応容器に入れ、Et₃N (4.0 mL, 28.7 mmol)を加えた. これに 200 mL 等圧滴下漏斗を取 り付け, di-tert-butyl decarbonate (Boc₂O) (6.35 g, 29.1 mmol)を CHCl₃ (30 mL)に溶解させた 溶液を加え, 1日かけてゆっくり滴下した. TLC (シリカゲル, 展開溶媒: CHCl₃:MeOH = 100:1)で9 がなくなったことを確認した後, ロータリーエバポレーターで濃縮した. これをシリカゲルカラムクロマトグラフィー(CHCl₃:MeOH = 100:1)で精製し, 濃縮する と白色固体が得られた(4.53 g, Yield 99%). ¹H NMR (500 MHz, CDCl₃); δ /ppm: 3.54–3.73 (m, 4H, CH₂), 3.17–3.48 (m, 8H, CH₂), 2.76–2.93 (m, 4H, CH₂), 1.47 (s, 9H, CH₃), 1.45 (s, 18H, CH₃).

1,10-Ditosyl-1,4,7,10-tetraoxadecane (12 (n = 2))の合成

2000 mL 三口反応容器に回転子, Triethylene glycol (11 (n = 2)) (31.0 mL, 0.233 mol), *p*-toluenesulfonyl chloride (87.0 g, 0.456 mol), CH₂Cl₂ (750 mL)を加えた. これを氷浴に浸し て攪拌させ,そこに粉状にした KOH (110 g, 1.96 mol)を少しずつ加え, N₂を封入したバ ルーンを取り付け,0°C に保ったまま 3 時間攪拌した.反応容器に H₂O (450 mL)を加 え,これを CH₂Cl₂ (3 × 200 mL)で分液し,有機層に Na₂SO₄を加えて脱水した後,ヌッ チェで濾過して少量の CH₂Cl₂ で洗い込み濾液を集めて,濾液をロータリーエバポレー ターで濃縮すると白色固体を得た.これを hot acetone に溶解させて再結晶させると白 色固体が得られた(92.5 g, Yield 88%).¹H NMR (500 MHz, CDCl₃): δ /ppm = 7.79 (d, J = 8.0 Hz, 4H, Ph), 7.34 (d, J = 8.0 Hz, 4H, Ph), 4.12–4.16 (m, 4H, CH₂), 3.64–3.68 (m, 4H, CH₂), 3.53 (s, 4H, CH₂), 2.45 (s, 6H, CH₃).

1,8-Diazido-3,6-dioxaoctane (13 (n = 2))の合成

500 mL ナスフラスコに回転子, **12 (n = 2)** (104 g, 0.228 mol), tetrabutylammonium iodide (TBAI, 4.33 g, 11.7 mmol), sodium azide (60.1 g, 0.925 mol), DMF (300 mL)を入れて遮光 し, 脱気および窒素置換した後, 80°C で 24 時間攪拌した.反応容器を室温に戻した後, DMF をロータリーエバポレーターで除去した. Et₂O (600 mL)を加えて不溶塩をヌッチ ェで濾過し, 濾液を H₂O (3 × 200 mL)で分液し, 有機層に Na₂SO₄ を加えて脱水した後, ヌッチェで濾過して少量の Et₂O で洗い込み, 濾液をロータリーエバポレーターで濃縮 すると黄色の油状物質が得られた(42.6 g, Yield 93%). ¹H NMR (500 MHz, CDCl₃): δ/ppm = 3.70 (t, *J* = 4.9 Hz, 4H, CH₂), 3.69 (s, 4H, CH₂), 3.40 (t, *J* = 4.9 Hz, 4H, CH₂).

1-Amino-8-azido-3,6-dioxaoctane (14 (n = 2))の合成

1000 mL ナスフラスコに回転子, **13** (n = 2) (42.6 g, 0.213 mol), EtOAc (300 mL), 1 M HCl (400 mL)を加えた. これに 300 mL 等圧滴下漏斗を取り付け, そこに triphenylphosphine (PPh₃, 55.0 g, 0.210 mol)を EtOAc (300 mL)に溶解させた溶液を入れ, 激しく攪拌させながらゆっくり滴下した. 12 時間後, EtOAc 層を取り除き,残った水層 を EtOAc (3 × 200 mL)で分液した. EtOAc 層を取り除き,この水層の pH を 1 M NaOH 水溶液で 14 にした後, CH₂Cl₂ (4 × 200 mL)で分液し,有機層に Na₂SO₄ を入れて脱水し た後, ヌッチェで濾過し, n-タ リーエバポレーターで濾液を濃縮すると黄色の油状物 質が得られた(33.0 g, Yield 90%). ¹H NMR (500 MHz, CDCl₃): δ /ppm = 3.70 (t, J = 5.2 Hz, 2H, CH₂), 3.62–3.68 (m, 4H, CH₂), 3.52 (t, J = 5.2 Hz, 2H, CH₂), 3.40 (t, J = 5.2 Hz, 2H, CH₂), 2.88 (t, J = 5.2 Hz, 2H, CH₂).

3,5-Diformyl-4-hydroxybenzoic acid (16)の合成

1000 mL 三口反応容器に回転子, CF₃COOH (TFA, 180 mL), *p*-Hydroxybenzoic acid (**15**) (10.1 g, 73.1 mmol), hexamethylenetetramine (HMT, 84.1 g, 0.600 mol)を加え, 110°C の油浴 で遮光して 2 日間還流した. 室温に戻した後, 4 M HCl (450 mL)を加えて 30°C で一晩 攪拌し, H₂O で洗浄しながらヌッチェで濾過した. 真空乾燥すると黄色の固体が得られ た (9.88 g, Yield 70%). ¹H NMR (500 MHz, DMSO-*d*₆): δ/ppm = 10.3 (s, 2H, CH), 8.54 (s, 2H, CHO).

N-(8-Azido-3,6-dioxaoctyl)-3,5-diformyl-4-hydroxybenzamide (17 (n = 2))の合成

500 mL ナスフラスコに三方コック, バルーンを取り付け, 16 (11.9 g, 61.1 mmol), CHCl₃ (200 mL)を加えた. **14 (n = 2)** (33.0 g, 189 mmol)を CHCl₃ (100 mL)に溶かして加え, EDC•HCl (35.1 g, 183 mmol), Et₃N (26 mL, 187 mmol)を加えた. 脱気および窒素置換した 後,一晩攪拌した. その後, 4 M HCl (150 mL)を加えて激しく攪拌した. TLC (シリカゲ ル,展開溶媒: EtOAc/MeOH 10/1)で反応追跡して副生成物がほとんどないことを確認し た後, 2000 mL 分液漏斗に移して有機層を取り出した. Na₂SO₄ を加えて脱水した後, ヌ ッチェで濾過して少量の CHCl₃ で洗い込み, 濾液を集めてロータリーエバポレーターで 濃縮,真空乾燥した. これを CHCl₃ (200 mL)に溶解させ, H₂O (4 × 50 mL)で分液洗浄し た. 有機層に Na₂SO₄ を加えて脱水した後, ヌッチェで濾過した. 濾液をロータリーエ バポレーターで濃縮,真空乾燥すると赤褐色の固体が得られた(21.7 g, Yield 93%). ¹H NMR (500 MHz, CDCl₃): *δ*/ppm = 11.9 (s, H, OH), 10.3 (s, 2H, CHO), 8.46 (s, 2H, CH), 6.84 (s, H, NH), 3.73 (t, *J* = 5.2 Hz, 2H, CH₂), 3.69–3.72 (m, 8H, CH₂), 3.41 (t, *J* = 5.2 Hz, 2H, CH₂).

5-(8-Azido-3,6-dioxaoctyl)carbamoyl)-2-hydroxyisophthalic acid (18 (n = 2))の合成

300 mL ナスフラスコに回転子, Ag₂O (10.5 g, 45.3 mmol), 17 (n = 2) (5.21 g, 14.9 mmol) を入れ、ここに H₂O (104 mL)に溶解させた NaOH (5.03 g, 126 mmol)を加えて 60°C で一 晩攪拌した. これを最小量の hot H₂O (20 mL)で洗浄しながら桐山漏斗で濾過し、濾液を 氷浴に浸しながら 12 M HCl を用いて pH を 1 にすると、白色の沈殿が得られた. これ を桐山漏斗で濾過、真空乾燥すると白色固体が得られた(5.21 g, Yield 91%). ¹H NMR (500 MHz, DMSO-*d*₆): δ /ppm = 8.53 (s, H, NH), 8.47 (s, 2H, CH), 3.60 (t, *J* = 5.2 Hz, 2H, CH₂), 3.54– 3.58 (m, 4H, CH₂), 3.52 (t, *J* = 6.3 Hz, 2H, CH₂), 3.39 (t, *J* = 6.3 Hz, 2H, CH₂), 3.37 (t, *J* = 6.3 Hz, 2H, CH₂).

5-(8-Azido-3,6-dioxaoctyl)carbamoyl)-1,3-di((*N*,*N*',*N*"-4,7,10-tris(*tert*-butoxycarbonyl)-1,4,7,10-tetraazacyclododecanyl)-1-carbamoyl)-2-hydroxybenzene (19 (n = 2))の合成

100 mL ニロフラスコに回転子を入れ、三方コック、バルーンを取り付けて真空乾燥 した.反応容器に 10 (1.09 g, 2.30 mmol)、*N*,*N*-diisopropylethylamine (DIPEA, 1.5 mL, 8.61 mmol)、DMF (30 mL)を加えて溶解させた. 18 (n = 2) (408 mg, 1.07 mmol)、1-[Bis(dimethylamino) methylene]-1H-benzotriazolium 3-Oxide Tetrafluoroborate (TBTU, 1.01 g, 3.14 mmol)を DMF (30 mL)に溶かし反応容器に加えた.脱気および N₂ 置換した後、室温 で遮光して一晩攪拌させた. ロータリーエバポレーターで濃縮すると褐色液体が得られ た. これに H₂O (100 mL)を加え、CHCl₃(3×100 mL)で分液後、有機層に Na₂SO₄を加え て脱水した. ヌッチェで濾過し、真空乾燥すると茶色の泡状固体が得られた. これをシ リカゲルカラムクロマトグラフィー(gradient from EtOAc to EtOAc/MeOH 10/1)で精製し た.目的物が入っているフラクションを集めてロータリーエバポレーターで濃縮し、真 空乾燥すると褐色固体が得られた(671 mg, Yield 49%).¹H NMR (500 MHz, CDCl₃): δ /ppm = 7.85 (s, 2H, Ph), 3.40–3.74 (m, 42H, CH₂), 3.38 (t, *J* = 5.2 Hz, 2H, CH₂), 1.28–1.52 (m, 54H, CH₃). ESI MS (MeOH *m/z*, positive mode). Calcd for [19 (n = 2) + 2Na]²⁺: 668.36. Found: 668.06. Calcd for [19 (n = 2) + Na]⁺: 1313.7. Found: 1313.1.

5-(8-amino-3,6-dioxaoctyl)carbamoyl)-1,3-di((*N*,*N*',*N*"-4,7,10-tris(*tert*-butoxycarbonyl)-1,4,7,10-tetraazacyclododecanyl)carbamoyl)-2-hydroxybenzene (20 (n = 2))の合成

100 mL ナスフラスコに窒素置換したバルーン付きの三方コックを取り付け **19 (n = 2)** (498 mg, 0.399 mmol), 10% Pd/C (450 mg)を入れ, MeOH (50 mL)を加えた.反応容器全 体をよく脱気窒素置換した後,脱気水素置換し,水素雰囲気下で一晩攪拌した. IR スペ クトルを用いて原料がないことを確認した後,セライト濾過を行い,濾液をロータリー エバポレーターで濃縮した.これを真空乾燥すると白色固体が得られた(462 mg, Yield 95%). ESI MS (MeOH *m/z*, positive mode). Calcd for [**20 (n = 2)** + H]⁺: 1265.8. Found: 1265.8.

5-(9-Phenanthrene-8-carbamoyl-3,6-dioxaoctyl)carbamoyl)-1,3-di((N,N',N''-4,7,10-tris (*tert*-butoxycarbonyl)-1,4,7,10-tetraazacyclododecanyl)carbamoyl)-2-hydroxybenzene (21 (n = 2))の合成

100 mL 二口ナスフラスコに回転子, 20 (n = 2) (341 mg, 0.269 mmol)を入れ, THF (25 mL)に溶かした後, Et₃N (0.1 mL, 0.717 mmol)加えると溶液が橙色に変化した. その溶液 に、氷浴中で、激しく攪拌しながら、8(62.6 mg, 0.260 mmol)を THF (5 mL)に溶かしたも のをパスツールでゆっくりと加えた.その後,窒素置換したバルーン付きの三方コック を取り付け,脱気窒素置換後,氷浴に浸しながら攪拌した.1時間攪拌後,室温に戻し て一晩攪拌した. ロータリーエバポレーターで THF を留去した後, CHCl₃(30 mL)と H₂O (15 mL)に溶解させ、CHCl₃ (2×30 mL)で分液し、有機層に Na₂SO₄を加えて脱水した. ヌッチェを用いて吸引濾過し、真空乾燥すると褐色固体が得られた. これをシリカゲル カラムクロマトグラフィー(gradient from CHCl₃ to CHCl₃/MeOH 10/1)で精製した.目的物 が入っているフラクションを集めてロータリーエバポレーターで濃縮し、真空乾燥する と白色固体が得られた(258 mg, Yield 63%). ¹H NMR (500 MHz, CDCl₃): *δ*/ppm = 8.70 (d, J = 8.0 Hz, 1H, Phen5), 8.67 (d, J = 8.4 Hz, 1H, Phen4), 8.36 (d, J = 8.4 Hz, 1H, Phen1), 7.91 (s, 1H, Phen10), 7.89 (d, J = 7.3 Hz, 1H, Phen8), 7.79 (s, 2H, Ph), 7.57–7.71 (m, 4H, Phen2, Phen3, Phen6, Phen7), 3.22–3.81 (m, 44H, CH₂), 1.26–1.52 (m, 54H, CH₃). ESI MS (MeOH *m/z*, positive mode). Calcd for $[21 (n = 2) + 2Na]^{2+}$: 757.4. Found: 757.1. Calcd for $[21 (n = 2) + Na]^{+}$: 1491.8. Found: 1491.2.

[3,5-di(1,4,7,10-tetraazacyclododecane-1-carboxyamide)-4-hydroxybenzenecarboxy]-(phenanthrene-9-carboxy)-3,6-dioxaoctane-1,8-*N*,*N*'-diamide•6HCl (HL1^{P2}•6HCl)の合成

100 mL ナスフラスコに回転子, **21 (n = 2)** (249 mg, 0.17 mmol)を入れ, EtOH (10 mL)に 溶かした. 氷浴に浸しながら 12 M HCl (3.5 mL)をゆっくりと加えた後,一晩攪拌した. n- g = -x = - c = -

二核銅(II)錯体[Cu₂(µ-OH)(L1^{P2})](ClO₄)₂ (1^{P2})の合成

100 mL ナスフラスコに HL1^{P2}•6HCl (43.0 mg, 39.6 µmol)を入れ, 1 M NaOH (237 µL)を 加えて pH が 8 以上であることを確認した後, 1 時間真空乾燥した. その後多量の CH₂Cl₂ を加えた. Na₂SO₄ を加えて脱水した後, セライト濾過した. 濾液をロータリーエバポレ ーターで濃縮, 真空乾燥すると白色固体 HL1^{P2}が得られた(24.2 mg, 70%).

次に、100 mL 二口ナスフラスコに回転子を入れ、H₂O (200 µL)に溶解させた Cu(ClO₄)₂•6H₂O (20.8 mg, 56.1 µmol)を加えた. そこに N₂フローしながら H₂O (200 µL)に 溶解させた先程の HL1^{P2}をパスツールでゆっくりと加え、さらに 1 M NaOH (237 µL)で pH を 8 にした. ESI MS スペクトルで配位子が残っていないことを確認した後、ロータ リーエバポレーターで濃縮した. MeOH (200 µL)を加えて溶かした後、多量の Et₂O を加 えると緑色固体が析出した. これを濾過し、真空乾燥すると緑色固体が得られた(25.6 mg, 73%). Anal. Calcd for [Cu₂(µ-OH)(L1^{P2})](ClO₄)₂•3H₂O: C, 43.67; H, 5.58; N, 11.07. Found: C, 43.74; H, 5.66; N, 10.85. ESI MS (H₂O *m/z*, positive mode). Calcd for [1^{P2} – OH – 2ClO₄ – H]²⁺: 496.17. Found: 496.17. [1^{P2} – 2ClO₄]²⁺: 505.17. Found: 505.18. Calcd for [1^{P2} – ClO₄]⁺: 1109.29. Found: 1109.30. IR (KBr): $v/cm^{-1} = 2918$, 1628, 1591, 1541, 1460, 1433, 1356, 1271, 1179, 1096, 995, 937, 835, 752, 660, 615.

51

2-5-4. EtBr 法

EtBr (3.3 μ M), ct-DNA (20 μ M bp), NaCl (10 mM), buffer (pH 6.0 (MES), 10 mM)となる ように調整した. この溶液に, NaCl (10 mM), buffer (pH 6.0 (MES), 10 mM)に溶解させ た 1 および 1^{P2}を 400 μ M になるまで 2 μ M の間隔で加えた. 37°C, 510 nm で励起した 蛍光スペクトルは, 520–800 nm の範囲で追跡した. 結合定数 K_{app} (M⁻¹)は, 以下に示す 式(1)を用いて計算した. [complex]は EtBr の蛍光強度が 50%減少した時の溶液中の 1 お よび 1^{P2}の濃度, $K_{EtBr} = 1.1 \times 10^7$ M⁻¹, [EtBr] = 1.65 μ M を用いた. K_{EtBr} [EtBr] = K_{app} [complex] (1)

2-5-5. DNA 切断実験

1^{P2}の DNA 切断活性は、pUC19 DNA を用い、アガロースゲル電気泳動法によって評価した. 1.5 mL エッペンチューブに NaCl (10 mM), buffer (pH 6.0 (MES), 10 mM), pUC19 DNA (50 μ M bp), **1^{P2}** (0–50 μ M), H₂O₂ (0–500 μ M)となるように調製した溶液を加え、 37°C の暗所でインキュベーションした. 0, 10, 20, 30, 40, 60, 120, 180, 300 分毎にサンプルを採取し、loading buffer (0.025% bromophenol blue, 0.025% xylene cyanol FF, 1.0 mM EDTA and 30% glycerol)を用いて反応をクエンチした. 各サンプルを TAE buffer (Tris/acetate/EDTA)を用いて作成した 1%アガロースゲルにローディングし、100 V で約1時間電気泳動を行った. その後、EtBr (0.5 μ g μ L⁻¹)染色を1時間行い、VILBER LOURMAT E-BOX-CX5.TS Edge-20.M を用いてゲルバンドを撮影した. 撮影したバンドを, Form I の染色補正値 1.06を用い、ImageJ ソフトウェアによって解析を行った. この測定は最低 3 回行い、再現性をとった.

2-5-6. µ-1,1-hydroperoxodicopper(II)錯体 2, 2^{P2}と ct-DNA の反応

ct-DNA (0.25 mM bp)の存在下または非存在下において、1、1^{P2}の水溶液(0.25 mM)を2 面セルに入れ、23 ± 0.2°C に保った.そこに H₂O₂水溶液(錯体に対して 20 eq)を加え、 290-850 nm の範囲でスペクトルを追跡した.そして、μ-1,1-hydroperoxodicopper(II)錯体 2、2^{P2}の減衰を様々な波長で確認した.

2-5-7. 細胞株とその培養条件

HeLa (ヒト子宮頸がん細胞)は同志社大学 北岸研究室(京都,日本)から譲り受けた. A549 (ヒト肺がん細胞),WI-38 (ヒト肺正常細胞),PK-59 (ヒト膵臓がん細胞)および 2C6 (ヒト膵臓正常細胞)は理化学研究所 バイオリソース研究センター(BRC)(茨城,日本)から購入した.HeLa 細胞,A549 細胞,WI-38 細胞および PK-59 細胞は,牛胎児血清(fetal bovine serum,FBS) (10%), penicillin (100 units mL⁻¹), streptomycin (100 μ g mL⁻¹)を加えた Dulbecco's Modified Eagle's Medium (DMEM, high glucose), Dulbecco's modified Eagle's medium (DMEM, low glucose), Minimum Essential Medium Eagle (MEM)または Roswell Park Memorial Institute 1640 Medium (RPMI 1640)培養液をそれぞれ用いて、5% CO₂ 濃度,37°C の条件下で培養した.2C6 細胞は、新生仔ウシ血清(newborn calf serum) (10%),牛胎児血 清(fetal bovine serum,FBS) (5%),馬血清(horse serum) (2.5%), penicillin (100 units mL⁻¹), streptomycin (100 μ g mL⁻¹)を加えた Mixture F-10 Ham (HamF10)培養液を用いて、5% CO₂ 濃度,37°C の条件下で培養した.

2-5-8. 3-(4,5-dimethylthiazole)-2,5-diphenyltetrazolium bromide (MTT) assay

まず、96 well プレートに blank として培地のみを 1 列と、培地に 10×10⁴ cells/mL に なるように懸濁させた細胞を 1 well につき 100 µL ずつ control と錯体のサンプル数分の 列に蒔き、5% CO₂濃度、37°C の条件下でインキュベーションした. HeLa 細胞と A549 細胞に関しては 24 時間後、WI-38 細胞と PK-59 細胞、2C6 細胞に関しては 48 時間後、 培地を除いて PBS(-)で 2 回洗浄した. その後、サンプル列にはそれぞれの濃度に調製 した 1、1^{P2}、HL1、HL1^{P2} および Cisplatin のサンプル(1–10,000 µM)を、blank と control 列には培地のみを 1 well につき 100 µL ずつ加え、インキュベーションした. 24 時間お よび 48 時間後、培地を除いて PBS(-)で 2 回洗浄し、MTT reagent (5 mg mL⁻¹)と培地を 1:9 の割合で混合させた溶液を 1 well につき 100 µL ずつ加え再度インキュベーションし た. 3 時間後、アスピレーターで溶液を吸引した後、生体用 DMSO を 1 well につき 100 µL ずつ加えた. 3 分間シェイクして沈殿したホルマザンを完全に溶解させた後、570 nm の吸光度を吸光度測定器で測定した. この結果より、1、1^{P2}、HL1、HL1^{P2} および Cisplatin の細胞増殖 50%阻害濃度(50% Inhibition Concentration, IC₅₀ 値)を算出した. この測定は最 低 3 回行い、再現性をとった.

2-5-9. ICP MS による HeLa 細胞内の銅イオン濃度の定量

観察用ディッシュ(ϕ 60 mm)に 2.5×10⁵ cells/mL に調製した HeLa 細胞の懸濁液を 4 mL 加え, 5% CO₂ 濃度, 37°C の条件下で 24 時間インキュベーションした. 培地を除いて, PBS(-)で 2 回洗浄し, 1 ないしは 1^{P2} を溶解させた培地溶液(25 μ M, 4 mL)を加えた. 5% CO₂ 濃度, 37°C の条件下で 24 時間および 48 時間インキュベーションした. 培地を除 いて PBS(-)で 2 回洗浄した後, trypsin (0.25%)で細胞をはがして 15 mL の遠沈管に移し た. 遠心分離し, 溶液をアスピレーターで吸引した. PBS(-) (1 mL)を加えて懸濁させ, 再度遠心分離した. 溶液をアスピレーターで吸引した後, PBS(-) (500 μ L)を加えて懸濁 させた. セルカウンターで細胞数を数えて, 1 × 10⁶ cells 分の細胞溶液を新しい 15 mL の遠沈管に移して凍結乾燥した. 細胞を超微量分析用 70% HNO₃ 水溶液 (250 μ L)に溶か してオークリッジ遠心管 Teflon[®] FEP (10 mL)に移した後, 60°C で 3 時間加熱処理をし た. その後, そこに H₂O (250 μ L)を加えた. この細胞溶液(2 × 10⁹ cells/L, 35% HNO₃)を ICP MS-2030 で測定し, 細胞内の銅を定量した. ICP MS-2030 による測定は, 島津製作 所に委託した.

2-5-10. フラスコ振盪法による分配係数 (log Pow)の測定

1, 1^{P2} の分配係数(log P_{ow})をフラスコ振盪法によって評価した.まず,測定に使用する H₂O および 1-octanol は両者を混合して一晩攪拌し,飽和状態にした.1 ないしは 1^{P2} の水溶液(0.1 mM, 3 mL)に 1-octanol (3 mL)を加えて,4 時間攪拌した.その後,1-octanol 溶液と H₂O に分離し,それぞれの溶液の電子スペクトルを測定した.それぞれの溶液 に溶解した錯体濃度の算出には本文中の ε をそれぞれ用いた.算出した錯体濃度 C_{w} , C_{o} を用いて,式(2)よりそれぞれの錯体の log P_{ow} を算出した.

$$\log P_{\rm ow} = \log \frac{C_{\rm o}}{C_{\rm w}} \ (2)$$

2-5-11. 共焦点顕微鏡による細胞内イメージング

観察用ディッシュ(φ 14 mm)に 6×10⁴ cells/mL に調製した HeLa 細胞の懸濁液を 600 μ L 加え, 5% CO₂ 濃度, 37°C の条件下で 24 時間インキュベーションした. 培地を除いて PBS(–)で 2 回洗浄し, 1^{P2}を溶解させた培地溶液(200 μ M, 600 μ L)を加えた. 5%CO₂ 濃度, 37°C の条件下で 24 時間インキュベーションした後, 培地を除いて PBS(–)で 2 回洗浄 した. そこに, ミトコンドリアの染色剤として Mito TrackerTM Deep Red FM (Thermo Fisher)(50 nM, 600 μ L)を培地に加えた. さらに, 5% CO₂ 濃度, 37°C の条件下で 10 分間 インキュベーションした後, 培地を除いて PBS(–)で 2 回洗浄した. そこに培地を加え,

共焦点レーザー顕微鏡で細胞を観察した. Mito Tracker[™] Deep Red FM の観察には 638 nm, 1^{P2}の観察には 405 nm の励起レーザーを用いた.

2-5-12. Apoptosis assay

96 well プレートに 10 × 10⁴ cells/mL に調製した HeLa 細胞の懸濁液を 1 well につき 100 µL ずつ, サンプル数分の well に加え, 5% CO2 濃度, 37℃ の条件下で 24 時間イン キュベーションした. 培地を除いて PBS(-)で2回洗浄し,1ないしは1^{P2}の培地溶液(800 µM)を1 well につき 100 µL ずつ加えた. 5% CO2 濃度, 37℃ の条件下で1 および 12 時 間インキュベーションした後,培地を除いて PBS(-)で2回洗浄し, trypsin (0.25%)で細 胞をはがした.はがした細胞を 1.5 mL のエッペンチューブに移し、遠心分離(1200 rpm、 2min)した後, 溶液をアスピレーターで吸引した. 集めた細胞に PBS(-)(1mL)を加えて 懸濁させ,再度遠心分離した.溶液をアスピレーターで吸引した後,1×BB 溶液を加え て懸濁させた.遠心分離し,溶液をアスピレーターで吸引した後,1×BB 溶液を加えて 1×10⁶ cells/mL に調製した. その細胞溶液 100 µL に Annexin V-FITC 溶液(5 µL)を混合 して、室温で10分間インキュベート後、遠心分離し、アスピレーターで溶液を吸引し た. そこに、1×BB 溶液(500 µL)を加えて懸濁させ、遠心分離し、アスピレーターで溶 液を吸引した.1 × BB 溶液(200 μL)を細胞に加えて懸濁させ,PI (5 μL)を混合した.こ の細胞溶液を Attune NxT Acoustic Focusing Cytometer を用いて観察した.ゲート内の細 胞数は 10,000 cells とした. Annexin V-FITC には blue (488 nm)レーザーの channel BL1 (Filter 530/30, Filter Range 515/545), PI \mathcal{L} k blue (488 nm) $\mathcal{V} - \mathcal{F} - \mathcal{O}$ channel BL2 (Filter 574/26, Filter Range 561/587)を用いた.

2-5-13. Caspase-3/7 活性

96 well プレートに 10 × 10⁴ cells/mL に調製した HeLa 細胞の懸濁液を 1 well につき 100 μ L ずつ, サンプル数分の well に加え, 5% CO₂ 濃度, 37°C の条件下で 24 時間イン キュベーションした. 培地を除いて PBS(-)で 2 回洗浄し, 1 ないしは 1^{P2}の培地溶液(各 IC₅₀ 値: 1740, 156 μ M)を 1 well につき 100 μ L ずつ加えた. 5% CO₂ 濃度, 37°C の条件下 で 1 および 12 時間インキュベーションした後, 培地を除いて PBS(-)で 2 回洗浄し, trypsin (0.25%)で細胞をはがした. はがした細胞を 1.5 mL のエッペンチューブに移し, 遠心分離(1200 rpm, 2 min)した後, 溶液をアスピレーターで吸引した. 集めた細胞に PBS(-)を加えて懸濁させ, 再度遠心分離した. 溶液をアスピレーターで吸引した後, PBS(-)を加えて 1 × 10⁶ cells/mL に調製した. その細胞溶液に CellEventTM Caspase-3/7 Green Detection Reagen (1 μ L/細胞懸濁液 1 mL,最終濃度 500 nM)を混合し,暗室,37°C で 30 分間インキュベートした.最後の 5 分間は,その溶液にSYTOXTM AADvanceTM 死細胞染色剤の 1 mM DMSO 溶液(1 μ L/細胞懸濁液 1 mL,最終濃度 1 μ M)も混合してイン キュベートした.この細胞溶液を Attune NxT Acoustic Focusing Cytometer を用いて観察 した.ゲート内の細胞数は 10,000 cells とした.CellEventTM Caspase-3/7 Green Detection Reagen には blue (488 nm)レーザーの channel BL1 (Filter 530/30, Filter Range 515/545), SYTOXTM AADvanceTM 死細胞染色剤には blue (488 nm)レーザーの channel BL3 (Filter 595/40, Filter Range 675–715)を用いた.この測定は最低 5 回行い,再現性を取った.

2-5-14. Caspase-9 活性

96 well プレートに 10 × 10⁴ cells/mL に調製した HeLa 細胞の懸濁液を 1 well につき 100 µL ずつ, サンプル数分の well に加え, 5% CO2 濃度, 37℃ の条件下で 24 時間イン キュベーションした. 培地を除いて PBS(-)で2回洗浄し, 1, 1^{P2}の培地溶液 (各 IC50: 486, 1740 µM)を 1 well につき 100 µL ずつ加えた. ネガティブコントロールには, Z-VAD-FMK と錯体の混合培地溶液(最終濃度: Z-VAD-FMK: 1 µL/mL, 錯体: (各 IC50) 1740, 156 µM)を1 well につき 100 µL ずつ加えた. それらを 5% CO₂濃度, 37℃ の条件下で1 お よび 12 時間インキュベーションした後(ネガティブコントロールは 12 時間のみ), 培地 を除いて PBS(-)で 2 回洗浄し, trypsin (0.25%)で細胞をはがした. はがした細胞を 1.5 mLのエッペンチューブに移し、遠心分離(1200 rpm, 2 min)をした後、溶液をアスピレー ターで吸引した.集めた細胞に培地を加えて懸濁させ,再度遠心分離した.溶液をアス ピレーターで吸引した後、培地を加えて1×10⁶ cells/mL に調製した.その細胞溶液に FITC-LEHD-FK (1 µL/細胞懸濁液 300 µL)を混合し, 暗室, 37℃ で 60 分間インキュベー トした. 遠心分離(3000 rpm, 5 min)した後, アスピレーターで溶液を吸引した. そこに, Wash Buffer (500 µL)を加えて懸濁させ、再度遠心分離した. 溶液をアスピレーターで吸 引した後, Wash Buffer (500 µL)を加えて懸濁させた. この細胞溶液を Attune NxT Acoustic Focusing Cytometer を用いて観察した. ゲート内の細胞数は 10,000 cells とした. FITC-LEHD-FK には blue (488 nm)レーザーの channel BL1 (Filter 530/30, Filter Range 515/545)を 用いた.この測定は最低5回行い,再現性を取った.

2-6. 参考文献

- [1] U. Ndagi, N. Mhlongo, and E. S. Soliman, Drug Des. Devel. Ther. Rev. 2017, 11, 599-616.
- [2] T. C. Johnstone, K. Suntharalingam, Chem. Rev. 2016, 116, 3436-3486.
- [3] H. Umezawa, K. Maeda, T. Takeuchi, and Y. Okami, Antibiot. 1966, 19, 200-209.
- [4] L. V. Liu, C. B. Bel III, S. D. Wong, S. A. Wilson, Y. Kwak, M. S. Chow, J. Zhao, K. O.
- Hodgson, B. Hedman, and E. I. Solomon, Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 22419-22424.
- [5] R. Oun, Y. E. Moussa, and N. J. Wheate, *Dalton Trans.* 2018, 47, 6645–6653.
- [6] S.-X. Huang, Z. Feng, L. Wang, U. Galm, E. Wendt-Pienkowski, D. Yang, M. Tao, J. M. Coughlin, Y. Duan, and B. Shen, *J. Am. Chem. Soc.* **2012**, *134*, 13501–13509.
- [7] C. Santini, M. Pellei, V. Gandin, M. Porchia, F. Tisato and C. Marzano, *Chem. Rev.* 2014, *114*, 815–862.
- [8] M. E. Reyes, M. L. Fuente, M. Hermoso, C. G. Ili, and P. Brebi, *Front. Immunol.* 2020, 11, 901.
- [9] N. Aykin-Burns, I. M. Ahmad, Y. Zhu, L. W. Oberley, and D. R. Spitz, *Biochem. J.* 2009, 418, 29–37.
- [10] N. Aykin-Burns, B. G. Slane, A. T. Liu, K. M. Owens, M. S. O'Malley, B. J. Smith, F. E. Domann, and D. R. Spitz, *Radiat. Res.* **2011**, *175*, 150–158.
- [11] C. S. Burke, A. Byrne, and T. E. Keyes, Angew. Chem. Int. Ed. 2018, 57, 12420–12424.
- [12] J. Lopez, and S. W. G. Tait, Br. J. Cancer 2015, 112, 957-962.
- [13] Y. Kadoya, K. Fukui, M. Hata, R. Miyano, Y. Hitomi, R. Yanagisawa, M. Kubo, and M. Kodera, *Inorg. Chem.* **2019**, *58*, 14294–14298.
- [14] Y. Kadoya, M. Hata, Y. Tanaka, A. Hirohata, Y. Hitomi, and M. Kodera, *Inorg. Chem.* 2021, 60, 5474–5482.
- [15] W. Wu, D. E. Vanderwall, J. Stubbe, C. J. Turner, J. W. Kozarich, and J. A. Stubbe, *Chem. Soc.* **1994**, *116*, 10843–10844.
- [16] G. Roelfes, M. E. Branum, L.Wang, L, Jr. Que, and B. L. Feringa, J. Am. Chem. Soc. 2002, 122, 11517–11518.
- [17] K. D. Goodwin, M. A. Lewis, E. C. Long, and M. M. Georgiadis, *PNAS* **2008**, *105*, 5052–5056.
- [18] K. E. Erkkila, D. T. Odom, and J.K. Barton, Chem. Rev. 1999, 99, 2777–2795.
- [19] B. J. Pages, D. L. Ang, E. P. Wright, and J. R. Aldrich-Wright, *Dalton Trans.* 2015, 44, 3505–3526.

[20] M. S. Landge, Y. M. Lazare, C. Freeman, J. Bunn, I. J. Cruz, D. Winder, C. Padgett, S. K. Aiken, and D. Ghosh, *Spectrochim. Acta A Mol. Biomol. Spectrosc.* **2020**, *228*, 117758.

[21] N. Z. Fantoni, Z. Zara Molphy, S. O'Carroll, G. Georgia Menounou, G. George Mitrikas, M.

G. Krokidis, C. Chatgilialoglu, J. Colleran, A. Banasiak, M. Clynes, S. Roche, S. Kelly, V. McKee, and A. Kellett, *Chem. Euro. J.* **2021**, *27*, 971–983.

[22] T. Lauria, C. Slator, V. Mckee, M. Müller, S. Stazzoni, A. L. Crips, T. Carell, and A. Kellett, *Chem. Euro. J.* **2020**, *26*, 16782–16792.

[23] F. Friscourt, C. J. Fahrni, and G.-J.Boons, J. Am. Chem. Soc. 2012, 134, 18809–18815.

[24] L. Ma, C. Tu, P. Le, S. Chitoor, S. J. Lim, M. U. Zahid, K. W. Teng, P. Ge, P. R. Selvin, and A. M. Smith, J. Am. Chem. Soc. 2016, 138, 3382–3394.

[25] S. Torelli, C. Belle, I. Gautier-Luneau, J. L. Pierre, E. Saint-Aman, J. M. Latour, L. Le Pape,

and D. Luneau, Inorg. Chem. 2000, 39, 3526-3536.

[26] B. C. Baguley, and E. M. Falkenhaug, Nucl. Acid. Res. 1978, 5, 161–171.

[27] A. R. Morgan, J. S. Lee, D. E. Pulleyblank, N. L. Murray, and D. H. Evans, *Nucl. Acid. Res.* 1979, 7, 547–569.

[28] L. Tjioe, T. Joshi, C. M. Forsyth, B. Moubaraki, K. S. Murray, J. Brugger, B. Graham, and L. Spiccia, *Inorg. Chem.* **2012**, *51*, 939–953.

[29] R. Scherließ, Int. J. Pharm. 2011, 411, 98-105.

[30] J. Meerloo, G. J. L. Kaspers, and J. Cloos, Humana Press. 2011, 411, 237–245.

[31] H. Wang, B. Wang, M. Wang, L. Zheng, H. Chen, Z. Chai, Y. Zhao, and W. Feng, *Analyst* 2015, 140, 523–531.

[32] L. Ropel, L. S. Belve'ze, S. N. V. K. Aki, M. A. Stadtherr, and J. F. Brennecke, *Green. Chem.*2005, 7, 83–90.

[33] I. Vermes, C. Haanenand C. P. M. Reutelingsperger, and J. Immunol. *Methods* 1995, *180*, 39–51.

[34] S, J. Martin, C. P. M. Reutelingsperger, A. J. McGahon, J. Rader, R. C. A. A. van Schie, D.

M. LaFace, and D. R. Green, J. Exp. Med. 1995, 182, 1545–1557.

[35] S. B. Bratton, and G. S. Salvesen, J. Cell. Sci. 2010, 123, 3209-3214.

[36] H. A. Harrington, K. L. Ho, S. Ghosh, and K. C. Tung, *Theor. Biol. Medical Model.* **2008**, *5*, 26–40.

[37] S. Barut, Y. A. Unlu, A. Karaoglan, M. Tuncdemir, F. K. Dagistanli, M. Oztqrk, and A. Colak, *Surg. Neurol. Int.* **2005**, *64*, 213–220.

[38] W. S. D. Tan, W. Liao, H. Y. Peh, M. Vila, J. Dong, and H. M. Shen, *Toxicol. Appl. Pharmacol.* **2018**, *360*, 120–130.

[39] N. Ozoren, K. Kim, T. F. Burns, D. T. Dicker, A. D. Moscioni, and W. S. El-Deiry, *Cancer Res.* **2000**, *60*, 6259–6265.

- [40] T. Yu, J. Dohl, F. Elenberg, Y. Chen, and P. Deuster, J Cell Physiol. 2019, 234, 6371–6381.
- [41] P. G. Ekert, J. Silke, and D. L. Vaux, Cell Death Differ. 1999, 6, 1081–1086.
- [42] C. J. F. V. Noorden, Acta Histochem Cytochem. 2001, 103, 241–251.
- [43] B. Mayer, and R. Oberbauer, News Physiol Sci. 2003, 18, 89–94.

2-7. Supporting Information

Figure S2-1. Agarose gel electrophoresis profile of pUC19 DNA (50 μ M bp) in the presence of 1^{P2} (50 μ M) and H₂O₂ at pH 6.0. (a)–(d) corresponded to H₂O₂ concentration of 0, 50, 100, and 500 μ M, respectively. Lane 1: DNA control; lane 2: DNA with Hind III; lanes 3–12: corresponded to the time of 0, 10, 20, 30, 40, 60, 120, 180, and 300 min, respectively.

Figure S2-2. Agarose gel electrophoresis profile of pUC19 DNA (50 μ M bp) in the presence of 1^{P2} and H₂O₂ (500 μ M) at pH 6.0. (a)–(c) corresponded to complex concentration of 0, 12.5, and 25 μ M, respectively. Lane 1: DNA control; lane 2: DNA with Hind III; lanes 3–12: corresponded to the time of 0, 10, 20, 30, 40, 60, 120, 180, and 300 min, respectively.

Complex	H_2O_2	Time	Form I	Form II	Form III
(μM)	(µM)	(min)	(%)	(%)	(%)
		0	93.3 ± 1.5	6.7 ± 1.5	-
		10	91.7 ± 1.1	8.3 ± 1.1	-
		20	90.0 ± 0.1	10.0 ± 0.1	-
		30	87.0 ± 0.4	13.0 ± 0.4	-
50	0	40	85.3 ± 0.2	14.7 ± 0.2	-
		60	82.1 ± 1.3	17.9 ± 1.3	-
		120	69.6 ± 1.6	30.4 ± 1.6	-
		180	59.9 ± 3.6	40.1 ± 3.6	-
		300	46.4 ± 3.0	53.6 ± 3.0	-
		0	91.4 ± 0.0	8.6 ± 0.0	-
		10	89.3 ± 0.4	10.7 ± 0.4	-
		20	87.5 ± 0.4	12.5 ± 0.4	-
		30	86.4 ± 0.1	13.6 ± 0.1	-
50	50	40	83.5 ± 0.6	16.5 ± 0.6	-
		60	76.5 ± 1.3	23.5 ± 1.3	-
		120	52.6 ± 0.9	47.4 ± 0.9	-
		180	32.2 ± 2.4	67.8 ± 2.4	-
		300	8.8 ± 2.6	90.5 ± 2.6	0.7 ± 0.0
		0	90.8 ± 0.3	9.6 ± 0.8	-
		10	88.8 ± 0.1	11.2 ± 0.1	-
		20	83.2 ± 0.6	16.8 ± 0.6	-
		30	80.4 ± 0.0	19.6 ± 0.0	-
50	100	40	75.9 ± 0.0	24.1 ± 0.0	-
		60	63.6 ± 0.9	36.4 ± 0.9	-
		120	30.4 ± 0.7	69.2 ± 1.1	0.4 ± 0.4
		180	11.4 ± 2.2	87.2 ± 2.5	1.4 ± 0.3
		300	0.0 ± 0.0	93.9 ± 0.8	6.1 ± 0.8
		0	92.2 ± 0.7	7.8 ± 0.7	-
		10	61.9 ± 2.1	38.1 ± 2.1	-
		20	25.6 ± 3.8	74.4 ± 3.8	-
		30	9.2 ± 3.1	90.8 ± 3.1	-
50	500	40	4.7 ± 1.7	94.2 ± 1.1	1.1 ± 0.6
		60	0.0 ± 0.0	96.3 ± 0.2	3.7 ± 0.2
		120	0.0 ± 0.0	90.2 ± 3.8	9.8 ± 3.8
		180	0.0 ± 0.0	77.1 ± 4.4	22.9 ± 4.4
		300	0.0 ± 0.0	50.7 ± 2.2	49.3 ± 2.2

 Table S2-1. Fraction of Form I, Form II, and Form III formed with 1^{P2} at pH 6.0

		0	93.9 ± 0.2	6.1 ± 0.2	-
		10	93.3 ± 0.0	6.7 ± 0.0	-
		20	93.2 ± 0.1	6.8 ± 0.1	-
		30	93.1 ± 0.1	6.9 ± 0.1	-
0	500	40	92.9 ± 0.2	7.1 ± 0.2	-
		60	92.7 ± 0.2	7.3 ± 0.2	-
		120	92.3 ± 0.3	7.7 ± 0.3	-
		180	91.3 ± 1.0	8.7 ± 1.0	-
		300	90.1 ± 1.9	9.9 ± 1.9	-
		0	91.4 ± 1.3	8.6 ± 1.3	-
		10	89.0 ± 1.3	11.0 ± 1.3	-
		20	86.0 ± 3.1	14.0 ± 3.1	-
		30	84.9 ± 3.9	15.1 ± 3.9	-
12.5	500	40	83.3 ± 3.8	16.7 ± 3.8	-
		60	82.3 ± 4.0	17.7 ± 4.0	-
		120	77.2 ± 4.3	22.8 ± 4.3	-
		180	71.1 ± 2.2	28.9 ± 2.2	-
		300	58.0 ± 4.1	42.0 ± 4.1	-
		0	92.2 ± 0.1	7.8 ± 0.1	-
		10	89.3 ± 0.3	10.7 ± 0.3	-
		20	82.4 ± 0.2	17.6 ± 0.2	-
		30	79.4 ± 0.0	20.6 ± 0.0	-
25	500	40	76.3 ± 0.6	23.7 ± 0.6	-
		60	71.2 ± 0.1	28.8 ± 0.1	-
		120	64.9 ± 0.2	35.1 ± 0.2	-
		180	58.7 ± 0.5	41.3 ± 0.5	-
		300	44.9 ± 0.5	55.1 ± 0.5	-

Figure S2-3. (A) Plots of cell viability vs log[X] (X = 1 (red), 1^{P2} (blue), HL1 (orange), and HL1^{P2} (light green)) in the MTT assay of HeLa cells treated for 24 h. (B) Plots of cell viability vs log[X] (X = 1 (red) and 1^{P2} (blue)) in the MTT assay of HeLa cells treated for 48 h. (C), (G), (K), (M) Plots of cell viability vs log[X] (X = 1, 1^{P2} , HL1, and HL1^{P2}) in the MTT assay of A549 (red) and WI-38 (blue) cells treated for 24 h. (D), (H) Plots of cell viability vs log[X] (X = 1 and 1^{P2}) in the MTT assay of A549 (red) and WI-38 (blue) cells treated for 48 h. (E), (I), (L), (N) Plots of cell viability vs log[X] (X = 1, 1^{P2} , HL1, and HL1^{P2}) in the MTT assay of PK-59 (red) and 2C6 (blue) cells treated 24 h. (F), (J) Plots of cell viability vs log[X] (X = 1 and 1^{P2}) in the MTT assay of PK-59 (red) and 2C6 (blue) cells treated for 48 h. All experiments were carried out at least three times.
第三章:Roles of DNA Target in Cancer Cell-Selective Cytotoxicity by Dicopper Complexes with DNA Target/Ligand Conjugates

3-1. 要旨

第二章では、DNA標的の導入で過酸化水素(H2O2)存在下のDNA切断が加速し、がん 細胞選択的毒性が向上することを見出した.本章では,DNA 標的の効果を明確化する ため、2,6-di(amide-tether cyclen)-p-cresol 配位子(HL1)のメチル基を 9-phenanthrenyl (P)ま たは methyl (M)末端を有する様々な長さの-CONH(CH₂CH₂O)_nCH₂CH₂NHCO-リンカーに 置換した DNA 標的/二核化配位子結合体(HL1^x, X = Pn and Mn (n = 1–3))とその二核銅(II) 錯体[Cu₂(µ-OH)(L1^x)](ClO₄)₂ (1^x)を合成し,1^xの DNA 結合能力,DNA 切断活性,細胞 内取込量,細胞毒性を[Cu₂(µ-OH)(L1)](ClO₄)₂ (1)と比較した. 1^xと H₂O₂の反応で DNA 切断の活性種である μ-1,1-hydroperoxodicopper(II)錯体が生成した. 1^{P1}, 1^{P2}, 1^{P3}は H₂O₂ 存在下のスーパーコイルプラスミド DNA (DNA Form I)の酸化切断による Form III の生 成速度が、1よりもそれぞれ 22、11、3 倍高かった. P-リンカーが短い程、二核銅部位 が届く塩基対の範囲が狭くなるため,Form III の生成に必要な10塩基対間でのDNA二 本鎖切断(DNA double-strand breaks, dsb)に対して有利になると考えられる. 1^{P1}, 1^{P2}, 1^{P3} は、HeLa 細胞に対する細胞毒性が1より30,12,9.9 倍高かった.DNA dsb と細胞毒性 の関係は、1^{PI-3}では44%の割合で相関したが、1^{MI-3}では5%しか相関しなかった.これ は細胞内で P-リンカーが特異的に DNA に結合するのに対し, M-リンカーは DNA に特 異的には結合しないためと考えられる.1^{P1-3}は肺がん,膵臓がんに対してがん細胞選択 的毒性を示し、P-リンカーが短いほどがん細胞選択性が高かった。一方、1^{M1-3}のがん細 胞選択性は1と同程度であった.細胞内可視化, Apoptosis assay, カスパーゼ活性アッ セイにより、1^{PI-3}がミトコンドリア経由のアポトーシスを誘導することが明らかとなっ た. 1^{P1} が最も高いがん細胞選択性を示した理由は、がん細胞のミトコンドリア機能障 害によって増加した H₂O₂と 1^{P1}が反応し,短い P-リンカーによりミトコンドリア DNA の切断が加速されたためと考えられる.

Machi Hata, Jin Ueno, Yutaka Hitomi, and Masahito Kodera "Roles of DNA Target in Cancer Cell-Selective Cytotoxicity by Dicopper Complexes with DNA Target/Ligand Conjugates" *ACS Omega*, **2023**, *8*, 28690–28701.

3-2. 緒言

がんは悪性度の高い疾患であり,がんによる死亡率は増加し続けている.これまでに 様々な抗がん剤が開発され,その中でも金属錯体である Cisplatin および関連する白金 錯体^[1,2],Bleomycin (BLM)^[3,4]などが臨床利用されている.BLM は投与後,生体内の鉄 を取り込み,鉄錯体(Fe-BLM)を生成する.これらはいずれも細胞障害性の抗がん剤であ り,白金錯体は DNA と結合して複製を阻害して,Fe-BLM は DNA 二本鎖切断(DNA dsb) を加速してそれぞれ細胞死を誘導する.これらは様々ながん疾患に対して高い有効性を 示す一方で,がん細胞と正常細胞の両者に対して同様に作用するため,強い副作用を示 す^[2,5,6].そこで,副作用の抑制には,がん細胞選択的毒性を示す金属錯体の開発が重要 と考えられる.

DNA や細胞小器官を標的する金属錯体は、がん細胞選択的毒性を示す抗がん剤開発 の観点から有望であり、化学者や医学者達の関心を集めている^[7-10].がん細胞は正常細 胞とは異なる特異的な微小環境を有する. 例えば, がん細胞ではミトコンドリアの機能 障害と高い代謝活性のために正常細胞よりも H2O2 濃度が高い[11, 12]. そこで, がん治療 のためにミトコンドリアを標的とする様々な金属錯体が開発され、ミトコンドリア経由 のアポトーシスを誘導すると報告されている^[9,13]. 例えば, Cu^[7e], Ru^[7f], Ir^[7g, h], Au^[7i] を用いたミトコンドリア標的金属錯体が挙げられる. tetraphenyl phosphonium 基をミト コンドリア標的として導入した配位子を用いた Cu 錯体は DNA を切断してミトコンド リア経由のアポトーシスを誘導した^[7e]. ミトコンドリア標的を持つ Ru と Ir 錯体は光線 力学療法の光増感剤として有効であった^[7f,g]. 燐光性シクロメタル化 Ir 錯体は,活性酸 素種(ROS)の濃度を上昇させ, 細胞内 ATP の枯渇, ミトコンドリア損傷によるカスパー ゼ依存性アポトーシスおよびミトコンドリア呼吸阻害を引き起こした[ハリ. また, 生体環 境で安定性の高い Au ポルフィリン錯体は,ミトコンドリアのシャペロンを標的してそ の活性を阻害した^[7].これらの金属錯体以外にも、H₂O₂活性化部位を持ち DNA および ミトコンドリアを標的とする金属錯体は,ミトコンドリア DNA を切断することでミト コンドリア経由のアポトーシスを誘導すると考えられ, がん細胞選択的な細胞毒性を高 めることが期待できる^[14].

また Cu 錯体は,正常細胞に対する細胞毒性が低い抗がん剤の開発のために注目され てきた^[15, 16]. Cu は内在性金属でありながら,抗がん作用を示すことから,銅錯体によ るがん細胞選択的毒性の発現が期待される.さらに,抗がん活性を高めるため,DNA 標 的部位を持つ Cu 錯体も開発されている^[16].しかし,DNA 標的を持つ二核銅錯体の研究 例は少なく,がん細胞選択的毒性における DNA 標的の役割も報告されていない.

66

第一章で述べたように、角谷らは 2,6-di(amide-tether cyclen)-*p*-cresol 配位子(HL1)の二 核銅(II)錯体[Cu₂(μ -OH)(L1)](ClO₄)₂ (1)が H₂O₂ と反応し、 μ -1,1-hydroperoxodicopper(II)錯 体を生成し、DNA の酸化的切断を促進することを見出した^[17]. しかし、1 の細胞毒性は 抗がん剤として使用するには低すぎた.そこで、第二章では、末端に 9-phenanthrenyl 基 を持つ-CONH(CH₂CH₂O)₂CH₂CH₂NHCO-リンカー(P-リンカー)を HL1 の4-メチル基と置 換した phenanthrene/HL1 結合体である HL1^{P2} を合成した^[18]. phenanthrene はインターカ レーターとして DNA に結合し、DNA 切断活性を向上させると考えた.実際に P-リン カーは HL1^{P2} の二核銅(II)錯体[Cu₂(μ -OH)(L1^{P2})](ClO₄)₂ (1^{P2})の DNA 切断活性と細胞毒性 を劇的に向上させた.さらに、1^{P2} は比較的高いがん細胞選択的毒性を示した.また、 phenanthrenyl 基を蛍光標識とする 1^{P2} の細胞内局在の観察とカスパーゼ活性の測定から、 1^{P2} によるがん細胞選択的毒性にミトコンドリアアポトーシスが関与していることが明 らかとなった^[18].しかし、現段階では、がん細胞選択的毒性を最適化するための DNA 標的/二核化配位子結合体の系統的な研究は行われていない.

本研究では、がん細胞選択的毒性における DNA 標的の役割を明らかにして最適化す るために、一連の DNA 標的/二核化配位子結合体 HL1^x (X = Pn, Mn (n = 1–3))を合成し た. HL1^x は、HL1 の 4-メチル基を P-リンカー(-CONH(CH₂CH₂O)_nCH₂CH₂NHCO-9phenanthrenyl (P))または M-リンカー(-CONH(CH₂CH₂O)_nCH₂CH₂NHCO-methyl (M))で置 換した構造を持つ. HL1^x は二核銅(II)錯体[Cu₂(μ -OH)(L1^x)](ClO₄)₂ (1^x) (X = Pn, Mn (n = 1–3))を形成した.本研究で用いた配位子と二核銅(II)錯体を Figure 3-1 に示す. 1^x の DNA 結合能、H₂O₂存在下における supercoiled plasmid pUC19 DNA の DNA Form III 生成(DNA dsb)活性、細胞内取込量、様々な正常細胞とがん細胞に対する細胞毒性などを調べ、1 と 比較して DNA 標的としての P-および M-リンカーの役割を明らかにした. また 1^{PI-3} の ミトコンドリアへの局在を共焦点顕微鏡で観察し、1^{PI-3}によるアポトーシス経由の細胞 死は、fluorescence-activated cell sorting (FACS)により明らにした.また、カスパーゼ活性 を測定し、1^xによるアポトーシスが内因性経路であることを明らかにした.これらの結 果から、1^xのがん細胞選択的毒性における DNA 標的の役割が明らかになった.

Figure 3-1. Chemical Structures of HL1, HL1^X, 1, and 1^X (X = Pn, Mn (n = 1–3)).

3-3. 結果と考察

3-3-1. 配位子と二核銅(II)錯体の合成

HL1とDNA標的/二核化配位子結合体であるHL1^x (X = Pn, Mn (n = 1-3))の化学構造 をFigure 3-1 に示す.HL1とHL1^{P2}および二核銅(II)錯体1と1^{P2}は、以前の論文^[17-20]お よび第二章の合成項 3-5-3 に従って合成した.HL1^x (X = Pn, Mn (n = 1-3))の合成経路を Scheme 3-1 に示す.はじめに、3つの異なる長さのPEG-リンカー(n = 1-3)を3,5-diformyl-4-hydroxybenzoic acid にアミド結合を介して導入した.次に、このホルミル基を酸化し てカルボキシ基に変換した後、tri-Boc-cyclen を脱水縮合で導入した後、PEG-リンカーの 末端に phenanthrenyl (P)または methyl (M)基を段階的に導入した.最後に Boc 基を酸性 ソルボリシスで除去した.得られた HL1^xを、1M NaOH 水溶液で pH 8.0 に調整した後、 Cu(ClO₄)₂と反応させて二核銅(II)錯体[Cu₂(μ -OH)(L1^x)](ClO₄)₂ (X = P1 (1^{P1}), P2 (1^{P2}), P3 (1^{P3}), M1 (1^{M1}), M2 (1^{M2}), M3 (1^{M3}))を得た.単離された錯体は、MeOH/Et₂O から再結晶さ れた.HL1^xおよび 1^xの詳細な合成、元素分析、IR、ESI MS のデータは、既報の HL1^{P2} および 1^{P2}を除き、3-5-3 の実験項に示す.

Scheme 3-1. Synthetic Route of $HL1^{X}$ (X = Pn, Mn (n = 1-3)).

3-3-2. 二核銅(II)錯体の構造

二核銅(II)錯体[Cu₂(μ -OH)(L1^x)](ClO₄)₂(1^x)の電子吸収スペクトルを Figure 3-2 に, ESI MS スペクトルを Figure 3-3–3-7 に示す. 1^xの電子吸収スペクトルでは, 380 nm と 640 nm に PhO⁻から Cu(II)への LMCT と d-d 遷移に帰属される吸収帯がそれぞれ観測され, 既報の 1 および 1^{P2} で観測された吸収帯と類似していた^[17, 18]. 特に, PhO⁻から Cu(II)へ の LMCT は, μ -OH- μ -OPh 架橋構造を持つ二核銅(II)錯体に見られる 340–400 nm の吸収 帯と一致した^[17, 18, 21, 22]. 1^{P1}, 1^{P3}, 1^{M1}, 1^{M2}, 1^{M3}の ESI MS スペクトルでは, それぞれ *m/z* 1065.17, 1153.32, 903.28, 947.32, 991.38 に[L1^x + 2Cu(II) + OH + ClO₄]⁺に対応する 分子イオンピークが観測された. これらのスペクトルデータは, 1^xに共通の μ -OH- μ -OPh 架橋構造を持つ二核銅(II)中心構造が MeCN と水溶液中で保持されていることを示した.

Figure 3-2. Electronic absorption spectra of 1^{P1} (light green), 1^{P2} (light blue), 1^{P3} (purple), 1^{M1} (green), 1^{M2} (blue), and 1^{M3} (pink) (0.1 mM (A), 0.25 mM (B)) in H₂O at room temperature.

Figure 3-3. ESI MS spectrum of complex 1^{P1} measured in H₂O at room temperature at orifice 1: 10 V, orifice 2: 10 V, ring lens voltage: 10 V.

Figure 3-4. ESI MS spectrum of complex 1^{P3} measured in H₂O at room temperature at orifice 1: 10 V, orifice 2: 10 V, ring lens voltage: 10 V.

Figure 3-5. ESI MS spectrum of complex 1^{M1} measured in H₂O at room temperature at orifice 1: 10 V, orifice 2: 10 V, ring lens voltage: 10 V.

Figure 3-6. ESI MS spectrum of complex 1^{M2} measured in H₂O at room temperature at orifice 1: 10 V, orifice 2: 10 V, ring lens voltage: 10 V.

Figure 3-7. ESI MS spectrum of complex 1^{M3} measured in H₂O at room temperature at orifice 1: 10 V, orifice 2: 10 V, ring lens voltage: 10 V.

3-3-3. 1 および 1^xの DNA への結合能力

仔ウシ胸腺 DNA (ct-DNA)への 1^x の見かけ上の結合定数 K_{app} (M⁻¹)を,臭化エチジウム(EtBr)法により決定した^[23]. ct-DNAと EtBr の混合溶液に 1 または 1^xの溶液を添加すると ct-DNA に結合した EtBr が放出されて蛍光強度が減衰した. この様子を Figure 3-8 (A)-(G)に示す. また、1 および 1^{Pn} の濃度に対する 601 nm での蛍光強度のプロットをFigure 3-8 (H)に、1 および 1^x の結合定数 K_{app} を Table 3-1 示す. 1^{P1-3} および 1^{M1-3} の DNA結合定数は、それぞれ 1 の DNA 結合定数の 6.5–9.1 倍および 3.5–4.6 倍であり、P-リンカーは M-リンカーよりも DNA 標的として 2 倍有効であった. 1^x の DNA 結合能力は、PEG-リンカーによってわずかに増強され、インターカレーターとして機能するphenanthrenyl 基によってさらに強化された. PEG-リンカー(n=2)を有する 1^{P2} および 1^{M2} では、PEG-リンカーの transoid の立体配座によって二核銅部位および phenanthrenyl 基 または methyl 基がアンチ配向となるため、DNA 結合能力がわずかに向上したと考えられる.

Figure 3-8. Fluorescence spectral changes upon the addition of 1 (A), 1^{P1} (B), 1^{P2} (C), 1^{P3} (D), 1^{M1} (E), 1^{M2} (F), and 1^{M3} (G) to the ethidium bromide-bound ct-DNA. For each measurement, 1 and 1^{P2} increased by 2 μ M. (H) Plot of the fluorescence emission intensity at 601 nm vs. concentrations of 1 (red), 1^{P1} (light green), 1^{P2} (light blue), and 1^{P3} (purple). Experimental conditions: [EtBr] = 3.3 μ M, [ct-DNA] = 20 μ M bp, [complex] = 0–300 μ M (1) or 0–200 μ M (1^{X}), [buffer] = 10 mM (pH 6.0 (MES)), [NaCl] = 10 mM, and $\lambda_{ex} = 510$ nm at 37°C.

Complex	$K_{\rm app}~({ m M}^{-1})$
1	$(0.43 \pm 0.02) \times 10^{6}$
1 ^{P1}	$(2.8\pm0.4)\times10^6$
1 ^{P2}	$(3.9\pm0.2)\times10^6$
1 ^{P3}	$(3.0\pm0.1)\times10^6$
1 ^{M1}	$(1.5\pm0.3)\times10^6$
1 ^{M2}	$(2.0\pm0.1)\times10^6$
1 ^{M3}	$(1.8 \pm 0.4) \times 10^{6}$

Table 3-1. K_{app} of 1 and 1^{X} (Mean ± SD)

3-3-4. µ-1,1-hydroperoxodicopper(II)錯体の分光学的測定

第一章および第二章で述べたように、DNA 切断を促進するために H₂O₂ と反応させる と、1 と 1^{P2} は μ -1,1-hydroperoxodicopper(II) 錯体 [Cu₂(μ -O₂H)(L1)]²⁺ (2) と [Cu₂(μ -O₂H)(L1^{P2})]²⁺(**2**^{P2})を生成することが、共鳴ラマン、CSIMS、電子吸収スペクトルによっ て確認されている^[17,18].本章では, μ-1,1-hydroperoxodicopper(II)錯体[Cu₂(μ-O₂H)(L1^X)]²⁺ (2^x, X = P1 and P3) (Figure 3-9)を電子吸収スペクトルおよび CSI MS スペクトルにより同 定した. その結果を Figure 3-10-3-15 に示す. 23℃の MeCN 中における 2^{P1} と 2^{P3}の電子 吸収スペクトル(Figure 3-10, 3-11)は、それぞれ 340 nm (ε = 5800 M⁻¹ cm⁻¹)と 400 nm (ε = 3100 M^{-1} cm⁻¹), および 340 nm (ε = 5600 M^{-1} cm⁻¹)と 400 nm (ε = 3200 M^{-1} cm⁻¹)に 2 つの 吸収帯を示した. これらは、2の340 nm (ε = 5600 M⁻¹ cm⁻¹)と398 nm (ε = 4800 M⁻¹ cm⁻¹) の吸収帯とほぼ同じである. 2^{P1} と 2^{P3}の 0℃の H₂O 中での CSI MS スペクトル(Figure 3-12, 3-14)は, [L1^{P1} + 2Cu(II) + O₂H]²⁺と[L1^{P1} + 2Cu(II) + O₂H + ClO₄]⁺に対応する *m/z* 491 と 1081 に, $[L1^{P3} + 2Cu(II) + O_2H]^{2+} \ge [L1^{P3} + 2Cu(II) + O_2H + CIO_4]^+$ に対応する m/z 535 と 1169 に, それぞれ2つの主要なピークを示した. H216O2の代わりに 18O 標識 H218O2 を用 いた場合、これらのピークは4質量単位分だけシフトし(Figure 3-13, 3-15)、2^{P1}と2^{P3}の 2つの O 原子が H₂O₂に由来することが示された.これらのことから, DNA 切断のため の H₂O₂ との反応で、1 および 1^x から共通の μ-1,1-hydroperoxodicopper(II) 錯体が形成さ れることが示された.

Figure 3-9. Chemical Structures of 2^{X} (X = P1 and P3).

Figure 3-10. Electronic absorption spectra of 1^{P1} (0.25 mM) (red) and hydroperoxo species 2^{P1} (purple) generated upon reaction with H₂O₂ (20 eq) in MeCN at -30° C. (inset: time courses for the formation and decay of 1^{P1} monitored at 340 nm at room temperature (green) and at -30° C (orange)).

Figure 3-11. Electronic absorption spectra of 1^{P3} (0.25 mM) (red) and hydroperoxo species 2^{P3} (purple) generated upon reaction with H₂O₂ (20 eq) in MeCN at -30° C. (inset: time courses for the formation and decay of 1^{P3} monitored at 340 nm at room temperature (green) and at -30° C (orange)).

Figure 3-12. CSI MS spectrum of 2^{P1} formed upon reaction of 1^{P1} with $H_2^{16}O_2$ in H_2O at 0°C. The orifice 1: 20 V, orifice 2: 5 V, ring lens voltage: 10 V. Experimental conditions: $[1^{P1}] = 0.50 \text{ mM}, [H_2^{16}O_2] = 100 \text{ mM}.$

Figure 3-13. CSI MS spectrum of 2^{P1} formed upon reaction of 1^{P1} with $H_2^{18}O_2$ in H_2O at 0°C. The orifice 1: 20 V, orifice 2: 5 V, ring lens voltage: 10 V. Experimental conditions: $[1^{P1}] = 0.50 \text{ mM}, [H_2^{18}O_2] = 100 \text{ mM}.$

Figure 3-14. CSI MS spectrum of 2^{P3} formed upon reaction of 1^{P3} with $H_2^{16}O_2$ in H_2O at 0°C. The orifice 1: 20 V, orifice 2: 5 V, ring lens voltage: 10 V. Experimental conditions: $[1^{P3}] = 0.50 \text{ mM}, [H_2^{16}O_2] = 100 \text{ mM}.$

Figure 3-15. CSI MS spectrum of 2^{P3} formed upon reaction of 1^{P3} with $H_2^{18}O_2$ in H_2O at 0°C. The orifice 1: 20 V, orifice 2: 5 V, ring lens voltage: 10 V. Experimental conditions: $[1^{P3}] = 0.50 \text{ mM}, [H_2^{18}O_2] = 100 \text{ mM}.$

3-3-5. 1^xによる酸化的 DNA 切断活性

Supercoiled plasmid pUC19 DNA (Form I)を基質として, H₂O₂による 1^xの DNA 切断活 性を pH 6.0, 37℃で調べた. DNA 標的の役割を明らかにするために, 二核銅(II)錯体 1 の DNA 切断活性と比較した. Form I から, 一本鎖切断による環状 DNA (Form II)と二本 鎖切断による直鎖状二本鎖 DNA (Form III)が生成する^[24]. これらをアガロースゲル電気 泳動法で分析・定量した. ゲル写真および Form I, II, III の割合(%)をそれぞれ Figure S3-1, Table S3-1 に示す. 1^{P1-3}および 1^{M1-3}による DNA 切断における Form I の減衰およ び Form III の増加割合(%)の時間経過をそれぞれ Figure 3-14 に示す.

Figure 3-16. Time courses for the decrease of percent of Form I (A), (C), and the increase of percent of Form III (B), (D) upon reaction of pUC19 DNA (50 μM bp) with **1** (red), **1**^{P1}, **1**^{M1} (light green), **1**^{P2}, **1**^{M2} (light blue), and **1**^{P3}, **1**^{M3} (purple) (50 μM) in the presence of H₂O₂ (0.5 mM) at pH 6.0 (MES, 10 mM) at 37°C. Experiments were carried out at least three times.

Figure 3-16 (A), (C)に示す Form I の減衰は, 擬一次速度論に従った. その結果を Figure 3-17 に示す. 1^{P1}, 1^{P2}, 1^{M1}, 1^{M2}の擬一次速度定数は, それぞれ 3.2, 7.1, 3.5, 2.5×10⁻² min⁻¹ で, 1 の 2.3×10⁻² min⁻¹ よりわずかに大きいが, 1^{P3} と 1^{M3} の 2.3 と 1.5×10⁻² min⁻¹ は小さかった. これらの結果は, Form I から Form II への変換は, 短い PEG-リンカーで はわずかに加速されるが, 長いリンカーでは加速されないことを示している. 一方, Figure 3-16 (B), (D)に示すように, Form III の生成は, 1^x の PEG-リンカーを短くするほ ど大きく加速されることが明らかとなった. スーパーコイルの Form I は歪んだ構造を 持ち Form II への変換は速く, 歪みのない環状の Form II から Form III への変換は遅い ことが知られている. 今回の結果から, 短いリンカーは Form II から Form III への遅い 変換を特異的に促進することが明らかになった.

Figure 3-17. Pseudo-first-order plot of the decrease of Form I in the reaction of 1 (A), 1^{P1} (B), 1^{P2} (C), 1^{P3} (D), 1^{M1} (E), 1^{M2} (F) and 1^{M3} (G) (50 μ M) with H₂O₂ (500 μ M).

Form III は Form I の二本鎖切断により生成する. Form III 生成には, Form II 生成にお ける一回目の切断箇所から 10 塩基対以内の相補鎖を切断する必要がある^[25]. そこで, Form III 生成における DNA 標的の役割を明らかにするため, H₂O₂ と 1 または 1^x との 3 時間の反応における Form III の生成割合(%)と, これらの値から算出した二回目の切断 の促進割合(1^x/1)を Table 3-2 に示す. 同じ PEG-リンカーの長さでの比較で, P-リンカー は M-リンカーより約 2 倍高い二回目切断の活性を示した(Figure 3-18). これは, 1^{P1-3}の DNA 結合定数が 1^{M1-3}のそれよりも 2 倍大きいことと一致しており, 二回目切断が DNA 結合で加速されることを示している. さらに, 1^{P1} は 3 時間の反応で 47%の Form III を 生成しており, これは 1^x の中で最も生成割合が高かった. また, 二回目切断の促進割 合(1^x/1)は PEG-リンカーが短くなるにつれて増加した. したがって, 1^{P1}の短い P-リン カーは Form III 生成において最適な DNA 標的であるといえる. これらの結果は, 1^{P1}の 短い P-リンカーが phenanthrenyl 基のインターカレーションを介して二核銅部位を近傍 に固定し, 一回目の切断箇所からより少ない塩基対内の相補鎖での二回目の切断を促進 していることを示している.

 Table 3-2. Yield of Form III (%) in the 3 h reaction by 1^x or 1

 and enhancement rates (1^x/1) in the DNA dsb

Complex	Form III (%) in 3 h	Enhancement rate (1 ^x /1) in DNA dsb	Complex	Form III (%) in 3 h	Enhancement rate (1 ^{x/} 1) in DNA dsb
1 ^{P1}	47 ± 1	22	1 ^{M1}	23 ± 3	11
1 ^{P2}	23 ± 4	11	1 ^{M2}	9 ± 2	4
1 ^{P3}	7 ± 1	3	1 ^{M3}	4 ± 1	2
1	2 ± 1	1	1	2 ± 1	1

Figure 3-18. Time courses for the decrease of percent of Form I ((A), (C), (E)), and the increase of percent of Form III ((B), (D), (F)) upon reaction of pUC19 DNA (50 μ M bp) with 1^{P1-3} with phenanthrene (red) (50 μ M), and 1^{M1-3} with methyl group (purple) in the presence of H₂O₂ (0.5 mM) at pH 6.0 (MES, 10 mM) at 37°C. Experiments were carried out at least three times.

さらに、DNA 切断の活性種に関する情報を得るために、KI (H₂O₂ 阻害剤)と DMSO (ヒ ドロキシラジカル(HO•)阻害剤)を用いて 1^{P1} による DNA 切断の阻害実験を行った. そ の結果を Figure 3-19、S3-2 および Table S3-2 に示す. DMSO (1.0, 5.0, 10 mM)存在下で は、Form I の減少も Form III の増加も阻害されなかった. したがって、拡散性の HO•は DNA 切断に関与していないといえる. 一方、KI (1.0, 5.0, 10 mM)は Form I の減少と Form III の増加を阻害した. 錯体不在下では H₂O₂ を加えても Form I の減少と Form III の増加 はほとんど観測されないので、この結果は KI が μ -1,1-hydroperoxodicopper(II)錯体を還 元分解したことを示している. したがって、 μ -1,1-hydroperoxodicopper(II)錯体が DNA 切 断の酸化活性種であることが示唆された.

Figure 3-19. Time courses for the decrease of percent of Form I (A), and the increase of percent of Form III (B) upon reaction of pUC19 DNA (50 μ M bp) with 1^{P1} (50 μ M) in the absence (red) and the presence of DMSO (1 mM (orange), 5 mM (light green), 10 mM (green)) or KI (1 mM (light blue), 5 mM (blue), 10 mM (purple)), and in the presence of H₂O₂ (0.5 mM) at pH 6.0 (MES, 10 mM) at 37°C. Experiments were carried out at least three times.

3-3-6. 1^xの細胞内取込量と親油性

1^xの細胞毒性は細胞内への取込量に依存すると考えられる.そこで、HeLa 細胞(2.5 × 10⁵ cells/mL)に対して 1^x (25 µM)を 48 時間作用させた際の細胞内取込量を, ICP MS を用いて細胞中の ⁶⁵Cu 含有量を測定して見積もった^[26]. また, 1^xの細胞毒性に対する DNA 標的の役割を明らかにするために1と比較した.1,1^{P1},1^{P2},1^{P3},1^{M1},1^{M2},1^{M3} の(細胞中の⁶⁵Cu (mol))/(培養液中の⁶⁵Cu (mol))の割合は,それぞれ 2.04, 4.92, 4.38, 3.70, 3.55, 1.72, 1.25%であり、1^{P1-3}および1^{M1-3}を1と比較したときの細胞内取込比 率(1^x/1)は, それぞれ 2.41, 2.15, 1.81, 1.74, 0.84, 0.61 であった(Table 3-3). これらの 結果より、1^{PI-3}の細胞内取込量は1^{MI-3}よりも高かった.またリンカーが長くなると細 胞取込量は低下した。細胞取込量のリンカー長依存性では、1^{P1-3}は phenanthrenvl 基の 効果が支配的なため、リンカーを長くしても 75%までしか減少しないが、1^{MI-3}ではリ ンカーサイズが支配的であり、リンカーを長くすると35%まで減少した.さらに、親 油性は細胞内への取り込みに影響する可能性があるため、1^xの親油性を 1-octanol/H₂O 系での分配係数(log Pow)^[27]から推定した.1,1^{P1},1^{P2},1^{P3},1^{M1},1^{M2},1^{M3}の log Pow 値 は、それぞれ-2.38、-1.22、-1.14、-0.98、-1.39、-1.22、-1.11 であり(Table 3-3)、 1^{X} の 親油性は P-か M-リンカーかによって、またリンカーを長くすることによってわずか に向上した.これらのことから、1^{P1-3}の細胞内への取り込みは、親油性ではなく、平 面環構造である phenanthrenyl 基の膜透過性によって促進されていることが示唆された.

Complex	Hydrophobicity	[Cu in cells]/[Cu in culture medium]	Enhancement rate (1 ^X /1)
Complex	$(\log P_{\rm ow})$	(%)	in cellular uptake
1 ^{P1}	-1.22	4.92	2.4
1 ^{P2}	-1.14	4.38	2.1
1 ^{P3}	-0.98	3.70	1.8
1 ^{M1}	-1.39	3.55	1.7
1 ^{M2}	-1.22	1.72	0.8
1 ^{M3}	-1.11	1.25	0.6
1	-2.38	2.04	1.0

Table 3-3. Hydrophobicity (log *P*_{ow}) and [Cu in cells]/[Cu in culture medium]

3-3-7.1^xの細胞毒性

様々な細胞に対する 1^{x} の細胞毒性を MTT assay^[28-30]により評価した. 細胞増殖 50% 阻害濃度(50% Inhibition Concentration, IC₅₀ 値)は、24 時間ないしは 48 時間作用させた後 の細胞生存率(%) vs log $[1^{x}]$ のプロットにより決定した. 1^{x} の IC₅₀ 値を、それぞれ Table 3-4、3-5 に示す. さらに、インキュベート条件下での二核銅(II)錯体 1^{P1} および 1^{M1} の安 定性を電子吸収スペクトルによって追跡した. その結果を Figure S3-3 に示す. 72 時間 後でも 1^{P1} と 1^{M1} のスペクトルは大きく変化しなかったことから、これらの錯体の構造 はインキュベート中で安定に保持されていることが示された.

配位子である HL1^xの細胞毒性は, Table 3-4 に示すように, 全ての細胞株に対する IC₅₀ 値(24 時間)が 1000 μ M より大きく, 二核銅(II)錯体よりもはるかに細胞毒性が低いこと が示された.また, HL1^{P1} と Cu(ClO₄)₂を同時に加えた共存下で行った MTT assay の結 果から, IC₅₀ 値(24 時間)は全ての細胞株に対して 1000 μ M 以上だった(Table 3-4).した がって, HL1^{P1} と Cu(II)イオンを共存させただけでは, 細胞毒性は二核銅(II)錯体よりも はるかに低い. HeLa 細胞に対する 1^{P1}, 1^{P2}, 1^{P3}, および 1 の IC₅₀ 値 (48 時間)は, それ ぞれ 21.8, 56.6, 66.4 および 660 μ M で, 1^{P1}, 1^{P2}, 1^{P3}の細胞毒性向上率(1^X/1)は, それ ぞれ 30, 12, 9.9 であった.細胞毒性向上率は, 細胞内への取込促進率よりもはるかに 大きかった.以上の結果より, 1^xの細胞毒性は P-リンカーの存在によって, また PEG-リンカーを短くすることによって大きく向上することが明らかとなった.これは, 二回 目の DNA 切断の促進率(1^X/1)が PEG-リンカーを短くすることによって増加することと 相関している.しかし, HeLa 細胞に対する 1^{M1}, 1^{M2}, 1^{M3}の IC₅₀ 値(48 時間)は, それぞ れ 199, 257, 283 μ M で, PEG-リンカーサイズにはほとんど依存せず, 1 の 660 μ M よ りも 2–3 倍程度向上しただけであった.したがって, M-リンカーは細胞毒性をあまり 向上させないことがわかった.

87

	IC ₅₀ (μM) (Mean ± SD)							
Complex	Cervical	Lung			Pancreas			
complex	HeLa (Cancer)	A549 (Cancer)	WI-38 (Normal)	SF	PK-59 (Cancer)	2C6 (Normal)	SF	
1	$1{,}740 \pm 110$	$1,\!430 \pm 40$	$2{,}960\pm30$	2.1	$1,060 \pm 0$	$3,340 \pm 10$	3.2	
1 ^{P1}	97.3 ± 0.4	94 ± 5	231 ± 1	2.5	122 ± 1	238 ± 4	2.0	
1 ^{P2}	156 ± 1	91.6 ± 10	269 ± 5	2.9	110 ± 3	238 ± 8	2.2	
1 ^{P3}	216 ± 2	227 ± 1	325 ± 9	1.4	219 ± 3	307 ± 1	1.4	
1 ^{M1}	501 ± 2	391 ± 4	665 ± 3	1.7	208 ± 1	557 ± 18	2.7	
1 ^{M2}	650 ± 8	427 ± 1	680 ± 7	1.6	242 ± 12	665 ± 3	2.7	
1 ^{M3}	1140 ± 70	448 ± 2	702 ± 2	1.6	294 ± 2	755 ± 4	2.6	
Cisplatin	2.33 ± 0.23	5.35 ± 0.82	6.33 ± 0.13	1.2	2.66 ± 0.85	3.16 ± 0.12	1.2	
HL1	> 10,000	> 10,000	> 10,000	-	> 10,000	> 10,000	-	
HL1 ^{P1}	> 1,000	> 1,000	> 1,000	-	> 1,000	> 1,000	-	
HL1 ^{P2}	> 1,000	> 1,000	> 1,000	-	> 1,000	> 1,000	-	
HL1 ^{P3}	> 1,000	> 1,000	> 1,000	-	> 1,000	> 1,000	-	
HL1 ^{M1}	> 1,000	> 1,000	> 1,000	-	> 1,000	> 1,000	-	
HL1 ^{M2}	> 1,000	> 1,000	> 1,000	-	> 1,000	> 1,000	-	
HL1 ^{M3}	> 1,000	> 1,000	> 1,000	-	> 1,000	> 1,000	-	
HL1 ^{P1} + Cu(ClO ₄) ₂	> 1,000	> 1,000	> 1,000	-	> 1,000	> 1,000	-	

Table 3-4. In vitro cytotoxicity of 1^{X} , Cisplatin, HL 1^{X} , and HL 1^{P1} put with Cu(ClO₄)₂ against various cancer and normal cells by means of MTT assay (24 h) (Mean ± SD)

	IC ₅₀ (μM) (Mean ± SD)							
Complex	Cervical Lung				Pancreas			
	HeLa (Cancer)	A549 (Cancer)	WI-38 (Normal)	SF	PK-59 (Cancer)	2C6 (Normal)	SF	
1	660 ± 28	284 ± 16	838 ± 82	3.0	241 ± 4	1140 ± 50	4.7	
1 ^{P1}	21.8 ± 6.5	20.9 ± 0.6	215 ± 20	10.3	11.8 ± 2.5	90.4 ± 2.8	7.7	
1 ^{P2}	56.6 ± 1.8	23.8 ± 2.4	218 ± 3	9.2	18.4 ± 1.6	104 ± 8	5.7	
1 ^{P3}	66.4 ± 2.7	71.7 ± 1.4	268 ± 3	3.8	57.4 ± 2.0	128 ± 1	2.2	
1 ^{M1}	199 ± 11	206 ± 7	431 ± 32	2.1	147 ± 1	552 ± 5	3.8	
1 ^{M2}	257 ± 1	247 ± 18	527 ± 9	2.1	152 ± 9	657 ± 12	4.3	
1 ^{M3}	283 ± 22	279 ± 8	636 ± 16	2.3	161 ± 4	675 ± 5	4.2	
Cisplatin	0.93 ± 0.01	1.83 ± 0.03	4.55 ± 0.03	2.5	2.01 ± 0.02	1.15 ± 0.08	0.6	

Table 3-5. In vitro cytotoxicity of 1, 1^{x} , and Cisplatin against various cancer and normal cells by mean of MTT assay (48 h) (Mean \pm SD)

 1^{x} の HeLa 細胞内での DNA 切断の P-および M-リンカーの役割を明らかにするため, Table 3-6 に示すように,二回目の DNA 切断(DNA Form III の生成)の促進率($1^{x}/1$) (A)と HeLa 細胞への細胞内取込促進率($1^{x}/1$) (C)から,HeLa 細胞内において期待される DNA 切断の促進率($1^{x}/1$) (A)×(C)を推定した.Figure 3-20 には, 1^{PI-3} および 1^{MI-3} について, HeLa 細胞内において期待される DNA 切断の促進率($1^{x}/1$) (A)×(C)と HeLa 細胞に対する 細胞毒性の向上率 (B)をプロットした. 1^{PI-3} および 1^{MI-3} のプロットは,それぞれ傾き が 0.44 および 0.053 の直線を与えた.これらの値から,細胞毒性と細胞内で期待される DNA 切断は, 1^{PI-3} では 44%の相関があるが, 1^{MI-3} ではわずか 5%の相関しかなかった. P-リンカーは細胞内での DNA 切断と細胞毒性を比例的に向上させたのに対し,M-リン カーは細胞外で DNA 切断を向上させたが,細胞毒性をほとんど向上させない.この事 実は,P-リンカーは細胞内でも phenanthrenyl 基がインターカレーターとして DNA に特 異的に結合して DNA 切断を促進して細胞毒性を向上させるが,M-リンカーは非特異的 結合のために細胞内では DNA 切断を促進していことを示している.

Table 3-6. Data for plot of expected enhancement rates $(1^{X}/1)$ in DNA dsb in HeLa cells (A)×(C) vs. enhancement rates $(1^{X}/1)$ in cytotoxicity against HeLa cells (B). Enhancement rates $(1^{X}/1)$ in DNA dsb (A) and enhancement rates $(1^{X}/1)$ in cellular uptake (C) are used

Complex	(A) Enhancement rate (1 ^x /1) in DNA dsb	(B) Enhancement rate (1 ^x /1) in cytotoxicity against HeLa cells	(C) Enhancement rate (1 ^x /1) in cellular uptake	(A)×(C)
1	1	1	1	1
1 ^{P1}	22	30	2.4	52.8
1 ^{P2}	11	12	2.1	23.1
1 ^{P3}	3	9.9	1.8	5.4
1 ^{M1}	11	3.3	1.7	18.7
1 ^{M2}	4	2.6	0.84	3.36
1 ^{M3}	2	2.3	0.61	1.22

to estimate (A)×(C)

Figure 3-20. Plots of expected enhancement rates in DNA dsb in HeLa cells (A)×(C) shown in Table 3-6 vs. enhancement rates in cytotoxicity against HeLa cells (B) for 1^{P1-3} (red line) and 1^{M1-3} (purple line). The slopes of the red and blue lines are 0.44 and 0.053, respectively.

次にがん細胞選択的毒性について述べる. A549(肺がん), WI-38(肺正常), PK-59(膵 臓がん), 2C6(膵臓正常)細胞に対する 1^xの IC₅₀値(48 時間)を Table 3-5 に示す. A549 細 胞に対する 1, 1^{P1}, 1^{P2}, 1^{P3}の IC₅₀ 値(48 時間)は, それぞれ 284, 20.9, 23.8, 71.7 µM で あり、肺がん細胞に対する1^{P1-3}の細胞毒性は、P-リンカーの導入および PEG-リンカー を短くすることにより、大きく向上することが示された.しかし、WI-38細胞に対する 1^{P1}, 1^{P2}, 1^{P3}の IC₅₀ 値(48 時間)は, それぞれ 215, 218, 268 µM であり, P-リンカーは肺 の正常細胞に対する 1^{P1-3}の細胞毒性をほとんど向上せず、PEG-リンカーのサイズに依 存しないことがわかる.したがって、P-リンカーはがん細胞選択的毒性を向上させると いえる. がん細胞選択的毒性を, Table 3-5 に示す選択性因子(selectivity factor, SF) = (正 常細胞の IC₅₀)/(がん細胞の IC₅₀)で評価した. A549 と WI-38 に対する 1^{P1}, 1^{P2}, 1^{P3}の SF 値は,それぞれ 10.3,9.2,3.8 であり,1^{M1-3}の 2.3–2.1 や Cisplatin の 2.5 よりもはるか に高かった. このように、1^{P1-3}はがん細胞選択的毒性を示すが、1^{M1-3}や Cisplatin はほ とんど選択性を示さなかった. また, 短い P-リンカーは 1^{PI-3} のがん細胞選択的毒性を 大きく向上させたが、1^{MI-3}では PEG-リンカーサイズの効果はなかった.また、1^{PI-3}は 膵臓のがん PK-59 と正常 2C6 に対してもがん細胞選択的毒性を示したが、1^{M1-3} は選択 性を示さなかった(Table 3-5). 肺および膵臓のがん細胞と正常細胞に対する 1^{P1}の SF 値 は,それぞれ 10.3 および 7.7 であり,1^{P1}が 1^xにおいて最も高いがん細胞選択的毒性を 示すことが明らかとなった.以上の結果より,短い P-リンカーは,がん細胞選択的毒性 に最適化された DNA 標的であるといえる.

3-3-8. 1^{P1-3}の細胞内局在

 1^{Pl-3} のがん細胞選択的毒性のメカニズムを解明するために,共焦点顕微鏡を用いて細胞内での局在を調べた^[31]. 1^{Pl-3} (200 μ M)を含む培地中で HeLa 細胞を 1 時間インキュベートした後,ミトコンドリア染色剤である Mito Tracker Deep Red (50 nM)で処理した. その後,細胞内局在を共焦点顕微鏡で観察した.共焦点顕微鏡で撮影した画像を Figure 3-19 に示す.赤色蛍光と青色蛍光はそれぞれ,染色されたミトコンドリアと細胞内の 1^{Pl-3} の存在位置を示している.重ね合わせた画像の紫色から, 1^{Pl-3} がミトコンドリアに局在していることがわかる. Table 3-7 に示すように, ImageJ を用いた画像処理により,ミトコンドリアの面積の 17%が 1^{Pl-3} で占められていることが明らかとなった.

さらに、4℃と37℃の条件下それぞれで1^{P1-3}を作用させた際のHeLa細胞を共焦点顕 微鏡で観測した.その結果をFigure 3-21 に示す.37℃条件下のHeLa細胞のミトコンド リアで観察された1^{P1-3}の青色蛍光が、4℃条件下のミトコンドリアでも観察された.こ の結果は、1^{P1-3}の細胞内への取り込みはエンドサイトーシスではなく、主に直接膜透過 によって起こることを示唆している.また、この結果は1^{P1-3}の細胞内への取り込みが P-リンカーの膜透過性によって促進されるという上述の結果と一致する.さらに、細胞 毒性に対しては、エンドサイトーシスよりも直接膜透過の方が有利であると考えられる.

	Area (%)						
Complex	Mitochondria in the image (red)	Complex in the image (blue)	Co-localization in the image (purple)	Complex in Mitochondria			
1 ^{P1}	4.0	2.3	0.7	17.5			
1 ^{P2}	10.6	2.3	1.7	16.0			
1 ^{P3}	8.5	4.2	1.5	17.6			

Table 3-7. Each area (%) in the image of 1^{P1-3} against HeLa cells

Figure 3-21. Confocal microscopic images of 1^{P1-3} (200 µM) in HeLa cells on 1 h incubation in the dark. Bright field images (A), (E), and (I). Blue fluorescence indicates the fluorescence of 1^{P1} (B), 1^{P2} (F), and 1^{P3} (J) ($\lambda_{ex} = 405$ nm). Red fluorescence indicates mitochondrial staining of Mitotracker Deep Red FM (50 nM) (Thermofisher) (C), (G), and (K) ($\lambda_{ex} = 638$ nm). (D) Overlay images of (A)–(C). (H) Overlay images of (E)–(G). (L) Overlay images of (I)–(K). Scale bar is 20 µm.

Figure 3-22. Confocal microscopic images of HeLa cells. (A, B, E, F, I, J) 1^{P1} (200 µM), 1^{P2} (500 µM), and 1^{P3} (800 µM) were added and then incubated 1 h in the dark 37°C condition. (C, D, G, H, K, L) After preincubation for 1 h in the dark 4°C condition, 1^{P1} (200 µM), 1^{P2} (500 µM), and 1^{P3} (800 µM) were added and then incubated 1 h in the dark 4°C condition. Blue fluorescence indicates the fluorescence of 1^{P1} , 1^{P2} , and 1^{P3} (J) ($\lambda_{ex} = 405$ nm) Scale bar is 20 µm.

3-3-9. Apoptosis assay

細胞死形態を決定するために,染色剤として FITC を蛍光標識として有する Annexin V (Annexin V-FITC)とヨウ化プロピジウム(Propidium iodide, PI)^[32]を用い,fluorescenceactivated cell sorting (FACS)により細胞の選別を行った.アポトーシス細胞を定量するた めに, 1^{P1} , 1^{P3} または 1^{M1-3} (24時間作用時の各 IC₅₀ 値)を含む培地中で HeLa 細胞を 1 時 間ないしは 12時間培養した.得られた Q1–Q4 のドットプロットおよび細胞の割合を Figure 3-21, Table 3-8, 3-9, 3-10 に示す.第二章で述べたように, 1^{P2} 存在下では,1–12 時間の培養で 15.8%の細胞が死滅し,85%が初期アポトーシスであった^[33]. 1^{P1} , 1^{P3} で は,12時間の培養で 1 時間よりも死滅細胞がそれぞれ 27.1,18.8%増加し,初期アポト ーシスが 100%と 89%であった.このように, 1^{P1-3} はアポトーシス誘導率が高く,中で もアポトーシス誘導率 100%の 1^{P1} は最も高い細胞毒性を示した.一方で, 1^{P1-3} よりも 細胞毒性が低い 1^{M1-3} は,Table 3-10 に示す Q1–Q4 の割合からも分かるようにアポトー シス誘導率が低かった.

Figure 3-23. Induction of apoptosis by 1^{P1} (A), 1^{P3} (B), and 1^{M1-3} (C). Annexin V-FITC and PI fluorescence were measured by flow cytometry. Representative dot plots of dosedependent effect of 1^{P1} , 1^{P3} , and 1^{M1-3} (each IC₅₀ value at 24 h) on apoptosis of HeLa cells treated for 1 h and 12 h. A total of 10,000 cells were collected per sample.

Complex		Rate of cells (%)				
		Q1	Q2	Q3	Q4	
		(Annexin-/PI+)	(Annexin+/PI+)	(Annexin+/PI-)	(Annexin–/PI–)	
None	(12 h)	1.2	0.0	0.1	98.7	
1 P1	1 h	0.7	0.1	1.1	98.2	
1	12 h	0.4	0.1	28.5	71.1	

Table 3-8. Induction of apoptosis by 1^{P1} against HeLa cells

Table 3-9. Induction of apoptosis by 1^{P3} against HeLa cells

Complex		Rate of cells (%)				
		Q1	Q2	Q3	Q4	
		(Annexin-/PI+)	(Annexin+/PI+)	(Annexin+/PI-)	(Annexin –/PI–)	
None	(12 h)	1.1	1.2	10.6	87.1	
1 P3	1 h	3.6	3.5	3.9	89.0	
1.2	12 h	2.4	6.8	20.6	70.2	

Table 3-10. Induction of apoptosis by 1^{M1-3} against HeLa cells

		Rate of cells (%)				
Complex		Q1	Q2	Q3	Q4	
		(Annexin-/PI+)	(Annexin+/PI+)	(Annexin+/PI-)	(Annexin–/PI–)	
None	(12 h)	2.5	0.3	7.3	89.9	
1 ^{M1}	1 h	1.1	0.3	7.1	91.6	
	12 h	0.7	0.8	14.3	84.2	
1 ^{M2}	1 h	5.3	0.8	7.7	86.2	
	12 h	0.4	1.3	18.4	79.9	
1 ^{M3}	1 h	0.4	0.9	9.9	88.8	
	12 h	4.2	0.7	11.4	83.7	

3-3-10. カスパーゼ活性アッセイ

前述の実験結果より、1^{PI-3}はミトコンドリアに局在してアポトーシス細胞死を誘導す ることが明らかとなった.そこで、アポトーシスが内因性経路を介して進行するかどう かを調べるために、イニシエーター・カスパーゼである Caspase-9^[34,35]とエフェクター・ カスパーゼである Caspase-3/7^[34,35]に関して 1^xのカスパーゼ活性アッセイを行った.活 性化された Caspase-9 は開裂部位として Leu-Glu-His-Asp (LEHD)を認識する^[36].そこで、 細胞膜透過性を有し、無毒な、活性化された Caspase-9 に不可逆的に結合する FITC-LEHD-FMK を用い、Casopase-9 の活性を評価した^[37]. HeLa 細胞を1 または 1^x (97.3 μ M, 24 時間作用時の 1^{P1}の IC₅₀ 値)を含む培地中で1 時間および 12 時間インキュベートした 後、細胞をはがして洗浄し、FITC-LEHD-FMK 存在下で 30 分間インキュベートした. FACS で定量した活性化された Caspase-9 の結果を Figure 3-22 に示す.

さらに、Caspase-3/7 活性を調べるために、活性化された Caspase-3/7 が開裂部位とし て認識する Asp-Glu-Val-Asp (DEVD)のペプチド配列^[38]を有する CellEvent[®] Caspase-3/7 Green Detection Reagent^[39]を用いて測定を行った.この試薬は、配列が切断されると DNA との結合を介して強い蛍光を発する.したがって、Casopase-3/7 活性はその蛍光強度か ら推定される.Capsase-9 の測定と同様に、HeLa 細胞を 1 または 1^x (97.3 μ M, 24 時間 作用時の 1^{P1} の IC₅₀ 値)を含む培地中で 1 時間および 12 時間インキュベートした後、細 胞をはがして洗浄し、CellEvent[®] Caspase-3/7 Green Detection Reagent 存在下で 25 分間イ ンキュベートした.FACS で定量した活性化された Caspase-3/7 の結果を Figure 3-22 に 示す.12 時間インキュベートで、1^{P1-3}は 1^{M1-3} よりも高い Caspase-9 および Caspase-3/7 活性を示し、その活性化は 1^{P1} が最も高かった。したがって、1^{P1} は他の錯体よりも低濃 度で効率的に内因 ff 性経路によってミトコンドリアアポトーシスを誘導することが明 らかとなった^[34, 40, 41].

前述のように、 1^{P1} は H₂O₂による DNA dsb で最も高い活性を示し、がん細胞選択的毒性も最も高かった. したがって、 1^{P1} の短い P-リンカーは、がん細胞のミトコンドリア 機能障害によって増加した H₂O₂ との反応でミトコンドリア DNA 切断を促進すること で、がん細胞選択的毒性を向上させたと考えられる. すなわち、 1^{P1} はがん細胞ではミ トコンドリア DNA 切断によりミトコンドリアアポトーシスを誘導するが、正常細胞で は H₂O₂ 濃度が比較的低いために誘導できず、がん細胞選択的毒性につながると考えら れる.

97

Figure 3-24. Caspase-3/7 activity (A) or Caspase-9 activity (B) in HeLa cells measured using a caspase fluorometric assay kit when treated with 1 (red), 1^{P1} (light green), 1^{P2} (light blue), 1^{P3} (purple), 1^{M1} (green), 1^{M2} (blue), and 1^{M3} (pink) (97.3 μ M (IC₅₀ of 1^{P1} at 24 h)) for 1 h and 12 h. Results are shown as the mean \pm SD from five independent experiments. (**p < 0.001; two-tailed Student's t-test)

3-3-11. 1^{Pn}とミトコンドリア標的単核銅(II)錯体のがん細胞選択的毒性の比較

ミトコンドリア標的として terpyridine 配位子(ttpy)に triphenyl phosphonium 基(tpp)を結 合させた単核銅(II)錯体[Cu(ttpy-tpp)Br₂]Br (Figure 3-25)は、ミトコンドリアを介したアポ トーシスによってがん細胞に対して高い細胞毒性を示すことが報告されている^[7e]. [Cu(ttpy-tpp)Br₂]Br は、活性酸素種(ROS)の発生を介した酸化的 DNA 切断で、がん細胞 に対して細胞毒性を示した. [Cu(ttpy-tpp)Br₂]Br のがん細胞選択的毒性は、高い細胞内取 り込みとミトコンドリア局在化によって達成されている.一方、1^{Pn} は H₂O₂ を活性化す ることでがん細胞選択的毒性を示し、これはがん細胞ではミトコンドリアの機能障害に より H₂O₂ 濃度が正常細胞よりもやや高いことを利用したものである.実際、1^{P1} は肺が ん細胞(A549)に対して、肺正常細胞(WI-38)よりも 10.3 倍高い細胞毒性を示した.この ように、1^{Pn}の細胞毒性は[Cu(ttpy-tpp)Br₂]Br よりも低いが、高いがん細胞選択性を示し た.さらに、1^{Pn}ののがん細胞選択的毒性も向上した.このことは、1^{Pn}のがん細胞選択的 毒性は PEG-リンカーの長さによって制御できることを示している.従って、我々が開 発した二核銅(II)錯体のがん細胞選択的毒性は、今後、PEG-リンカーの長さや DNA 標 的部位を最適化することにより、さらに向上する可能性がある.

Figure 3-25. Chemical Structures of [Cu(ttpy-tpp)Br₂]Br.

3-4. 結論

本章では、一連の DNA 標的/二核化配位子結合体である HL1^X (X = Pn, Mn (n = 1-3)) とその二核銅(II)錯体[Cu₂(μ-OH)(L1^x)](ClO₄)₂(1^x)を合成し, DNA 結合能力, DNA 切断 活性、細胞内取込量、細胞毒性における DNA 標的部位の役割を評価した。1^xの二回目 の DNA 切断による Form II から Form III への変換は、少数の塩基対内に二核銅(II)部位 を固定することが可能な短い PEG-リンカーによって大きく促進された. 1^xの細胞毒性 は, DNA 標的部位として P-リンカーを用いることや PEG-リンカーを短くすることによ って向上したが、M-リンカーでは向上しなかった.二回目の DNA 切断活性と細胞毒性 は、1^{PI-3}では44%の相関があったが、1^{MI-3}ではわずか5%の相関しかなかった.このこ とから、P-リンカーは細胞内での特異的な DNA 結合を介して二回の DNA 切断を促進 して細胞毒性を向上させるが、M-リンカーは非特異的な結合のため、細胞内での DNA 切断を促進せず、細胞毒性を向上させないことが示唆された。1^{P1}は、肺および膵臓の がん細胞および正常細胞に対して、1^xで最も高いがん細胞選択的毒性を示した.さらに、 細胞内可視化, Apoptosis assay, カスパーゼ活性アッセイにより, 1^{PI-3} がミトコンドリ アアポトーシスを誘導することが明らかになった.したがって、1^{P1}の短い P-リンカー は、ミトコンドリアアポトーシスを介してがん細胞選択的毒性を向上させると結論付け られる.これはおそらく、短い P-リンカーが、がん細胞のミトコンドリア機能障害によ って増加した H2O2 と反応することでミトコンドリア DNA 切断を促進するためである と考えられる、本研究で行っている DNA 標的部位の役割の解明は、深刻な副作用を軽 減する新規抗がん剤の開発に光明を与えるかもしれない.
3-5. 実験方法

3-5-1. 試薬

試薬については、合成中間体や錯体を除き、高純度製品を和光純薬工業、東京化成、 シグマアルドリッチ社製から選択して購入した.溶媒については、合成に用いるものは 必要に応じて乾燥蒸留した.supercoiled plasmid pUC19 DNA は、ニッポンジーン社から 購入した試薬を使用した.仔ウシ胸腺由来のデオキシリボ核酸ナトリウム塩(type I, fibers)は Sigma-Aldrich から購入した.Apoptosis assay は、eBioscience™ Annexin V Apoptosis Detection Kit FITC (Invitrogen)を使用して測定した.Caspase-3/7 活性は CellEvent™ Caspase-3/7 Green Flow Cytometry Assay Kit を, Caspase-9 活性は CaspGLOW™ Fluorescein Active Caspase Staining Kit を使用して測定した.二核銅(II)錯体 1 は参考文献 [^{17,18]}に従って、二核銅(II)錯体 1^{P2}は第二章の合成項 2-5-3 に従って合成した.

3-5-2. 測定装置

元素分析(C, H, N)は、Perkin-Elmer 社製 Elemental Analyzer 2400 II を用いて測定した. UV-vis 吸収スペクトルは、Agilent 社製 8454 紫外可視分光光度計を用いて測定した.pH 測定は、HORIBA 製 LAQUA electrode を標準緩衝液で校正した後に測定した.Electron spray ionization MS (ESI MS)および Cold spray ionization MS (CSI MS)スペクトルは、日本 電子製 JMS-T100CSRX the AccuTOF CS を用いて、MeOH, MeCN または H₂O を溶媒とし て測定した.赤外線(IR)スペクトルは、SHIMADZU Single Reflection HATR IRAffinity-1 MIRacle 10 で測定した.¹H NMR スペクトルは、日本電子製 ECA-500RX フーリエ変換 核磁気共鳴装置(500 MHz)を使用し、基準物質として tetramethylsilane (TMS)または sodium 3-(trimethylsilyl)propionate-2,3-3,3-*d*4 (TSP)を用いて測定した. 蛍光スペクトルは、 HITACHI Spectral fluorometer F-7000 で測定した. 細胞内銅の定量は、SHIMADZU Inductively Coupled Plasma Mass Spectrometer ICP MS-2030 を用いて測定した. 共焦点顕微鏡は、Nikon Instech 社製共焦点レーザー顕微鏡 A1 を用いた.フローサイトメトリーは、Invitrogen 社製 Attune NxT Focusing Cytometer を用いて測定を行った.

3-5-3. 配位子(HL1^x)とその二核銅(II)錯体(1^x) (X = Pn and Mn (n = 1-3))の合成 1,7-Ditosyl-1,4,7-trioxaheptane (12 (n = 1))の合成

2000 mL 三口反応容器に回転子, Diethylene glycol (11 (n = 1)) (31.0 mL, 0.233 mol), *p*-toluenesulfonyl chloride (87.0 g, 0.456 mol), CH₂Cl₂ (750 mL)を加えた. これを氷浴に浸し て攪拌させ,そこに粉状にした KOH (110 g, 1.96 mol)を少しずつ加え, N₂を封入したバルーンを取り付け,0°C に保ったまま 3 時間攪拌した.反応容器に H₂O (450 mL)を加え, これを CH₂Cl₂ (3 × 200 mL)で分液した. 有機層に Na₂SO₄を加えて脱水した後, スッチェで濾過して,濾液をロータリーエバポレーターで濃縮すると白色固体が得られた. これを hot acetone に溶解させて再結晶させると白色固体が得られた(92.5 g, Yield 88%). ¹H NMR (500 MHz, CDCl₃): δ /ppm = 7.78 (d, *J* = 8.0 Hz, 4H, Ph), 7.35 (d, *J* = 8.0 Hz, 4H, Ph), 4.09 (t, *J* = 4.6, 4.2 Hz, 4H, CH₂), 3.61 (t, *J* = 4.6, 4.2 Hz, 4H, CH₂), 2.45 (s, 6H, CH₃).

1,13-Ditosyl-1,4,7,10,13-pentaoxatridecane (12 (n = 3))の合成

500 mL ナスフラスコに回転子を入れ、反応容器に Tetraethylene glycol (11 (n = 3)) (19.6 g, 0.10 mol), *p*-toluenesulfonyl chloride (40.5 g, 0.21 mol), CH₂Cl₂ (300 mL)を加えた. これ を氷浴に浸しながら攪拌させ、そこに粉状にした KOH (43.1 g, 0.77 mol)を少しずつ加 え、窒素置換したバルーン付きの三方コックを取り付け、脱気窒素置換後、0°C に保っ たまま 3 時間攪拌した.反応容器に H₂O (160 mL)を加えた後、CH₂Cl₂ (3 × 100 mL)で分 液し、有機層に Na₂SO₄ を加えて脱水した後、ヌッチェで濾過して少量の CH₂Cl₂ で洗い 込み、濾液を集めて、濾液をロータリーエバポレーターで濃縮すると無色の油状物質が 得られた(56.6 g, Yield quant.). ¹H NMR (500 MHz, CDCl₃): δ /ppm = 7.78 (d, *J* = 8.0 Hz, 4H, Ph), 7.33 (d, *J* = 8.0 Hz, 4H, Ph), 4.15 (t, *J* = 4.9 Hz, 4H, CH₂), 3.67 (t, *J* = 4.9 Hz, 4H, CH₂), 3.52–3.61 (m, 8H, CH₂), 2.44 (s, 6H, CH₃).

1,7-Diazido-4-oxaoctane (13 (n = 1))の合成

回転子を入れた 300 mL ナスフラスコに 12 (n = 1) (56.9 g, 0.137 mol), tetrabutylammonium iodide (2.56 g, 6.93 mmol), sodium azide (37.8 g, 0.581 mol)をくわえ, さらに N₂ 雰囲気下で DMF (200 mL)を加え,三方コック,バルーンを取り付けて脱気及 び窒素置換をした後, 80°C で 24 時間攪拌した.反応容器を室温に戻した後,DMF を 減圧蒸留し乳白色固体を得た.これに Et₂O (300 mL)加えて不溶塩をヌッチェで濾過し, 濾液を H₂O (3×100 mL)で分液した. 有機層に Na₂SO₄を加えて脱水した後,桐山漏斗で 濾過して少量の Et₂O で洗い込み,濾液をロータリーエバポレーターで濃縮すると黄色 の油状物質が得られた(18.3 g, Yield 85%). ¹H NMR (500 MHz, CDCl₃): δ /ppm = 3.70 (t, J = 5.2, 5.2 Hz, 4H, CH₂), 3.4 (t, J = 5.2, 5.2 Hz, 4H, CH₂).

1,11-Diazido-3,6,9-trioxaundecane (13 (n = 3))の合成

13 (n = 3)は、**13** (n = 1)と同様の手順で**12** (n = 3)を原料として合成し、黄色の油状物 質として得られた(Yield 85%). ¹H NMR (500 MHz, CDCl₃): δ /ppm = 3.59–3.74 (m, 12H, CH₂), 3.40 (t, *J* = 5.2 Hz, 4H, CH₂).

1-Amino-7-azido-4-oxaoctane (14 (n = 1))の合成

回転子を入れた 1000 mL ナスフラスコに 13 (n = 1) (18.3 g, 117 mmol), EtOAc (165 mL), 1MHCl (208 mL)を加えた. 200mL 等圧滴下漏斗を取り付け, そこに triphenylphosphine (29.5 g, 112 mmol)を EtOAc (165 mL)に溶解させた溶液を入れ,激しく攪拌しながらゆっ くり滴下した. 12 時間後,1000 mL 分液漏斗に反応溶液を移し,EtOAc 層を取り除き, 残った水層を EtOAc (3×115 mL)で分液洗浄した.EtOAc 層を取り除き,この水層の pH を 1 M NaOH 水溶液で 14 にした後,CHCl₃ (3×280 mL)を加えて分液した.CHCl₃ 層に Na₂SO₄ を加えて脱水した後,ヌッチェで濾過して少量の CHCl₃ で洗い込み,濾液をロ ータリーエバポレーターで濃縮すると黄色の液体が得られた(15.1 g,Yield 99%).¹H NMR (500 MHz, CDCl₃): δ /ppm = 3.67 (t, J = 5.2, 5.2 Hz, 2H, CH₂), 3.54 (t, J = 5.2, 5.2 Hz, 2H, CH₂), 3.40 (t, J = 5.2, 4.6 Hz, 2H, CH₂), 2.90 (t, J = 5.2, 4.6 Hz, 2H, CH₂).

1-Amino-11-azido-3,6,9-trioxaundecane (14 (n = 3))の合成

14 (n = 3)は、14 (n = 1)と同様の手順で13 (n = 3)を原料として合成し、黄色の油状物 質として得られた(Yield 82%). ¹H NMR (500 MHz, CDCl₃): δ /ppm = 3.66–3.71 (m, 8H, CH₂), 3.61–3.66 (m, 2H, CH₂), 3.51 (t, *J* = 5.2 Hz, 2H, CH₂), 3.40 (t, *J* = 5.2 Hz, 2H, CH₂), 2.87 (t, *J* = 5.2 Hz, 2H, CH₂).

N-(5-Azido-3-oxaoctyl)-3,5-diformyl-4-hydroxybenzamide (17 (n = 1))の合成

1000 mL ナスフラスコを氷浴に浸し, 16 (2.95 g, 15.2 mmol), CHCl₃(100 mL)を加えた. 14 (n = 1) (6.6 g, 50.7 mmol)を CHCl₃(100 mL)に溶かして加えた後, EDC•HCl (9.75 g, 50.8 mmol)と Et₃N (7.2 mL, 51.6 mmol)を加えた. 脱気窒素置換後, 一晩攪拌した. その後, 1 M HCl (300 mL)を加えて室温で激しく攪拌した. TLC (シリカゲル, 展開溶媒: EtOAc/MeOH 10/1)で反応追跡して原料がほとんどないことを確認した後, 2000 mL 分液 漏斗に移して有機層を取り出した. 有機層に Na₂SO₄ を加えて脱水した後, ヌッチェで 濾過した. 濾液を集めてロータリーエバポレーターで濃縮, 真空乾燥した. これを CHCl₃ (90 mL)に溶解させ, H₂O (3 × 30 mL)で分液洗浄した. 有機層に Na₂SO₄ を加えて脱水し た後, ヌッチェで濾過した. 濾液をロータリーエバポレーターで濃縮, 真空乾燥すると 茶褐色の固体が得られた(3.37 g, Yield 72%). ¹H NMR (500 MHz, CDCl₃): δ /ppm = 11.9 (s, H, OH), 10.3 (brs, 2H, CHO), 8.52 (s, 2H, Ph), 3.68–3.74 (m, 6H, CH₂), 3.42 (t, *J* = 5.1 Hz, 2H, CH₂).

N-(11-Azido-3,6,9-trioxaundecanyl)-3,5-diformyl-4-hydroxybenzamide (17 (n = 3))の合成

17 (n = 3)は, **17 (n = 1)**と同様の手順で **16** と **14 (n = 3)**を原料として合成し, 茶褐色の 固体として得られた(Yield 67%). ¹H NMR (500 MHz, CDCl₃): δ/ppm = 11.9 (s, H, OH), 10.3 (brs, 2H, CHO), 8.52 (s, 2H, Ph), 3.62–3.75 (m, 14H, CH₂), 3.37 (t, *J* = 5.0 Hz, 2H, CH₂).

5-((5-Azido-3-oxaoctyl)carbamoyl)-2-hydroxyisophthalic Acid (18 (n = 1))の合成

300 mL ナスフラスコに回転子, **17 (n = 1)** (3.37 g, 11.0 mmol), Ag₂O (7.89 g, 34.1 mmol) を入れ, ここに H₂O (70 mL)に溶解させた NaOH (3.64 g, 90.9 mmol)を加えて 60°C で一 晩攪拌した. これを最小量の hot H₂O で洗浄しながら桐山漏斗を用いて吸引濾過し, 濾 液を氷浴に浸しながら 12 M HCl を用いて pH を 1 にすると, 白色沈殿が得られた. こ れを桐山漏斗で吸引濾過し, 真空乾燥すると白色固体が得られた(3.23 g, Yield 87%). ¹H NMR (500 MHz, DMSO-*d*₆): δ/ppm = 8.56 (t, *J* = 5.2 Hz, H, NH), 8.48 (s, 2H, CH), 3.62 (t, *J* = 4.6, 5.2 Hz, 2H, CH₂), 3.56 (t, *J* = 6.3 Hz, 2H, CH₂), 3.40 (t, *J* = 4.6, 5.2 Hz, 4H, CH₂).

5-((11-Azido-3,6,9-trioxaoctyl)carbamoyl)-2-hydroxyisophthalic Acid (18 (n = 3))の合成

18 (n = 3)は, **18 (n = 1)**と同様の手順で **17 (n = 3)**を原料として合成し, 白色固体とし て得られた(Yield 69%). ¹H NMR (500 MHz, DMSO-*d*₆): *δ*/ppm = 8.44 (s, 2H, Ph), 3.56–3.80 (m, 14H, CH₂), 3.38 (t, *J* = 4.8 Hz, 2H, CH₂).

5-((5-Azido-3-oxaoctyl)carbamoyl)-1,3-di((N,N',N"-4,7,10-tris(tert-butoxycarbonyl)-

1,4,7,10-tetraazacyclododecanyl)carbamoyl)-2-hydroxybenzene (19 (n = 1))の合成

200 mLナスフラスコに三方コック, バルーンを取り付けて真空乾燥した. 反応容器に 18 (n=1) (2.40 g, 5.08 mmol), *N*,*N*-diisopropylethylamine (DIPEA, 1.7 mL, 9.90 mmol), DMF (20 mL)を加えて溶かした. そこにDMF (10 mL)に溶かした*N*,*N*',*N*''-4,7,10-Tris(*tert*- butoxycarbonyl)-1,4,7,10-tetraazacyclododecane (10) (530 mg, 1.57 mmol), 1-[bis(dimethylamino)methylene]-1H-benzotriazolium 3-oxide tetrafluoroborate (TBTU, 1.50 g, 4.67 mmol)を加えた. 脱気及び窒素置換した後, 室温で遮光して一晩攪拌させた. ロー タリーエバポレーターで濃縮すると褐色液体が得られた. これにH₂O (60 mL)を加え, CHCl₃(4×60 mL)で分液した. 有機層にNa₂SO₄を加えて脱水し, ヌッチェで濾過した後, 真空乾燥すると茶色の固体が得られた. これをシリカゲルカラムクロマトグラフィー (gradient from EtOAc to EtOAc/MeOH 10/1)で精製した. 目的物が入っているフラクショ ンを集めてロータリーエバポレーターで濃縮し, 真空乾燥すると褐色固体が得られた (1.39 g, Yield 71%). ¹H NMR (500 MHz, CDCl₃): δ /ppm = 7.86 (s, 2H, Ph), 3.33–3.70 (m, 38H, CH₂), 3.36 (t, *J* = 5.2, 4.6 Hz, 2H, CH₂), 1.28–1.52 (m, 54H, CH₃). ESI MS (MeOH *m/z*, positive mode). Calcd for [19 (n = 1) + 2Na]²⁺: 646.4. Found: 646.1. Calcd for [19 (n = 1) + Na]⁺: 1269.7. Found: 1269.1.

5-((11-Azido-3,6,9-trioxaundecanyl)carbamoyl)-1,3-di((*N*,*N*',*N*"-4,7,10-tris(tertbutoxycarbonyl)-1,4,7,10-tetraazacyclododecanyl)carbamoyl)-2-hydroxybenzene (19 (n = 3))の合成

19 (**n** = **3**)は, **19** (**n** = **1**)と同様の手順で **10** と **18** (**n** = **3**)を原料として合成し, 褐色固体 として得られた(Yield 49%). ¹H NMR (500 MHz, CDCl₃): δ /ppm = 7.87 (s, 2H, Ph), 3.21–3.83 (m, 48H, CH₂), 1.26–1.53 (m, 54H, CH₃). ESI MS (MeOH *m*/*z*, positive mode). Calcd for [**19** (**n** = **3**) + 2Na]²⁺: 690.4. Found: 690.2. Calcd for [**19** (**n** = **3**) + Na]⁺: 1357.8. Found: 1357.4.

5-((2-(2-Aminoethoxy)ethyl)carbamoyl)-1,3-di((*N*,*N*',*N*"-4,7,10-tris(*tert*-butoxycarbonyl)-1,4,7,10-tetraazacyclododecanyl)carbamoyl)-2-hydroxybenzene (20 (n = 1))の合成

200 mL ナスフラスコに窒素置換したバルーン付きの三方コックを取り付け,回転子 と 19 (n = 1) (301 mg, 0.241 mmol), 10% Pd-C (275 mg)を入れ, MeOH (15 mL)を加えた. 反応容器全体をよく脱気窒素置換した後,脱気水素置換し,水素雰囲気下で一晩攪拌し た.反応の進行を ESI-MS スペクトルで追跡して原料がないことを確認した後,セライ ト濾過を行い,濾液をロータリーエバポレーターで濃縮した.これを真空乾燥すると白 色固体が得られた(266 mg, Yield 90%). ESI MS (MeOH *m/z*, positive mode). Calcd for [20 (n = 1) + H]⁺: 1221.7. Found: 1221.1.

5-(11-Amino-3,6,9-trioxaundecanyl)carbamoyl)-1,3-di((N,N',N"-4,7,10-tris(tert-

butoxycarbonyl)-1,4,7,10-tetraazacyclododecanyl)carbamoyl)-2-hydroxybenzene (20 (n = 3))の合成

20 (n = 3)は, **20** (n = 1)と同様の手順で 19 (n = 3)を原料として合成し, 白色固体として得られた(Yield 93%). ESI MS (MeOH *m/z*, positive mode). Calcd for [**20** (n = 1) + H]⁺: 1309.8. Found: 1309.8.

5-((2-(Carbamoyl-9-phenanthrene)ethoxy)ethyl)carbamoyl)-1,3-di((*N*,*N*',*N*"-4,7,10-tris(*tert*-butoxycarbonyl)-1,4,7,10-tetraazacyclododecanyl)carbamoyl)-2-hydroxybenzene (21 (n = 1))の合成

100 mL ニロナスフラスコに回転子, **20** (n = 1) (169 mg, 0.138 mmol)を入れ, THF (10 mL)に溶かした後, Et₃N (86 µL)を加えた. それを, 氷浴中で激しく攪拌しながら Phenanthrene-9-carbonyl chloride (**8**) (34.0 mg, 0.141 mmol)を THF (10 mL)に溶かしたもの をパスツールでゆっくりと加えた. 脱気窒素置換後, 氷浴に浸しながら攪拌した. 1 時 間攪拌後, 室温で一晩攪拌した. ロータリーエバポレーターで THF を留去すると, 黒 色の固体が得られた. その固体を CHCl₃(100 mL)に溶かし H₂O (3×30 mL)で分液し, 有 機層に Na₂SO₄ を加えて脱水した. 濾過後, エバポレーターで濾液を濃縮すると褐色固 体が得られた. これをシリカゲルカラムクロマトグラフィー(gradient from CHCl₃ to CHCl₃/MeOH 10/1)で精製した. 目的物が入っているフラクションを集めてロータリーエ バポレーターで濃縮し, 真空乾燥すると白色固体が得られた(115 mg, Yield 58%). ¹H NMR (500 MHz, CDCl₃): δ /ppm = 8.71 (d, *J* = 8.0 Hz, 1H, Phen5), 8.67 (d, *J* = 8.4 Hz, 1H, Phen4), 8.35 (d, *J* = 8.4 Hz, 1H, Phen1), 7.90 (s, 1H, Phen10), 7.89 (d, *J* = 7.3 Hz, 1H, Phen8), 7.82 (s, 2H, Ph), 7.60–7.72 (m, 4H, Phen2, Phen3, Phen6, Phen7), 3.30–3.81 (m, 40H, CH₂), 1.26–1.52 (m, 54H, CH₃). ESI MS (MeOH *m/z*, positive mode). Calcd for [**21 (n = 1)** + 2Na]²⁺: 735.4. Found: 735.1. Calcd for [**21 (n = 1)** + Na]⁺: 1447.8. Found: 1447.2.

5-(9-phenanthrene-11-carbamoyl-3,6,9-trioxaundecanyl)carbamoyl)-1,3-di((*N*,*N*',*N*"-4,7,10-tris(*tert*-butoxycarbonyl)-1,4,7,10-tetraazacyclododecanyl)carbamoyl)-2hydroxybenzene (21 (n = 3))の合成

21 (**n** = **3**)は, **21** (**n** = **1**)と同様の手順で**8** と **20** (**n** = **3**)を原料として合成し, 白色固体 として得られた(Yield 81%). ¹H NMR (500 MHz, CDCl₃): δ /ppm = 8.71 (d, *J* = 8.6 Hz, 1H, Phen4), 8.68 (d, *J* = 8.0 Hz, 1H, Phen5), 8.36 (d, *J* = 8.0 Hz, 1H, Phen8), 7.92 (s, 1H, Phen10), 7.90 (d, *J* = 8.0 Hz, 1H, Phen1), 7.83 (s, 2H, Ph), 7.58–7.74 (m, 4H, Phen2, Phen3, Phen6, Phen7), 3.06–3.87 (m, 48H, CH₂), 1.26–1.53 (m, 54H, CH₃). ESI MS (MeOH *m/z*, positive mode). Calcd for [**21** (**n** = **3**) + 2Na]²⁺: 779.4. Found: 779.0. Calcd for [**21** (**n** = **3**) + Na]⁺: 1535.8. Found: 1535.5.

[3,5-di(1,4,7,10-tetraazacyclododecane-1-carboxyamide)-4-hydroxybenzenecarboxy]-(phenanthrene-9-carboxy)-3-oxapentane -1,5-*N*,*N*'-diamide•6HCl (HL1^{P1}•6HCl)の合成

100 mL ナスフラスコに **21** (**n** = **1**) (699 mg, 0.490 mmol)を入れ, EtOH (6 mL)に溶かした. 12 M HCl (2 mL)をゆっくりと加えた後,一晩攪拌した.析出した白色固体を少量の EtOH で洗いながら回収し,真空乾燥すると白色固体が得られた(449 mg, Yield 88%).¹H NMR (500 MHz, D₂O): δ /ppm = 8.88 (d, *J* = 8.0 Hz, 1H, Phen4), 8.84 (d, *J* = 8.0 Hz, 1H, Phen5), 8.11 (d, *J* = 8.0 Hz, 1H, Phen8), 8.08 (d, *J* = 8.0 Hz, 1H, Phen1), 7.93 (s, 1H, Phen10), 7.90 (s, 2H, Ph), 7.64–7.86 (m, 4H, Phen2, Phen3, Phen6, Phen7), 2.65–3.93 (m, 40H, CH₂). ESI MS (H₂O *m/z*, positive mode). Calcd for [**HL1**^{P1} + 2H]²⁺: 413.2. Found: 413.0. Calcd for [**HL1**^{P1} + H]⁺: 825.5. Found: 825.1.

[3,5-di(1,4,7,10-tetraazacyclododecane-1-carboxyamide)-4-hydroxybenzenecarboxy]-(phenanthrene-9-carboxy)-3,6,9-trioxaundecane-1,11-*N*,*N*'-diamide•6HCl (HL1^{P3}•6HCl)の 合成

HL1^{P3}•6HCl は、HL1^{P1}•6HCl と同様の手順で 21 (n = 3)を原料として合成し、白色固体として得られた(Yield 85%). ¹H NMR (500 MHz, D₂O): δ /ppm = 8.87 (d, *J* = 8.0 Hz, 1H, Phen4), 8.82 (d, *J* = 8.0 Hz, 1H, Phen5), 8.17 (d, *J* = 8.0 Hz, 1H, Phen8), 8.05 (d, *J* = 8.0 Hz, 1H, Phen1), 8.02 (s, 1H, Phen10), 7.75 (s, 2H, Ph), 7.69–7.83 (m, 4H, Phen2, Phen3, Phen6, Phen7), 2.90–3.90 (m, 48H, CH₂). ESI MS (H₂O *m/z*, positive mode). Calcd for [HL1^{P3} + 2H]²⁺: 457.3. Found: 457.2. Calcd for [HL1^{P3} + 2H]²⁺: 457.3. Found: 457.3. [HL1^{P3} + H]⁺: 913.5. Found: 913.5.

5-((Me-5-carbamoyl-3-oxaoctyl)carbamoyl)-1,3-di((N,N',N"-4,7,10-tris(tert-

butoxycarbonyl)-1,4,7,10-tetraazacyclododecanyl)carbamoyl)-2-hydroxybenzene (22 (n = 1)).

100 mL ナスフラスコに 20 (n = 1) (200 mg, 0.164 mmol)と K₂CO₃ (70.0 mg, 0.506 mol) を入れ, CH₂Cl₂ (5 mL)に溶かした. そこに, CH₂Cl₂ (5 mL)に溶解させた acetyl chloride (35.0 µL, 0.493 mmol) を加え, 窒素置換した. 一晩撹拌した後, 濾過した. 濾液を H₂O (3 × 10 mL)で分液し, 有機層に Na₂SO₄ を加えて脱水した. 濾過後, エバポレーターで 濾液を濃縮すると褐色固体が得られた. これをシリカゲルカラムクロマトグラフィー (gradient from EtOAc to EtOAc /MeOH 10/1)で精製した. 目的物が入っているフラクショ ンを集めてロータリーエバポレーターで濃縮し, 真空乾燥すると白色固体が得られた (103 mg, Yield 50%). ¹H NMR (500 MHz, CDCl₃): δ /ppm = 7.86 (s, 2H, Ph), 3.41–3.56 (m, 40H, CH₂), 2.01 (s, 3H, CH₃), 1.26–1.67 (m, 54H, CH₃). ESI MS (MeOH *m*/*z*, positive mode). Calcd for [**22** (n = 1) + 2Na]²⁺: 654.3. Found: 654.0. Calcd for [**22** (n = 1) + Na]⁺: 1285.7. Found: 1285.5.

5-((Me-9-carbamoyl-3,6-dioxaoctyl)carbamoyl)-1,3-di((N,N',N"-4,7,10-tris(tert-

butoxycarbonyl)-1,4,7,10-tetraazacyclododecanyl)carbamoyl)-2-hydroxybenzene (22 (n = 2)).

22 (**n** = **2**)は, **22** (**n** = **1**)と同様の手順で **20** (**n** = **1**)を原料として合成し, 白色固体とし て得られた(Yield 45%). ¹H NMR (500 MHz, CDCl₃): δ /ppm = 7.88 (s, 2H, Ph), 3.35–3.66 (m, 44H, CH₂), 1.95 (s, 3H, CH₃), 1.30–1.54 (m, 54H, CH₃). ESI MS (MeOH *m/z*, positive mode). Calcd for [**22** (**n** = **2**) + 2Na]²⁺: 676.4. Found: 676.0. Calcd for [**22** (**n** = **2**) + Na]⁺: 1329.7. Found: 1329.5.

5-((Me-11-carbamoyl-3,6,9-trioxaoctyl)carbamoyl)-1,3-di((N,N',N"-4,7,10-tris(tert-

butoxycarbonyl)-1,4,7,10-tetraazacyclododecanyl)carbamoyl)-2-hydroxybenzene (22 (n = 3)).

22 (**n** = **3**)は, **22** (**n** = **1**)と同様の手順で **20** (**n** = **3**)を原料として合成し, 白色固体とし て得られた(Yield 48%). ¹H NMR (500 MHz, CDCl₃): δ /ppm = 7.86 (s, 2H, Ph), 3.36–3.63 (m, 48H, CH₂), 1.95 (s, 3H, CH₃), 1.25–1.49 (m, 54H, CH₃). ESI MS (MeOH *m/z*, positive mode). Calcd for [**22** (**n** = **3**) + 2Na]²⁺: 698.4. Found: 698.0. Calcd for [**22** (**n** = **3**)+ Na]⁺: 1373.8. Found: 1373.5.

[3,5-di(1,4,7,10-tetraazacyclododecane-1-carboxyamide)-4-hydroxybenzenecarboxy]-(Mecarboxy)-3-oxapentane-1,5-*N*,*N*'-diamide•6HCl (HL1^{M1}•6HCl)の合成

HL1^{M1}•6HCl は, HL1^{P1}•6HCl と同様の手順で 22 (n = 1)を原料として合成し, 白色固体として得られた(Yield 90%). ¹H NMR (500 MHz, D₂O): δ /ppm = 7.86 (s, 2H, Ph), 3.07–3.90 (m, 40H, CH₂), 1.96 (s, 3H, CH₃). ESI MS (H₂O *m*/*z*, positive mode). Calcd for [HL1^{M1} + 2H]²⁺: 332.2. Found: 332.0. [HL1^{M1} + H]⁺: 663.4. Found: 663.2.

[3,5-di(1,4,7,10-tetraazacyclododecane-1-carboxyamide)-4-hydroxybenzenecarboxy]-(Mecarboxy)-3,6-dioxaoctane-1,9-*N*,*N*'-diamide•6HCl (HL1^{M2}•6HCl)の合成

HL1^{M2}•6HCl は, HL1^{P1}•6HCl と同様の手順で 22 (n = 2)を原料として合成し, 白色固体として得られた(Yield 95%). ¹H NMR (500 MHz, D₂O): δ /ppm = 7.96 (s, 2H, Ph), 3.04–3.94 (m, 44H, CH₂), 1.99 (s, 3H, CH₃). ESI MS (H₂O *m*/*z*, positive mode). Calcd for [HL1^{M2} + 2H]²⁺: 354.2. Found: 354.0. [HL1^{M2} + H]⁺: 707.5. Found: 707.3.

[3,5-di(1,4,7,10-tetraazacyclododecane-1-carboxyamide)-4-hydroxybenzenecarboxy]-(Mecarboxy)-3,6,9-trioxaundecane-1,11-*N*,*N*'-diamide•6HCl (HL1^{M3}•6HCl)の合成

HL1^{M3}•6HCl は, HL1^{P1}•6HCl と同様の手順で 22 (n = 3)を原料として合成し, 白色固体として得られた(Yield 98%). ¹H NMR (500 MHz, D₂O): δ /ppm = 7.90 (s, 2H, Ph), 3.09–3.95 (m, 48H, CH₂), 1.99 (s, 3H, CH₃). ESI MS (H₂O *m*/*z*, positive mode). Calcd for [HL1^{M3} + 2H]²⁺: 376.2. Found: 376.0. [HL1^{M3} + H]⁺: 751.5. Found: 751.3.

二核銅(II)錯体 1^{P1}の合成

100 mL ナスフラスコに HL1^{P1}•6HCl (103 mg, 99.0 μmol)を入れ, 1 M NaOH を加えて pH が 8 以上であることを確認した後, 1 時間真空乾燥した. その後多量の CH₂Cl₂ を加 えた. Na₂SO₄ を加えて脱水した後, セライト濾過した. 濾液をロータリーエバポレータ ーで濃縮, 真空乾燥すると白色固体が得られた(57.2 mg, 70%).

次に, 100 mL ニロナスフラスコに回転子を入れ, H₂O (200 µL)に溶解させた Cu(ClO₄)₂•6H₂O (36.4 mg, 139 µmol)を加えた. そこに N₂フローしながら H₂O (200 µL)に 溶解させた先程の白色固体をパスツールでゆっくりと加え, さらに 1 M NaOH を加えて pH を 8 にした. ESI MS スペクトルで配位子が残っていないことを確認した後, ロータ リーエバポレーターで濃縮した. MeOH (200 µL)を加えて溶かした後, 多量の Et₂O を加 えると緑色固体が析出した. これを濾過し, 真空乾燥すると緑色固体が得られた(65.5 mg, 81%). Anal. Calcd for $[Cu_2(\mu-OH)(L1^{P1})](ClO_4)_2 \cdot NaClO_4 \cdot 4H_2O$: C, 38.82; H, 5.03; N, 10.29. Found: C, 38.96; H, 4.96; N, 9.81. ESI MS (H₂O *m/z*, positive mode). Calcd for $[1^{P1} - OH - 2ClO_4 - H]^{2+}$: 474.2. Found: 474.0. Calcd for $[1^{P1} - 2ClO_4]^{2+}$: 483.2. Found: 483.1. Calcd for $[1^{P1} - ClO_4]^+$: 1065.3. Found: 1065.0. IR (KBr): $\tilde{\nu}/cm^{-1} = 2870$, 1628, 1533, 1443, 1362, 1300, 1273, 1090, 953, 932, 837, 810, 781, 756, 729, 691, 654, 623.

二核銅(II)錯体 1^{P3}の合成

1^{P3}は、1^{P1}と同様の手順で HL1^{P3}•6HCl を原料として合成し、緑色固体として得られた(Yield 75%). Anal. calcd for [Cu₂(µ-OH)(L1^{P3})](ClO₄)₂•8H₂O: C, 41.20; H, 6.05; N, 10.01. Found: C, 41.39; H, 5.59; N, 10.2. ESI MS (H₂O *m/z*, positive mode). Calcd for [1^{P3} – 2ClO₄]²⁺: 527.2. Found: 527.1. [1^{P3} – ClO₄]⁺: 1153.31. Found: 1153.32. IR (KBr): *v*/cm⁻¹ = 3744–3134, 2928, 2878, 2020, 1726, 1632, 1537, 1443, 1360, 1300, 1273, 1246, 1076, 1001, 988, 953, 930, 839, 812, 786, 756, 731, 700, 656, 623.

二核銅(II)錯体 1^{M1}の合成

1^{M1}は、1^{P1}と同様の手順で HL1^{M1}•6HCl を原料として合成し、緑色固体として得られた(Yield 90%). Anal. Calcd for [Cu₂(µ-OH)(L1^{M1})](ClO₄)₂•6H₂O: C, 33.46; H, 5.98; N, 12.59. Found: C, 33.70; H, 6.23; N, 12.85. ESI MS (H₂O *m/z*, positive mode). Calcd for [1^{M1} – 2ClO₄]²⁺: 402.1. Found: 402.0. Calcd for [1^{M1} – ClO₄]⁺: 903.2. Found: 903.0. IR (KBr): *v*/cm⁻¹ = 2908, 2029, 1624, 1539, 1437, 1364, 1302, 1271, 1082, 988, 930, 880, 850, 837, 812, 790, 766, 692, 667, 648, 625.

二核銅(II)錯体 1^{M2}の合成

1^{M2}は、1^{P1}と同様の手順で HL1^{M2}•6HCl を原料として合成し、緑色固体として得られた(Yield 73%). Anal. Calcd for [Cu₂(µ-OH)(L1^{M2})](ClO₄)₂•4H₂O: C, 35.36; H, 5.93; N, 12.50. Found: C, 35.08; H, 6.00; N, 12.25. ESI MS (H₂O *m/z*, positive mode). Calcd for [1^{M2} – OH – 2ClO₄ – H]²⁺: 415.1. Found: 414.9. Calcd for [1^{M2} – 2ClO₄]²⁺: 424.2. Found: 424.0. Calcd for [1^{M2} – ClO₄]⁺: 947.3. Found: 947.0. IR (KBr): *v*/cm⁻¹ = 2875, 2054, 1628, 1547, 1445, 1368, 1302, 1275, 1083, 950, 932, 840, 810, 785, 772, 690, 654, 620.

二核銅(II)錯体 1^{M3}の合成

1^{M3}は、1^{P1}と同様の手順で HL1^{M3}•6HCl を原料として合成し、緑色固体として得られた(Yield 80%). Anal. Calcd for [Cu₂(µ-OH)(L1^{M3})](ClO₄)₂•3H₂O: C, 36.65; H, 5.98; N, 12.21. Found: C, 36.55; H, 6.02; N, 12.30. ESI MS (H₂O *m/z*, positive mode). Calcd for [1^{M3} – OH – 2ClO₄ – H]²⁺: 437.2. Found: 437.0. Calcd for [1^{M3} – 2ClO₄]²⁺: 446.2. Found: 446.0. Calcd for [1^{M3} – ClO₄]⁺: 991.3. Found: 991.0. IR (KBr): *v*/cm⁻¹ = 2905, 2054, 1628, 1553, 1445, 1360, 1275, 1085, 935, 885, 850, 805, 700, 654, 613.

3-5-4. EtBr 法

EtBr (3.3 μ M), ct-DNA (20 μ M bp), NaCl (10 mM), buffer (pH 6.0 (MES), 10 mM)となるように調整した. この溶液に, NaCl (10 mM), buffer (pH 6.0 (MES (10 mM))に溶解させた 1^x を 400 μ M になるまで 2 μ M の間隔で加えた. 37°C, 510 nm で励起した蛍光スペクトルは, 520–800 nm の範囲で追跡した. 結合定数 K_{app} (M⁻¹)は,以下に示す式(1)を用いて計算した. [complex]は EtBr の蛍光強度が 50%減少した時の溶液中の 1^x の濃度, K_{EtBr} =1.1 × 10⁷ M⁻¹, [EtBr] = 1.65 μ M を用いた.

 $K_{\text{EtBr}}[\text{EtBr}] = K_{\text{app}}[\text{complex}] (1)$

3-5-5. DNA 切断実験

1^xの DNA 切断活性は, pUC19 DNA を用い, アガロースゲル電気泳動法によって評価した. 1.5 mL エッペンチューブに NaCl (10 mM), buffer (pH 6.0 (MES), 10 mM), pUC19 DNA (50 μ M bp), **1^x** (0–50 μ M), H₂O₂ (0–500 μ M)となるように調製した溶液を加え, 37°C の暗所でインキュベーションした. 0, 10, 20, 30, 40, 60, 120, 180, 300 分毎にサンプルを採取し, loading buffer (0.025% bromophenol blue, 0.025% xylene cyanol FF, 1.0 mM EDTA and 30% glycerol)を用いて反応をクエンチした. 各サンプルを TAE buffer (Tris/acetate/EDTA)を用いて作成した 1%アガロースゲルにローディングし, 100 V で約1 時間電気泳動を行った. その後, EtBr (0.5 μ g μ L⁻¹)染色を 1 時間行い, VILBER LOURMAT E-BOX-CX5.TS Edge-20.M を用いてゲルバンドを撮影した. 撮影したバンドを, Form I の染色補正値 1.06を用い, ImageJ ソフトウェアによって解析を行った. この測定は最低 3 回行い, 再現性をとった.

阻害剤存在下における 1^{P1}の DNA 切断活性は、1.5 mL エッペンチューブに NaCl (10 mM), buffer (pH 6.0 (MES), 10 mM), pUC19 DNA (50 µM bp), 1^{P1} (50 µM), H₂O₂ (500 µM),

阻害剤(DMSO または KI, 1–10 mM)となるように調製した溶液を用いて, 前述の阻害剤 非存在下と同様の操作を行うことで評価した.

3-5-6. µ-1,1-hydroperoxodicopper(II)種形成の確認

1^{P1}, **1^{P3}**の MeCN 溶液(0.25 mM)を 2 面セルに入れ, −30±0.2℃ に保った. そこに H₂O₂ の MeCN 溶液(錯体に対して 10 eq)を加え, 290–850 nm の範囲でスペクトルを追跡した.

また, 1^{P1}, 1^{P3}の水溶液に H₂¹⁶O₂ または H₂¹⁸O₂水溶液を加えた際の変化を CSI MS で 追跡した.

3-5-7. 細胞株とその培養条件

HeLa (ヒト子宮頸がん細胞)は同志社大学 北岸研究室(京都,日本)から譲り受けた. A549 (ヒト肺がん細胞),WI-38 (ヒト肺正常細胞),PK-59 (ヒト膵臓がん細胞)および 2C6 (ヒト膵臓正常細胞)は理化学研究所 バイオリソース研究センター(BRC)(茨城,日本)から購入した.HeLa 細胞,A549 細胞,WI-38 細胞および PK-59 細胞は,牛胎児血清(fetal bovine serum,FBS) (10%), penicillin (100 units mL⁻¹), streptomycin (100 μ g mL⁻¹)を加えた Dulbecco's Modified Eagle's Medium (DMEM, high glucose), Dulbecco's modified Eagle's medium (DMEM, low glucose), Minimum Essential Medium Eagle (MEM)または Roswell Park Memorial Institute 1640 Medium (RPMI 1640)培養液をそれぞれ用いて,5% CO₂ 濃度,37°C の条件下で培養した.2C6 細胞は,新生仔ウシ血清(newborn calf serum) (10%),牛胎児血 清(fetal bovine serum,FBS) (5%),馬血清(horse serum) (2.5%), penicillin (100 units mL⁻¹), streptomycin (100 μ g mL⁻¹)を加えた Mixture F-10 Ham (HamF10)培養液を用いて,5% CO₂ 濃度,37°C の条件下で培養した.

3-5-8. 3-(4,5-dimethylthiazole)-2,5-diphenyltetrazolium bromide (MTT) assay

96 well プレートに blank として培地のみを 1 列と,培地に 10×10⁴ cells/mL になるように懸濁させた細胞を 1 well につき 100 μ L ずつ control と錯体のサンプル数分の列に蒔き,5% CO₂ 濃度,37°C の条件下でインキュベーションした.HeLa 細胞と A549 細胞に関しては 24 時間後,WI-38 細胞と PK-59 細胞,2C6 細胞に関しては 48 時間後,培地を除いて PBS(-)で 2 回洗浄した.その後,サンプル列にはそれぞれの濃度に調製した 1^X および HL1^X のサンプル(1–1,000 μ M)を,blank と control 列には培地のみを 1 well につき 100 μ L ずつ加え,インキュベーションした.24 時間および 48 時間後,培地を除いて PBS(-)で 2 回洗浄し,MTT reagent (5 mg mL⁻¹)と培地を 1:9 の割合で混合させた溶液を

1 well につき 100 μ L ずつ加え再度インキュベーションした. 3 時間後,アスピレーター で溶液を吸引した後,生体用 DMSO を 1 well につき 100 μ L ずつ加えた. 3 分間シェイ クして沈殿したホルマザンを完全に溶解させた後,570 nm の吸光度を吸光度測定器で 測定した.この結果より,1^xの細胞増殖 50%阻害濃度(50% Inhibition Concentration, IC₅₀ 値)を算出した.この測定は最低 3 回行い,再現性をとった.

3-5-9. ICP MS による HeLa 細胞内の銅イオン濃度の定量

観察用ディッシュ(φ 60 mm)に 2.5×10⁵ cells/mL に調製した HeLa 細胞の懸濁液を 4 mL 加え, 5% CO₂ 濃度, 37°C の条件下で 24 時間インキュベーションした. 培地を除いて, PBS(-)で 2 回洗浄し, 1^x を溶解させた培地溶液(25 µM, 4 mL)を加えた. 5% CO₂ 濃度, 37°C の条件下で 24 時間および 48 時間インキュベーションした. 培地を除いて PBS(-) で 2 回洗浄した後, trypsin (0.25%)で細胞をはがして 15 mL の遠沈管に移した. 遠心分 離し,溶液をアスピレーターで吸引した. PBS(-)(1 mL)を加えて懸濁させ, 再度遠心分 離した. 溶液をアスピレーターで吸引した後, PBS(-)(500 µL)を加えて懸濁させた. セ ルカウンターで細胞数を数えて, 1 × 10⁶ cells 分の細胞溶液を新しい 15 mL の遠沈管に 移して凍結乾燥した. 細胞を超微量分析用 70% HNO₃ 水溶液(250 µL)に溶かしてオーク リッジ遠心管 Teflon[®] FEP (10 mL)に移した後, 60°C で 3 時間加熱処理をした. その後, そこに H₂O (250 µL)を加えた. この細胞溶液(2 × 10⁹ cells/L, 35% HNO₃)を ICP MS-2030 で測定し, 細胞内の銅を定量した. ICP MS-2030 による測定は, 島津製作所に委託した.

3-5-10. 親水性フラスコ振盪法による分配係数 (log Pow)の測定

1^xの分配係数(log P_{ow})をフラスコ振盪法によって評価した.まず,測定に使用する H₂O および 1-octanol は両者を混合して一晩攪拌し,飽和状態にした.**1**^xの水溶液(0.1 mM, 3 mL)に 1-octanol (3 mL)を加えて,4時間攪拌した.その後,1-octanol 溶液と H₂O に分離 し,それぞれの溶液の電子スペクトルを測定した.それぞれの溶液に溶解した錯体濃度 の算出には本文中の ε をそれぞれ用いた.算出した錯体濃度 C_w , C_o を用いて,式(2)より それぞれの錯体の log P_{ow} を算出した.

$$\log P_{\rm ow} = \log \frac{C_{\rm o}}{C_{\rm w}} \ (2)$$

3-5-11. 共焦点顕微鏡による細胞内イメージング

観察用ディッシュ(φ 14 mm)に 6×10⁴ cells/mL に調製した HeLa 細胞の懸濁液を 600 µL 加え, 5% CO₂ 濃度, 37°C の条件下で 24 時間インキュベーションした. 培地を除いて PBS(–)で 2 回洗浄し, 1^{P1-3}を溶解させた培地溶液(200 µM, 600 µL)を加えた. 5%CO₂ 濃度, 37°C の条件下で 24 時間インキュベーションした後, 培地を除いて PBS(–)で 2 回洗 浄した. そこに, ミトコンドリアの染色剤として Mito TrackerTM Deep Red FM (Thermo Fisher) (50 nM, 600 µL)を培地に加えた. さらに, 5% CO₂ 濃度, 37°C の条件下で 10 分間 インキュベーションした後, 培地を除いて PBS(–)で 2 回洗浄した. そこに培地を加え, 共焦点レーザー顕微鏡で細胞を観察した. Mito TrackerTM Deep Red FM の観察には 638 nm, 1^{P1-3}の観察には 405 nm の励起レーザーを用いた.

3-5-12. Apoptosis assay

6 well プレートに HeLa 細胞を 1 well につきに 3×10^5 cells ずつ, サンプル数分の well に加え, 5% CO₂ 濃度, 37℃ の条件下で 24 時間インキュベーションした. 培地を除い て PBS(-)で 2 回洗浄し、1^xの培地溶液(24 時間作用時の各 IC50 値)を 1 well につき 2 mL ずつ加えた. 5% CO2 濃度, 37℃ の条件下で1 および 12 時間インキュベーションした 後, 培地を除いて PBS(-)で 2 回洗浄し, trypsin (0.25%)で細胞をはがした. はがした細 胞を 1.5 mL のエッペンチューブに移し、遠心分離(1200 rpm, 2 min)した後、溶液をアス ピレーターで吸引した. 集めた細胞に PBS(-) (1 mL)を加えて懸濁させ, 再度遠心分離 した. 溶液をアスピレーターで吸引した後、1×BB 溶液(1mL)を加えて懸濁させた. 遠 心分離し、溶液をアスピレーターで吸引した後、1×BB 溶液を加えて1×10⁶ cells/mL に 調製した. その細胞溶液 100 µL に Annexin V-FITC 溶液(5 µL)を混合して, 室温で 10 分 間インキュベート後,遠心分離し,アスピレーターで溶液を吸引した.そこに,1×BB 溶液(500 μL)を加えて懸濁させ, 遠心分離し, アスピレーターで溶液を吸引した. 1×BB 溶液(200 μL)を細胞に加えて懸濁させ, PI (5 μL)を混合した. この細胞溶液を Attune NxT Acoustic Focusing Cytometer を用いて観察した. ゲート内の細胞数は 10,000 cells とした. Annexin V-FITC \mathcal{L} blue (488 nm) $\mathcal{V} - \mathcal{P} - \mathcal{O}$ channel BL1 (Filter 530/30, Filter Range 515/545), PI \mathcal{L} lt blue (488 nm) $\mathcal{V} - \mathcal{V} - \mathcal{O}$ channel BL2 (Filter 574/26, Filter Range 561/587) を用いた.

114

3-5-13. Caspase-9 活性

6 well プレートに HeLa 細胞を 1 well につきに 3 × 10⁵ cells ずつ, サンプル数分の well に加え, 5% CO2 濃度, 37℃ の条件下で 24 時間インキュベーションした. 培地を除い て PBS(-)で 2 回洗浄し, 1^xの培地溶液(97.3 μM, 24 時間作用時の 1^{P1}の IC₅₀ 値)を 1 well につき 2 mL ずつ加えた. それらを 5% CO2 濃度, 37℃ の条件下で 1 および 12 時間イ ンキュベーションした後, 培地を除いて PBS(-)で2回洗浄し, trypsin (0.25%)で細胞を はがした. はがした細胞を 1.5 mL のエッペンチューブに移し, 遠心分離(1200 rpm, 2 min) をした後, 溶液をアスピレーターで吸引した. 集めた細胞に培地(1mL)を加えて懸濁さ せ、再度遠心分離した. 溶液をアスピレーターで吸引した後、培地を加えて 1×10⁶ cells/mL に調製した. その細胞溶液に FITC-LEHD-FK (1 μL/細胞懸濁液 300 μL)を混合 し, 暗室, 37°C で 60 分間インキュベートした. 遠心分離(3000 rpm, 5 min)した後, アス ピレーターで溶液を吸引した.そこに、Wash Buffer (500 μL)を加えて懸濁させ、再度遠 心分離した. 溶液をアスピレーターで吸引した後, Wash Buffer (500 µL)を加えて懸濁さ せた. この細胞溶液を Attune NxT Acoustic Focusing Cytometer を用いて観察した. ゲー ト内の細胞数は10,000 cells とした. FITC-LEHD-FK には blue (488 nm)レーザーの channel BL1 (Filter 530/30, Filter Range 515/545)を用いた. この測定は最低 5 回行い,再現性を取 った.

3-5-14. Caspase-3/7 活性

6 well プレートに HeLa 細胞を 1 well につきに 3×10^5 cells ずつ, サンプル数分の well に加え, 5% CO₂ 濃度, 37°C の条件下で 24 時間インキュベーションした. 培地を除い て PBS(-)で 2 回洗浄し, 1^xの培地溶液(97.3 µM, 24 時間作用時の 1^{P1}の IC₅₀ 値)を 1 well につき 2 mL ずつ加えた. 5% CO₂ 濃度, 37°C の条件下で 1 および 12 時間インキュベー ションした後, 培地を除いて PBS(-)で 2 回洗浄し, trypsin (0.25%)で細胞をはがした. はがした細胞を 1.5 mL のエッペンチューブに移し, 遠心分離(1200 rpm, 2 min)した後, 溶液をアスピレーターで吸引した. 集めた細胞に PBS(-) (1 mL)を加えて懸濁させ, 再 度遠心分離した. 溶液をアスピレーターで吸引した後, PBS(-)を加えて 1×10⁶ cells/mL に調製した. その細胞溶液に CellEventTM Caspase-3/7 Green Detection Reagen (1 µL/細胞 懸濁液 1 mL, 最終濃度 500 nM)を混合し, 暗室, 37°C で 30 分間インキュベートした. この細胞溶液を Attune NxT Acoustic Focusing Cytometer を用いて観察した. ゲート内の 細胞数は 10,000 cells とした. CellEventTM Caspase-3/7 Green Detection Reagen には blue (488 nm)レーザーの channel BL1 (Filter 530/30, Filter Range 515/545)を用いた. この測定 は最低 5 回行い,再現性を取った.

3-6. 参考文献

[1] T. Boulikas, A. Pantos, E. Bellis, and P. Christofis, Cancer Ther. 2007, 5, 537–583.

[2] S. Ghosh, Bioorg. Chem. 2019, 88, 102925.

[3] H. Umezawa, K. Maeda, T. Takeuchi, and Y. Okami, J. Antibiot. 1966, 19, 200-209.

[4] L. V. Liu, C. B. Bell III, S. D. Wong, S. A. Wilson, Y. Kwak, M. S. Chow, J. Zhao, K. O.

Hodgson, B. Hedman, and E. I. Solomon, Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 22419–22424.

[5] A.-M. Florea, and D. Büsselberg, *Cancers* **2011**, *3*, 1351–1371.

[6] R. Oun, Y. E. Moussa, and N. J. Wheate, Dalton Trans. 2018, 47, 6645–6653.

[7] (a) K. E. Erkkila, D. T. Odom, and J. K. Barton, Chem. Rev. 1999, 99, 2777–2795. (b) K. Qiu,

Y. Chen, T. W. Rees, L. Ji, and H. Chao, Coord. Chem. Rev. 2019, 378, 66–86. (c) C. Huang, T.

Li, J. Liang, H. Huang, P. Zhang, and S. Banerjee, Coord. Chem. Rev. 2020, 408, 213178–213192.

(d) A. P. King, and J. J. Wilson, Chem. Soc. Rev. 2020, 49, 8113-8136. (e) W. Zhou, X. Wang,

M. Hu, C. Zhua, and Z. Guo, Chem. Sci. 2014, 5, 2761–2770. (f) J. Liu, Y. Chen, G. Li, P. Zhang,

C. Jin, L. Zeng, L. Ji, and H. Chao, Biomaterials 56, 2015, 140–153. (g) W. Lv, Z. Zhang, K. Y.

Zhang, H. Yang, S. Liu, A. Xu, S. Guo, Q. Zhao, and W. Huang, Angew. Chem. Int. Ed. 2016, 55,

9947-9951. (h) J.-J. Cao, C.-P. Tan, M.-H. Chen, N. Wu, D.-Y. Yao, X.-G. Liu, L.-N. Liang-

Nian Jia, and Z.-W. Mao, *Chem. Sci.* **2017**, *8*, 631–640. (i) D. Hu, Y. Liu, Y.-T. Lai, K.-C. Tong,

Y.-M. Fung, C.-N. Lok, and C.-M. Che, Angew. Chem. Int. Ed. 2016, 55, 1387–1391.

[8] B. Deka, T. Sarkar, S. Banerjee, A. Kumar, S. Mukherjee, S. Deka, K. K. Saikia, and A. Hussain, *Dalton Trans.* **2017**, *46*, 396–409.

[9] M. T. Jeena, S. Kim, S. Jin, and J. H. Ryu, Cancers 2020, 12, 4.

[10] N. Z. Fantoni, Z. Molphy, S. O'Carroll, G. Menounou, G. Mitrikas, M. G. Krokidis, C. Chatgilialoglu, J. Colleran, A. Banasiak, M. Clynes, S. Roche, S. Kelly, V. McKee, and A. Kellett, *Chem. Euro. J.* 2021, 27, 971–983.

[11] N. Aykin-Burns, I. M. Ahmad, Y. Zhu, L. W. Oberley, and D. R. Spitz, *Biochem. J.* 2009, 418, 29–37.

[12] V. Nogueira, and N. Hay, Clin. Cancer Res. 2013, 19, 4309-4314.

[13] J. Lopez, and S. W. G. Tait, Br. J. Cancer 2015, 112, 957–962.

[14] C. S. Burke, A. Byrne, and T. E. Keyes, Angew. Chem. Int. Ed. 2018, 57, 12420–12424.

[15] C. Santini, M. Pellei, V. Gandin, M. Porchia, F. Tisato, and C. Marzano, *Chem. Rev.* 2014, 114, 815–862.

[16] J. J. Rani, and S. Roy, *ChemMedChem* 2023, 18, e202200652.

[17] Y. Kadoya, K. Fukui, M. Hata, R. Miyano, Y. Hitomi, S. Yanagisawa, M. Kubo, and M. Kodera, *Inorg. Chem.* **2019**, *58*, 14294–14298.

[18] M. Hata, I. Saito, Y. Kadoya, Y. Tanaka, Y. Hitomi, and M. Kodera, *Dalton Trans.* **2022**, *51*, 4720–4727.

[19] Y. Kadoya, M. Hata, Y. Tanaka, A. Hirohata, Y. Hitomi, and M. Kodera, *Inorg. Chem.* 2021, 60, 5474–5482.

[20] F. Tran, A. V. Odell, G. E. Ward, and N. J. Westwood, *Molecules* 2013, 18, 11639–11657.

[21] M. Kodera, Y. Kadoya, K. Aso, K. Fukui, A. Nomura, Y. Hitomi, and H. Kitagishi, *Bull. Chem. Soc. Jpn.* **2019**, *92*, 739–747.

[22] (a) N. A. Rey, A. Neves, A. J. Bortoluzzi, C. T. Pich, and H. Terenzi, *Inorg. Chem.* 2007, 46, 348–350. (b) P. Amudha, M. Kandaswamy, L. Govindasamy, and D. Velmurugan, *Inorg. Chem.* 1998, *37*, 4486–4492.

[23] (a) B. C. Baguley, and E. M. Falkenhaug, E. M. *Nucl. Acid. Res.* 1978, *5*, 161–171. (b) A. R.
Morgan, J. S. Lee, D. E. Pulleyblank, N. L. Murray, and D. H. Evans, *Nucl. Acid. Res.* 1979, *7*, 547–569.

[24] L. Tjioe, T. Joshi, C. M. Forsyth, B. Moubaraki, K. S. Murray, J. Brugger, B. Graham, and L. Spiccia, *Inorg. Chem.* **2012**, *51*, 939–953.

[25] D. Freifelder, and B. Trumbo, *Biopolymers* 1969, 7, 681.

[26] H. Wang, B. Wang, M. Wang, L. Zheng, H. Chen, Z. Chai, Y. Zhao, and W. Feng, W. Analyst,2015, 140, 523–531.

[27] L. Ropel, L. S. Belve`ze, S. N. V. K. Aki, M. A. Stadtherr, and J. F. Brennecke, *Green. Chem.***2005**, *7*, 83–90.

[28] R. Scherließ. Int. J. Pharm. 2011, 411, 98–105.

[29] J. Meerloo, G. J. L. Kaspers, and J. Cloos, Humana Press. 2011, 411, 237–245.

[30] A. Bahuguna, I. Khan, V. K. Bajpai, and S. C. Kang, *Bangladesh J Pharmacol.* **2017**, *12*, 115–118.

[31] W. Miao, X. Guo, X. Yan, Y. Shang, C. Yu, E. Dai, T. Jiang, E. Hao, and L. Jiao, *Chem. Eur. J.* **2023**, *29*, e202203832.

[32] I. Vermes, C. Haanenand, and C. P. M. Reutelingsperger, J. Immunol. Methods 1995, 180, 39–51.

[33] S. J. Martin, C. P. M. Reutelingsperger, A. J. McGahon, J. Rader, R. C. A. A. van Schie, D. M. LaFace, and D. R. Green, *J. Exp. Med.* **1995**, *182*, 1545–1557.

[34] S. B. Bratton, and G. S. Salvesen, J. Cell. Sci. 2010, 123, 3209–3214.

[35] H. A. Harrington, K. L. Ho, S. Ghosh, and K. C. Tung, *Theor. Biol. Medical Model.* **2008**, 5, 26–40.

[36] N. Ozoren, K. Kim, T. F. Burns, D. T. Dicker, A. D. Moscioni, and W. S. El-Deiry, *Cancer Res.* **2000**, *60*, 6259–6265.

[37] T. Yu, J. Dohl, F. Elenberg, Y. Chen, and P. Deuster, J Cell Physiol. 2019, 234, 6371–6381.

[38] S. Barut, Y. A. Unlu, A. Karaoglan, M. Tuncdemir, F. K. Dagistanli, M. Oztqrk, and A. Colak, *Surg. Neurol.*

[39] W. S. D. Tan, W. Liao, H. Y. Peh, M. Vila, J. Dong, and H. M. Shen, *Toxicol. Appl. Pharmacol.* **2018**, *360*, 120–130.

[40] B. Mayer, and R. Oberbauer, News Physiol Sci., 2003, 18, 89–94.

[41] L. Galluzzi, O. Kepp, and G. Kroemer, Nat Rev Mol Cell Biol 2012, 13, 780–788.

3-7. Supporting Information

Figure S3-1. Agarose gel electrophoresis profile of pUC19 DNA (50 μ M bp) in the presence of 1^{P1} (a), 1^{P3} (b), 1^{M1} (c), 1^{M2} (d), 1^{M3} (e) (50 μ M) and H₂O₂ (500 μ M) at pH 6.0. Lane 1: DNA control; lane 2: DNA with Hind III; lane 3–11: corresponded to the time of 0, 10, 20, 30, 40, 60, 120, 180, and 300 min, respectively.

Complex	Complex	H_2O_2	Time	Form I	Form II	Form III
Complex	(µM)	(µM)	(min)	(%)	(%)	(%)
			0	95.3 ± 0.2	4.7 ± 0.2	-
			10	74.2 ± 2.0	25.8 ± 2.0	-
			20	57.4 ± 1.3	42.6 ± 1.3	-
			30	47.0 ± 2.2	53.0 ± 2.2	-
1	50	500	40	38.0 ± 3.6	62.0 ± 3.6	-
			60	25.3 ± 4.1	74.7 ± 4.1	-
			120	9.9 ± 3.6	89.0 ± 3.2	1.0 ± 0.4
			180	4.6 ± 2.6	93.2 ± 1.5	2.2 ± 1.1
			300	2.0 ± 2.0	92.7 ± 1.0	5.3 ± 3.0
			0	90.2 ± 0.1	9.8 ± 0.1	-
			10	77.8 ± 0.2	22.2 ± 0.2	-
			20	56.5 ± 0.0	43.5 ± 0.0	-
			30	34.7 ± 0.1	65.3 ± 0.1	-
1 ^{P1}	50	500	40	21.8 ± 0.0	78.2 ± 0.0	-
			60	4.3 ± 0.5	95.0 ± 0.5	0.7 ± 0.0
			120	0.0 ± 0.0	87.3 ± 0.1	12.7 ± 0.1
			180	0.0 ± 0.0	52.6 ± 1.0	47.4 ± 1.0
			300	n.d.*	n.d.*	n.d.*
			0	92.2 ± 0.7	7.8 ± 0.7	-
			10	61.9 ± 2.1	38.1 ± 2.1	-
			20	25.6 ± 3.8	74.4 ± 3.8	-
. DA			30	9.2 ± 3.1	90.8 ± 3.1	-
1 ^{P2}	50	500	40	4.7 ± 1.7	94.2 ± 1.1	1.1 ± 0.6
			60	0.0 ± 0.0	96.3 ± 0.2	3.7 ± 0.2
			120	0.0 ± 0.0	90.2 ± 3.8	9.8 ± 3.8
			180	0.0 ± 0.0	77.1 ± 4.4	22.9 ± 4.4
			300	0.0 ± 0.0	50.7 ± 2.2	49.3 ± 2.2
			0	89.9 ± 1.1	10.1 ± 1.1	-
			10	84.2 ± 1.0	15.8 ± 1.0	-
			20	74.8 ± 0.5	25.2 ± 0.5	-
4 P3	50	500	30	64.2 ± 1.6	35.8 ± 1.6	-
1''	50	500	40	52.5 ± 0.8	47.5 ± 0.8	-
			60	28.4 ± 0.8	71.6 ± 0.8	-
			120	3.7 ± 0.8	94.0 ± 0.5	2.2 ± 0.3
			180	0.0 ± 0.0	93.4 ± 0.9	6.6 ± 0.9
			300	0.0 ± 0.0	63.0 ± 1.4	37.0 ± 1.4

Table S3-1. Rates (%) of Form I, II, and III in the reaction of complexes at pH 6.0

			0	91.2 ± 0.3	8.8 ± 0.3	-
			10	75.3 ± 0.2	24.7 ± 0.2	-
			20	56.7 ± 0.6	43.3 ± 0.6	-
			30	38.7 ± 0.5	61.3 ± 0.5	-
1 ^{M1}	50	500	40	24.3 ± 0.2	75.7 ± 0.2	-
			60	9.0 ± 0.4	89.8 ± 0.4	1.2 ± 0.0
			120	0.0 ± 0.0	91.8 ± 1.1	8.2 ± 1.1
			180	0.0 ± 0.0	76.6 ± 2.9	23.4 ± 2.9
			300	0.0 ± 0.0	19.1 ± 4.4	80.9 ± 4.4
			0	91.3 ± 0.9	8.7 ± 0.9	-
			10	81.1 ± 0.4	18.9 ± 0.4	-
			20	65.9 ± 3.5	34.1 ± 3.5	-
			30	55.4 ± 3.2	44.6 ± 3.2	-
1 ^{M2}	50	500	40	45.3 ± 2.8	54.7 ± 2.8	-
			60	27.8 ± 3.7	72.2 ± 3.7	-
			120	3.5 ± 0.5	93.2 ± 1.1	3.4 ± 0.6
			180	0.0 ± 0.0	90.8 ± 2.0	9.2 ± 2.0
			300	0.0 ± 0.0	64.6 ± 0.6	35.4 ± 0.6
			0	91.2 ± 0.1	8.8 ± 0.1	-
			10	87.5 ± 1.8	12.5 ± 1.8	-
			20	76.1 ± 1.6	23.9 ± 1.6	-
			30	69.1 ± 1.4	30.9 ± 1.4	-
1 ^{M3}	50	500	40	55.7 ± 4.0	44.3 ± 4.0	-
			60	38.7 ± 4.4	61.3 ± 4.4	-
			120	14.9 ± 2.1	84.5 ± 1.4	0.7 ± 0.7
			180	5.4 ± 2.7	90.5 ± 3.2	4.2 ± 0.5
			300	0.0 ± 0.0	78.6 ± 3.4	21.4 ± 3.4

*n.d. means cannot determine.

Figure S3-2. Agarose gel electrophoresis profile of pUC19 DNA (50 μ M bp) in the presence of 1^{P2} (50 μ M), H₂O₂ (500 μ M), and inhibitor (DMSO 1 mM (a), DMSO 5 mM (b), DMSO 10 mM (c), KI 1 mM (d), KI 5 mM (e), and KI 10 mM (f)) at pH 6.0. Lane 1: DNA control; lane 2: DNA with Hind III; lane 3–11: corresponded to the time of 0, 10, 20, 30, 40, 60, 120, 180, and 300 min, respectively.

T 1 11 1	Conc.	Time	Form I	Form II	Form III
Inhibitor	(mM)	(min)	(%)	(%)	(%)
		0	95.3 ± 1.4	4.7 ± 1.4	-
		10	71.8 ± 2.2	28.2 ± 2.2	-
		20	48.4 ± 2.6	51.6 ± 2.6	-
		30	26.0 ± 1.8	74.0 ± 1.8	-
DMSO	1	40	12.4 ± 1.1	87.6 ± 1.1	-
		60	1.3 ± 0.1	96.8 ± 1.0	2 ± 1.1
		120	0.0 ± 0.0	79.5 ± 0.1	20.5 ± 0.1
		180	0.0 ± 0.0	53.6 ± 1.4	46.4 ± 1.4
		300	n.d.*	n.d.*	n.d.*
		0	93.3 ± 0.6	6.7 ± 0.6	-
	5	10	75.0 ± 0.3	25.0 ± 0.3	-
		20	49.8 ± 0.4	50.2 ± 0.4	-
		30	28.3 ± 1.2	71.7 ± 1.2	-
DMSO		40	15.4 ± 0.2	84.6 ± 0.2	-
		60	1.9 ± 0.3	96.7 ± 0.4	1.4 ± 0.8
		120	0.0 ± 0.0	84.0 ± 0.3	16.0 ± 0.3
		180	0.0 ± 0.0	66.4 ± 1.6	33.6 ± 1.6
		300	n.d.*	n.d.*	n.d.*
		0	93.9 ± 1.1	6.1 ± 1.1	-
	10	10	70.0 ± 1.7	30.0 ± 1.7	-
		20	48.6 ± 0.0	51.4 ± 0.0	-
		30	26.3 ± 0.1	73.7 ± 0.1	-
DMSO		40	14.0 ± 1.3	86.0 ± 1.3	-
		60	2.5 ± 0.5	96.5 ± 0.0	0.9 ± 0.5
		120	0.0 ± 0.0	83.7 ± 0.4	16.3 ± 0.4
		180	0.0 ± 0.0	62.2 ± 2.5	37.8 ± 2.5
		300	n.d.*	n.d.*	n.d.*

Table S3-2. Rates (%) of Form I, II, and III formed with 1^{P1} in the presence of inhibitor atpH 6.0

		0	91.0 ± 0.2	9.0 ± 0.2	-
		10	47.8 ± 3.1	52.2 ± 3.1	-
		20	42.6 ± 2.3	57.4 ± 2.3	-
		30	40.5 ± 1.3	59.5 ± 1.3	-
KI	1	40	38.2 ± 0.6	61.8 ± 0.6	-
		60	33.6 ± 1.4	66.4 ± 1.4	-
		120	26.0 ± 0.5	74.0 ± 0.5	-
		180	21.7 ± 1.1	78.3 ± 1.1	-
		300	13.3 ± 0.4	86.7 ± 0.4	-
		0	86.7 ± 0.1	13.3 ± 0.1	-
		10	67.4 ± 2.5	32.6 ± 2.5	-
		20	66.1 ± 2.7	33.9 ± 2.7	-
		30	63.6 ± 1.8	36.4 ± 1.8	-
KI	5	40	62.5 ± 0.9	37.5 ± 0.9	-
		60	60.7 ± 1.3	39.3 ± 1.3	-
		120	57.1 ± 0.4	42.9 ± 0.4	-
		180	52.6 ± 0.4	47.4 ± 0.4	-
		300	49.9 ± 2.3	50.1 ± 2.3	-
		0	89.9 ± 0.2	10.1 ± 0.2	-
		10	82.8 ± 3.1	17.2 ± 3.1	-
		20	80.2 ± 1.9	19.8 ± 1.9	-
		30	79.6 ± 1.3	20.4 ± 1.3	-
KI	10	40	76.9 ± 0.7	23.1 ± 0.7	-
		60	73.3 ± 0.2	26.7 ± 0.2	-
		120	69.3 ± 0.7	30.7 ± 0.7	-
		180	65.8 ± 1.3	34.2 ± 1.3	-
		300	57.9 ± 1.3	42.1 ± 1.3	-

*n.d. means cannot determine.

Figure S3-3. (A) Electronic absorption spectra of 1^{P1} (0.2 mM) in pH 7.4 (MOPS, 10 mM), NaCl (10 mM) at 37°C. (B) Electronic absorption spectra of 1^{M1} (0.2 mM) in pH 7.4 (MOPS, 10 mM), NaCl (10 mM) at 37°C. (C) Electronic absorption spectra of 1^{P1} (0.2 mM) and 10% FBS in PBS (–) at 37°C. (D) Electronic absorption spectra of 1^{M1} (0.2 mM) and 10% FBS in PBS (–) at 37°C. (E) Electronic absorption spectra of 10% FBS in PBS (–) at 37°C.

第四章:Synthesis, Structures, and Cytotoxicity of Dicopper Complexes with *p*-Cresol-2,6-Bis(Amide-Tether-dpa^{4-X}) Ligands (X = MeO and Cl): Electronic and Hydrophobic Effects of MeO and Cl on Selective ROS Generation and Cytotoxicity Enhancement.

4-1. 要旨

本章では, 配位子の置換基による電子効果と疎水効果で, 二核銅錯体による細胞毒性 の向上と選択的な活性酸素種(ROS)生成が見出された. dpa 部位のピリジル基の 4 位に MeO 基, Cl 基を持つ 2,6-bis(amide-tether dpa^{4-X})-p-cresol (HL3^{4-X}, X = MeO, Cl)の銅錯体 $[Cu_2(\mu-1,1-OAc)(\mu-1,3-OAc)(L3^{4-MeO})]Y [Y = PF_6 (3a^{4-MeO}), OAc (3b^{4-MeO})], [Cu_2(\mu-1,3-DAc)(L3^{4-MeO})]$ OAc)₂(L3^{4-Cl})]Y[Y=ClO₄ (**3a^{4-Cl}**), OAc (**3b^{4-Cl}**)]および置換基を持たない 2,6-bis(amide-tether dpa)-p-cresol (HL3)の銅錯体[Cu₂(µ-1,1-OAc)(µ-1,3-OAc)(L3)](OAc) (3)を比較し, MeO基, Cl 基の電子効果と疎水効果を明らかにした. 3a^{4-MeO}, 3a^{4-Cl}の結晶構造から,置換基の 電子効果で配位構造や結合距離が異なることが示された. 3a^{4-MeO} はドナー性の低い μ-1,1-OAc 架橋をもち、3a^{4-CI}はドナー性の高いμ-1,3-OAc 架橋だけを形成した.水中では、 μ-1,1-OAc は H₂O で容易に置換され, μ-1,3-OAc は保持された. 酸化還元電位は 3b^{4-MeO} <3<3b^{4-Cl}の順であり、電子効果に従った.3a^{4-MeO},3a^{4-Cl}は3と同様にAscNaで速や かに Cu(I)Cu(I)に還元され, 還元的 O₂活性化で ROS として H₂O₂ と HO•を生成した. ROS 生成量は電子効果に依存して変化した.このとき,3b^{4-MeO}は H₂O₂放出を,3b^{4-CI}は HO•生成を促進した(H₂O₂ (3b^{4-MeO}>3b^{4-Cl}), HO• (3b^{4-MeO}<3b^{4-Cl})). HeLa 細胞, 肺や膵臓 のがん細胞と正常細胞に対する 3b^{4-MeO}, 3b^{4-CI}の細胞毒性を MTT assay で調べた. HeLa 細胞に対する細胞毒性は **3b^{4-MeO}, 3b^{4-CI}が 3**よりもそれぞれ 7 倍, 5 倍高かった. **3b^{4-MeO}** はがん細胞選択的毒性を示し、3b4-CIは正常細胞選択的毒性を示した.3b4-MeO、3b4-CIの 細胞内小器官への局在を調べるため, ROS の細胞内蛍光検出試薬である DCFDA を用 いて 3b^{4-MeO}, 3b^{4-CI}が生成する ROS を可視化して共焦点顕微鏡で観察した. 3b^{4-MeO}, 3b⁴⁻ ^{CI}は MeO, CI 基の疎水効果で脂溶性が高く,小胞体(ER)と Golgi 体に局在した. 3b^{4-MeO}, 3b4-CIの細胞毒性が向上したのは ER と Golgi 体での ROS 生成によると考えられる. DCFDA を用いた ROS 生成の観察で、3b^{4-MeO} は正常細胞よりもがん細胞で多く、3b^{4-Cl} は正常細胞とがん細胞で同程度であることが示された.この選択的 ROS 生成が 3b^{4-MeO} のがん細胞選択的毒性,3b^{4Cl}の正常細胞選択的毒性の原因であり、これは正常細胞と がん細胞の抗酸化物質の濃度の違いや 3b4-MeO, 3b4-CIの還元されやすさの違いによると 考えられる.この研究から,二核銅錯体によるがん細胞選択的細胞毒性を,配位子に導 入した置換基で制御できることが示された.

127

4-2. 緒言

現在臨床利用されている一部の抗がん剤や電離放射線治療は、細胞内で活性酸素種 (ROS)を生成し、DNA の二本鎖切断(DNA double-strand breaks, dsb)や酸化ストレスを引 き起こし、細胞死を誘導することが報告されている^[1]. 錯体は還元剤との反応で ROS を 生成するため、新たな抗がん剤の開発に向けて様々な合成金属錯体が開発されてきた^[2]. 我々は、2,6-bis(amide-tether dpa)-*p*-cresol (HL3)とその二核銅錯体[Cu₂(µ-1,1-OAc)(µ-1,3-OAc)(L3)](OAc) (3)を開発し、3 が H₂O₂ による DNA 酸化切断を加速し、がん細胞選択 的毒性を示すことを見出した^[3]. しかし、3 の細胞毒性は Cisplatin と比べて低く、抗が ん剤としての利用には不十分であった. また、3 の細胞毒性発現機構は十分には解明さ れていない. そこで、3 の細胞毒性の向上と細胞毒性発現機構の解明のためには、3 の 細胞内挙動を明らかにする必要があり、3 に蛍光分子である Bodipy を導入した 3-Bodipy 結合体を合成し、その細胞内挙動を共焦点顕微鏡で追跡した. その結果、3-Bodipy 結合 体はミトコンドリアと核小体に分布することがわかった. しかし、これは 3-Bodipy 結 合体の挙動であり、3 の細胞内挙動は不明である.

生理活性物質の構造展開として,置換基の導入が用いられる.置換基はそれぞれに固 有の立体性,疎水性,電子的性質を持ち,脂肪族側鎖や芳香族環への導入で,化合物の 生理活性を変化させることができる.このような手法によって構造活性相関を展開して いくうえで,様々な定量的経験則に基づいて生み出された指針が存在する^[4].例えば, 電子求引性の Cl 基の導入によって活性が低下した場合,電子供与性の MeO 基の導入が 推奨される.このように,置換基の導入によって生理活性物質の構造展開を進めること は,我々が目指している金属錯体の還元的 O₂活性化による ROS 生成や細胞毒性の作用 機構や活性向上の知見を得るうえで重要である.

本章では、HL3 配位子の dpa 部位のピリジル基に置換基を導入し、その電子効果や疎 水効果で3の細胞毒性の向上を目指した.HL3のピリジル基の4位に電子供与性の MeO 基や電子求引性の Cl 基を導入した HL3^{4-MeO} と HL3^{4-Cl}、そして、その二核銅錯体[Cu₂(µ-1,1-OAc)(µ-1,3-OAc)(L3^{4-MeO})]Y [Y = PF₆ (3a^{4-MeO}), OAc (3b^{4-MeO})], [Cu₂(µ-1,3-OAc)₂(L3^{4-Cl})]Y [Y = ClO₄ (3a^{4-Cl}), OAc (3b^{4-Cl})]を合成した.対イオンに PF₆や ClO₄を持つ 3a^{4-MeO}, 3a^{4-Cl}の結晶構造を決定し、配位構造や結合距離を3と比較した.さらに、溶液中の挙 動を調べるために、水溶性が高い 3b^{4-MeO} と 3b^{4-Cl}を用い、これらの酸化還元挙動、ROS 生成、細胞内での ROS 生成挙動、細胞毒性などを3と比較した.これらの結果、置換 基による電子効果と疎水効果で、二核銅錯体の ER や Golgi 体への局在により細胞毒性 が向上し、選択的 ROS 生成を通してがん細胞選択的毒性の向上が見出された.特に、

128

MeO 基の導入により細胞毒性とがん細胞選択性が共に向上した.本章で用いた HL3, HL3^{4-X}, 3, 3b^{4-MeO}, 3b^{4-Cl}の化学構造を Figure 4-1 に示す.

Figure 4-1. Chemical Structures of HL3, HL3^{4-X} (X = MeO and Cl), $[Cu_2(\mu-1,1-OAc)(\mu-1,3-OAc)(L3)](OAc)$ (3), $[Cu_2(\mu-1,1-OAc)(\mu-1,3-OAc)(L3^{4-MeO})](Y)$ (Y = PF₆ (3a^{4-MeO}), OAc (3b^{4-MeO})), and $[Cu_2(\mu-1,3-OAc)_2(L3^{4-Cl})](Y)$ (Y = ClO₄ (3a^{4-Cl}), OAc (3b^{4-Cl})).

4-3. 結果と考察

4-3-1. 配位子と二核銅(II)錯体の合成

HL3 とその錯体 3 は、論文^[3]に従って合成した. ピリジル基の 4 位を MeO, CI 基で 置換した dpa 誘導体 di(4-X-2-pyridylmethyl)amine (dpa^{4-X})を *p*-cresol の 2, 6 位にアミド結 合で導入した 2,6-bis(amide-tether dpa^{4-X})-*p*-cresol (HL3^{4-X}, X = MeO, Cl)を合成した. この 合成経路は, Scheme 4-1 に示す. HL3^{4-X}を MeCN 中, Cu(OAc)₂ と反応させ、錯体[Cu₂(μ-1,1-OAc)(μ-1,3-OAc)(L3^{4-MeO})](OAc) (**3b^{4-MeO}**) と [Cu₂(μ-1,3-OAc)₂(L3^{4-Cl})](OAc) (**3b^{4-Cl}**)を得 た. **3b^{4-MeO}**, **3b^{4-Cl}**の単離後、それぞれの MeCN 溶液に NH₄PF₆, NaClO₄を加えて対イ オンを交換した. これらを MeCN/Et₂O から再結晶し、X 線構造解析に適した[Cu₂(μ-1,1-OAc)(μ-1,3-OAc)(L3^{4-MeO})](PF₆) (**3a^{4-MeO}**) と [Cu₂(μ-1,3-OAc)₂(L3^{4-Cl})](ClO₄) (**3a^{4-Cl}**)の結晶を 得た. HL3^{4-X}, **3a^{4-X}**, **3b^{4-X}**の詳細な合成法、元素分析、IR、ESI MS データなどは **4-5-3** の実験項に示す.

$$32$$
(X = MeO, Cl)

Scheme 4-1. Synthetic Route of HL3^{4-X} (X = MeO, Cl).

4-3-2. 二核銅(II)錯体の結晶構造

3a^{4-MeO}, **3a^{4-CI}**の構造を単結晶 X 線構造解析により決定した. これらの ORTEP 図を Figure 4-2, 結晶学的パラメーターを Table 4-1, 二核銅周辺の結合距離と結合角を Table 4-2 に示す. **3a^{4-MeO}**では 2 つの Cu(II)は L3^{4-MeO} に結合し, L3^{4-MeO} に含まれる dpa^{4-MeO} の 2 つのピリジン窒素原子,内因性の μ -OPh と外因性の μ -1,1-OAc, μ -1,3-OAc で架橋さ れた 5 配位構造をとる. **3a^{4-CI}**の場合も 2 つの Cu(II)は L3^{4-CI} に結合し,同様の 5 配位構 造をとるが, 2 つの μ -1,3-OAc 架橋を持つ点が異なっている. これらの銅周りの結合角 から算出した τ 値は, **3a^{4-MeO}**で $\tau_{Cu(1)} = 0.295$, $\tau_{Cu(2)} = 0.613$, **3a^{4-CI}**で $\tau_{Cu(1)} = 0.580$, $\tau_{Cu(2)} =$ 0.390 である. τ 値は 0 のとき四角錐構造, 1 のとき三方両錐構造であり^[5], これらの銅 の配位構造はいずれも四角錐と三方両錐の中間的な歪んだ構造であることがわかる.

3a^{4-MeO}の Cu-O_{OAe}結合距離は, μ-1,1-OAc では 2.261(13)と 2.089(14) Å, μ-1,3-OAc で は 1.978(11)と 1.944(12) Å であり, μ-1,1-OAc の方が長い. これらの μ-OAc の架橋構造 は、**3** と類似しており、**3** の Cu-O_{OAc}結合距離(μ-1,1-OAc では 2.210(4)と 2.122(4) Å, μ-1,3-OAc では 1.962(4)と 1.936(4) Å)についても近い値だった. また、**3**、**3b^{4-MeO}**の μ-1,1-OAc は水中で容易に水分子と配位交換する点でも一致している. 一方、**3a^{4-CI}**では、2 つ とも μ-1,3-OAc 架橋構造をとっていた. これは、電子求引性の Cl 基により支持配位子 のドナー性が低下したために銅のルイス酸性が高くなり、ドナー性の高い μ-1,3-OAc 架 橋構造が安定化されたことを示している. これらの Cu-O_{OAc} の平均距離を比較すると **3a^{4-CI}**(2.013 Å)<**3**(2.058 Å)<**3a^{4-MeO}**(2.068 Å)であり、**3a^{4-CI}**では電子供与性の高い μ-1,3-架橋が銅に強く結合していることがわかる. このために、**3b^{4-CI}**の μ-1,3-OAc 架橋は、水 溶液中でも、水分子と配位交換せず、安定に構造を保持した.

3, 3a^{4-MeO}, 3a^{4-CI}の Cu-N_{Py}の平均結合距離は 3a^{4-MeO}(2.022 Å) <3 (2.024 Å) <3a^{4-CI}(2.075 Å), Cu-O_{PhO}の平均結合距離は 3a^{4-CI}(2.09 Å) <3 (2.093 Å) <3a^{4-MeO}(2.146 Å)であった. この様に Cu-N_{Py}は 3a^{4-MeO}が最も短く, 3a^{4-CI}が最も長い. 一方, Cu-O_{PhO}, Cu-O_{OAc}は 3a^{4-CI}が最も短く, 3a^{4-MeO}が最も長い. これらは置換基の電子効果であり, 電子求引性 の Cl 基ではピリジン窒素のドナー性が低下して Cu-N_{Py}結合が長くなり, Cu(II)のルイ ス酸性が高くなった分だけ Cu-O_{PhO}, Cu-O_{OAc}結合が短くなっている. 電子供与性の MeO 基では Cu-N_{Py}結合が短くなり, その分だけ Cu-O_{PhO}, Cu-O_{OAc}結合が長くなっている.

132

Figure 4-2. ORTEP diagrams of the cationic parts of $3a^{4-MeO}$ (left) and $3a^{4-Cl}$ (right).

Table + 1. Crystanographic data for Sa and Sa					
complex	3a ^{4-MeO}	3a^{4-Cl}			
Empirical formula	$C_{47}H_{49}Cu_2F_6N_6O_{11}P$	$C_{39}H_{36}Cl_5Cu_2N_6O_{11.5}$			
Formula weight	1145.97	1077.07			
Temperature (K)	103	103			
Wavelength	CuKa (1.54187 Å)	CuKa (1.54187 Å)			
Crystal system	Monoclinic	Triclinic			
Crystal size (mm ³)	$0.14 \times 0.12 \times 0.10$	$0.20 \times 0.10 \times 0.10$			
Space group	P2 ₁	P-1			
a (Å)	12.0084(8)	11.7317(5)			
b (Å)	16.7164(11)	18.6324(9)			
c (Å)	12.5107(8)	21.0367(10)			
a (deg)	90	97.009(7)			
β (deg)	105.573(7)	96.475(7)			
γ (deg)	90	91.130(6)			
Volume (Å ³)	2419.2(3)	4532.3(4)			
Z value	2	4			
Density (calculated)	1.573 g/cm^3	1.578 g/cm ³			
Absorption coefficient	2.186 mm^{-1}	4.431 mm^{-1}			
F(000)	1176.0	2188.0			
R1 ^{a)} , wR2 ^{b)}	0.0872, 0.1917	0.0765, 0.1595			
GOF index	0.989	0.996			

Table 4-1. Cryst	allographic data	for 3a ^{4-MeO}	and 3a ^{4-Cl}
------------------	------------------	-------------------------	------------------------

a) $R1 = \Sigma ||Fo| - |Fc|/\Sigma |Fo|$, b) $wR2 = [\Sigma(w(Fo^2 - Fc^2)^2)/\Sigma w(Fo^2)^2]^{1/2}$

3a ^{4-MeO}	3a^{4-Cl}
Cu(1) ••• Cu(2) : 3.081(4)	Cu(1) ••• Cu(2) : 3.006(4)
Cu(1) – N(1) : 2.005(13)	Cu(1) - N(1) : 2.00(1)
Cu(1) – N(2) : 2.064(15)	Cu(1) - N(2) : 2.09(1)
Cu(2) – N(4) : 2.039(14)	Cu(2) - N(3) : 2.01(1)
Cu(2) – N(5) : 1.978(14)	Cu(2) - N(4) : 2.20(1)
Cu(1) – O(1) : 1.982(10)	Cu(1) - O(1) : 2.09(1)
Cu(1) – O(2) : 1.978(11)	Cu(1) - O(3) : 1.95(1)
Cu(1) – O(4) : 2.261(13)	Cu(1) - O(5) : 2.05(1)
Cu(2) – O(1) : 2.311(11)	Cu(2) – O(2) : 2.07(1)
Cu(2) – O(3) : 1.944(12)	Cu(2) - O(4) : 1.94(1)
Cu(2) – O(4) : 2.089(14)	Cu(2) - O(5) : 2.13(1)
Cu(1) - O(1) - Cu(2) : 91.4(4)	Cu(1) - O(5) - Cu(2) : 92.0(4)
Cu(1) - O(4) - Cu(2) : 90.1(5)	O(3) - Cu(1) - O(1) : 90.7(5)
O(1) - Cu(1) - O(2) : 88.4(5)	O(5) - Cu(1) - O(1) : 115.4(5)
O(1) - Cu(1) - O(4) : 89.8(5)	O(5) - Cu(1) - O(3) : 87.1(4)
O(2) - Cu(1) - O(4) : 88.0(5)	O(3) - Cu(1) - N(1) : 178.0(5)
O(1) - Cu(1) - N(1) : 158.1(5)	O(3) - Cu(1) - N(2): 87.3(5)
O(1) - Cu(1) - N(2) : 87.9(5)	O(5) - Cu(1) - N(1) : 91.1(5)
O(2) - Cu(1) - N(1) : 89.2(5)	O(5) - Cu(1) - N(2) : 150.3(5)
O(2) - Cu(1) - N(2): 175.8(5)	N(1) - Cu(1) - O(1) : 90.9(5)
O(4) - Cu(1) - N(1) : 111.9(5)	N(2) - Cu(1) - O(1) : 93.8(5)
O(4) - Cu(1) - N(2) : 90.1(5)	N(1) - Cu(1) - N(2) : 93.7(5)
N(1) - Cu(1) - N(2) : 95.0(5)	O(5) – Cu(2) – O(2) : 129.0(4)
O(1) - Cu(2) - O(3) : 83.3(5)	O(4) - Cu(2) - O(2) : 91.6(5)
O(1) - Cu(2) - O(4) : 85.8(4)	O(4) - Cu(2) - O(5): 85.7(4)
O(3) - Cu(2) - O(4) : 91.3(5)	O(2) - Cu(2) - N(3) : 93.9(5)
O(1) - Cu(2) - N(4) : 135.7(5)	O(2) - Cu(2) - N(4) : 86.1(5)
O(1) - Cu(2) - N(5) : 91.3(5)	O(4) – Cu(2) – N(3) : 172.6(5)
O(3) - Cu(2) - N(4) : 86.9(6)	O(4) - Cu(2) - N(4) : 88.5(5)
O(3) - Cu(2) - N(5) : 174.5(6)	O(5) – Cu(2) – N(3) : 87.0(5)
O(4) - Cu(2) - N(4) : 137.7(6)	O(5) - Cu(2) - N(4) : 144.4(4)
O(4) - Cu(2) - N(5) : 89.1(5)	N(3) - Cu(2) - N(4) : 96.8(5)
N(4) - Cu(2) - N(5) : 96.5(6)	
$\tau Cu(1) = 0.295, \tau Cu(2) = 0.613$	$\tau Cu(1) = 0.462, \tau Cu(2) = 0.47$

Table 4-2. Selected bond distances (Å) and angles (deg) for $3a^{4-MeO}$ and $3a^{4-Cl}$

4-3-3. 二核銅(II)錯体の溶液中の構造

3a^{4-MeO}, **3a^{4-CI}** は水に難溶なため、水溶液中の研究は **3b^{4-MeO}**, **3b^{4-CI}** の構造は分光学的測定で明らかにした.水中の **3b^{4-MeO}** (0.5 mM)の電子ス ペクトルは、312 (5200)、432 nm (730 M⁻¹ cm⁻¹)にそれぞれ Cu(II)-OAc/-OPh の LMCT に 帰属できる吸収帯^[3, 6, 7]を示した(Figure 4-2). これらは錯体濃度を 50 µM まで希釈する と 340 (4600)、448 nm (460 M⁻¹ cm⁻¹)にシフトした(Figure 4-3 (A), (B)). この **3b^{4-MeO}** の結 果は、**3** と同様であり、水中では μ-1,1-OAc が容易に水分子と置換して μ-1,1-OH₂ に変 化したことを示している.水がない MeCN 中の場合は、**3b^{4-MeO}** は 317 (5900)、439 nm (650 M⁻¹ cm⁻¹)に吸収帯を示し、希釈してもシフトしなかった(Figure 4-3 (C), (D)). 一方、 水中の **3b^{4-CI}** (0.5 mM)の電子スペクトルは、335 (5700)、457 nm (1100 M⁻¹ cm⁻¹)にそれぞ れ Cu(II)-OAc/-OPh の LMCT に帰属できる吸収帯^[3, 6, 7]を示し(Figure 4-4)、**3b^{4-CI}** の濃度 を 50 µM まで希釈してもほとんどシフトせず(Figure 4-4 (A), (B))、MeCN 中でも、321 (5200)、469 (530 M⁻¹ cm⁻¹)の吸収帯は希釈してもシフトしなかった(Figure 4-4 (C), (D)). **3b^{4-CI}**には 2 つの μ-1,3-OAc 架橋があり、ドナー性の高い μ-1,3-OAc は銅に強く配位し ているために水中でも水分子と置換しないことが示唆された.

3b^{4-MeO}, **3b^{4-CI}**の ESI MS と CSI MS の結果を Figure 4-5–4-8 に示す. **3b^{4-MeO}**, **3b^{4-CI}**の MeCN 中の ESI MS スペクトルは, それぞれ *m/z* 921.08, 937.00 に[L3^{4-X} + 2Cu(II) + 2OAc]⁺ に対応する分子イオンピークを示した.水中では, **3b^{4-MeO}**は新たに *m/z* 879.15 に[L3^{4-MeO} + 2Cu(II) + OH + OAc]⁺の対応する質量ピークが観測された. 一方, **3b^{4-CI}**では MeCN 中 と水中とで共に 2 つの OAc を持つ質量ピークだけが観測され,水分子に置換された質 量ピークは観測されなかった. 電子スペクトル, ESI MS, CSI MS の結果より,水中で は **3b^{4-MeO}**の μ-1,1-OAc 架橋は容易に水分子と置換したが, **3b^{4-CI}**の 2 つの μ-1,3-OAc 架 橋は置換されないことが示された.

135

Figure 4-3. (A) Electronic absorption spectra of $3b^{4-MeO}$ (0.05–0.5 mM) in H₂O. (B) An enlarged view of the graph of (A). (C) Electronic absorption spectra of $3b^{4-MeO}$ (0.05–0.5 mM) in MeCN. (D) An enlarged view of the graph of (C).

Figure 4-4. (A) Electronic absorption spectra of 3b^{4-Cl} (0.05–0.5 mM) in H₂O. (B) An enlarged view of the graph of (A). (C) Electronic absorption spectra of 3b^{4-Cl} (0.05–0.5 mM) in MeCN. (D) An enlarged view of the graph of (C).

Figure 4-5. ESI MS spectrum of complex **3b**^{4-MeO} measured in MeCN at room temperature at orifice 1: 10 V, orifice 2: 10 V, ring lens voltage: 10 V.

Figure 4-6. CSI MS spectrum of complex $3b^{4-MeO}$ measured in H₂O at room temperature at orifice 1: 0 V, orifice 2: 10 V, ring lens voltage: 10 V.

Figure 4-7. ESI MS spectrum of complex **3b**^{4-CI} measured in MeCN at room temperature at orifice 1: 10 V, orifice 2: 10 V, ring lens voltage: 10 V.

Figure 4-8. CSI MS spectrum of complex $3b^{4-Cl}$ measured in H₂O at room temperature at orifice 1: 10 V, orifice 2: 10 V, ring lens voltage: 10 V.

4-3-4. 二核銅(II)錯体の親油性

3, 3b^{4-MeO} および 3b^{4-Cl}の親油性を 1-octanol/H₂O 系での分配係数(log P_{ow})^[8]から推定した.
 3, 3b^{4-MeO} および 3b^{4-Cl}の log P_{ow}値は、それぞれ-0.55、0.18、1.94 であった(Table 4-3). 疎水的な置換基の導入により、錯体の親油性が向上することが明らかとなった.

Complex	Hydrophobicity			
	$(\log P_{\rm ow})$			
3	-0.55 ± 0.09			
3b ^{4-MeO}	0.18 ± 0.05			
3b ^{4-Cl}	1.94 ± 0.09			

Table 4-3. Hydrophobicity (log Pow)

4-3-5. 二核銅(II)錯体の酸化還元挙動

配位子に導入した置換基の電子効果を調べるため、pH 6.0 の緩衝液中(MES Buffer, 200 mM), **3**, **3b**^{4-MeO} および **3b**^{4-CI} (0.5 mM)の酸化還元電位を測定した. これらの cyclic voltammogram (CV)と Square Wave Voltammetry (SWV)を Figure 4-9 に示す. これらの錯体の CV では, -0.10–+0.10V の間に重なり合った 2 つの redox couple が見られた. **3** は, $E_{1/2} = -0.05$ V ($\Delta E_p = 0.06$ V)に Cu(I)Cu(I)/Cu(I)Cu(I)に帰属される準可逆な redox couple と $E_{pc} = 0.0$, $E_{pa} = 0.1$ V に Cu(I)Cu(II)/Cu(I)にII)に帰属される不可逆な redox couple を示した^[3]. **3b**^{4-MeO} は, $E_{pc} = -0.09$ V, $E_{pa} = 0.11$ V に, **3b**^{4-CI} は, $E_{pc} = 0.02$ V, $E_{pa} = 0.155$ V にいずれも Cu(II)Cu(II)/Cu(I)に帰属される不可逆な redox couple を示した. Figure 4-8 (D)に, SWV で測定された酸化還元ピークを示す. これらの Cu(I)Cu(II)/Cu(I)に対応する酸化還元電位は, **3b**^{4-MeO} (-0.04 V)<**3** (-0.02 V)
<**3b**^{4-CI} (0.02 V)の順で正側にシフトした. これは, 置換基の電子効果を明確に示しており還元 されやすさの順は **3b**^{4-MeO}
3
 3b^{4-MeO} ぶる. したがって, 還元されにくく, 電子供 与性の MeO 基は Cu(I)を不安定化する. したがって, 還元された錯体の還元力の強さは **3b**^{4-CI}

 3b^{4-CI}
 3
 3b^{4-CI}
 3
 3b^{4-CI}
 3
 4
 4
 5
 5

AscNa 存在下での **3b^{4-MeO}**, **3b^{4-CI}**の還元を電子スペクトルと CSI MS で追跡した結果 を Figure 4-10–4-12 に示す. AscNa の添加で, **3b^{4-MeO}**の 330, 430 nm および **3b^{4-CI}**の 315, 460 nm の吸収帯は直ちに減衰した(Figure 4-10). CSI MS では, **3b^{4-MeO}**, **3b^{4-CI}**は, AscNa の添加で, それぞれ *m/z* 802.95 と 819.00 に[L3^{4-X} + 2Cu(I)]⁺ (Cu(I)Cu(I))に強い質量ピー

140

クを示した(Figure 4-11, 12). これらの結果から, **3b^{4-Cl}が AscNa** で容易に還元 されることがわかる.

Figure 4-9. Cyclic voltammograms of **3** (A), **3b**^{4-MeO} (B), and **3b**^{4-CI} (C) at pH6.0, respectively. The measurements were made at 23°C \pm 0.2°C under N₂. Experimental conditions: [Complex] = 0.5 mM, Glassy carbon working electrode, Pt wire counter electrode, Ag/AgCl reference electrode, Scan rate: 10 mV s⁻¹, Sensitivity: 10 μ A/V. (D) SWV traces of **3** (red), **3b**^{4-MeO} (light green) and **3b**^{4-Cl} (purple) (0.5 mM) at pH 6.0.

Figure 4-10. Absorption spectral changes (red to purple lines, 0.5 sec at every interval) of $3b^{4-MeO}$ (A) and $3b^{4-Cl}$ (B) (0.05 mM) upon addition of AscNa (0.5 mM) in pH 6.0 (MES, 200 mM) and NaOAc (1.5 mM) with 3% MeCN at rt under N₂ (inset: time courses monitored at 330 nm (A) and 315 nm (B)).

Figure 4-11. CSI MS spectra obtained upon reaction of $3b^{4-MeO}$ (0.5 mM) with AscNa (20 eq) in the presence of NaOAc (20 eq) in H₂O at 5°C under N₂, at orifice 1: 10 V, orifice 2: 0 V, ring lens voltage: 10 V.

Figure 4-12. CSI MS spectra obtained upon reaction of $3b^{4-Cl}$ (0.5 mM) with AscNa (20 eq) in the presence of NaOAc (20 eq) in H₂O at 5°C under N₂, at orifice 1: 10 V, orifice 2: 0 V, ring lens voltage: 10 V.

4-3-6. 二核銅(II)錯体の還元的 O2活性化

3 は AscNa と反応して Cu(I)Cu(II)と Cu(I)Cu(I)に還元され、O₂を活性化してヒドロキ シラジカル(HO•)を生成すると報告されている. 空気下での、**3b**^{4-MeO}、**3b**^{4-CI}と AscNa の 反応を coumarin と pentafluorobenzenesulfonyl fluoresce (PFBS)を用いて蛍光スペクトルで 追跡し、HO•と H₂O₂が生成することを見出した. 37°C、pH 6.0 ないしは pH 7.4 でのこ れらの蛍光スペクトルの経時変化を Figure 4-13、4-14 に示す. 細胞内では抗酸化剤が数 mM で存在するため、今回、AscNa を 1500 μ M 添加した. coumarin と HO•の反応では umbelliferone が生じて 332 nm で励起すると 452 nm に、また PFBS と H₂O₂の反応では fluorescein が生じて 385 nm で励起すると 513 nm に蛍光バンドを示す^[9, 10]. Figure 4-13 (A)に示す coumarin を用いた追跡の 452 nm の経時変化より、HO•生成量は、**3b^{4-MeO} 3b^{4-CI}**の順で多かった. Figure 4-13 (B)に示す PFBS を用いた追跡の 513 nm の経時変化よ り、H₂O₂ 生成量は、**3b^{4-CI} <3b^{4-MeO}**の順で多かった. 錯体の 2 電子還元体 Cu(I)Cu(I)との 反応で O₂ が 2 電子還元されるとペルオキソ種が生じ、さらに 1 電子還元されると HO• が生じると考えられる. **3b^{4-MeO}**の μ -1,1-OAc が水中で容易に水分子と置換することか ら、これらから生じるペルオキソ種はもう 1 電子還元される前に直ちに H₂O₂ を放出す ると予測され、Figure 4-13 (B)の結果とよく一致する.

一方, Figure 4-13 (B)に示すように $3b^{4Cl}$ の反応では H_2O_2 生成量が少ない. 前述のように $3b^{4Cl}$ の μ -1,3-OAc は水分子と置換せず安定である. この事実から, $3b^{4Cl}$ から生じるペルオキソ種による H_2O_2 放出は遅いと考えられる. このために, このペルオキソ種 は H_2O_2 を放出する前に 1 電子還元されて HO・が生じる反応が主反応になったと考えられる. また, 電子求引性の Cl 基は Cu(II)のルイス酸性を高めるのでペルオキソ種の還元を容易にするはずであり, HO・生成を有利していると考えられる.

また, Figure 4-13 (B)に示すように, **3b**^{4-MeO} および **3b**^{4-CI} はともに正常細胞に近い環境 である pH 7.4 でも HO•が生じること, pH 6.0 と同様に HO•生成量は, **3b**^{4-MeO} < **3b**^{4-CI}の 順で多いことが明らかとなった.

143

Figure 4-13. Time courses of the normalized emission intensity monitored at 452 nm (A) and 513 nm (B) for **3b^{4-MeO}** (light green) and **3b^{4-CI}** (purple). Experimental conditions: [NaCl] = 10 mM, [buffer] = 10 mM (MES, pH 6.0), [complex] = 30 μ M, [AscNa] = 1500 μ M, [coumarin] = 500 μ M (A) or [PFBS] = 25 μ M (B), under air at 37°C.

Figure 4-14. Time courses of the normalized emission intensity monitored at 452 nm for **3b^{4-MeO}** (light green) and **3b^{4-CI}** (purple). Experimental conditions: [NaCl] = 10 mM, [buffer] = 10 mM (MOPS, pH 7.4), [complex] = 30 μ M, [AscNa] = 1500 μ M, [coumarin] = 500 μ M, under air at 37°C.

4-3-7. 二核銅(II)錯体の細胞毒性

3, 3b^{4-MeO} および 3b^{4-Cl} の細胞毒性をさまざまな細胞を用いて MTT assay^[11-13]で評価した.細胞増殖 50%阻害濃度(50% Inhibition Concentration, IC₅₀ 値)は,細胞生存率(%) vs log [X] (X=3, 3b^{4-MeO}, 3b^{4-Cl})をプロットしたグラフから算出した.算出した IC₅₀ 値を Table 4-4 に示す.まず,24 時間作用させた時,3b^{4-MeO},3b^{4-Cl} は全ての細胞株に対して3より も高い毒性を示した(Table 4-3).実際に,子宮頸がん細胞 HeLa,肺がん細胞 A549,膵臓がん細胞 PK-59 に対する IC₅₀ 値は,3 では72.8,92.7,66.5 μ M,3b^{4-MeO} では10.0,20.0,14.7 μ M,3b^{4-Cl} では14.2,21.3,18.1 μ M で,3よりも3b^{4-MeO} は約 4-7 倍,3b^{4-Cl} は約 4-5 倍高い細胞毒性を示した.この結果と第三章において脂溶性の向上が細胞内取 込量の向上に大きく寄与していなかったことから,置換基の疎水効果で錯体の脂溶性が高くなり細胞内での錯体の挙動が変化したことが細胞毒性向上の理由といえる.肺の正常細胞 WI-38,膵臓の正常細胞 2C6 に対する IC₅₀ 値は,3 では121,88.2 μ M,3b^{4-MeO} では22.0,23.7 μ M で,3 と 3b^{4-MeO} は正常細胞よりもがん細胞に対してそれぞれ約 1.3 倍,1.1–1.6 倍高い細胞毒性を示し、3 と 3b^{4-MeO} はがん細胞選択性を示した.一方で,3b^{4-Cl} はがん細胞よりも正常細胞に対して約 1.9–7.1 倍高い細胞毒性を示し,正常細胞選択性を示した.

Complex	$IC_{50} (\mu M) (Mean \pm SD)$							
	Cervical	Lung			Pancreas			
	HeLa	A549	WI-38	SF	PK-59	2C6	SF	
	(Cancer)	(Cancer)	(Normal)	51	(Cancer)	(Normal)	51	
3	72.8 ± 2.1	92.7 ± 1.4	121 ± 11	1.3	66.5 ± 3.1	88.2 ± 8.9	1.3	
3b ^{4-MeO}	10.0 ± 2.8	20.0 ± 1.6	22.0 ± 2.3	1.1	14.7 ± 0.9	23.7 ± 1.7	1.6	
3b ^{4-Cl}	14.2 ± 2.3	21.3 ± 1.5	2.94 ± 0.28	0.14	18.1 ± 1.5	9.53 ± 0.64	0.53	

Table 4-4. In vitro cytotoxicity of 3, 3b^{4-MeO}, and 3b^{4-Cl} against various cancer and normal cells by means of MTT assay (24 h) (Mean ± SD)

4-3-8. 二核銅(II)錯体の細胞内での ROS 生成

3, 3b^{4-MeO}, 3b^{4-Cl}の細胞内での ROS 生成を 2',7'-dichlorofluorescin diacetate (DCFH-DA) を用いて共焦点顕微鏡で観察した. DCFH-DA は細胞内エステラーゼによる脱アセチル 化で非蛍光型の 2',7'-dichlorodihydrofluorescin (DCFH)となり、さらに ROS による酸化で 蛍光型の 2',7'-dichlorodihydrofluorescein (DCF)となる^[14-16]. HeLa 細胞に 3, 3b^{4-MeO} およ び 3b^{4-Cl}を 4 時間作用させたときの結果を Figure 4-15-4-17 に示す. また, 錯体の細胞 小器官分布を特定するため, ER 染色剤 ER-Tracker[™] Red (BODIPY[™] TR Glibenclamide), Golgi 体染色剤 BODIPY™ TR Ceramide complexed to BSA, ミトコンドリア染色剤 MitoTracker[™] Deep Red FM を用いて共染色を行った. 3, 3b^{4-MeO} および 3b^{4-CI}の作用に より、細胞内で DCF の緑色蛍光が観察されたことから、錯体は細胞に取込まれ、細胞 内で ROS を生成したことが明らかになった.3 では、DCF の緑色蛍光がミトコンドリ ア染色剤の赤色蛍光と重なって黄色に観察されたことから、 ミトコンドリアに存在し、 ROS を生成したといえる(Figure 4-15 (C)). 3b^{4-MeO}, 3b^{4-CI}では, DCF の緑色蛍光が ER 染色剤, Golgi 体染色剤の赤色蛍光と重なって黄色に観察されたことから, これらは ER, Golgi 体に存在し, ROS を生成したといえる(Figure 4-16, 4-17(A), (B)). 3b^{4-MeO}, 3b^{4-CI} が疎水的な膜系からなる ER や Golgi 体に局在したのは、MeO, Cl 基の疎水効果で錯体 の脂溶性が増大したためと考えられる. ER や Golgi 体には、様々なストレスに対する ストレス応答機構が備わっており、細胞死が誘導される.3b^{4-MeO},3b^{4-CI}は、ERやGolgi 体に局在して ROS 生成で酸化ストレスを誘導することにより、ミトコンドリアに主に 局在する3よりも高い細胞毒性を示したと考えられる.

細胞取込経路を調べるため、4°C、37°C 条件で、3、3b^{4-MeO} および 3b^{4-Cl} (100 μM)を HeLa 細胞に対して 1 時間作用させた.結果を Figure 4-18、4-19 に示す.4°C 条件(Figure 4-18)でも、37°C 条件(Figure 4-19)と同様の緑色蛍光が観察されたことから、3、3b^{4-MeO} および 3b^{4-Cl} は直接膜透過によって細胞に取込まれていることが示唆された.同濃度の 3、3b^{4-MeO}、3b^{4-Cl} (100 μM)を HeLa 細胞に作用させた際の DCF の緑色蛍光強度を比較す ると 3b^{4-MeO}<3<3b^{4-Cl} であり、これは 4-3-6 において測定を行った水中における HO•の 生成量の順(Figure 4-13(A))と一致した.

Figure 4-15. Confocal microscopic images of **3** (70 μ M) in HeLa cells on 4 h incubation in the dark. Green fluorescence indicates the fluorescence of DCF ($\lambda_{ex} = 488$ nm). Red fluorescence indicates ER staining of ER-TrackerTM Red (BODIPYTM TR Glibenclamide) (1 μ M) ($\lambda_{ex} = 561$ nm) (A), Golgi apparatus staining of BODIPYTM TR Ceramide complexed to BSA (1 μ M) ($\lambda_{ex} = 561$ nm) (B), and mitochondrial staining of MitoTrackerTM Deep Red FM (50 nM) (Thermofisher) ($\lambda_{ex} = 638$ nm) (C). Scale bar is 50 μ m.

Figure 4-16. Confocal microscopic images of **3b**^{4-MeO} (10 μ M) in HeLa cells on 4 h incubation in the dark. Green fluorescence indicates the fluorescence of DCF ($\lambda_{ex} = 488$ nm). Red fluorescence indicates ER staining of ER-TrackerTM Red (BODIPYTM TR Glibenclamide) (1 μ M) ($\lambda_{ex} = 561$ nm) (A), Golgi apparatus staining of BODIPYTM TR Ceramide complexed to BSA (1 μ M) ($\lambda_{ex} = 561$ nm) (B), and mitochondrial staining of MitoTrackerTM Deep Red FM (50 nM) (Thermofisher) ($\lambda_{ex} = 638$ nm) (C). Scale bar is 50 μ m.

Figure 4-17. Confocal microscopic images of **3b**^{4-Cl} (10 μ M) in HeLa cells on 4 h incubation in the dark. Green fluorescence indicates the fluorescence of DCF ($\lambda_{ex} = 488$ nm). Red fluorescence indicates ER staining of ER-TrackerTM Red (BODIPYTM TR Glibenclamide) (1 μ M) ($\lambda_{ex} = 561$ nm) (A), Golgi apparatus staining of BODIPYTM TR Ceramide complexed to BSA (1 μ M) ($\lambda_{ex} = 561$ nm) (B), and mitochondrial staining of MitoTrackerTM Deep Red FM (50 nM) (Thermofisher) ($\lambda_{ex} = 638$ nm) (C). Scale bar is 50 μ m.

Figure 4-18. Confocal microscopic images of HeLa cells. After preincubation for 30 min in the dark 4°C condition, none (A), **3** (B), **3b**^{4-MeO} (C), and **3b**^{4-CI} (D) (100 μ M) with DCF (20 μ M) were added and then incubated 1 h in the dark 4°C condition. Green fluorescence indicates the fluorescence of DCFDA ($\lambda_{ex} = 488$ nm). Scale bar is 50 μ m.

Figure 4-19. Confocal microscopic images of HeLa cells. None (A), **3** (B), **3b**^{4-MeO} (C), and **3b**^{4-CI} (D) (100 μ M) with DCF (20 μ M) were added and then incubated 1 h in the dark 37°C condition. Green fluorescence indicates the fluorescence of DCF ($\lambda_{ex} = 488$ nm). Scale bar is 50 μ m.

3b^{4-CI}と 3、3b^{4-MeO}の間でがん細胞選択的毒性が異なる理由を明らかとするため、肺 および膵臓のがん細胞と正常細胞内で ROS 生成を観測した. 共焦点顕微鏡の強度等の 条件を揃えて測定した結果を Figure 4-20-4-24 に示す. 3 と 3b^{4-MeO}は、がん細胞 A549、 PK-59 内では DCF の強い緑色蛍光が観察されたが、正常細胞 WI-38、2C6 ではほとんど 観察されなかった(Figure 4-21, 4-22). 一方、3b^{4-CI}はがん細胞 A549、PK-59 でも正常細 胞 WI-38、2C6 でも DCF の強い緑色蛍光が観察された(Figure 4-23). 以上の結果から、 がん細胞よりも抗酸化剤濃度の低い正常細胞の環境下では、3、3b^{4-MeO}は ROS 生成量が 少ないために正常細胞への細胞毒性が低下したといえる. 3b^{4-CI}は、3 と 3b^{4-MeO}よりも 酸化還元電位が高いので、抗酸化剤濃度が低い正常細胞の環境下でも容易に還元されて ROS 生成が起こり、酸化ストレス耐性のない正常細胞に対して高い細胞毒性を示し、こ れにより正常細胞選択的毒性を示したと考えられる.

4-3-6 で示したように,水中で PFBS を用いた H_2O_2 生成の測定により,**3**, **3b**^{4-MeO} は AscNa との反応で H_2O_2 を生成したが, **3b**^{4-CI} は H_2O_2 生成量が少なかった. そこで細胞 内 H_2O_2 の検出試薬である BES- H_2O_2 -Ac^[17,18]を用いて HeLa 細胞内での H_2O_2 生成を調べた. BES- H_2O_2 -Ac は細胞内に取り込まれ,細胞内エステラーゼによって脱アセチル化さ れた後,さらに H_2O_2 との反応で蛍光型となる. その結果を Figure 4-24 に示す. **3**, **3b**^{4-CI} を作用させると,細胞内において緑色蛍光がほとんど観察されなかった (Figure 4-24 (B), (D))が, **3b**^{4-MeO} を作用させると,強い緑色蛍光が見られた (Figure 4-24 (C)). **3b**^{4-MeO} は,還元後に O_2 との反応で形成されるヒドロペルオキソ中間体が不安定なために,3電子目の還元による HO-生成が起こる前に H_2O_2 を放出するので H_2O_2 生成量が高くなる と考えられる.

152

Figure 4-20. Confocal microscopic images in A549 cells (A), WI-38 cells (B), PK-59 cells (C), and 2C6 cells (D). Green fluorescence indicates the fluorescence of DCF ($\lambda_{ex} = 488$ nm). Scale bar is 50 µm.

Figure 4-21. Confocal microscopic images of **3** (70 μ M) in A549 cells (A), WI-38 cells (B), PK-59 cells (C), and 2C6 cells (D) on 4 h incubation in the dark. Green fluorescence indicates the fluorescence of DCF ($\lambda_{ex} = 488$ nm). Scale bar is 50 μ m.

Figure 4-22. Confocal microscopic images of **3b**^{4-MeO} (10 μ M) in in A549 cells (A), WI-38 cells (B), PK-59 cells (C), and 2C6 cells (D) on 4 h incubation in the dark. Green fluorescence indicates the fluorescence of DCF ($\lambda_{ex} = 488$ nm). Scale bar is 50 μ m.

Figure 4-23. Confocal microscopic images of **3b**^{4-Cl} (10 μ M) in A549 cells (A), WI-38 cells (B), PK-59 cells (C), and 2C6 cells (D) on 4 h incubation in the dark. Green fluorescence indicates the fluorescence of DCF ($\lambda_{ex} = 488$ nm). Scale bar is 50 μ m.

Figure 4-24. Confocal microscopic images of HeLa cells. None (A), **3** (B), **3b**^{4-MeO} (C), and **3b**^{4-CI} (D) (100 μ M) with BES-H₂O₂-Ac (5 μ M) were added and then incubated 1 h in the dark 37°C condition. Green fluorescence indicates the fluorescence of BES-H₂O₂-Ac (λ_{ex} = 488 nm). Scale bar is 50 μ m.

4-4. 結論

本章では, 2,6-bis(amide-tether dpa)-p-cresol 配位子(HL3)とその二核銅(II)錯体[Cu₂(µ-1,1-OAc)(µ-1,3-OAc)(L3)](OAc) (3)のピリジル基の4位に電子供与性のMeO基や電子求 引性の Cl 基を持つ HL3^{4-MeO}と HL3^{4-Cl}の錯体[Cu₂(µ-1,1-OAc)(µ-1,3-OAc)(L3^{4-MeO})]Y [Y = PF_6 (**3a**^{4-MeO}), OAc (**3b**^{4-MeO})], $[Cu_2(\mu-1,3-OAc)_2(L3^{4-Cl})]Y [Y = ClO_4 ($ **3a** $^{4-Cl}), OAc ($ **3b** $^{4-Cl})]$ 合成し,X線構造解析,蛍光測定,MTT assay,共焦点レーザー顕微鏡などの測定を通 して置換基による錯体構造, ROS 生成能力, 細胞毒性に及ぼす電子効果と疎水効果を調 べた. 電子供与性の MeO 基は 3a^{4-MeO} で μ-1,1-OAc 架橋,電子求引性の Cl 基は 3a^{4-Cl} で ドナー性の高い μ-1,3-OAc 架橋を安定化した. 水溶液中では 3b^{4-MeO}の μ-1,1-OAc は H₂O で置換されたが、3b^{4-Cl}の μ-1,3-OAc はそのまま保持された.酸化還元電位は 3b^{4-MeO}< 3<3b^{4-CI}の順であり、電子効果に従った.3b^{4-MeO}、3b^{4-CI}は3と同様にAscNaで速やか に Cu(I)Cu(I)に還元され, 還元的 O₂活性化で ROS として H₂O₂ と HO•を生成した. ROS 生成量(H₂O₂ (3b^{4-MeO}>3b^{4-Cl})と HO• (3b^{4-MeO}<3b^{4-Cl}))は電子効果に依存し, MeO 基は還 元後に O2 との反応で形成されるヒドロペルオキソ中間体が不安定なために H2O2 の放 出を促進し、Cl 基は還元後に O2 との反応で形成されるペルオキソ中間体が安定である ため、もう1電子を受け取って HO•を生成することができたと考えられる. さらに、 3b^{4-MeO}, 3b^{4-CI}は, 3 よりも HeLa 細胞に対してそれぞれ 7 倍と 5 倍高い細胞毒性を示し た. 3b^{4-MeO}, 3b^{4-CI}は疎水性の高い膜系からなる ER, Golgi 体に局在して ROS を生成し た. これは, MeO, Cl 基の疎水効果による 3b^{4-MeO}, 3b^{4-Cl}の脂溶性の増大に起因すると 考えられ,ストレス応答機構を有する ER, Golgi 体での ROS 生成が 3b^{4-MeO}と 3b^{4-CI}の 細胞毒性を向上させたと考えられる.また、3b^{4-MeO}はがん細胞選択的であったが、3b⁴⁻ ^{CI}は正常細胞選択的であった. 3b^{4-MeO}の ROS 生成量は正常細胞よりもがん細胞で多か ったが、3b4CIの ROS 生成量は正常細胞でもがん細胞でも同程度であった.この ROS 生 成量の違いは,正常細胞とがん細胞における抗酸化剤濃度の違いと置換基の電子効果の 違いによって引き起こされており、結果的に 3b4-MeO のがん細胞選択性と 3b4-CI の正常細 胞選択性に繋がったと考えられる.この研究から、二核銅錯体によるがん細胞選択的毒 性を, 配位子に導入した置換基効果で制御できることが示された.

4-5. 実験方法

4-5-1. 試薬

試薬については、合成中間体や錯体を除き、高純度製品を和光純薬工業、東京化成、 シグマアルドリッチ社製から選択して購入した.溶媒については、合成に用いるものは 必要に応じて乾燥蒸留した. ER 染色剤には ER-Tracker[™] Red (BODIPY[™] TR Glibenclamide) (invitrogen), Golgi 体染色剤には BODIPY[™] TR Ceramide complexed to BSA (invitrogen), ミトコンドリア染色剤には MitoTracker[™] Deep Red FM (invitrogen)を用い た. 細胞内の ROS 観察には H₂DCFDA (DCFH-DA, 2',7'-Dichlorodihydrofluorescein diacetate) (Selleck Chemicals)^[14, 15]を用い、細胞内の H₂O₂ 観察には BES-H₂O₂-Ac (Wako)^{[17, ^{18]}を用いた. **3** は既報の論文^[3]に従って合成した.}

4-5-2. 測定装置

元素分析(C, H, N)は、Perkin-Elmer 社製 Elemental Analyzer 2400 II を用いて測定した. UV-vis 吸収スペクトルは、Agilent 社製 8454 紫外可視分光光度計を用いて測定した.pH 測定は、HORIBA 製 LAQUA electrode を標準緩衝液で校正した後に測定した.Electron spray ionization MS (ESI MS)及び Cold spray ionization MS (CSI MS)スペクトルは、日本電 子製 JMS-T100CSRX the AccuTOF CS を用いて、MeOH, MeCN または H₂O を溶媒として 測定した.赤外線(IR)スペクトルは、SHIMADZU Single Reflection HATR IRAffinity-1 MIRacle 10 で測定した.¹H NMR スペクトルは、日本電子製 ECA-500RX フーリエ変換 核磁気共鳴装置(500 MHz)を使用し、基準物質として tetramethylsilane (TMS)または sodium 3-(trimethylsilyl)propionate-2,2,3,3-*d*4 (TSP)を用いて測定した.蛍光スペクトルは、HITACHI Spectral fluorometer F-7000 で測定した. MTT assay は、Thermo ScientificTM MultiskanTM FC を用い て測定を行った.共焦点顕微鏡は、Nikon Instech 社製共焦点レーザー顕微鏡 A1 を用い た.

4-5-3. 配位子(HL3^{4-X})とその二核銅(II)錯体(3^{4-X}) (X = MeO, Cl)の合成

Methyl 4-chloropicolinate (24)の合成^[19, 20]

Picolinic acid (23) (48.2 g, 0.391 mol)を SOCl₂ (150 mL)に溶解させ, DMF (5 mL)を加え て 75°C で 3 日間加熱還流した. SOCl₂ をある程度留去した後, toluene (100 mL)を加え てさらに共沸させた. 反応容器を氷浴に浸し, 脱気窒素置換した後, toluene (100 mL), MeOH (13 mL)加え, そのまま 2 時間攪拌した. 析出した固体をヌッチェで濾過し, 真 空乾燥した. この固体を 500 mL ビーカーに入れ,氷浴に浸し,飽和 Na₂CO₃水溶液を 塩基性になるまで加えた後,CHCl₃ (3×200 mL)で分液した.有機層に Na₂SO₄を加えて 脱水した後,ヌッチェで濾過し,濾液をロータリーエバポレーターで濃縮すると赤褐色 の油状物質が得られた.これに hexane を加え,真空乾燥すると赤褐色の固体が得られ た.この固体に hexane を加え,80°C で熱時濾過すると薄茶色の結晶が得られたので, これを少量の hexane で濾過,真空乾燥した(35.4 g, Yield: 53%).¹H NMR (500 MHz, CDCl₃): δ /ppm = 8.67 (dd, J = 0.57, 5.2 Hz, 1H, Py), 8.15 (dd, J = 0.57, 2.0 Hz, 1H, Py), 7.52 (dd, J = 2.0, 5.2 Hz, 1H, Py), 4.05 (s, 3H, CH₃).

4-Chloro-2-hydroxymethylpyridine (25)の合成^[19]

24 (20.0 g, 0.117 mol)を MeOH-THF (120/70 mL)に溶解させ、氷浴に浸し、CaCl₂ (52.0 g, 0.469 mol)を慎重に加えて脱気窒素置換した後、室温で 20 分間攪拌した.反応容器を氷浴に浸し、NaBH₄ (8.80 g, 0.233 mol)を加えて脱気窒素置換した後、室温で 2 時間半攪拌した. TLC (silica gel, EtOAc/hexane 1/1)で原料の消失を確認した後、反応容器を氷浴に浸し、H₂O (200 mL)を加えて室温で 2 時間攪拌した.反応溶液をロータリーエバポレーターで濃縮し、EtOAc (3 × 200 mL)で分液した. 有機層に Na₂SO₄ を加えて脱水した後、 *ヌッチェで濾過し、濾液をロータリーエバポレーターで濃縮し、*真空乾燥すると白色の 固体が得られた(16.3 g, Yield 97%). ¹H NMR (500 MHz, CDCl₃): *δ*/ppm = 8.46 (d, *J* = 5.7 Hz, 1H, Py), 7.31 (d, *J* = 1.7 Hz, 1H, Py), 7.23 (dd, *J* = 1.7, 5.7 Hz, 1H, Py), 4.75 (s, 2H, CH₂), 3.40 (brs, 1H, OH).

4-Chloro-2-formylpyridine (26)の合成^[19]

100 mL ナスフラスコに MnO₂ (90.0 g)を入れ、ジムロート管を取り付け、真空乾燥し ながらヒートガンで水分を除去した.これに **25** (8.00 g, 55.7 mmol)を加え、CHCl₃ (96 mL) に溶解させた後、80°C で 36 時間加熱還流した.¹H NMR スペクトルで原料が残ってい ないことを確認した後、反応容器を室温に戻した. MnO₂ をセライト濾過で除去し、濾 液をロータリーエバポレーターで濃縮、真空乾燥すると黄色の固体が得られた(6.55 g, Yield 83%).¹H NMR (500 MHz, CDCl₃): δ /ppm = 10.1 (s, 1H, CHO), 8.70 (d, *J* = 5.2 Hz, 1H, Py), 7.96 (d, *J* = 2.3 Hz, 1H, Py), 7.54 (dd, *J* = 2.3, 5.2 Hz, 1H, Py).

2-Hydroxymethyl-4-methoxypyridine (27)の合成^[19, 20]

25 (3.00 g, 20.9 mmol)を MeOH (60 mL)に溶解させ, NaOMe (24.0 g, 444 mmol)を加え, 脱気窒素置換した後, 120°C で一晩加熱還流した. ¹H NMR スペクトルで原料が残って いないことを確認した後,反応容器を室温に戻し, 12 M HCl を用いて pH を慎重に 7-8 にした. 析出物をセライト濾過で除いたのち,濾液をロータリーエバポレーターで濃 縮し,真空乾燥すると薄黄色の固体が得られた(2.24 g, Yield 77%). ¹H NMR (500 MHz, CDCl₃): δ/ppm = 8.34 (d, *J* = 5.7 Hz, 1H, Py), 6.77 (d, *J* = 2.3 Hz, 1H, Py), 6.74 (dd, *J* = 2.3, 5.7 Hz, 1H, Py), 4.71 (d, *J* = 4.6 Hz, 2H, CH₂), 3.86 (s, 3H, OCH₃), 3.78 (t, *J* = 4.6 Hz, 1H, OH).

2-Folmyl-4-methoxypyridine (28)の合成^[19]

100 mL ナスフラスコに MnO₂ (23.1 g)を入れ、ジムロート管を取り付け、真空乾燥し ながらヒートガンで水分を除去した.これに **27** (2.14 g, 15.4 mmol)を加え、CHCl₃ (25 mL) に溶解させた後、80°C で 24 時間加熱還流した.¹H NMR スペクトルで原料が残ってい ないことを確認した後、反応容器を室温に戻した. MnO₂ をセライト濾過で除去し、濾 液をロータリーエバポレーターで濃縮、真空乾燥すると茶色の油状物質が得られた(1.87 g, Yield 89%).¹H NMR (500 MHz, CDCl₃): δ/ppm = 10.1 (s, 1H, CHO), 8.60 (d, *J* = 5.5 Hz, 1H, Py), 7.48 (d, *J* = 2.9 Hz, 1H, Py), 7.03 (dd, *J* = 2.9, 5.5 Hz, 1H, Py), 3.93 (s, 3H, OCH₃).

2-Chloromethyl-4-methoxypyridine (29 (X = MeO))の合成^[19]

25 (2.19 g, 15.7 mmol)を CH₂Cl₂ (12 mL)に溶解させ, SOCl₂ (10 mL)を加えた後, 50°C で 4 時間加熱還流した. SOCl₂ を留去すると黄色の固体が得られた. これを飽和 NaHCO₃ 水溶液(50 mL)に溶解させ, CHCl₃ (3×150 mL)で分液した. 有機層に Na₂SO₄ を加えて脱 水した後, ヌッチェで濾過し, 濾液をロータリーエバポレーターで濃縮, 真空乾燥する と橙色の油状物質が得られた(2.43 g, Yield 98%). ¹H NMR (500 MHz, CDCl₃): δ /ppm = 8.39 (d, *J* = 5.7 Hz, 1H, Py), 7.00 (d, *J* = 2.6 Hz, 1H, Py), 6.76 (dd, *J* = 2.6, 5.7 Hz, 1H, Py), 4.63 (s, 2H, CH₂), 3.88 (s, 3H, OCH₃).

4-Chloro-2-chloromethylpyridine (29 (X = Cl))の合成^[19]

29 (X = Cl)は、**29 (X = MeO)**と同様の手順で**27** を原料として合成し、黄色の油状物質 として得られた(Yield 98%). ¹H NMR (500 MHz, CDCl₃): δ /ppm = 8.48 (d, *J* = 5.2 Hz, 1H, Py), 7.52 (d, *J* = 2.0 Hz, 1H, Py), 7.26 (dd, *J* = 2.0, 5.2 Hz, 1H, Py), 4.65 (s, 2H, CH₂).

2-Azidomethyl-4-methoxypyridine (30 (X = MeO))の合成^[19]

29 (X = MeO) (2.43 g, 15.4 mmol), NaN₃ (3.10 g, 47.7 mmol)を DMF (50 mL)に溶解させ, 脱気窒素置換した後, 50°C で一晩攪拌した.反応容器を室温に戻した後, 飽和 NaHCO₃ 水溶液(100 mL)を加え, EtOAc (3×30 mL)で分液した. 有機層を取り出した後, 飽和 NaCl 水溶液(2×300 mL)で分液した. 有機層に Na₂SO₄ を加えて脱水した後, ヌッチェで濾過 し, 濾液をロータリーエバポレーターで濃縮, 真空乾燥すると茶色の油状物質が得られ た(2.37 g, Yield 94%). ¹H NMR (500 MHz, CDCl₃): δ/ppm = 8.41 (d, *J* = 5.7 Hz, 1H, Py), 6.88 (d, *J* = 2.3 Hz, 1H, Py), 6.77 (dd, *J* = 2.3, 5.7 Hz, 1H, Py), 4.45 (s, 2H, CH₂), 3.88 (s, 3H, OCH₃).

2-Azidomethyl-4-chloropyridine (30 (X = Cl))の合成^[19]

30 (X = Cl)は、**30** (X = MeO)と同様の手順で**29** (X = Cl)を原料として合成し、茶色の 油状物質として得られた(Yield 94%). ¹H NMR (500 MHz, CDCl₃): δ /ppm = 8.49 (d, J = 5.2 Hz, 1H, Py), 7.39 (d, J = 1.7 Hz, 1H, Py), 7.27 (dd, J = 1.7, 5.2 Hz, 1H, Py), 4.50 (s, 2H, CH₂).

2-Aminomethyl-4-methoxypyridine (31 (X = MeO))の合成^[19]

30 (X = MeO) (2.37 g, 14.4 mmol)を THF (18 mL)に溶解させ、氷浴に浸した後、PPh₃ (5.89 g, 22.5 mmol)を加え、脱気窒素置換した後、0°C で 1 時間攪拌した. さらに室温で 2 時間攪拌し、DART MS で原料が残っていないことを確認した後、H₂O (2 mL)を加え、脱気窒素置換した後、30°C で一晩攪拌した. ロータリーエバポレーターで濃縮し、真空 乾燥すると黄色の固体が得られた. これを CHCl₃ (50 mL)に溶解させ、1 M HCl (3 × 50 mL)で分液した. 水層を取り出した後、4 M NaOH 水溶液で pH を 11 にした. これを CHCl₃ (3 × 200 mL)で分液した. 有機層に Na₂SO₄を加えて脱水した後、ヌッチェで濾過 し、ロータリーエバポレーターで濃縮、真空乾燥すると橙色の油状物質が得られた(1.84 g, Yield 92%). ¹H NMR (500 MHz, CDCl₃): δ /ppm = 8.38 (d, *J* = 5.7 Hz, 1H, Py), 6.83 (d, *J* = 2.6 Hz, 1H, Py), 6.70 (dd, *J* = 2.6, 5.7 Hz, 1H, Py), 3.93 (s, 2H, CH₂), 3.86 (s, 3H, OCH₃).

2-Aminomethyl-4-chloropyridine (31 (X = Cl))の合成^[19]

31 (X = Cl)は、**31 (X = MeO)**と同様の手順で**30 (X = Cl)**を原料として合成し、橙色の 油状物質として得られた(Yield 90%). ¹H NMR (500 MHz, CDCl₃): δ /ppm = 8.67 (dd, J = 0.57, 5.2 Hz, 1H, Py), 8.15 (dd, J = 0.57, 2.0 Hz, 1H, Py), 7.52 (dd, J = 2.0, 5.2 Hz, 1H, Py), 4.05 (s, 2H, CH₂). 1-tert-Butoxycarbonyl-bis(2-(4-methoxypyridyl)methyl)amine) (32 (X = MeO))の合成[19]

28 (1.72 g, 12.5 mmol), **31** (**X** = **MeO**) (1.59 g, 11.5 mmol)を MeOH (13.5 mL)に溶解させ, 脱気窒素置換した後,0°C で 1 時間攪拌した.¹H NMR スペクトルでイミンの形成及び **31** (**X** = **MeO**)が残っていないことを確認した後, NaBH₄ (1.03 g, 27.2 mmol)を加え,再度 脱気窒素置換した後,0°C で 2 時間攪拌した.¹H NMR スペクトルでイミンが残ってい ないことを確認した後,0°C を維持したまま 6 M HCl 水溶液で pH を 1 にした. MeOH をロータリーエバポレーターで濃縮した後,飽和 K₂CO₃ 水溶液を用いて塩基性にした. CH₂Cl₂ (3 × 200 mL)で分液し,有機層に Na₂SO₄ を加えて脱水した後, ヌッチェで濾過 し,濾液をロータリーエバポレーターで濃縮,真空乾燥すると黄色の油状物質が得られ た.

この油状物質を CH₂Cl₂ (24 mL)に溶解させ、氷浴に浸した後、Et₃N (3.26 mL, 23.4 mmol) を加えた. ここに、CH₂Cl₂ (40 mL)に溶解させた Boc₂O (5.09 g, 23.3 mmol)を N₂雰囲気下 で加え、脱気窒素置換した後、0°C で一晩攪拌した. この反応溶液に CH₂Cl₂ (36 mL)を 加え、飽和 NaHCO₃ 水溶液(3 × 30 mL)で分液した. 有機層に Na₂SO₄ を加えて脱水した 後、ヌッチェで濾過し、濾液をロータリーエバボレーターで濃縮、真空乾燥すると茶色 の油状物質が得られた. これを最少量の CHCl₃に溶解させ、シリカゲルカラムクロマト グラフィー(gradient EtOAc/MeOH 100/0 to 20/1)で精製し、目的物が含まれているフラク ションを集めた. これをロータリーエバポレーターで濃縮し、真空乾燥すると黄色の油 状物質が得られた(2.80 g, Yield 68%). ¹H NMR (500 MHz, CDCl₃): δ /ppm = 8.33 (d, J = 5.7 Hz, 2H, Py), 6.84 (s, 1H, Py), 6.73 (s, 1H, Py), 6.69 (d, J = 5.7 Hz, 1H, Py), 6.68 (d, J = 5.7 Hz, 1H, Py), 4.64 (s, 2H, CH₂), 4.55 (s, 2H, CH₂), 3.83 (s, 3H, OCH₃), 3.82 (s, 3H, OCH₃), 1.44 (s, 9H, CH₃).

1-tert-Butoxycarbonyl-bis((2-(4-chloropyridyl)methyl)amine) (32 (X = Cl))の合成^[19]

32 (X = Cl)は, **32 (X = MeO)**と同様の手順で **26** と **31 (X = Cl)**を原料として合成し, 黄色の油状物質として得られた(Yield 60%). ¹H NMR (500 MHz, CDCl₃): δ/ppm = 8.42 (d, J = 5.2 Hz, 2H, Py), 7.33 (s, 1H, Py), 7.23 (s, 1H, Py), 7.19 (d, J = 5.2 Hz, 1H, Py), 7.18 (d, J = 5.2 Hz, 1H, Py), 4.67 (s, 2H, CH₂), 4.57 (s, 2H, CH₂), 1.44 (s, 9H CH₃).

Di((2-(4-methoxypyridyl)methyl)amine) (33 (X = MeO))の合成^[19]

32 (X = MeO) (150 mg, 0.417 mmol)を EtOH (12 mL), 12 M HCl (4 mL)に溶解させ, 脱気 窒素置換した後, 室温で一晩攪拌した. 反応溶液をロータリーエバポレーターで濃縮し, 真空乾燥すると茶色の固体が得られた. これを飽和 K₂CO₃ 水溶液(20 mL)に溶解させ, CH₂Cl₂ (3×60 mL)で分液した. 有機層に Na₂SO₄ を加えて脱水した後, ヌッチェで濾過 し, 濾液をロータリーエバポレーターで濃縮, 真空乾燥すると黄色の油状物質が得られ た(84.2 mg, Yield 78%). ¹H NMR (500 MHz, CDCl₃): δ /ppm = 8.37 (d, *J* = 5.6 Hz, 2H, Py), 6.91 (d, *J* = 2.9 Hz, 2H, Py), 6.69 (dd, *J* = 2.9, 5.6 Hz, 2H, Py), 3.92 (s, 4H, CH₂), 3.84 (s, 6H, OCH₃).

Di((2-(4-chloropyridyl)methyl)amine) (33 (X = Cl))の合成^[19]

33 (X = Cl)は、**33 (X = MeO)**と同様の手順で**32 (X = Cl)**を原料として合成し、黄色の 油状物質として得られた (Yield 88%). ¹H NMR (500 MHz, CDCl₃): δ/ppm = 8.46 (d, J = 5.2 Hz, 2H, Py), 7.40 (d, J = 1.7 Hz, 2H, Py), 7.19 (dd, J = 1.7, 5.2 Hz, 2H, Py), 3.96 (s, 4H, CH₂).

HL3^{4-MeO}の合成

4-methylphenol-2,6-dicaroboxylic acid (34) (25.5 mg, 0.130 mmol)を SOCl₂ (1.5 mL)に溶解 させ、60°C で 4 時間攪拌した. SOCl₂ を留去した後、真空乾燥すると黄色の油状物質が 得られた. この油状物質は精製を行わずに次の反応に用いた. 33 (X = MeO) (84.2 mg, 0.325 mmol), K₂CO₃ (158 mg, 1.14 mmol)を CH₂Cl₂ (2 mL)に溶解させた. この溶液に、先 程の油状物質を CH₂Cl₂ (2 mL)に溶解させた溶液を N₂ flow しながらゆっくりと加え、脱 気窒素置換した後、室温で一晩攪拌した. 反応溶液を桐山漏斗で濾過した後、濾液をロ ータリーエバポレーターで濃縮すると黄色の固体が得られた. これを最少量の CHCl₃ に 溶解させ、アルミナカラムクロマトグラフィー(gradient CHCl₃/MeOH 1/0 to 50/1)で精製 し、目的物が含まれているフラクションを集めた. これをロータリーエバポレーターで 濃縮し、真空乾燥すると黄色の固体が得られた(46.2 mg, Yield 53%). ¹H NMR (500 MHz, CDCl₃): δ /ppm = 12.1 (s, 1H, OH), 8.36 (d, *J* = 5.7 Hz, 2H, Py), 8.31 (d, *J* = 6.0 Hz, 2H, Py), 7.18 (s, 2H, Ph), 7.10 (d, *J* = 1.7 Hz, 2H, Py), 6.74 (dd, *J* = 1.7, 6.0 Hz, 2H, Py), 6.68 (m, 4H, Py), 4.92 (s, 4H, CH₂), 4.59 (s, 4H, CH₂), 3.88 (s, 6H, OCH₃), 3.81 (s, 6H, OCH₃), 2.22 (s, 3H, CH₃). ESI MS (MeOH *m/z*, positive mode). Calcd for [HL3^{4-MeO} + H]⁺: 679.29. Found: 679.29.

HL3^{4-Cl}の合成

HL3^{4-Cl}は、HL3^{4-MeO}と同様の手順で **34** および **33** (**X** = **Cl**)を原料として合成し、黄色の固体として得られた(Yield 65%). ¹H NMR (500 MHz, CDCl₃): δ /ppm = 10.9 (s, 1H, OH), 8.50 (d, *J* = 5.2 Hz, 2H, Py), 8.42 (d, *J* = 5.2 Hz, 2H, Py), 7.66 (s, 2H, Ph), 7.52 (d, *J* = 4.3 Hz,

2H, Py), 7.42 (d, *J* = 4.3 Hz, 2H, Py), 7.31 (s, 2H, Py), 6.97 (s, 2H, Py), 4.83 (s, 4H, CH₂), 4.60 (s, 4H, CH₂), 2.09 (s, 3H, CH₃). ESI MS (MeOH *m*/*z*, positive mode). Calcd for [HL3^{4-Cl} + H]⁺: 695.09. Found: 695.09.

二核銅(II)錯体 3b^{4-MeO}の合成

MeCN (3 mL)に Cu(OAc)₂ (27.5 mg, 0.151 mmol)を溶解させた溶液に, MeCN (2 mL)に HL3^{4-MeO} (43.4 mg, 0.0757 mmol)を溶解させた溶液をゆっくり加え, 室温で 30 分間攪拌 した. 反応溶液をロータリーエバポレーターで濃縮し, 最終体積を約 1 mL 程度にした. この溶液に Et₂O を加えると固体が析出したので, これを濾過し, 真空乾燥すると緑色 の固体が得られた(66.6 mg, Yield 80%). Anal. calcd for [Cu₂(µ-1,1-OAc)(µ-1,3-OAc)(L3^{4-MeO})](OAc)•4H₂O: C, 49.00; H, 5.16; N, 7.97. Found: C, 49.03; H, 4.77; N, 7.80. ESI MS (H₂O *m/z*, positive mode). Calcd for [**3b^{4-MeO}** – OAc]⁺: 921.16. Found: 921.10. IR (KBr): *i*/cm⁻¹ = 3514, 3433, 2924, 2849, 1614, 1566, 1497, 1424, 1393, 1325, 1304, 1265, 1244, 1190, 1159, 1038, 964, 910, 829, 789, 772, 745, 681, 619.

二核銅(II)錯体 3a^{4-MeO}の合成

MeCN (1 mL)に溶解させた **3b^{4-MeO}** (8.7 mg, 7.94 μmol)の溶液に, 1 M NH₄PF₆ MeCN 溶 液(8.9 μL, 8.9 μmol)を加え,室温で 10 分間攪拌した. この溶液に benzene を少量加え, Et₂O と気液拡散することによって,単結晶 X 線構造解析に適した緑色の固体が得られた.

二核銅(II)錯体 3b4-CI の合成

MeCN (2 mL)に Cu(OAc)₂ (72.0 mg, 0.396 mmol)を溶解させた溶液に, MeCN (2 mL)に HL3^{4-Cl} (138 mg, 0.198 mmol)を溶解させた溶液をゆっくり加え,室温で 30 分間攪拌した. 反応溶液をロータリーエバポレーターで濃縮し,最終体積を約 1 mL 程度にした. この 溶液に Et₂O を加えると固体が析出したので,これを濾過し,真空乾燥すると緑色の固 体が得られた(142 mg, Yield 67%). Anal. calcd for [Cu₂(µ-1,3-OAc)₂(L3^{4-Cl})](OAc)•2.5H₂O: C, 44.84; H, 3.76; N, 8.04. Found: C, 44.49; H, 3.33; N, 7.82. ESI MS (H₂O *m/z*, positive mode). Calcd for [**3b^{4-Cl}** – OAc]⁺: 936.96. Found: 936.95. IR (KBr): $\tilde{\nu}$ /cm⁻¹ = 3694–3237, 3152–2812, 1622, 1591, 1576, 1557, 1422, 1344, 1302, 1242, 1200, 1112, 1047, 1026, 993, 949, 876, 827, 787, 741, 719, 700, 681, 619.

二核銅(II)錯体 3a^{4-CI}の合成

MeCN (0.2 mL)に溶解させた **3b^{4-Cl}** (7.8 mg, 7.29 μmol)の溶液に, 1 M NaClO₄•H₂O MeCN 溶液(7.8 μL, 7.8 μmol)を加え, 室温で 10 分間攪拌した. この溶液を Et₂O と気液拡散することによって, 単結晶 X 線構造解析に適した緑色の固体が得られた.

4-5-4. 3, 3b^{4-MeO}, 3b^{4-Cl}の Cyclic Voltammetry (CV)測定

200 mM Buffer 溶液(pH 6.0 (MES), 10 mL), 2 mM NaOAc に **3**, **3b**^{4-MeO}, **3b**^{4-Cl} が 0.5 mM となるように溶液を調製した. この溶液に水系参照電極(Ag/AgCl), 作用電極として glassy carbon, 対極として Pt wire を浸し, 窒素を 10 分間バブリングした後, CV 測定を 行った. なお, 測定感度は 10 μA/V, 掃引速度は 10 mV s⁻¹で行った.

4-5-5. 3, 3b^{4-MeO}, 3b^{4-Cl}の Square Wave Voltammetry (SWV)の測定

200 mM Buffer 溶液(pH 6.0 (MES), 10 mL), 2 mM NaOAc に **3**, **3b**^{4-MeO}, **3b**^{4-Cl} が 0.5 mM となるように溶液を調製した. この溶液に水系参照電極(Ag/AgCl), 作用電極として glassy carbon, 対極として Pt wire を浸し, 窒素を 10 分間バブリングした後, SWV 測定 を行った. なお, 測定感度は 10 μA/V で行った.

4-5-6. 3b^{4-MeO}, 3b^{4-Cl}を AscNa と反応させた際の電子スペクトル測定

200 mM Buffer 溶液(pH6.0, MES), 1.5 mM NaOAc, 3%MeCN に **3b**^{4-MeO}, **3b**^{4-Cl} が 0.05 mM となるように加えた溶液を 2 面セルに入れ, 窒素置換した後, 23±0.2°C に保った. AscNa の水溶液(錯体に対して 10 eq)を加え, 300–900 nm の範囲でスペクトルを追跡した. スペクトルの安定を確認した.

4-5-7. coumarin を用いた 3b^{4-MeO}, 3b^{4-CI}による HO•生成の検出

3b^{4-MeO}, **3b^{4-CI}** (30 μM), coumarin (0.5 mM), NaCl (10 mM)の Buffer 溶液 (pH 6.0 (MES), pH 7.4 (MOPS)) (10 mM)を 4 面セルに加え, 37 ± 0.2°C に保った. この溶液に AscNa 水 溶液を 1500 μM になるように加え, 励起波長 332 nm での 452 nm の蛍光強度を 60 分間, スリット幅 5.0 nm で測定した.

4-5-8. PFBS を用いた 3b^{4-MeO}, 3b^{4-CI}による H₂O₂ 生成の検出

3b^{4-MeO}, **3b^{4-CI}**(30 μM), PFBS (25 μM), NaCl (10 mM)の Buffer 溶液 (pH 6.0 (MES)) (10 mM)を 4 面セルに加え, 37±0.2°C に保った. この溶液に AscNa 水溶液を 1500 μM にな

るように加え,励起波長 485 nm での 513 nm の蛍光強度を 60 分間,スリット幅 5.0 nm で測定した.

4-5-9. 細胞株とその培養条件

HeLa (ヒト子宮頸がん細胞)は同志社大学 北岸研究室(京都,日本)から譲り受けた. A549 (ヒト肺がん細胞),WI-38 (ヒト肺正常細胞),PK-59 (ヒト膵臓がん細胞)および 2C6 (ヒト膵臓正常細胞)は理化学研究所 バイオリソース研究センター(BRC)(茨城,日本)から購入した.HeLa 細胞,A549 細胞,WI-38 細胞および PK-59 細胞は,牛胎児血清(fetal bovine serum,FBS) (10%), penicillin (100 units mL⁻¹), streptomycin (100 μ g mL⁻¹)を加えた Dulbecco's Modified Eagle's Medium (DMEM, high glucose), Dulbecco's modified Eagle's medium (DMEM, low glucose), Minimum Essential Medium Eagle (MEM)または Roswell Park Memorial Institute 1640 Medium (RPMI 1640)培養液をそれぞれ用いて、5% CO₂ 濃度,37°C の条件下で培養した.2C6 細胞は、新生仔ウシ血清(newborn calf serum) (10%),牛胎児血 清(fetal bovine serum,FBS) (5%),馬血清(horse serum) (2.5%), penicillin (100 units mL⁻¹), streptomycin (100 μ g mL⁻¹)を加えた Mixture F-10 Ham (HamF10)培養液を用いて、5% CO₂ 濃度,37°C の条件下で培養した.

4-5-10. 3-(4,5-dimethylthiazole)-2,5-diphenyltetrazolium bromide (MTT) assay

96 well プレートに blank として培地のみを 1 列と, 培地に 10×10⁴ cells/mL になるように懸濁させた細胞を 1 well につき 100 µL ずつ control と錯体のサンプル数分の列に蒔き, 5% CO₂ 濃度, 37°C の条件下でインキュベーションした. HeLa 細胞と A549 細胞に関しては 24 時間後, WI-38 細胞と PK-59 細胞, 2C6 細胞に関しては 48 時間後, 培地を除いて PBS(-)で 2 回洗浄した. その後, サンプル列にはそれぞれの濃度に調製した 3, 3b^{4-MeO}, 3b^{4-Cl}, HL3, HL3^{4-MeO}, HL3^{4-Cl}のサンプル(1-1,000 µM)を, blank と control 列には培地のみを 1 well につき 100 µL ずつ加え, インキュベーションした. 24 時間後, 培地を除いて PBS(-)で 2 回洗浄し, MTT reagent (5 mg mL⁻¹)と培地を 1:9 の割合で混合させた溶液を 1 well につき 100 µL ずつ加え再度インキュベーションした. 3 時間後, アスピレーターで溶液を吸引した後, 生体用 DMSO を 1 well につき 100 µL ずつ加えた. 3 分間シェイクして沈殿したホルマザンを完全に溶解させた後, 570 nm の吸光度を吸光度測定器で測定した. この結果より, 3, 3b^{4-MeO}, 3b^{4-Cl}, HL3, HL3^{4-MeO}, HL3^{4-Cl}の細胞 増殖 50%阻害濃度(50% Inhibition Concentration, IC₅₀ 値)を算出した. この測定は最低 3 回行い, 再現性をとった.

4-5-11. 共焦点顕微鏡による細胞内 ROS の確認

観察用ディッシュ(φ 14 mm)に 2 × 10⁵ cells/mL に調製した HeLa 細胞または A549 細胞, WI-38 細胞, PK-59 細胞, 2C6 細胞の懸濁液を 400 µL ずつ加え, 5% CO₂ 濃度, 37°C の条件下で 24 時間(HeLa 細胞, A549 細胞)または 48 時間(WI-38 細胞, PK-59 細胞, 2C6 細胞)インキュベーションした. インキュベーション後, 培地を除いて PBS(-)で 2 回洗 浄し, **3**, **3b^{4-MeO}**, **3b^{4-CI}**を溶解させた培地溶液(70 µM (**3**), 10 µM (**3b^{4-MeO}**, **3b^{4-CI}**)) (400 µL) を加え, 5%CO₂ 濃度, 37°C の条件下で 4 時間インキュベーションした. 最後の 30 分に は, ROS の蛍光プローブである DCFDA (20 µM, 400 µL)を添加し, 再度インキュベーションした. インキュベーションした. インキュベーションと, 培地を除いて PBS(-)で 2 回洗浄した. そこに, ER 染色剤である ER-TrackerTM Red (BODIPYTM TR Glibenclamide) (1 µM, 400 µL), ミトコ ンドリア染色剤である MitoTrackerTM Deep Red FM (50 nM, 400 µL)をそれぞれの dish に 加え, 5%CO₂ 濃度, 37°C の条件下で 30 分間インキュベーションした. 培地を除いて PBS(-)で 2 回洗浄した後, 培地を加え, 共焦点レーザー顕微鏡で細胞を観察した. ER および Golgi 体染色剤の観察には 561 nm, ミトコンドリア染色剤の観察には 640 nm, DCFDA 蛍光型である DCF の観察には 488 nm の励起レーザーを用いた.

4-5-12. 共焦点顕微鏡による細胞取込経路の確認

観察用ディッシュ(φ 14 mm)に 2×10⁵ cells/mL に調製した HeLa 細胞の懸濁液を 400 µL ずつ加え, 5% CO₂ 濃度, 37°C の条件下で 24 時間インキュベーションした. 4°C で錯体 を作用させるディッシュは, 最後 30 分のみ 4°C でインキュベーションした。インキュ ベーション後, 培地を除いて PBS(–)で 2 回洗浄し, **3**, **3b**^{4-MeO}, **3b**^{4-CI} (100 µM)と ROS の蛍光プローブである DCFDA (20 µM)を溶解させた培地溶液(400 µL)を加え, 5%CO₂ 濃 度, 37°C の条件または 4°C の条件下でそれぞれ 1 時間インキュベーションした. 所定 の時間後, 培地を除いて PBS(–)で 2 回洗浄した後, 培地を加え, 共焦点レーザー顕微 鏡で細胞を観察した. DCFDA 蛍光型である DCF の観察には 488 nm の励起レーザーを 用いた.

4-5-13. 共焦点顕微鏡による細胞内 H₂O₂の確認

観察用ディッシュ(φ14 mm)に 2×10⁵ cells/mL に調製した HeLa 細胞の懸濁液を 400 µL ずつ加え, 5% CO₂ 濃度, 37℃ の条件下で 24 時間インキュベーションした. インキュ ベーション後, 培地を除いて PBS(-)で 2 回洗浄し, **3**, **3b**^{4-MeO}, **3b**^{4-CI} (100 µM)と H₂O₂ の蛍光プローブである BES-H₂O₂-Ac (5 µM)を溶解させた培地溶液(400 µL)を加え, 5%CO₂ 濃度, 37℃ の条件下で 1 時間インキュベーションした. 所定の時間後, 培地を 除いて PBS(-)で 2 回洗浄した後, 培地を加え, 共焦点レーザー顕微鏡で細胞を観察し た. BES-H₂O₂-Ac の蛍光型の観察には 488 nm の励起レーザーを用いた.

4-6. 参考文献

[1] (a) H. Yang, S. Ren, S. Yu, H. Pan, T. Li, S. Ge, J. Zhang, N. Xia, *Int. J. Mol. Sci.* 2020, 21(18), 6461. (b)Y. Matsuya, S. J. McMahon, M. Ghita, Y. Yoshii, T. Sato, H. Date, and K. M. Prise, *Sci. Rep.* 2019, 9, 9483. (c) H. Umezawa, K. Maeda, T. Takeuchi, Y. Okami, *J. Antibiot.* 1966, 19, 200.
[2] (a) K. D. Karlin, *J. Am. Chem. Soc.* 2001, 123, 5588–5589. (b) Y. Jin and J. A. Cowan, *J. Am. Chem. Soc.* 2005, 127, 8408–8415 (c) T. A. van den Berg, B. L. Feringa, and G. Roelfes, *Chem. Commun.* 2007, 2, 180–182. (d) J. He, P. Hua, Y.-J. Wanga, M.-L. Tonga, H. Sunb, Z.-W. Mao, and L.-N. Ji, *Dalton Trans.* 2008, 24, 3207–3214. (e) C. Lüdtke, S. Sobottka, J. Heinrich, P. Liebing, S. Wedepohl, B. Sarkar, and N. Kulak, *Chem. Eur. J.* 2021, 27, 3273–3277.

[3] Y. Kadoya, M. Hata, Y. Tanaka, A. Hirohata, Y. Hitomi, M. Kodera, *Inorg. Chem.* **2021**, *60*, 5474.

[4] (a) J. G. Topliss, J. Med. Chem. 1972, 15, 1006–1011. (b) J. G. Topliss, J. Med. Chem. 1977, 20, 463–469.

[5] A. W. Addison, T. N.Rao, J. Reedijk, J. van Rijn, and G. C. Verschoor, *Journal of the Chemical Society, Dalton Transactions* **1984**, 1349–1356.

[6] S. D. Kurbah, A. Kumar, I. Syiemlieh, A. K. Dey, and R. A. Lal, *J. Mol. Struct.* **2018**, *1154*, 535–542.

[7] Y. Zhang, L.-Z. Liu, Y.-D. Peng, N. Li, and W.-K. Dong, *Transition Met. Chem.* 2019, 44, 627–639.

[8] L. Ropel, L. S. Belve'ze, S. N. V. K. Aki, M. A. Stadtherr, and J. F. Brennecke, *Green. Chem.* 2005, 7, 83–90.

- [9] Y. Nosaka, and A. Y. Nosaka, Chem. Rev. 2017, 117, 11302.
- [10] S. Leichnitz, J. Heinrich, and N. Kulak, Chem. Commun. 2018, 54, 13411.
- [11] R. Scherließ. Int. J. Pharm. 2011, 411, 98-105.
- [12] J. Meerloo, G. J. L. Kaspers, and J. Cloos, Humana Press. 2011, 411, 237–245.
- [13] A. Bahuguna, I. Khan, V. K. Bajpai, and S. C. Kang, *Bangladesh J Pharmacol.* 2017, 12, 115–118.

[14] K. A. Szychowski, K. Rybczyńska-Tkaczyk, M. L. Leja, A. K. Wójtowicz, and J. Gmiński, *Environ Sci Pollut Res Int.* **2016**, *23*, 12246–12252.

[15] J. H. Park, S.-H. Moon, D. H. Kang, H. J. Um, S.-S. Kang, J. Y. Kim, and H. Tchah, *Invest Ophthalmol Vis Sci.* 2018, 59, 5108–5115.

- [16] N.-L. Pan, J.-X. Liao, M.-Y. Huang, Y.-Q. Zhang, J.-X. Chen, Z.-W. Zhang, Z.-X. Yang, X.E. Long, X.-T. Wu, and J. Sun, *J. Inorg. Biochem.* 2022, 229, 111729
- [17] H. Peng, M. Zhu, W. Kong, C. Tang, J. Du, Y. Huang, and H. Jin, *Front Pharmacol.* 2023, 14, 1161542.
- [18] L. Su, S. Liu, X. Liu, B. Zhang, M. Li, L. Zeng, and L. Li, PeerJ. 2021, 9, e10976.
- [19] H. Fuchida, S. Tabata, N. Shindo, I. Takashima, Q. Leng, Y. Hatsuyama, I. Hamachi, and A. Ojida, *Bull. Chem. Soc. Jpn.* 2015, *88*, 784–791.
- [20] P. Comba, M. Morgen, and H. Wadepohl, Inorg. Chem. 2013, 52, 6481–6501.

第五章:Burst of DNA Double-Strand Breaks by Dicopper(II) Complex with a *p*-Cresol-2,6-Bis(amide-tether-dpa) Ligand via Reductive O₂-Activation

5-1. 要旨

本章では、2,6-bis(amide-tether dpa)-*p*-cresol 配位子(HL3)の二核銅(II)錯体[Cu₂(μ -1,1-OAc)(μ -1,3-OAc)(L3)](OAc) (**3**)がアスコルビン酸ナトリウム(AscNa)の存在下で O₂ 分子 を還元的に活性化し、supercoiled plasmid pUC19 DNA (Form I)の 26%が1分間で直鎖状 DNA (Form III)に変換される DNA 二本鎖切断(double-strand breaks, dsb)の burst を見出し た. この理由を、Robson型二核銅(II)錯体[Cu₂(μ -OH)(bpmp)](ClO₄)₂ (**4**)および N4Py 配位 子の鉄(II)錯体[Fe(MeCN)(N4Py)](ClO₄)₂ (**5**)との比較から明らかにした.分光学的、電気 化学的、速度論的研究により、**3** は AscNa との反応で Cu(I)Cu(I)と Cu(I)Cu(I)に還元さ れ、これらの還元種が O₂ を 3 電子還元して DNA 切断の酸化活性種であるヒドロキシ ラジカル(HO•)を生成した.HO•の生成はテレフタル酸(TA)の蛍光スペクトル変化によ り観測した.さらに、等温滴定カロリメトリー(ITC)、電子吸収スペクトル、IR スペク トルにより、**3**、**5** の DNA 結合能力を調べた.その結果、**3** の速い HO•生成,DNA への 結合数の多さ、DNA への強固な結合が、**3** による DNA dsb の burst を可能にする理由で あることが明らかになった.

Machi Hata, Yuki Kadoya, Yutaka Hitomi, and Masahito Kodera "Burst of DNA Double-Strand Breaks by Dicopper(II) Complex with a *p*-Cresol-2,5-Bis(amide-tether-dpa) Ligand via Reductive O₂-Activation" *Bull. Chem. Soc. Jpn.* **2022**, *95*, 1546–1552.
5-2. 緒言

DNA 二本鎖切断(double-strand breaks, dsb)は、遺伝子編集^[1]やがんなどの重大疾病の治 療への応用^[2]の観点から重要である. Bleomycin (BLM)^[3]は臨床利用されている抗がん剤 であり、鉄錯体 Fe-BLM は高い DNA 切断活性を示し、DNA 一本鎖切断(single-strand breaks, ssb)と二本鎖切断(dsb)を触媒して ssb と dsb の比率は 1:3 から 1:20 であると報告 されている^[4]. Fe-BLM の DNA dsb は,好気的条件下で進行し、回文配列である 5'-GTAC-3'部位に結合して一回目の DNA 鎖の切断を経てその近傍での二回目の DNA 相補鎖の 切断により達成される^[4]. また Fe-BLM が還元剤である Dithiothreitol (DTT)の存在下で O_2 分子を活性化し、supercoiled plasmid DNA (Form I)を直鎖状 DNA (Form III)に変換する dsb の初期の速い反応(burst)を触媒して、20 秒で ssb と dsb が 80:20 の割合で生成すると 報告された^[5]. Fe-BLM は O_2 を還元的に活性化し、活性種として活性化 BLM-Fe(III) O_2 H を形成すると提案されている^[6]. しかし、DNA dsb の詳細なメカニズムはまだ解明され ていない^[7]. そこで、DNA dsb の burst を再現できる金属錯体の開発が重要である.

Fe-BLM による酸化的 DNA 切断を模倣するため、様々な金属錯体が開発されてきた ^[8-27]. しかし、合成金属錯体の DNA 切断速度は Fe-BLM よりもはるかに遅く、1分以 内に反応が終了するような DNA dsb の burst の報告例はない. Cowan らは、還元剤 AscNa (250 μM)存在下でトリペプチド配位子の銅錯体(25 μM)による還元的 O₂活性化を通して 比較的速い DNA dsb が進行すると報告した^[18]. Roelfes らは、N4Py とその関連配位子の 鉄錯体が酸化的 DNA 切断で高い活性を示し、還元剤 DTT (1 mM)存在下において少量 の錯体(1 μM)を用いた還元的 O₂活性化で、supercoiled plasmid DNA (Form I)を 60 分で 8– 32%の直鎖状 DNA (Form III)に変換する DNA dsb が進行することを報告した^[24, 25].

最近,当研究室の角谷らは 2,6-bis(amide-tether dpa)-*p*-cresol 配位子(HL3)とその二核銅 (II)錯体[Cu₂(μ-1,1-OAc)(μ-1,3OAc)(L3)](OAc) (**3**)を開発し,**3** が過酸化水素(H₂O₂)存在下 で DNA の二本鎖を酸化的に切断することを見出した^[28].**3** (30 μM)は, H₂O₂ (50 μM)存 在下で supercoiled plasmid pUC19 DNA (Form I)の 42%を 60 分で直鎖状 DNA (Form III)に 変換した.これは合成金属錯体の中では比較的高い DNA 切断活性だが,Fe-BLM より ははるかに遅い.

本章では、活性酸素種(ROS)濃度の高いがん細胞中では恒常性を保つために還元剤濃 度が高いことに注目し、還元剤 AscNa (150 μ M)存在下で**3** (30 μ M)による DNA 切断実 験を行った. **3** は還元的に O₂ を活性化し、1 分間で 26%の supercoiled plasmid DNA (Form I)を直鎖状 DNA (Form III)に変換する DNA dsb の burst を進行させることを見出した. 合成金属錯体を用いた反応でこれほど速い DNA dsb は報告例がない. そこで Robson 型

173

二核銅(II)錯体[Cu₂(µ-OH)(bpmp)](ClO₄)₂(4)^[29]とBLMの金属中の模倣配位子であるN4Py の鉄(II)錯体[Fe(MeCN)(N4Py)](ClO₄)₂(5)^[24, 30]を比較に用い,3によるDNA dsbのburst が進行する原因の解明を試みた.3–5のDNA切断活性,電気化学的性質,HO・生成速 度,DNA 結合様式などを比較した結果,HO・生成の速さとDNA への結合数の多さが, 3によるDNA dsbのburstを可能にする重要な特徴であることが明らかになった.本章 で用いたHL3,3,4,5の化学構造をFigure 5-1 に示す.

HL3

5

Figure 5-1. Chemical Structures of HL3, 3, 4, and 5.

5-3. 結果と考察

5-3-1. AscNa を用いた還元的 O2 活性化による 3-5 の酸化的 DNA 切断活性

MES Buffer (10 mM, pH 6.0), NaCl (10 mM), pUC19 DNA (50 μ M bp), **3**, **4** または**5** の混合溶液を作成した. これに空気下 37℃で AscNa を加え,反応追跡のために一定量 のサンプルを時間毎に採取した. この反応における Form I, II, III は, アガロースゲル 電気泳動で分析した. Form I, II, III はそれぞれスーパーコイルの閉環状,一本鎖切断 の環状,二本鎖切断の直線状 DNA である^[31]. **3**の反応の Form I, II, III の割合(%)の時 間経過とゲル写真を Figure 5-2 に示す. Figure 5-2 に示すように,**3** (30 μ M)と AscNa (150 μ M)を用いた反応で,誘導期は存在せず 1 分間で Form I の 26%が Form III, 74%が Form II に変換された. また Form III は 10 分間で 50%以上形成されており, 30 分以上の反応 ではランダム切断によるスメアパターンが出現した.反応初期の 15, 30, 45 秒では, それぞれ 15, 20, 25%の Form III が生成した.合成金属錯体による Form III への DNA dsb で, このような速い反応は,これまでに報告例がない.

Figure 5-2. Time courses of Form I (red), II (light green), and III (purple) in the reaction of **3** under typical reaction conditions described in the text and the agarose gel electrophoresis profile lane 1: DNA control; lane 2: DNA with Hind III; lanes 3–13: data at 0, 0.25, 0.5, 0.75, 1, 2, 3, 4, 5, 10, and 20 min.

3と AscNa に関する濃度依存性の結果を、それぞれ Figure 5-3、5-4 に示す. この実験 におけるゲル写真と詳細なデータは Figure S5-1、Table S5-1、S5-2 に示す. これらの結 果から、DNA 切断は[**3**]と[AscNa]に依存することが分かった. **3**や AscNa の非存在下で は、60 分間で 80%以上の Form I が未反応だった. また、**3**、AscNa の存在下でも嫌気下 では、60 分間で Form I は 32%しか Form II に変換されなかった(Figure 5-5、Figure S5-2、 Table S5-3). したがって、**3**、AscNa、O₂ は DNA dsb の burst に不可欠である. Figure 5-3 (C)の結果から、[AscNa]を減少させても誘導期は全く見られず DNA dsb の burst が進 行することがわかる. しかし、Figure 5-4 (C)の結果から、10 μ M の **3** と AscNa (150 μ M) を用いた場合、Form III 生成には誘導期が存在し、DNA dsb の burst は観察されない. し たがって、DNA dsb の burst は[**3**]に大きく依存することがわかる.

Figure 5-3. Time courses for Form I (A), Form II (B), and Form III (C) dependent on [AscNa] in the DNA cleavage by **3**. Experimental conditions: [pUC19 DNA] = 50 μ M bp, [**3**] = 30 μ M, [AscNa] = 0–150 μ M, [Cu(OAc)₂] = 70 μ M, [NaCl] = 10 mM, [MES buffer] = 10 mM (pH 6.0) at 37°C. Experiments were carried out at least three times.

Figure 5-4. Time courses for Form I (A), Form II (B), and Form III (C) dependent on [**3**] in the DNA cleavage by **3**. Experimental conditions: [pUC19 DNA] = 50 μ M bp, [**3**] = 0–10 μ M, [AscNa] = 150 μ M, [Cu(OAc)₂] = 70 μ M, [NaCl] = 10 mM, [MES buffer] = 10 mM (pH 6.0) at 37°C. Experiments were carried out at least three times.

Figure 5-5. Time courses for Form I (red), II (light green), and III (purple) in the reaction of **3** under N₂. Experimental conditions: [pUC19 DNA] = 50 μ M bp, [**3**] = 30 μ M, [AscNa] = 150 μ M, [Cu(OAc)₂] = 70 μ M, [NaCl] = 10 mM, [MES buffer] = 10 mM (pH 6.0) at 37°C. Experiments were carried out at least three times.

3による DNA 酸化切断の機構を調べるため, **3**(0-8 µM)と AscNa (0-150 µM)を用いて Form I の減衰速度を測定し, 擬一次速度解析を行った. その結果を Figure 5-6, 5-7, S5-3, S5-4, Table S5-4, S5-5 に示す. Figure 5-6 (E), 5-7 (E)に示す, 擬一次速度定数 *k*_{obs} vs [**3**]および *k*_{obs} vs [AscNa]のプロットから, [**3**]に対しては二次の依存性, [AscNa]に対して は飽和の依存性が見られた. この結果より, **3**が AscNa によって還元され, 還元体であ る Cu(I)Cu(II)と Cu(I)Cu(I)が DNA 切断の律速となる O₂活性化に関与することが示唆さ れた. したがって, Figure 5-4 の錯体濃度依存の測定において[**3**]に DNA dsb が極端に依 存した理由は, **3**による DNA dsb が[**3**]に対して二次反応速度論に従うためであると考 えられる.

Figure 5-6. Pseudo-first-order plots for the decrease of Form I in the reactions of **3** ((A) 2, (B) 4, (C) 6, and (D) 8 μ M) with AscNa (50 μ M) at pH 6.0 under air at 37°C. (E) A plot of the pseudo-first-order rate constant vs concentration of **3** (0–8 μ M). (F) Time courses of Form I upon reaction of **3** (red 0, yellow 2, light green 4, blue 6, and purple 8 μ M) with AscNa 50 μ M). Experiments were carried out at least three times.

Figure 5-7. Pseudo-first-order plots for the decrease of Form I in the reactions of **3** (5 μ M) with AscNa ((A) 10, (B) 30, (C) 50, and (D) 100 μ M) at pH 6.0 under air at 37°C. (E) A plot of the pseudo-first-order constant vs concentration of AscNa (0–150 μ M). (F) Time courses of Form I upon reaction of **3** (5 μ M) with AscNa (red 0, yellow 10, light green 30, light blue 50, blue 100, and purple 150 μ M).

Figure 5-8 に、3-5 の反応における Form I の減少と Form III の増加の比較、4、5 の反応のゲル写真を示す.また、これらの関連データを Table S5-6 に示す. Figure 5-8 (A)に示す DNA 切断活性の比較より、3 と 5 はいずれも 1 分間で Form I を II に完全に変換するが、4 は Form I の 70%を Form II に変換するのに 60 分かかることがわかる.このことから、3 と 5 は 4 よりもはるかに高い DNA 切断活性を示すといえる.一方、Figure 5-8 (B)の比較から、3 は DNA dsb の burst を起こすが 4 や 5 はほとんど DNA dsb を起こさず、3 が 4 や 5 よりもはるかに高い DNA dsb 活性を示すことが明らかになった.このように、3 の還元的 O_2 活性化で DNA dsb が特異的に加速されること見出された.

Figure 5-8. Comparison of time courses of Form I (A) and III (B) among **3** (red), **4** (green), and **5** (purple) in the reactionsunder reaction conditions described in the text and the agarose gel electrophoresis profiles of **4** (a) and **5** (b). Lane 1: DNA control; lane 2: DNA with Hind III; lanes 3–12: data at 0, 1, 2, 3, 5, 10, 20, 30, 40, and 60min.

5-3-2.3,4および5の酸化還元挙動

DNA 切断活性の違いの理由を明らかにするため、3-5の redox property を AscNa との 反応とサイクリックボルタモグラム(CV)の測定で調べた. さらに、3のバルク電気分解 を電子スペクトル変化で追跡した. Figure 5-9 から、3は AscNa と反応すると容易に還 元されるが、4は全く還元されないことがわかる. これが3は AscNa との反応で O₂分 子を活性化するが、4は活性化しない理由である. 3の減衰を 440 nm と 700 nm で追跡 したところ、最初の減衰はわずかな波長シフトを伴う速いもので、その後ゆっくりと減 衰するという二段階の挙動を示した. このスペクトル変化は、3 が Cu(I)Cu(II)と Cu(I)Cu(I)に段階的に還元さえることを示している^[32]. これは、440 nm で追跡した AscNa 滴定による3の還元でも観察された(Figure 5-10). 3は 1 eq の AscNa によって Cu(I)Cu(II) に還元され、追加の 1 eq によって Cu(I)Cu(I)に還元されており、3を完全に還元するに は 2 eq 以上の AscNa が必要だった.

Figure 5-9. Absorption spectral changes (red to blue lines, 5 sec at every interval) of 3 (0.50 mM) (A) and 4 (0.50 mM) (B) upon addition of AscNa (1.0 mM) in MES buffer (10 mM, pH 6.0) at rt under N₂ (inset: time courses monitored at 700 nm). NaOAc (1.5 mM) is present in the reaction of 3.

Figure 5-10. (A) Electronic absorption spectral change upon addition of AscNa (0 (red), 0.5 (orange), 1.0 (yellow green), 1.5 (light green), 2.0 (light blue), 3.0 (blue), 4.0 (purple) eq) to a solution of 3 (0.5 mM) in the presence of NaOAc (1.5 mM) in MES buffer (10 mM, pH 6.0) under N₂. (B) Plot of absorbance at 440 nm vs. equivalent of AscNa added.

次に, H₂O 中での AscNa による **3** の還元反応における CSI MS スペクトルを Figure 5-11 に示す. *m*/z 682.95 と 741.93 にそれぞれ[L3+2Cu(I)]⁺(Cu(I)Cu(I))と[L3+Cu(I)+Cu(II) +OAc]⁺(Cu(I)Cu(II))に対応する強いピークが現れた. ピーク強度は反応時間とともに変 化し, 1 分間で Cu(I)Cu(II)が主ピークとなり(Figure 5-11 (A)), 2 分間で Cu(I)Cu(I)に変化 した(Figure 5-11 (B)). この結果より, **3** は Cu(I)Cu(II)を経て Cu(I)Cu(I)へと段階的に還元 されることが明らかとなった.

Figure 5-11. CSI MS spectra obtained after 1 min (A) or 2 min (B) upon reaction of **1** (0.5 mM) with AscNa (20 eq) in the presence of NaOAc (20 eq) in H2O at 5°C under N2, at orifice 1: 10 V, orifice 2: 0 V, ring lens voltage: 10 V.

3–5 (0.5 mM)の pH 6.0 の水溶液(MES Buffer, 200 mM)を用いて CV を測定し、電気化 学挙動を調べた. **3**–5 の CV を Figure 5-12 に示す. Figure 5-12 (A)に示す **3** の CV は、 -0.10–+0.10V vs Ag/AgCl の間に重なり合った 2 つの酸化還元カップルを与え、Figure 5-12 (B)および(C)に示すように、2 つの redox couple に分離された. Figure 5-12 (B)の $E_{1/2}$ = -0.05 V (ΔE_p = 0.06 V)の準可逆的な redox couple は Cu(I)Cu(II)/Cu(I)Cu(I)で、Figure 5-12 (C)の E_{pc} = 0.0, E_{pa} = 0.1 V の不可逆的な redox couple は、Cu(II)Cu(II)/Cu(I)Cu(I)Cu(II) に帰属される. OAc 架橋は還元時に解離する傾向があり、**3** の不可逆的な redox couple の原因と考えられる. **3** のバルク電解を-0.003 V \geq –0.12 V で行い、それぞれ 1 eq およ び 2 eq の電子に相当する電流値が得られた. このことから、これらは Cu(I)Cu(II)と Cu(I)Cu(I)の形成に対応することが示された.

Figure 5-12. Cyclic voltammograms of **3** (A, B, C), **4** (D), and **5** (E). The measurements were made at 23°C \pm 0.2°C under N₂. Glassy carbon, Pt wire, and Ag/AgCl are used as working, counter, and reference electrodes, respectively. Scan rate was 10 mV s⁻¹ (**3**) or 100 mV s⁻¹ (**4**, **5**) and sensitivity was 10 μ A/V.

さらに、-0.003 V および-0.12 V vs Ag/AgCl での**3**の還元を、電子吸収スペクトルで 追跡した.その結果をそれぞれ Figure 5-13 (A)、(B)に示す.**3**の 440 nm と 700 nm の吸 収帯の吸光度は、-0.003 V のバルク電解では半減して Cu(I)Cu(II)に対応し、-0.12 V で はさらに減少して Cu(I)Cu(I)が生成した.-0.12V のバルク電解におけるスペクトル変化 は、Figure 5-10 (A)に示した AscNa による**3**の還元で観測されたものとほぼ同じであっ た.これらの結果は、**3** がバルク電解や AscNa との反応で Cu(I)Cu(II)から Cu(I)Cu(I)に 段階的に還元されることを示している.

Figure 5-13. Electronic absorption spectral change of 3 during the bulk electrolysis at -0.003 (A) or -0.12V (B) vs. Ag/AgCl using a Pt mesh working electrode and a Pt wire counter electrode at 23°C ± 0.2 °C under N₂. The time courses of the decrease of 3 monitored at 440 and 700 nm are shown in the inset.

また, Figure 5-12 (D)に示すように, 4 は $E_{pc} = -0.46$ V, $E_{pa} = -0.30$ V で不可逆的な酸 化還元カップルを示した. これは, Cu(II)Cu(II)/Cu(I)Cu(II)に割り当てられる^[31]. Figure 5-9 (B)において, 4 が AscNa で還元されなかったのは還元電位が低すぎるためであると 考えられる. 5 は, Figure 5-12 (E)に示すように, $E_{1/2} = 0.20$ V ($\Delta E_p = 0.10$ V)で可逆的 な redox couple を示し, これは Fe(III)/Fe(II)に対応すると考えられる. これは, Roelfes らが報告した^[24], 還元剤存在下, 5 が空気中で O₂ を活性化して Fe(III)O₂H 錯体を形成 するという事実と一致している.

5-3-3.3 および5の還元的 O2活性化

5-3-2 で述べたように、**3** は AscNa と反応して Cu(I)Cu(I)と Cu(I)Cu(I)に還元される. DNA 切断では[**3**]に対して 2 次の速度依存性が見られたので、Cu(I)Cu(II)と Cu(I)Cu(I)の 両者が O₂活性化に関与することが示唆された. これらの還元体は、Scheme 5-1 に示す ように、O₂を 3 電子還元し、プロトン化されて Cu(II)Cu(I)O₂H 錯体を形成すると考えら れる. これは、**3** による DNA dsb 活性が pH 7.4 よりも pH 6.0 の方が高いという結果か ら考えて妥当である(Figure 5-14 および S5-5、Table S5-7). Cu(II)Cu(I)O₂H は不安定であ り、分光学的には検出できなかった. HO•の生成に必要な Cu(I)O₂H 種のホモリティッ クな O-O 結合切断はエネルギー的に有利な反応であり^[33]、Cu(II)Cu(I)O₂H から HO•が生 成することは合理的である.

Scheme 5-1. Reductive O₂-activation of 3.

Figure 5-14. Time courses of Form III dependent on pH (pH 6.0 (red) and 7.4 (purple)) in the DNA cleavage of **3**. Experimental conditions: [pUC19 DNA] = 50 μ M bp, [**3**] = 30 μ M, [AscNa] = 150 μ M, [Cu(OAc)₂] = 70 μ M, [NaCl] = 10 mM, [buffer] = 10 mM (pH 6.0 (MES) or pH 7.4 (MOPS)) at 37°C. Experiments were carried out at least three times.

次に、空気下での**3**、**5** と AscNa の反応による HO・生成を、テレフタル酸(TA)の蛍光 スペクトル変化により確認した結果を Figure 5-15、5-16 に示す. TA は HO・と反応して 2-ヒドロキシテレフタル酸(HTA)を生成し、310 nm で励起すると 425 nm に蛍光バンド を示す^[34,35]. 同様のスペクトル変化が TA と Fenton 試薬との反応でも見られた(Figure 5-16(A)). Figure 5-15(A)に示すように、空気下で TA と **3**/AscNa を反応させると、蛍光強 度が増加した. 反応で生成した HTA の濃度は、蛍光バンドの強度変化から 5 分で 1.5 μ M、90 分で 3.6 μ M と推定される. これらの値は DNA dsb に十分な HO・濃度に相当す る. 420 nm で追跡した蛍光強度の時間変化から、**3** は **5** よりも約 2 倍多くの HO・を生成 した(Figure 5-15(B)). したがって、**3** は AscNa との反応で O₂分子を効率的に活性化し、 **5** よりも約 2 倍速い形成速度で HO・を形成しているといえる.

Figure 5-15. (A) Emission spectral change (5min in beginning two then 10min at every interval) excited at 310 nm in the reaction of TA with 3/AscNa under air. (B) Time courses of the emission intensity monitored at 420 nm for 3 (red) and 5 (purple). Reaction conditions: 3 or 5 (30 μ M), AscNa (150 μ M), TA (0.5 mM), and NaCl (10mM) in MES buffer (10 mM, pH 6.0) under air at 37°C.

Figure 5-16. (A) Emission spectral change (gray to black) excited at 310 nm in the reaction of TA with Fenton reagent. Reaction conditions: [NaCl] = 10 mM, [buffer] = 10 mM (pH 6.0 (MES)), [TA] = 0.5 mM, $[FeSO_4] = 10 \mu M$, $[H_2O_2] = 0.1 \text{ mM}$, $[EDTA] = 10 \mu M$, [AscNa] = 0.1 mM at 37°C. (B) Emission spectral change (gray to black, 5 min in the beginning then 10 min at every interval) at 310 nm in the reaction of TA with **5** and AscNa under air. Reaction conditions: [NaCl] = 10 mM, [buffer] = 10 mM (pH 6.0 (MES)), [TA] = 0.5 mM, $[5] = 30 \mu M$, $[AscNa] = 150 \mu M$ at 37°C.

さらに、HO・がDNA切断における活性種であることを拡散HO・の阻害剤であるDMSO を用いた阻害実験により確認した. **3**による Form III 生成に対する DMSO^[35-37]の阻害効 果を Figure 5-17 示し、それに関連するデータを Figure S5-6 および Table S5-8 に示す. DMSO は部分的に Form III 生成を阻害し、阻害率は[DMSO] = 1–10 mM の領域で飽和し た. このことから、**3**は DNA と錯体を形成し、その中で生成した HO・は DMSO よりも 速く DNA と反応するため、DMSO により捕捉されないと考えられる. この場合、DMSO 存在下でも DNA との錯体中で dsb が進行し、[DMSO]に関係なく一定量の Form III が生 成する. そして、一部の拡散した HO・を DMSO が捕捉し、Form III の生成を部分的に阻 害したといえる. したがって、DMSO の阻害効果は、**3**が DNA との錯体の形成によっ て DNA dsb を促進することを示唆している.

Figure 5-17. Inhibition effect of DMSO (0 (red), 1 (light green), 5 (light blue), 10 (purple) mM) on Form III production by **3**. Reaction conditions: DMSO (0–10 mM), pUC19 DNA (50 μ M bp), **3** (30 μ M), AscNa (150 μ M), NaCl (10 mM), and Cu(OAc)₂ (70 μ M) in MES buffer (10 mM, pH 6.0) under air at 37°C.

5-3-4.3 および 5の DNA 結合能力

33 mer オリゴ ds-DNA と **3**, **5** の結合相互作用を等温滴定熱量測定(Isothermal titration calorimetry, ITC)により調べた^[38, 39]. 結果を Table 5-1, Figure S5-7 に示す. **5** の結合定数 K は 8.69 × 10⁵ M⁻¹ であり, **3** の 1.31 × 10⁵ M⁻¹ より約 7 倍大きかった. しかし, 錯体濃度(30 μ M)および DNA 濃度(50 μ M bp)の条件で, **3**, **5** の DNA への結合はほぼ飽和するため, K の大きさは DNA dsb の burst にとって重要な因子ではない. 一方, 結合数(N) と熱力学的パラメーター(Δ H°および Δ S°)から, **3**, **5** の DNA 結合様式は異なることがわかり, DNA 結合様式が DNA dsb の burst に重要な役割を果たしていることが示唆された.

Table 5-1. Thermodynamic parameters determined by ITCfor binding of 3 and 5 with a linear 33 mer ds-DNA

Complex	3	5
N (sites)	3.81 ± 0.11	1.80 ± 0.07
$K (\times 10^5 \text{ M}^{-1})$	1.31 ± 0.21	8.69 ± 2.69
ΔH° (kcal•mol ⁻¹)	-2.25 ± 0.10	-1.64 ± 0.06
ΔS° (cal•mol ⁻¹ •K ⁻¹)	16.1	21.9

Tabe 5-1 に示すように、3 および5 の結合数は 33 mer オリゴ ds-DNA に対してそれぞ れ 3.81 および 1.80 であることから、3 および5 はそれぞれ 9 塩基対および 18 塩基対の 間隔で存在することになる. DNA dsb による Form III 生成には、一回目の DNA 鎖切断 の位置の 10 塩基対以内での二回目の DNA 相補鎖の切断が必要である^[40]. 9 塩基対の間 隔で DNA に結合する 3 は隣接する 2 つの錯体が DNA の二本鎖を同時に切断すれば Form III 生成の burst が可能だが、18 塩基対の間隔で結合する 5 では不可能である. こ のように、Form III 生成の burst には、2 つの錯体間の塩基対の数が重要である.

3の*ΔH*°, *ΔS*°はそれぞれ–2.25 kcal•mol⁻¹, 16.1 cal•mol⁻¹•K⁻¹であり, **5**の*ΔH*°, *ΔS*°は それぞれ–1.64 kcal•mol⁻¹, 21.9 cal•mol⁻¹•K⁻¹ であった. この結果は, **3** の DNA 結合は *ΔH*°駆動, **5** の DNA 結合は *ΔS*°駆動であることを示している. **3** の *ΔH*°値は 1 つから 2 つの水素結合に対応する. さらに, **3** の DNA 結合様式を ct-DNA 存在下での IR および 電子吸収スペクトル変化により調べた. **3**のアミドカルボニル基の水素結合を明らかに するために、3 と 3/ct-DNA の IR スペクトルを Figure 5-18 に示す. 3 の 1622 cm⁻¹ の vc=o バンドは、3/ct-DNA では消失した. これは、3 のアミドカルボニル基と ct-DNA の水素 結合による低波数シフトを示す. 電子吸収スペクトルの変化では、Figure 5-19 に示すよ うに、ct-DNA の添加により 3 のクレゾール環のベンゼノイドバンドが減少した. これ らの結果から考えられる 3 と DNA との錯体の構造を Figure 5-20 に示す. 3 は、amidetether の 2 つのカルボニル基の水素結合とクレゾール環のインターカレートの両方によ って DNA に強固に結合していると考えられる. 一方で、5 は水素結合部位やインター カレート部位を持たない. これは、5 の DNA 結合が *ΔS*°駆動型であり、5 が DNA と自 由度の高い結合を形成する理由と考えられる. したがって、3 の DNA dsb の burst は、 結合数と強固な結合によって促進されることが示唆された.

Figure 5-18. IR spectrum of 3 (red), ct-DNA (black), 3 (1 eq) + ct-DNA (10 eq) (purple).

Figure 5-19. Electronic absorption spectral change of benzenoid band of a cresol ring of **3** upon addition of ct-DNA (0 (black), 30 (red), 60 (blue), 90 (yellow), 120 (green), and 150 (purple) μ M bp) to a solution of **3** (30 μ M) in MES buffer (10 mM, pH 6.0), Cu(OAc)₂ (70 μ M) and NaCl (10 mM). The absorption band of DNA is subtracted from each absorption spectrum obtained upon addition of DNA to **3**.

Figure 5-20. A plausible structure of DNA binding complex of 3.

5-4. 結論

本章では、3 が空気下で AscNa との反応により還元的 O₂活性化を介して DNA dsb を 大きく促進することを見出した. これは DNA dsb の burst である. 合成金属錯体による DNA dsb の burst はこれまでに報告されていない. 速度論的,分光学的,電気化学的, 阻害効果, HO•生成,および ITC 測定から,3 の速い HO•生成と DNA 結合様式が,DNA dsb の burst を可能にする重要な特徴であることが明らかになった. これらの結果は,遺 伝子編集や治療への応用に有用な DNA 二本鎖切断剤の開発に新たな方法論を提供する 可能性がある.

5-5. 実験方法

5-5-1. 試薬

試薬については、合成中間体や錯体を除き、高純度製品を和光純薬工業、東京化成、 シグマアルドリッチ社製から選択して購入した.溶媒については、合成に用いるものは 必要に応じて乾燥蒸留した.スーパーコイルドプラスミド pUC19 DNA は、ニッポンジ ーン社から購入した試薬を使用した.仔ウシ胸腺由来のデオキシリボ核酸ナトリウム塩 (type I、fibers) (ct-DNA)は Sigma-Aldrich から購入した.33 mer oligo DNA 5'-d(GAC TCC ACA GTG CAT ACG TGG GCT CCA ACA GGT)-3'とその相補鎖を Thermo Fisher Scientific から購入し、アニーリングすることで 33 mer 二本鎖 DNA にした.3,4 および 5 は既 報の論文^[28,30,31]に従って合成した.

5-5-2. 測定装置

元素分析(C, H, N)は, Perkin-Elmer 社製 Elemental Analyzer 2400 II を用いて測定した. UV-vis 吸収スペクトルは, Agilent 社製 8454 紫外可視分光光度計を用いて測定した.pH 測定は, HORIBA 製 LAQUA electrode を標準緩衝液で校正した後に測定した. Electron spray ionization MS (ESI MS)及び Cold spray ionization MS (CSI MS)スペクトルは, 日本電 子製 JMS-T100CSRX the AccuTOF CS を用いて, MeOH, MeCN または H₂O を溶媒とし て測定した. 赤外線(IR)スペクトルは, SHIMADZU Single Reflection HATR IRAffinity-1 MIRacle 10 で測定した. ¹H NMR スペクトルは, 日本電子製 ECA-500RX フーリエ変換 核磁気共鳴装置(500 MHz)を使用し, 基準物質として tetramethylsilane (TMS)または sodium 3-(trimethylsilyl)propionate-2,2,3,3-*d*4 (TSP)を用いて測定した. 蛍光スペクトルは, HITACHI Spectral fluorometer F-7000 で測定した. 等温滴定型熱量(ITC)測定は, Malvern 社製 MicroCal Isothermal Titration Calorimeter VP-ITC を用いて行った.

5-5-3. DNA 切断実験

3, 4 または 5 の DNA 切断活性は, pUC19 DNA を用い, アガロースゲル電気泳動法 によって評価した. 1.5 mL エッペンチューブに NaCl (10 mM), buffer (pH 6.0 (MES)また は pH 7.4 (MOPS)), 10 mM), pUC19 DNA (50 µM bp), Cu(OAc)₂ (70 µM), 3, 4 または 5 (0–50 µM), AscNa (0–150 µM)となるように調製した溶液を加え, 37℃ の暗所でインキ ュベーションした. 0, 1, 2, 3, 5, 10, 20, 30, 40, 60 分毎にサンプルを採取し, loading buffer (0.025% bromophenol blue, 0.025% xylene cyanol FF, 1.0 mM EDTA and 30% glycerol)を用い て反応をクエンチした. 各サンプルを TAE buffer (Tris/acetate/EDTA)を用いて作成した 1%アガロースゲルにローディングし,100 V で約 1 時間電気泳動を行った.その後, EtBr (0.5 μ g μ L⁻¹)染色を 1 時間行い, VILBER LOURMAT E-BOX-CX5.TS Edge-20.M を 用いてゲルバンドを撮影した.撮影したバンドを,Form I の染色補正値 1.06 を用い, ImageJ ソフトウェアによって解析を行った.この測定は最低 3 回行い,再現性をとっ た.

阻害剤存在下における **3** の DNA 切断活性では, 1.5 mL エッペンチューブに NaCl (10 mM), buffer (pH 6.0 (MES), 10 mM), pUC19 DNA (50 µM bp), Cu(OAc)₂ (70 µM), **3** (30 µM), AscNa (150 µM), 阻害剤 DMSO (1–10 mM)となるように調製した溶液を用いて, 前述の阻害剤非存在下と同様の操作を行うことで評価した.

嫌気下における**3**の DNA 切断活性では, 1.5 mL エッペンチューブに NaCl (10 mM), buffer (pH 6.0 (MES), 10 mM), pUC19 DNA (50 μM bp), Cu(OAc)₂ (70 μM), **3** (30 μM), AscNa (150 μM)となるように調製した溶液を用いて, グローブボックス内において前述 の大気下と同様の操作を行うことで評価した.

5-5-4.3 および4を AscNa と反応させた際の電子スペクトル測定

窒素下で**3**および**4** (0.5 mM), NaOAc (1.5 mM (**3**)または 0 mM (**4**))の Buffer 溶液(pH 6.0 (MES), 10 mM)を 2 面セルに入れ, 25±0.2°C に保った. AscNa の水溶液(錯体に対して 2 eq)を加え, 300–1100 nm の範囲でスペクトルを追跡した.

また, 窒素下で**3** (0.5 mM), NaOAc (1.5 mM)の Buffer 溶液(pH 6.0 (MES), 10 mM)を 2 面セルに入れ, 25±0.2℃ に保った. AscNa の水溶液を錯体に対して 0-4 eq まで順に加え, 300-1000 nm の範囲で各スペクトルを追跡した.

5-5-5.3,4および5のCyclic Voltammetry (CV)測定

200 mM Buffer 溶液(pH 6.0 (MES), 10 mL), 2 mM NaOAc に 3, 4 および 5 が 0.5 mM と なるように溶液を調製した.この溶液に水系参照電極 (Ag/AgCl), 作用電極として glassy carbon, 対極として Pt wire を浸し, 窒素を 10 分間バブリングした後, CV 測定を行っ た. なお, 測定感度は 10 μA/V, 掃引速度は 10 mV s⁻¹(3)または 100 mV s⁻¹(4, 5)で行っ た.

5-5-6.3のバルク電解中における電子スペクトル測定

200 mM Buffer 溶液(pH 6.0 (MES), 10 mL), 2 mM NaOAc に 3 が 0.5 mM となるように 溶液を調製した. この溶液に水系参照電極(Ag/AgCl),作用電極として Pt mesh,対極と して Pt wire を浸し, 窒素を 10 分間バブリングした後, -0.003 および-0.12V でバルク 電解を行った. その際, 同時に 300-900 nm の範囲で UV-vis スペクトルを追跡した.

5-5-7. テレフタル酸(TA)を用いた HO・生成の検出

3, **5** (30 μM), TA (0.5 mM), NaCl (10 mM)の Buffer 溶液(pH 6.0 (MES), 10 mM)を 4 面 セルに加え, 37±0.2°C に保った. この溶液に AscNa 水溶液を 150 μM になるように加 え, 励起波長 310 nm における蛍光スペクトルを 0, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90 分毎 に 350–550 nm の範囲, スリット幅 5.0 nm で測定した.

5-5-8. 等温滴定型熱量(ITC)測定

セルに、33 mer オリゴ二重鎖 DNA (18.75 μM (3)または 40 μM (5)), Buffer (pH6.0 (MES), 10 mM), NaCl (10 mM)となるように調製した溶液を加えた. シリンジには、3 または 4 (1.0 mM), Buffer (pH6.0 (MES), 10 mM), NaCl (10 mM)の溶液を加えた. 37°C において DNA 溶液に各錯体溶液を 28 回(10 μL/回)加え、その際に発生する熱量を測定した. 得 られたデータから希釈熱を引き、ORIGIN ソフトウェアを用いて解析した.

5-5-9. ct-DNA 存在下での3の IR スペクトル測定

3の水溶液に 0 または 10 eq の ct-DNA 水溶液を加えて撹拌した. 凍結乾燥を行った後, IR スペクトルを測定した.

5-5-10. ct-DNA 存在下での3の電子スペクトル測定

3 (30 μM), Cu(OAc)₂ (70 μM), NaCl (10 mM)の Buffer 溶液(pH 6.0 (MES), 10 mM)を 2 面セルに加え, 37±0.2°C に保った. この溶液に ct-DNA 水溶液を 30 μM bp 毎に 150 μM bp まで添加し, 300–1000 nm の範囲で各スペクトルを測定した.

5-6. 参考文献

[1] H. Yang, S. Ren, S. Yu, H. Pan, T. Li, S. Ge, J. Zhang, N. Xia, *Int. J. Mol. Sci.* 2020, 21(18), 6461.

[2] E. Bolderson, D. J. Richard, B. B. S. Zhou, K. K. Khanna, *Clin Cancer Res.* 2009, 15(20), 6314.

[3] H. Umezawa, K. Maeda, T. Takeuchi, Y. Okami, J. Antibiot. 1966, 19, 200.

- [4] Q. Li, T. A. van den Berg, B. L. Feringa, G. Roelfes, Dalton Trans. 2010, 39, 8012.
- [5] V. Murray, J. K. Chen, L. H. Chung, Int. J. Mol. Sci. 2018, 19, 1372.
- [6] L. V. Liu, C. B. Bel III, S. D. Wong, S. A. Wilson, Y. Kwak, M. S. Chow, J. Zhao, K. O.
- Hodgson, B. Hedman, E. I. Solomon, Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 22419.
- [7] R. J. Steighner, L. F. Povirk, Proc. Natl. Acad. Sci. USA. 1990, 87, 8350.
- [8] P. B. Dervan, Science 1986, 232, 464.
- [9] D. S. Sigman, A. Mazumder, D. M. Perrin, Chem. Rev. 1993, 93, 2295.
- [10] W. K. Pogozelski, T. D. Tullius, Chem. Rev. 1998, 98, 1089.
- [11] Q. Jiang, N. Xiao, P. F. Shi, Y. G. Zhu, Z. J. Guo, Coord. Chem. Rev. 2007, 251, 1951.
- [12] Z. Yu, J. A. Cowan, Current Opinion in Chemical Biology 2018, 43, 37.
- [13] K. D. Copeland, M. P. Fitzsimons, R. P. Houser, J. K. Barton, Biochemistry 2002, 41, 343.
- [14] K. J. Humphreys, K. D. Karlin, S. E. Rokita, J. Am. Chem. Soc. 2002, 124, 6009.
- [15] M. S. Melvin, J. T. Tomlinson, G. R. Saluta, G. L. Kucera, N. Lindquist, R. A. Manderville, J. Am. Chem. Soc. 2000, 122, 6333.
- [16] L. Li, K. D. Karlin, S. E. Rokita, J. Am. Chem. Soc. 2005, 127, 520.
- [17] S. Thyagarajan, N. N. Murthy, A. A. N. Sarjeant, K. D. Karlin, S. E. Rokita, J. Am. Chem. Soc., 2006, 128, 7003.
- [18] Y. Jin, J. A. Cowan, J. Am. Chem. Soc., 2005, 127, 8408.
- [19] Y. M. Zhao, J. H. Zhu, W. J. He, Z. Yang, Y. G. Zhu, Y. Z. Li, J. F. Zhang, Z. J. Guo, *Chem. Eur. J.* **2006**, *12*, 6621.
- [20] J. He, P. Hu, Y-J. Wang, M-L. Tong, H. Sun, Z-W. Mao, L-N. Ji, Dalton Trans. 2008, 3207.
- [21] Y. Xu, Y. Suzuki, T. Lönnberg, M. Komiyama, J. Am. Chem. Soc. 2009, 131, 2871.
- [22] Z. Molphy, D. Montagner, S. S. Bhat, C. Slator, C. Long, A. Erxleben, A. Kellett, *Nucleic Acids Res.* 2018, 46, 9918.
- [23] C. Lüdtke, S. Sobottka, J. Heinrich, P. Liebing, S. Wedepohl, B. Sarkar, N. Kulak, *Chem. Eur. J.* 2021, 27, 3273

[24] G. Roelfes, M. E. Branum, L. Wang, L. Que. Jr., Q. Li, B. L. Feringa, J. Am. Chem. Soc. **2000**, *122*, 11517.

[25] R. P. Megens, T. A. van der Berg, A. D. de Bruijn, Q. Li, B. L. Feringa, G. Roelfes, *Chem. Eur. J.* **2009**, *15*, 1723.

- [26] P. Mialane, A. Nivorojkine, G. Pratviel, L. Azema, M. Slany, F. Godde, A. Simaan, F. Banse,
- T. Kargar-Grisel, G. Bouchoux, J. Sainton, O. Horner, J. Guilhem, L. Tchertanova, B. Meunier, J. J. Girerd, *Inorg. Chem.* **1999**, *38*(6), 1085.
- [27] H. Kurosaki, Y. Ishikawa, K. Hayashi, M. Sumi, Y. Tanaka, M. Goto, K. Inada, I. Taniguchi,M. Shionoya, H. Matsuo, *Inorg. Chim. Acta* 1999, 294, 56.
- [28] Y. Kadoya, M. Hata, Y. Tanaka, A. Hirohata, Y. Hitomi, M. Kodera, *Inorg. Chem.* **2021**, *60*, 5474.
- [29] S. Torelli, C. Belle, I. Gautier-Luneau, J. L. Pierre, E. Sain-Aman, J. M. Latour, L. L. Pape,L. D. Luneau, *Inorg. Chem.* 2000, *39*, 3526.
- [30] J. G. Roelfes, M. Lubben, K. Chen, R. Y. N. Ho, A. Meetsma, S. Genseberger, R. M. Hermant,R. Hage, S. K. Mandal, V. G. Young, Jr., Y. Zang, H. Kooijman, A. L. Spek, L. Que, Jr., B. L.Feringa, *Inorg. Chem.* 1999, *38*, 1929.
- [31] S. Torelli, C. Belle, I. Gautier-Luneau, J. L. Pierre, E. Sain-Aman, J. M. Latour, L. L. Pape,L. D. Luneau, *Inorg. Chem.* 2000, *39*, 3526.
- [32] L. Li, A. A. N. Sarjeant, M. A. Vance, L. N. Zakharov, A. L. Rheingold, E. I. Solomon, K. D. Karlin, J. Am. Chem. Soc. 2005, 127, 15360.
- [33] S. Kim, J. W. Ginsbach, J. Y. Lee, R. L. Peterson, J. J. Liu, M. A. Siegler, A. A. Sarjeant, E.
 I. Solomon, K. D. Karlin, *J. Am. Chem. Soc.* 2015, *137*, 2867.
- [34] Y. Nosaka, A. Y. Nosaka, Chem. Rev. 2017, 117, 11302.
- [35] S. Leichnitz, J. Heinrich, N. Kulak, Chem. Commun. 2018, 54, 13411.
- [36] X. Dong, X. Wang, M. Lin, H. Sun, X. Yang, Z. Promotive, Inorg. Chem. 2010, 49, 2541.
- [37] O. I. Aruoma, B. Halliwell, M. Dizdaroglu, J. Biol. Chem. 1989, 264, 13024.
- [38] A. Erxleben, Coord. Chem. Rev. 2018, 360, 92.
- [39] M. Kodera, Y. Kadoya, K. Fukui, A. Nomura, Y. Hitomi, H. Kitagishi, *Bull. Chem. Soc. Jpn.* **2019**, *92*, 739.
- [40] D. Freifelder, B. Trumbo, Biopolymers 1969, 7, 681.

5-7. Supporting Information

Figure S5-1. (A) Agarose gel electrophoresis profiles upon reaction of pUC19 DNA (50 μ M bp) with **3** (0–10 μ M) and AscNa (150 μ M) at pH 6.0. (a)–(d) correspond to [**3**] of 0, 2, 5, and 10 μ M, respectively. (B) Agarose gel electrophoresis profiles upon reaction of pUC19 DNA (50 μ M) with **3** (30 μ M) and AscNa at pH 6.0. (a) and (b) correspond to [AscNa] of 50 and 100 μ M, respectively. Lane 1: DNA control; lane 2: DNA with Hind III; lanes 3–12: corresponded to the time of 0, 1, 2, 3, 5, 10, 20, 30, 40, and 60 min, respectively.

Complex	AscNa	Time	Form I	Form II	Form III
(µM)	(µM)	(min)	(%)	(%)	(%)
		0	92.7 ± 0.1	7.3 ± 0.1	-
		1	92.6 ± 0.0	7.4 ± 0.0	-
		2	91.4 ± 0.4	8.6 ± 0.4	-
		3	91.3 ± 0.5	8.7 ± 0.5	-
0	150	5	91.0 ± 0.4	9.0 ± 0.4	-
0	150	10	88.8 ± 1.5	11.2 ± 1.5	-
		20	87.2 ± 1.0	12.8 ± 1.0	-
		30	86.2 ± 1.8	13.8 ± 1.8	-
		40	85.2 ± 1.0	14.8 ± 1.0	-
		60	77.1 ± 1.0	22.9 ± 1.0	-
		0	90.1 ± 0.6	9.9 ± 0.6	-
		1	89.1 ± 0.6	10.9 ± 0.6	-
		2	88.4 ± 0.7	11.6 ± 0.7	-
		3	85.7 ± 0.7	14.3 ± 0.7	-
2	150	5	83.8 ± 0.6	16.2 ± 0.6	-
2	150	10	79.2 ± 2.1	20.8 ± 2.1	-
		20	68.4 ± 4.8	31.6 ± 4.8	-
		30	56.1 ± 5.0	43.9 ± 5.0	-
		40	43.2 ± 4.9	56.8 ± 4.9	-
		60	17.1 ± 4.9	82.9 ± 4.9	-
		0	90.4 ± 0.7	9.6 ± 0.7	-
		1	89.0 ± 0.5	11.0 ± 0.5	-
		2	87.7 ± 0.5	123 ± 0.5	-
		3	85.5 ± 1.0	14.5 ± 1.0	-
5	150	5	82.2 ± 0.6	17.8 ± 0.6	-
5	150	10	74.0 ± 1.6	26.0 ± 1.6	-
		20	51.5 ± 2.7	48.5 ± 2.7	-
		30	32.5 ± 4.3	67.5 ± 4.3	-
		40	9.3 ± 4.6	88.9 ± 3.5	1.8 ± 1.0
		60	0.0 ± 0.0	95.6 ± 0.9	4.4 ± 0.9

Table S5-1. Fraction of Form I, Form II, and Form III in the DNA cleavage of 3 (0–30 μ M) and AscNa (150 μ M).

		0	90.3 ± 1.2	9.7 ± 1.2	-
		1	77.3 ± 4.2	22.7 ± 4.2	-
		2	64.0 ± 3.9	36.0 ± 3.9	-
		3	50.7 ± 2.1	49.3 ± 2.1	-
10	150	5	27.9 ± 2.7	72.1 ± 2.7	-
10	150	10	4.3 ± 1.9	93.5 ± 2.6	2.2 ± 0.8
		20	0.0 ± 0.0	93.7 ± 1.4	6.3 ± 1.4
		30	0.0 ± 0.0	81.5 ± 3.6	18.5 ± 3.6
		40	0.0 ± 0.0	63.8 ± 4.6	36.2 ± 4.6
		60	0.0 ± 0.0	35.2 ± 4.4	64.8 ± 4.4
		0	89.4 ± 1.3	10.5 ± 1.3	-
		1	0.0 ± 0.0	74.1 ± 2.0	25.9 ± 2.0
		2	0.0 ± 0.0	69.6 ± 1.9	30.4 ± 1.9
		3	0.0 ± 0.0	64.8 ± 2.3	35.2 ± 2.3
20	150	5	0.0 ± 0.0	57.1 ± 2.8	42.9 ± 2.8
30	150	10	0.0 ± 0.0	45.4 ± 5.0	54.6 ± 5.0
		20	0.0 ± 0.0	30.0 ± 2.0	70.0 ± 2.0
		30	n.d.*	n.d.*	n.d.*
		40	n.d.*	n.d.*	n.d.*
		60	n.d.*	n.d.*	n.d.*

*n.d. means cannot determine.

Complex	AscNa	Time	Form I	Form II	Form III
(µM)	(µM)	(min)	(%)	(%)	(%)
		0	93.0 ± 1.0	7.0 ± 1.0	-
		1	1.7 ± 0.3	95.8 ± 0.6	2.5 ± 0.3
		2	0.0 ± 0.0	96.6 ± 0.4	3.4 ± 0.4
		3	0.0 ± 0.0	95.1 ± 0.2	4.9 ± 0.2
20	50	5	0.0 ± 0.0	94.0 ± 0.2	6.0 ± 0.2
30	50	10	0.0 ± 0.0	89.2 ± 0.5	10.8 ± 0.5
		20	0.0 ± 0.0	82.9 ± 2.1	17.1 ± 2.1
		30	0.0 ± 0.0	79.5 ± 1.9	20.5 ± 1.9
		40	0.0 ± 0.0	77.3 ± 2.4	22.7 ± 2.4
		60	0.0 ± 0.0	72.7 ± 2.5	27.3 ± 2.5
		0	92.6 ± 1.2	7.4 ± 1.2	-
		1	0.0 ± 0.0	88.4 ± 0.0	11.6 ± 0.0
		2	0.0 ± 0.0	84.7 ± 0.7	15.3 ± 0.7
		3	0.0 ± 0.0	82.9 ± 1.8	17.1 ± 1.8
20	100	5	0.0 ± 0.0	77.6 ± 2.5	22.4 ± 2.5
30	100	10	0.0 ± 0.0	75.1 ± 2.5	24.9 ± 2.5
		20	0.0 ± 0.0	66.2 ± 3.6	33.8 ± 3.6
		30	0.0 ± 0.0	59.2 ± 2.9	40.8 ± 2.9
		40	0.0 ± 0.0	53.4 ± 2.8	46.6 ± 2.8
		60	0.0 ± 0.0	47.7 ± 3.8	52.3 ± 3.8

Table S5-2. Fraction of Form I, Form II, and Form III in the DNA cleavage of 3 (30 μ M) and AscNa (50 and 100 μ M).

Figure S5-2. Agarose gel electrophoresis profiles upon reaction of pUC19 DNA (50 μ M bp) with **3** (30 μ M) and AscNa (150 μ M) at pH 6.0 under N₂. Lane 1: DNA control; lane 2: DNA with Hind III; lanes 3–12: corresponded to the time of 0, 1, 2, 3, 5, 10, 20, 30, 40, and 60 min, respectively.

Table S5-3. Fraction of Form I, Form II, and Form III in the DNA cleavage of 3 (30 μ M) and AscNa (150 μ M) under N₂.

Complex	AscNa	Time	Form I	Form II	Form III
(μ M)	(µM)	(min)	(%)	(%)	(%)
		0	88.3 ± 0.2	11.7 ± 0.2	-
		1	87.6 ± 0.1	12.4 ± 0.1	-
		2	87.2 ± 0.4	12.8 ± 0.4	-
	20 150	3	86.7 ± 0.3	13.3 ± 0.3	-
20		5	86.4 ± 0.2	13.6 ± 0.2	-
30 1	150	10	85.2 ± 0.8	14.8 ± 0.8	-
		20	83.1 ± 2.5	16.9 ± 2.5	-
		30	80.6 ± 3.0	19.4 ± 3.0	-
		40	77.3 ± 3.1	22.7 ± 3.1	-
			68.3 ± 1.6	31.7 ± 1.6	-

Figure S5-3. Agarose gel electrophoresis profile of pUC19 DNA (50 μ M bp) with **3** (0–8 μ M) and AscNa (50 μ M) at pH 6.0. (a)–(e) corresponded to complex concentration of 0, 2, 4, 6, and 8 μ M, respectively. Lane 1: DNA control; lane 2: DNA with Hind III; lanes 3–12: corresponded to the time of 0, 1, 2, 3, 5, 10, 20, 30, 40, and 60 min, respectively.

Figure S5-4. Agarose gel electrophoresis profiles upon reaction of pUC19 DNA (50 μ M bp) with **3** (5 μ M) and AscNa (0–100 μ M) at pH 6.0. (a)–(e) corresponded to AscNa concentration of 0, 10, 30, 50, and 100 μ M, respectively. Lane 1: DNA control; lane 2: DNA with Hind III; lanes 3–12: corresponded to the time of 0, 1, 2, 3, 5, 10, 20, 30, 40, and 60 min, respectively.

Complex	Time	Form I	Form II	Form III
(μM)	(min)	(%)	(%)	(%)
	0	92.1 ± 0.7	7.9 ± 0.7	-
	1	90.6 ± 1.1	9.4 ± 1.1	-
	2	90.0 ± 1.5	10.0 ± 1.5	-
	3	89.6 ± 1.5	10.4 ± 1.5	-
0	5	88.9 ± 1.6	11.1 ± 1.6	-
0	10	85.4 ± 0.5	14.6 ± 0.5	-
	20	82.5 ± 0.5	17.5 ± 0.5	-
	30	75.9 ± 1.5	24.1 ± 1.5	-
	40	68.8 ± 1.5	31.2 ± 1.5	-
	60	45.4 ± 1.0	54.6 ± 1.0	-
	0	90.4 ± 0.4	9.6 ± 0.4	-
	1	88.7 ± 0.1	11.7 ± 0.1	-
	2	87.8 ± 1.0	11.9 ± 1.0	-
	3	87.2 ± 0.3	12.8 ± 0.3	-
2	5	85.4 ± 1.2	14.6 ± 1.2	-
2	10	80.8 ± 0.1	19.2 ± 0.1	-
	20	68.6 ± 0.3	31.4 ± 0.3	-
	30	53.2 ± 1.4	46.8 ± 1.4	-
	40	35.2 ± 2.7	64.8 ± 2.7	-
	60	8.0 ± 1.5	91.2 ± 0.7	0.8 ± 0.8
	0	88.0 ± 0.8	12.0 ± 0.8	-
	1	86.4 ± 1.1	13.6 ± 1.1	-
	2	85.1 ± 0.3	15.2 ± 0.3	-
	3	83.5 ± 1.7	16.4 ± 1.7	-
4	5	79.9 ± 1.7	20.1 ± 1.7	-
4	10	69.2 ± 0.4	30.8 ± 0.4	-
	20	40.4 ± 0.9	59.6 ± 0.9	-
	30	19.3 ± 1.2	80.7 ± 1.2	-
	40	7.5 ± 1.0	92.2 ± 1.3	0.3 ± 0.3
	60	0.0 ± 0.0	96.9 ± 0.7	3.1 ± 0.7

Table S5-4. Fraction of Form I, Form II, and Form III in the DNA cleavage of 3 (0–8 μ M) and AscNa (50 μ M) at pH 6.0.

	0	89.3 ± 0.9	10.7 ± 0.9	-
	1	85.2 ± 1.1	14.8 ± 1.1	-
	2	81.2 ± 1.3	18.8 ± 1.3	-
	3	75.4 ± 0.0	24.6 ± 0.0	-
ſ	5	64.0 ± 3.4	36.0 ± 3.4	-
0	10	34.5 ± 0.1	65.5 ± 0.1	-
	20	4.9 ± 0.3	94.1 ± 0.9	1.0 ± 0.6
	30	0.0 ± 0.0	97.8 ± 0.5	2.2 ± 0.5
	40	0.0 ± 0.0	97.0 ± 0.2	3.0 ± 0.2
	60	0.0 ± 0.0	93.2 ± 0.1	6.8 ± 0.1
	0	89.3 ± 0.6	10.7 ± 0.6	-
	1	81.9 ± 1.4	18.1 ± 1.4	-
	2	74.9 ± 3.2	25.1 ± 3.2	-
	3	64.4 ± 4.9	35.6 ± 4.9	-
Q	5	51.2 ± 4.1	48.8 ± 4.1	-
0	10	19.4 ± 3.3	80.6 ± 3.3	-
	20	1.9 ± 0.3	95.7 ± 1.9	2.4 ± 1.8
	30	0.0 ± 0.0	96.0 ± 1.8	4.0 ± 1.8
	40	0.0 ± 0.0	93.4 ± 2.5	6.6 ± 2.5
	60	0.0 ± 0.0	86.7 ± 2.1	13.3 ± 2.1

AscNa	Time	Form I	Form II	Form III
(µM)	(min)	(%)	(%)	(%)
	0	92.8 ± 0.0	7.2 ± 0.0	-
	1	91.7 ± 0.3	8.3 ± 0.3	-
	2	91.6 ± 0.4	8.4 ± 0.4	-
	3	91.4 ± 0.2	8.6 ± 0.2	-
0	5	91.4 ± 0.2	8.6 ± 0.2	-
0	10	91.2 ± 0.0	8.8 ± 0.0	-
	20	91.1 ± 0.0	8.9 ± 0.0	-
	30	90.9 ± 0.1	9.1 ± 0.1	-
	40	90.9 ± 0.1	9.1 ± 0.1	-
	60	90.3 ± 0.1	9.7 ± 0.1	-
	0	92.8 ± 0.4	7.2 ± 0.4	-
	1	90.5 ± 0.0	9.5 ± 0.0	-
	2	89.9 ± 0.2	10.1 ± 0.2	-
	3	89.2 ± 0.5	10.8 ± 0.5	-
10	5	87.8 ± 0.6	12.2 ± 0.6	-
10	10	85.7 ± 0.4	14.3 ± 0.4	-
	20	78.7 ± 2.5	21.3 ± 2.5	-
	30	74.8 ± 1.7	25.2 ± 1.7	-
	40	69.0 ± 1.5	31.0 ± 1.5	-
	60	57.4 ± 1.0	42.6 ± 1.0	-
	0	92.5 ± 0.5	7.5 ± 0.5	-
	1	89.6 ± 0.2	10.4 ± 0.2	-
	2	89.4 ± 0.3	10.6 ± 0.3	-
	3	88.6 ± 0.7	11.4 ± 0.7	-
20	5	88.2 ± 0.5	11.8 ± 0.5	-
30	10	85.2 ± 1.5	14.8 ± 1.5	-
	20	75.5 ± 1.5	24.5 ± 1.5	-
	30	62.7 ± 1.6	37.3 ± 1.6	-
	40	50.5 ± 2.8	49.5 ± 2.8	-
	60	26.4 ± 2.1	73.6 ± 2.1	-

Table S5-5. Fraction of Form I, Form II, and Form III in the DNA cleavage of 3 (5 $\mu M)$ and AscNa (0–100 $\mu M).$
	0	93.7 ± 0.2	6.3 ± 0.2	-
	1	90.1 ± 0.3	9.9 ± 0.3	-
	2	89.6 ± 0.2	10.4 ± 0.2	-
	3	89.0 ± 0.6	11.0 ± 0.6	-
50	5	88.5 ± 0.1	11.5 ± 0.1	-
30	10	85.6 ± 0.3	14.4 ± 0.3	-
	20	75.1 ± 0.4	24.9 ± 0.4	-
	30	62.4 ± 0.3	37.6 ± 0.3	-
	40	48.0 ± 1.8	52.0 ± 1.8	-
	60	21.6 ± 0.9	78.4 ± 0.9	-
	0	93.9 ± 0.4	6.1 ± 0.4	-
	1	90.1 ± 0.1	9.9 ± 0.1	-
	2	89.7 ± 0.1	10.3 ± 0.1	-
	3	88.2 ± 0.1	11.8 ± 0.1	-
100	5	86.8 ± 0.2	13.2 ± 0.2	-
100	10	83.3 ± 0.3	16.7 ± 0.3	-
	20	70.2 ± 1.4	29.8 ± 1.4	-
	30	54.1 ± 1.8	45.9 ± 1.8	-
	40	38.1 ± 2.0	61.9 ± 2.0	-
	60	14.8 ± 1.2	85.2 ± 1.2	-

Complete	Time	Form I	Form II	Form III
Complex	(min)	(%)	(%)	(%)
	0	92.0 ± 0.1	8.0 ± 0.1	-
	1	89.1 ± 0.1	10.9 ± 0.1	-
	2	88.5 ± 0.4	11.5 ± 0.4	-
	3	87.7 ± 0.9	12.3 ± 0.9	-
4	5	86.7 ± 0.2	13.3 ± 0.2	-
4	10	82.2 ± 0.7	17.8 ± 0.7	-
	20	72.3 ± 0.6	27.7 ± 0.6	-
	30	58.6 ± 0.7	41.4 ± 0.7	-
	40	46.9 ± 0.8	53.1 ± 0.8	-
	60	24.4 ± 0.9	75.6 ± 0.9	-
	0	92.6 ± 0.4	7.4 ± 0.4	-
	1	0.0 ± 0.0	99.7 ± 0.0	0.3 ± 0.0
	2	0.0 ± 0.0	99.4 ± 0.0	0.6 ± 0.0
	3	0.0 ± 0.0	99.2 ± 0.1	0.8 ± 0.1
5	5	0.0 ± 0.0	99.0 ± 0.0	1.0 ± 0.0
5	10	0.0 ± 0.0	98.9 ± 0.1	1.1 ± 0.1
	20	0.0 ± 0.0	98.8 ± 0.0	1.2 ± 0.0
	30	0.0 ± 0.0	98.5 ± 0.3	1.5 ± 0.3
	40	0.0 ± 0.0	97.9 ± 0.1	2.1 ± 0.1
	60	0.0 ± 0.0	94.2 ± 0.6	5.8 ± 0.6

Table S5-6. Fraction of Form I, Form II, and Form III in the DNA cleavage of 4 (30 μ M) or 5 (30 μ M) and AscNa (150 μ M).

Figure S5-5. Agarose gel electrophoresis profile upon reaction of pUC19 DNA (50 μ M bp) with **3** (30 μ M) and AscNa (150 μ M) at pH 7.4 (MOPS, 10 mM). Lane 1: DNA control; lane 2: DNA with Hind III; lanes 3–12: corresponded to the time of 0, 1, 2, 3, 5, 10, 20, 30, 40, and 60 min, respectively.

Table S5-7. Fraction of Form I, Form II, and Form III in the DNA cleavage with 3 (30 μ M) and AscNa (150 μ M) at pH 7.4 (MOPS, 10 mM).

Time	Form I	Form II	Form III
(min)	(%)	(%)	(%)
0	91.1 ± 0.5	8.9 ± 0.5	-
1	0.0 ± 0.0	90.7 ± 0.5	9.3 ± 0.5
2	0.0 ± 0.0	86.1 ± 0.9	13.9 ± 0.9
3	0.0 ± 0.0	82.5 ± 0.5	17.5 ± 0.5
5	0.0 ± 0.0	74.5 ± 0.7	25.5 ± 0.7
10	0.0 ± 0.0	57.1 ± 0.5	42.9 ± 0.5
20	0.0 ± 0.0	38.0 ± 1.0	62.0 ± 1.0
30	0.0 ± 0.0	28.3 ± 1.5	71.7 ± 1.5
40	0.0 ± 0.0	21.5 ± 3.6	78.5 ± 3.6
60	0.0 ± 0.0	15.7 ± 1.4	84.3 ± 1.4

Figure S5-6. Agarose gel electrophoresis profile upon reaction of pUC19 DNA (50 μ M bp) with **3** (30 μ M) and AscNa (150 μ M) in the presence of DMSO ((a) 1, (b) 5, and (c) 10 mM) at pH 6.0. Lane 1: DNA control; lane 2: DNA with Hind III; lanes 3–12: corresponded to the time of 0, 1, 2, 3, 5, 10, 20, 30, 40, and 60 min, respectively.

DMSO	Time	Form I	Form II	Form III
(mM)	(min)	(%)	(%)	(%)
	0	92.2 ± 0.5	7.8 ± 0.5	-
	1	0.0 ± 0.0	85.9 ± 2.9	14.1 ± 2.9
	2	0.0 ± 0.0	85.2 ± 3.6	18.3 ± 3.6
	3	0.0 ± 0.0	80.4 ± 3.4	23.0 ± 3.4
1	5	0.0 ± 0.0	75.0 ± 4.8	30.2 ± 4.8
1	10	0.0 ± 0.0	65.9 ± 3.2	41.0 ± 3.2
	20	0.0 ± 0.0	51.1 ± 4.6	48.9 ± 4.6
	30	0.0 ± 0.0	42.6 ± 4.1	57.4 ± 4.1
	40	0.0 ± 0.0	36.1 ± 3.3	63.9 ± 3.3
_	60	0.0 ± 0.0	30.0 ± 3.3	70.0 ± 3.3
	0	92.2 ± 0.2	7.8 ± 0.2	-
	1	0.0 ± 0.0	83.7 ± 1.2	16.3 ± 1.2
	2	0.0 ± 0.0	79.1 ± 1.2	20.9 ± 1.2
	3	0.0 ± 0.0	76.2 ± 0.1	23.8 ± 0.1
5	5	0.0 ± 0.0	70.5 ± 0.2	29.5 ± 0.2
5	10	0.0 ± 0.0	63.2 ± 0.7	36.8 ± 0.7
	20	0.0 ± 0.0	53.9 ± 0.0	46.1 ± 0.0
	30	0.0 ± 0.0	47.7 ± 0.2	52.3 ± 0.2
	40	0.0 ± 0.0	41.4 ± 0.3	58.6 ± 0.3
	60	0.0 ± 0.0	35.3 ± 3.7	64.7 ± 3.7
	0	92.2 ± 0.5	7.8 ± 0.5	-
	1	0.0 ± 0.0	85.9 ± 0.9	14.1 ± 0.9
	2	0.0 ± 0.0	81.3 ± 0.9	18.7 ± 0.9
	3	0.0 ± 0.0	78.4 ± 0.6	21.6 ± 0.6
10	5	0.0 ± 0.0	73.9 ± 1.7	26.1 ± 1.7
10	10	0.0 ± 0.0	68.2 ± 2.0	31.8 ± 2.0
	20	0.0 ± 0.0	58.1 ± 1.0	41.9 ± 1.0
	30	0.0 ± 0.0	52.8 ± 2.2	47.2 ± 2.2
	40	0.0 ± 0.0	48.2 ± 1.6	51.8 ± 1.6
	60	0.0 ± 0.0	41.5 ± 1.1	58.5 ± 1.1

Table S5-8. Fraction of Form I, Form II, and Form III in the DNA cleavage with 3 (30 μ M) and AscNa (150 μ M) in the presence of DMSO (1–10 mM) at pH 6.0.

Figure S5-7. Isothermal calorimetric titration curves: **3** (A) or **5** (B) at pH 6.0. Experimental conditions: A solution of **3** or **5** (1 mM) in a syringe was added, in an equal interval 26 times, to a solution of the linear 33 mer ds-DNA (18.75 μ M (A), or 40 μ M (B)) in the cell in the presence of NaCl (10 mM) in pH 6.0 (MES, 10 mM) at 37°C.

第六章:Burst of DNA Double-Strand Breaks by Dicopper(II) Complexes

6-1. 要旨

本章では、二核銅錯体による supercoiled plasmid pUC19 DNA の二本鎖切断(DNA double-strand breaks, dsb)を経る Form III 生成の初期の速い反応(burst)を配位子に導入し た MeO 基で加速できることが見出された. 具体的には, 2,6-bis(amide-tether dpa)-p-cresol 配位子(HL3)のピリジル基の4位に電子供与性のMeO基,電子求引性のCl基を持つ配 位子 HL3^{4-MeO}, HL3^{4-Cl}の錯体[Cu₂(µ-1,1-OAc)(µ-1,3-OAc)(L3^{4-MeO})](OAc)(3b^{4-MeO}), [Cu₂(µ-1,3-OAc)₂(L3^{4-Cl})](OAc) (3b^{4-Cl})を用い,アスコルビン酸ナトリウム(AscNa)を還元剤とす る O₂ 活性化による supercoiled plasmid pUC19 DNA の酸化切断を行った. この反応の Form III の生成速度を HL3 の錯体[Cu₂(µ-1,1-OAc)(µ-1,3-OAc)(L3)](OAc) (3)を用いた反応 と比較し, Form III 生成の burst が 3b^{4-CI}<3<3b^{4-MeO}の順で増大することが示された. 3b^{4-MeO}は低濃度でも大きな burst を示した. この大きな burst の原因を調べるため、これ ら3つの錯体の還元的O₂活性化によるヒドロキシラジカル(HO•)生成の初期速度, Form III 生成に対する DMSO の阻害効果, 33 mer DNA との相互作用の等温滴定カロリメト リー(ITC), 仔ウシ胸腺 DNA (ct-DNA)との相互作用における電子スペクトル変化と CD スペクトル変化などを測定した.その結果,3b^{4-MeO}はMeO基の電子供与性効果でHO• 生成の初期速度を加速すること、さらに DNA との相互作用をエンタルピー駆動の強固 な結合にすることで生じた HO•が拡散されずに効率的に DNA 酸化切断に使用されるこ との2つの要因で Form III 生成の burst を増大させることが明らかになった. これらの 研究から、二核銅錯体による DNA dsb を、配位子に導入した置換基効果で制御できる ことが示された.

6-2. 緒言

CRISPR/Cas9 システム^[1]は DNA の二本鎖切断(DNA double-strand breaks, dsb)を原理と する遺伝子改変ツールであり,遺伝子上の特定の位置に dsb を誘導することで容易にノ ックアウトあるいはノックインすることが可能である.また,細胞内 DNA における DNA dsb は,DNA 損傷応答を誘導する^[2-4].DNA 損傷応答には,DNA 損傷の認識,チ ェックポイントの活性化,細胞周期の停止,そして最終的には修復,アポトーシスなど が含まれる.そのため,DNA dsb の burst を引き起こす錯体の開発は遺伝子編集^[5]やが ん治療薬の開発^[6]の観点から重要である.これまでに,抗がん剤や電離放射線によって 生成する活性酸素種(ROS)が DNA dsb を引き起こすことが報告されている^[4,7].錯体は 還元剤との反応により ROS を生成することが可能であるため,DNA dsb に向けて様々 な合成金属錯体が開発されてきた^[8-10].また,その錯体による ROS 生成能力は,配位子 への置換基の導入によって変化することが報告されている^[10].しかし,それら合成金属 錯体による DNA dsb はまだ非常に遅い.

第五章では、2,6-bis(amide-tether dpa)-*p*-cresol 配位子(HL3)の二核銅(II)錯体[Cu₂(μ -1,1-OAc)(μ -1,3-OAc)(L3)](OAc)(**3**)が、空気下、アスコルビン酸ナトリウム(AscNa)存在下で O₂を還元的に活性化して supercoiled plasmid pUC19 DNA (Form I)の 26%を 1 分間で直鎖 状 DNA (Form III)に変換する初期の速い反応(burst)を起こすことを示した^[11]. これまで に報告されてきた幾つかの錯体による DNA 切断の中で、**3**の Form III 生成の burst は最 も大きかった. **3** はインターカレーションと水素結合で DNA と rigid な結合を形成し、 還元的 O₂活性化でヒドロキシラジカル(HO•)を生成した. **3**が rigid な DNA 結合を形成 するために 10 塩基対の範囲内で DNA の相補的な二本鎖を同時に酸化切断可能である ことが、Form III 生成の burst が進行する理由であることが示された. しかし、既存の抗 がん剤である Bleomycin の鉄錯体(Fe-BLM)は、**3** よりもはるかに高い DNA dsb 活性を示 す. また、Fe-BLM はこれにより高い細胞毒性を示すと考えられる. したがって、合成 金属錯体で Fe-BLM の様に高い細胞毒性を実現するには、さらに高い DNA dsb 活性を 示す合成錯体を開発する必要がある.

第四章では、HL3 のピリジル基の 4 位に電子供与性の MeO 基や電子求引性の Cl 基 を 導入した HL3^{4-MeO} と HL3^{4-Cl} の 二 核 銅 (II) 錯 体 [Cu₂(µ-1,1-OAc)(µ-1,3-OAc)(L3^{4-MeO})](OAc) (**3b**^{4-MeO}) と [Cu₂(µ-1,3-OAc)₂(L3^{4-Cl})](OAc) (**3b**^{4-Cl})を無置換の配位子 HL3 の 二 核 銅(II) 錯体[Cu₂(µ-1,1-OAc)(µ-1,3-OAc)(L3)](OAc) (**3**) と比較し、これらの錯体の細胞毒性 に及ぼす置換基効果を示した. **3b**^{4-MeO} や **3b**^{4-Cl} は、MeO 基や Cl 基の疎水性効果で親油 性が増大し、疎水的な環境を持つ小胞体(ER)や Golgi 体に局在することにより細胞毒性

が向上した.また、還元的 O₂活性化では置換基の電子効果で 3b^{4-MeO} と 3b^{4-CI} の配位構 造や酸化還元電位に明確な違いが生じた.このために、3b^{4-MeO} と 3b^{4-CI} では発生する ROS の種類が異なることがわかった.3b^{4-MeO}は、電子供与性の MeO 基を持つために酸 化還元電位が負側にシフトし、Cu(II)Cu(II)から Cu(I)Cu(I)への還元が進行しにくくなっ た.このために、3b^{4-MeO} は抗酸化剤濃度が比較的高いがん細胞中では ROS を発生し、 抗酸化剤濃度が通常の値である正常細胞中では ROS 発生が減少する選択的 ROS 発生を 起こした.これにより、がん細胞選択的毒性を発現したと考えられる.3b^{4-MeO} や 3b^{4-CI} では、MeO 基や CI 基の電子効果により選択的 ROS 発生が実現された.

本章では、高い DNA dsb 活性を示す錯体の開発を目的として第四章に示した置換基 効果の研究と第五章の 3 による DNA 酸化切断の研究を踏まえ、 $3b^{4-MeO}$ 、 $3b^{4-Cl}$ を用いた AscNa による還元的 O₂活性化を経る supercoiled plasmid pUC19 DNA の酸化切断を行っ た.その結果、 $3b^{4-MeO}$ が Form III 生成の初期の速い反応(burst)を増大させることを見出 した.錯体を 30 μ M の濃度で用いた時の 1 分間の Form III の生成率は $3b^{4-Cl}$ (11.6%)<3 (26.4%)< $3b^{4-MeO}$ (28.1%)、錯体を 20 μ M の濃度で用いた時の 1 分間の Form III の生成率 は $3b^{4-Cl}$ (9.4%)≈3 (8.2%)< $3b^{4-MeO}$ (22.2%)であった.このように電子供与性の MeO 基を 持つ $3b^{4-MeO}$ の Form III 生成活性が最も高く、大きな burst を与え、錯体の濃度が低くて も高活性を示した.そこで、3、 $3b^{4-MeO}$ 、 $3b^{4-Cl}$ の DNA 切断活性、電気化学的性質、HO• 生成速度、DNA 結合様式を比較し、HO•生成の速さと DNA への強固な結合が、低濃度 の $3b^{4-MeO}$ による DNA dsb の burst を可能にする特徴であることを明らかにした.本章 で用いた HL3、HL3^{4-MeO}、HL3^{4-Cl}、3、 $3b^{4-MeO}$ 、 $3b^{4-Cl}$ の化学構造を Figure 6-1 に示す.

Figure 6-1. Chemical Structures of HL3, HL3^{4-X} (X = MeO, Cl), $[Cu_2(\mu-1,1-OAc)(\mu-1,3-OAc)(L3)](OAc)$ (3), $[Cu_2(\mu-1,1-OAc)(\mu-1,3-OAc)(L3^{4-MeO})](OAc)$ (3b^{4-MeO}), and $[Cu_2(\mu-1,3-OAc)_2(L3^{4-Cl})](OAc)$ (3b^{4-Cl}).

6-3. 結果と考察

6-3-1. AscNa 存在下での 3, 3b^{4-MeO}, 3b^{4-Cl}の DNA 二本鎖切断

Supercoiled plasmid pUC19 DNA (Form I)を基質として用い, **3b^{4-MeO}**, **3b^{4-CI}**の DNA 切断活性を調べた. MES buffer (10 mM, pH 6.0), NaCl (10 mM), pUC19 DNA (50 µM bp), 金属錯体の混合溶液に, AscNa を空気下 37℃で加えた後,一定量のサンプルを時間毎 に採取した. このサンプルを,アガロースゲル電気泳動で分析し, Form I, II, III を定 量した. これらはそれぞれスーパーコイルの閉環状,一本鎖切断の環状,二本鎖切断の 直線状 DNA である^[12].反応解析の詳細は実験項に示す.

この反応の **3b^{4-MeO}**, **3b^{4-CI}**, AscNa の濃度に対する依存性を調べた. そのときの Form I, II, III の割合(%)の時間経過とゲル写真を Figure 6-2–6-5, S6-1–S6-4, Table S6-1–S6-4 に示す. **3b^{4-MeO}**, **3b^{4-CI}**や AscNa の不在下では, 60 分間で 80%以上の Form I が未反応 であり,速い DNA 切断には **3b^{4-MeO}**, **3b^{4-CI}**と AscNa は不可欠である. Form III 生成の初 期の速い反応(burst)は **3b^{4-MeO}**, **3b^{4-CI}**の濃度に大きく依存した. Figure 6-4 (B), 6-5 (B)に 示すように, **3b^{4-MeO}**, **3b^{4-CI}**を 30 µM の濃度で用いると, AscNa の濃度を 50–150 µM の 間で変化させても誘導期なしに Form III 生成の burst が観察された. これは, 錯体濃度 30 µM では, 錯体の DNA への結合数が多いので DNA の二本鎖が 10 塩基対の範囲内で 同時切断され, 直ちに直鎖状の DNA に変換されるためである^[13].

さらに、AscNa 濃度 150 μ M で、**3b**^{4-MeO}、**3b**^{4-CI} 濃度を 40 μ M 以上にすると、burst は 飽和した(Figure 6-2 (B), 6-3 (B)). この場合 DNA に対する **3b**^{4-MeO}、**3b**^{4-CI}の結合数が増え て 10 塩基対よりも狭い範囲内で DNA dsb が起こるが、10 塩基対以内の DNA dsb はい ずれの場合も Form III が生成し、burst の大きさは一定になると考えられる. 一方、**3b**^{4-MeO}、**3b**^{4-CI} 濃度が 10 μ M のときは、いずれも burst は起こらずに誘導期が観測された. 10 塩基対以上離れた箇所で DNA の相補的な二本鎖が切断されても直接的な Form III 生 成は起こらず、Form I から II への変換後、ゆっくりと Form II から III への変換が起こ る段階的な DNA 切断で Form III が生成する. この場合でも、**3b**^{4-MeO} では 60 分間で Form III が 50%以上生成し、**3b**^{4-CI}では 60 分間で DNA が完全にスメアになった.

Figure 6-2. Time courses for Form I (A) and Form III (B) dependent on $[3b^{4-MeO}]$ in the DNA cleavage by $3b^{4-MeO}$. Experimental conditions: $[pUC19 \text{ DNA}] = 50 \ \mu\text{M}$ bp, $[3b^{4-MeO}] = 0-50 \ \mu\text{M}$, $[AscNa] = 150 \ \mu\text{M}$, $[Cu(OAc)_2] = 90 \ \mu\text{M}$, $[NaCl] = 10 \ \text{mM}$, $[MES \ buffer] = 10 \ \text{mM}$ (pH 6.0) at 37°C. Experiments were carried out at least three times.

Figure 6-3. Time courses for Form I (A) and Form III (B) dependent on $[3b^{4-Cl}]$ in the DNA cleavage by $3b^{4-Cl}$. Experimental conditions: [pUC19 DNA] = 50 µM bp, $[3b^{4-Cl}] = 0-50 µM$, [AscNa] = 150 µM, [Cu(OAc)₂] = 90 µM, [NaCl] = 10 mM, [MES buffer] = 10 mM (pH 6.0) at 37°C. Experiments were carried out at least three times.

Figure 6-4. Time courses for Form I (A) and Form III (B) dependent on [AscNa] in the DNA cleavage by $3b^{4-MeO}$. Experimental conditions: [pUC19 DNA] = 50 µM bp, $[3b^{4-MeO}] = 30$ µM, [AscNa] = 0–150 µM, [Cu(OAc)₂] = 90 µM, [NaCl] = 10 mM, [MES buffer] = 10 mM (pH 6.0) at 37°C. Experiments were carried out at least three times.

Figure 6-5. Time courses for Form I (A) and Form III (B) dependent on [AscNa] in the DNA cleavage by $3b^{4-Cl}$. Experimental conditions: [pUC19 DNA] = 50 µM bp, $[3b^{4-Cl}] = 30 µM$, [AscNa] = 0–150 µM, [Cu(OAc)₂] = 90 µM, [NaCl] = 10 mM, [MES buffer] = 10 mM (pH 6.0) at 37°C. Experiments were carried out at least three times.

Figure 6-6. Pseudo-first-order plots for the decrease of Form I in the reactions of **3b**^{4-MeO} ((A) 2, (B) 4, (C) 6, (D) 8, and (E) 10 μ M) with AscNa (50 μ M) at pH 6.0 under air at 37°C. (F) A plot of the pseudo-first-order rate constant vs concentration of **3b**^{4-MeO} (0–10 μ M). Experiments were carried out at least three times.

Figure 6-7. Pseudo-first-order plots for the decrease of % of Form I in the reaction with $3b^{4-MeO}$ (5 μ M) in the presence of AscNa ((A) 10, (B) 30, (C) 50, (D) 100 μ M). (E) A plot of the pseudo-first-order constant vs concentration of AscNa (0–150 μ M). Experiments were carried out at least three times.

Figure 6-8. Pseudo-first-order plots for the decrease of % of Form I in the reaction with $3b^{4-CI}$ ((A) 2, (B) 5, and (C) 10 μ M) in the presence of AscNa (150 μ M). (D) A plot of the pseudo-first-order constant vs concentration of $3b^{4-CI}$ (0–10 μ M). Experiments were carried out at least three times.

Figure 6-9. Pseudo-first-order plots for the decrease of % of Form I in the reaction with **3b**⁴⁻ ^{CI} (5 μ M) in the presence of AscNa ((A) 10, (B) 30, (C) 50, (D) 100 μ M). (E) A plot of the pseudo-first-order constant vs concentration of AscNa (0–150 μ M). Experiments were carried out at least three times.

150 μM の AscNa の存在下, **3**, **3b**^{4-MeO}, **3b**^{4-CI}を 20 μM または 30 μM 用いたときの Form III の増加を Figure 6-10 (A), (B)に比較して示す. 30 μM の **3**, **3b**^{4-MeO}, **3b**^{4-CI} の DNA 切断活性(Figure 6-10 (B))の比較より, 1分間での Form III の生成率は **3b**^{4-CI} (11.6%) <**3** (26.4%) <**3b**^{4-MeO} (28.1%)であり, 電子供与基を有する錯体は Form III 生成率が高かった. 第四, 五章で, **3**, **3b**^{4-MeO}, **3b**^{4-CI} はいずれも AscNa で速やかに還元されることが示され ているので, DNA 切断の律速段階は還元された錯体(Cu(I)Cu(II)と Cu(I)Cu(I))による O₂ の 3 電子還元であるといえる. さらに 20 μM の **3**, **3b**^{4-MeO}, **3b**^{4-CI} の DNA 切断活性(Figure 6-10 (A))の比較では, 1分間で Form III の生成率は **3b**^{4-CI} (9.4%)≈**3** (8.2%) <**3b**^{4-MeO} (22.2%) であった. **3b**^{4-MeO} の Form III 生成率は **3**, **3b**^{4-CI} の 2 倍以上で, **3b**^{4-MeO} は低濃度でも DNA 切断活性が高いことがわかった.

Figure 6-10. DNA cleavage profile promoted by **3** (red), **3b**^{4-MeO} (green), and **3b**^{4-Cl} (purple) (20 μ M (A), 30 μ M (B)) in the presence of AscNa (150 μ M) after 1 min reaction.

6-3-2.3, 3b^{4-MeO}, 3b^{4-Cl}の還元的 O₂活性化

3, **3b**^{4-MeO}, **3b**^{4-CI}は AscNa との反応で, Cu(I)Cu(II)と Cu(I)Cu(I)に還元されることが, 第四,五章に示した CV, CSI MS, UV-vis スペクトルの結果より明らかとなっている. 酸化還元電位は **3b**^{4-MeO} <**3** <**3b**^{4-CI}の順である.**3**は, $E_{1/2} = -0.05 \text{ V} (\Delta E_p = 0.06 \text{ V})$ に Cu(I)Cu(II)/Cu(I)Cu(I)に帰属される準可逆な redox couple と $E_{pc} = 0.0$, $E_{pa} = 0.1 \text{ V}$ に Cu(II)Cu(II)/Cu(I)Cu(I)に帰属される不可逆な redox couple を示した^[11].また,電子供与 基をもつ **3b**^{4-MeO}は, $E_{pc} = -0.09 \text{ V}$, $E_{pa} = 0.11 \text{ V}$ に Cu(II)Cu(II)/Cu(I)Cu(I)に帰属される 不可逆な redox couple を示し,電子求引基を持つ **3b**^{4-CI}は, $E_{pc} = 0.02 \text{ V}$, $E_{pa} = 0.155 \text{ V}$ に Cu(II)Cu(II)/Cu(I)Cu(I)に帰属される不可逆な redox couple を示した.これらの結果か ら,これらの錯体の還元体では,**3b**^{4-CI} <**3** <**3b**^{4-MeO}の順に O₂ に電子を渡す還元力が高 いといえる.

さらに DNA 切断速度は錯体濃度の 2 次に依存したことから, Cu(I)Cu(II)と Cu(I)Cu(I) の両者が律速段階の O₂活性化に関与している.**3**と同様に **3b^{4-MeO}**による Form III 生成 速度が pH 7.4 よりも pH 6.0 の方が高い(Figure 6-11 (A), S6-9, Table S6-9)ので, Scheme 6-1 に示すように, この反応では O₂の 3 電子還元が起こったのちに, H⁺が必要なヒドロ ペルオキソ錯体 Cu(II)Cu(I)O₂H が生成すると推定される.一方, **3b^{4-CI}**では pH 6.0 より も pH 7.4 で DNA dsb 活性が高かった(Figure 6-11 (B), S6-9, Table S6-9). これは **3b^{4-CI}** からはプロトン化が起こらないペルオキソ錯体 Cu(II)Cu(I)O₂ が生成することを示唆し ている. pH 7.4 では, **3b^{4-CI}**の CV (Figure 6-12)は $E_{pc} = -0.085$ V, $E_{pa} = 0.1$, 0.18 V vs Ag/AgCl に不可逆的な redox couple を与えた. これらは, それぞれ Cu(I)Cu(II)/Cu(I)Cu(I) と Cu(II)Cu(II)/Cu(I)Cu(II)の酸化還元波に帰属される. **3b**^{4-MeO} による還元的 O₂活性化で 生成すると考えられる Cu(II)Cu(I)O₂H は不安定なため, 分光学的に特徴付けることはで きなかった. 一方, HO•の生成に必要な Cu(I)O₂H のホモリティックな O-O 結合開裂が エネルギー的に有利であることは理論計算で示されており^[14], Cu(II)Cu(I)O₂H から HO• が生成する可能性が高いと考えられる.

Scheme 6-1. Reductive O_2 -activation of $3b^{4-X}$ (X = MeO, Cl).

Figure 6-11. pH-dependent profile for DNA cleavage promoted by **3b**^{4-MeO} (A) and **3b**^{4-Cl} (B), respectively. Time courses for Form III at pH 6.0 (red) and pH 7.4 (purple). Experimental conditions: $[pUC19 DNA] = 50 \mu M$ bp, $[complex] = 30 \mu M$, $[AscNa] = 150 \mu M$, $[Cu(OAc)_2] = 90 \mu M$, [NaCl] = 10 mM, [buffer] = 10 mM (pH 6.0 (MES) and pH 7.4 (MOPS)) at 37°C. Experiments were carried out at least three times.

Figure 6-12. Cyclic voltammograms of $3b^{4-Cl}$. The measurements were made at $23^{\circ}C \pm 0.2^{\circ}C$ under N₂. Glassy carbon, Pt wire, and Ag/AgCl are used as working, counter, and reference electrodes, respectively. Scan rate was 10 mVs⁻¹, and sensitivity was 10 μ A/V.

次に,空気下での **3**, **3b**^{4-MeO}, **3b**^{4-CI} と AscNa の反応における HO・生成を, coumarin の 蛍光スペクトル変化によって追跡した. coumarin は HO・と反応して umbelliferone を生 成し, 332 nm で励起すると 452 nm に蛍光バンドを与える^[15,16]. 452 nm で追跡した蛍光 強度の時間変化を Figure 6-13 に示す. 空気下で coumarin と **3**, **3b**^{4-MeO}, **3b**^{4-CI}/AscNa を 反応させると,蛍光強度が増加したので,**3**, **3b**^{4-MeO}, **3b**^{4-CI} は AscNa との反応で O₂ を 活性化し, HO・を生成したといえる. また, HO・の生成率は **3b**^{4-CI} <**3** <**3b**^{4-MeO} であり, Form III 生成速度の関係と一致している. したがって,**3**, **3b**^{4-MeO}, **3b**^{4-CI} の Form III 生 成の律速は O₂活性化の反応であるといえる.

さらに、HO・が DNA 切断における活性種であることを HO・の阻害剤である DMSO を 用いた阻害実験により確認した. $3b^{4x}$ による Form III 生成に対する DMSO^[16-18]の阻害 効果を Figure 6-14 に示し、それに関連するデータを Figure S6-10 および Table S6-10 に 示す. DMSO は部分的に Form III 生成を阻害し、阻害率は[DMSO] = 1–10 mM の領域で 飽和した. このことから、 $3b^{4x}$ は DNA と結合しており、その錯体内で生成した HO・は 直ちに DNA と反応するため、DMSO により捕捉されないと考えられる. 10 mM DMSO による 3、 $3b^{4MeO}$ 、 $3b^{4CI}$ による DNA 切断の阻害率は 20 分間でそれぞれ 40%、11%、 19%であり、 $3b^{4MeO}$ の反応で阻害率が最も低い. これは $3b^{4MeO}$ が DNA に最も強く結合 して拡散する HO・が減少している可能性を示唆する結果として重要である.

Figure 6-13. Time courses of the normalized emission intensity monitored at 452 nm for **3** (red), **3b**^{4-MeO} (green), and **3b**^{4-CI} (purple). Experimental conditions: [NaCl] = 10 mM, [buffer] = 10 mM (MES, pH 6.0), [complex] = 30 μ M, [AscNa] = 150 μ M, [coumarin] = 0.5 mM, under air at 37°C.

Figure 6-14. Inhibition effect of DMSO (0 (red), 1 (light green), 5 (light blue), 10 (purple) mM) on Form III production by $3b^{4-MeO}$ (A) and $3b^{4-CI}$ (B). Reaction conditions: DMSO (0–10 mM), pUC19 DNA (50 μ M bp), $3b^{4-MeO}$ or $3b^{4-CI}$ (30 μ M), AscNa (150 μ M), NaCl (10 mM), and Cu(OAc)₂ (90 μ M) in MES buffer (10 mM, pH 6.0) under air at 37°C.

6-3-3. 3, 3b^{4-MeO}, 3b^{4-Cl}の DNA 結合能力

DNA 切断の阻害実験で、錯体と DNA の結合が示唆されたので 33 mer オリゴ ds-DNA と 3、3b^{4-MeO}、3b^{4-Cl}の相互作用を等温滴定熱量(Isothermal titration calorimetry, ITC), CD スペクトル、UV-vis スペクトルを測定した^[19, 20]. 37°C, pH 6.0 での ITC 測定の結果を Table 6-1、Figure S6-10 に示す. 3、3b^{4-MeO}、3b^{4-Cl}の結合定数 K はそれぞれ 1.31 × 10⁵, 0.44 × 10⁵, 0.96 × 10⁵ M⁻¹ で、3b^{4-MeO}<3b^{4-Cl}<3 であった. しかし、錯体濃度(30 μ M)お よび DNA 濃度(50 μ M bp)の条件下では、3、3b^{4-MeO}、3b^{4-Cl}の DNA への結合はほぼ飽和 しているため、K の大きさは Form III 生成の burst にとって重要ではないといえる. Table 6-1 に示すように、3 の ΔH° , ΔS° はそれぞれ-2.25 kcal•mol⁻¹, 16.1 cal•mol⁻¹•K⁻¹, 3b^{4-MeO} の ΔH° , ΔS° はそれぞれ-20.34 kcal•mol⁻¹, -44.3 cal•mol⁻¹•K⁻¹, 3b^{4-Cl}の DNA 結 合は ΔH° 駆動であることを示している. また ΔH° の値は 3^{4-MeO} < 3b^{4-Cl} <3 であり、3b^{4-Cl} MeO が最も強固に DNA に結合していることがわかる.

for binding of 3, 3b ^{4-MeO} , and 3b ^{4-Cl} with a linear 33 mer ds-DNA							
Complex	3	3b ^{4-MeO}	3b ^{4-Cl}				
N (sites)	3.81 ± 0.11	4.02 ± 0.25	3.88 ± 0.13				
$K (\times 10^5 \text{ M}^{-1})$	1.31 ± 0.21	0.44 ± 0.09	0.96 ± 0.16				
ΔH° (kcal•mol ⁻¹)	-2.25 ± 0.10	-20.34 ± 1.79	-5.38 ± 0.26				
ΔS° (cal•mol ⁻¹ •K ⁻¹)	16.1	-44.3	5.4				

Table 6-1. Thermodynamic parameters determined by ITC or binding of 3, 3b^{4-MeO}, and 3b^{4-Cl} with a linear 33 mer ds-DNA

次に CD スペクトルの結果を Figure 6-15 に示す. 37°C, pH 6.0 条件下で ct-DNA 溶液 に錯体溶液を添加した. 錯体はキラリティーをもないため, 錯体のみ(black line)では CD バンドを示さなかった. ct-DNA のみ(red line)では, 塩基対のスタッキングに由来する 276 nm の正のバンドと, B型 DNA の右巻きらせんに由来する 247 nm の負のバンドが 見られ, 用いた ct-DNA は B型の DNA であることが分かった^[21]. **3**, **3b^{4-MeO}**, **3b^{4-CI}**の 添加により, どの錯体でも 276 nm および 247 nm のバンドが位置は変化せず, 強度のみ の減少が確認された(Figure 6-15 (A)–(C)). このことから, ct-DNA は右巻きの B型構造 を保ったまま DNA の二重らせん構造が緩み, 安定性が失われていると考えられる^[21–23]. そのため、**3**、**3b**^{4-MeO}, **3b**^{4-CI}の結合様式は groove binding ではないといえる. 一方, Figure 6-15 (D) に示すように, BLM の金属中心を模倣した N4Py 配位子の鉄(II) 錯体 [Fe(MeCN)(N4Py)](CIO₄)₂ (**5**)では, 錯体の添加により, 276 nm および 247 nm のバンド が長波長側にシフトしながら強度の減少が観察された. このことから, ct-DNA は B 型 から C 型に近い構造へと変化していると考えられる^[23,24]. そのため、**3**、**3b**^{4-MeO}, **3b**^{4-CI} とは異なり、**5** の結合様式は groove binding である. また、**3**、**3b**^{4-MeO}, **3b**^{4-CI} では、290– 340 nm に誘起 CD が確認され, DNA との結合により錯体の構造にキラリティーが生ま れていることが示唆された. 特に **3b**^{4-MeO}においてその変化量が大きかった. さらに、**3** と **3b**^{4-CI}は錯体濃度 70 μ M で DNA への結合が飽和したが、**3b**^{4-MeO} では 40 μ M で飽和が みられた. これらのことから、**3b**^{4-MeO} は低濃度においても DNA と強固な結合を形成し ているといえる.

Figure 6-15. CD spectra of varying concentrations of **3** (A), **3b**^{4-MeO} (B), **3b**^{4-Cl} (C), and **5** (D) $(0-100 \ \mu\text{M} \text{ (A)}-(\text{C}), 0-60 \ \mu\text{M} \text{ (D)})$ with ct-DNA (50 μM bp) in MES buffer (10 mM, pH 6.0) under air at 37°C.

CD スペクトルにおいて, **3**, **3b**^{4-MeO}, **3b**^{4-CI}の結合様式が groove binding ではないこと が示されたため, UV-vis により錯体溶液に ct-DNA 溶液を添加した際のスペクトル変化 を観察した. その結果を Figure 6-16 に示す. ct-DNA 溶液の添加により, 220–270 nm に ある benzenoid band の吸光度の減少が確認された. そのため, **3**, **3b**^{4-MeO}, **3b**^{4-CI} は *p*-cresol 部位で DNA の塩基対間にインターカレーションしていることが示唆された.

以上の結果を合わせると、**3**、**3b**^{4-MeO}, **3b**^{4-CI} は *p*-cresol 部位で DNA の塩基対間にイ ンターカレーションすることで、DNA に対して自由度の低い結合を形成しているとい える. **3**、**3b**^{4-MeO}, **3b**^{4-CI} が DNA に強固に結合することで生成する HO•の指向性が高ま り、**3**、**3b**^{4-MeO}, **3b**^{4-CI} による Form III 生成に対する DMSO 阻害率が低かったと考えられ る. また、**3b**^{4-MeO} が他の錯体よりも強固に DNA と結合していることが示唆された. そ のため、**3b**^{4-MeO} が低濃度でも高い Form III 生成活性を示したと考えられる.

Figure 6-16. Electronic absorption spectral change of **3** (A), **3b**^{4-MeO} (B), and **3b**^{4-Cl} (C) upon addition of ct-DNA (0 (red)–50 (purple) eq) to a solution of complex (10 μ M) in MES buffer (10 mM, pH 6.0), and NaCl (10 mM). The absorption band of DNA is subtracted from each absorption spectrum obtained upon addition of ct-DNA to **3**, **3b**^{4-MeO} and **3b**^{4-Cl}.

6-4. 結論

本章では、AscNa存在下、3、3b^{4-MeO}および3b^{4-CI}の還元的O₂活性化を介した supercoiled plasmid pUC19 DNA の二本鎖切断(DNA double-strand breaks, dsb)による Form III 生成活 性を詳細に調べた.電子供与性基である MeO 基を持つ 3b^{4-MeO}は DNA dsb の burst を 3、 3b^{4-CI}に比べて増大させることを見出した.速度論的、分光学的、電気化学的、阻害、 HO•生成および DNA との結合測定から、3b^{4-MeO}の速い HO•生成および DNA 結合様式 が、Form III 生成の burst を可能にする重要な特徴であることが明らかになった. MeO 基の電子効果により、3b^{4-MeO}は還元的 O₂活性化における HO•の初期の生成量が多く、 また DNA とより *ΔH*^eが負に大きい結合を形成するため、錯体低濃度においても高い Form III 生成活性を示した.これらの結果は、遺伝子編集や治療への応用に有用な DNA 二本鎖切断剤の開発に新たな方法論を提供する可能性がある.

6-5. 実験方法

6-5-1. 試薬

試薬については、合成中間体や錯体を除き、高純度製品を和光純薬工業、東京化成、 シグマアルドリッチ社製から選択して購入した.溶媒については、合成に用いるものは 必要に応じて乾燥蒸留した.スーパーコイルドプラスミド pUC19 DNA は、ニッポンジ ーン社から購入した試薬を使用した.仔ウシ胸腺由来のデオキシリボ核酸ナトリウム塩 (type I、fibers) (ct-DNA)は Sigma-Aldrich から購入した.33 mer oligo DNA 5'-d(GAC TCC ACA GTG CAT ACG TGG GCT CCA ACA GGT)-3'とその相補鎖を Thermo Fisher Scientific から購入し、アニーリングすることで 33 mer 二本鎖 DNA にした.3 は既報の論文^[25]に、 **3b^{4-MeO}** および **3b^{4-CI}** は第四章 **4-5-3** に従って合成した.

6-5-2. 測定装置

元素分析(C, H, N)は, Perkin-Elmer 社製 Elemental Analyzer 2400 II を用いて測定した. UV-vis 吸収スペクトルは, Agilent 社製 8454 紫外可視分光光度計を用いて測定した.pH 測定は, HORIBA 製 LAQUA electrode を標準緩衝液で校正した後に測定した.Electron spray ionization MS (ESI MS)及び Cold spray ionization MS (CSI MS)スペクトルは, 日本電 子製 JMS-T100CSRX the AccuTOF CS を用いて, MeOH, MeCN または H₂O を溶媒として 測定した.赤外線(IR)スペクトルは, SHIMADZU Single Reflection HATR IRAffinity-1 MIRacle 10 で測定した. 'H NMR スペクトルは, 日本電子製 ECA-500RX フーリエ変換 核磁気共鳴装置(500 MHz)を使用し,基準物質として tetramethylsilane (TMS)または sodium 3-(trimethylsilyl)propionate-2,2,3,3-d4 (TSP)を用いて測定した.蛍光スペクトルは, HITACHI Spectral fluorometer F-7000 で測定した.等温滴定型熱量(ITC)測定は, Malvern 社製 MicroCal Isothermal Titration Calorimeter VP-ITC を用いて行った.CD スペクトルは, 日本分光製 J-820 円偏光二色性分光光度計を用いて測定した.

6-5-3. DNA 切断実験

3b^{4-MeO}および **3b^{4-CI}**の DNA 切断活性は, pUC19 DNA を用い,アガロースゲル電気泳 動法によって評価した. 1.5 mL エッペンチューブに NaCl (10 mM), buffer (pH 6.0 (MES) または pH 7.4 (MOPS)), 10 mM), pUC19 DNA (50 µM bp), Cu(OAc)₂ (70 µM), **3b^{4-MeO}**ま たは **3b^{4-CI}** (0–50 µM), AscNa (0–150 µM)となるように調製した溶液を加え, 37°C の暗 所でインキュベーションした. 0, 1, 2, 3, 5, 10, 20, 30, 40, 60 分毎にサンプルを採取し, loading buffer (0.025% bromophenol blue, 0.025% xylene cyanol FF, 1.0 mM EDTA and 30% glycerol)を用いて反応をクエンチした. 各サンプルを TAE buffer (Tris/acetate/EDTA)を用 いて作成した 1%アガロースゲルにローディングし, 100 V で約 1 時間電気泳動を行った. その後, EtBr (0.5 μ g μ L⁻¹)染色を 1 時間行い, VILBER LOURMAT E-BOX-CX5.TS Edge-20.M を用いてゲルバンドを撮影した.撮影したバンドを, Form I の染色補正値 1.06 を用い, ImageJ ソフトウェアによって解析を行った. この測定は最低 3 回行い, 再現性 をとった.

阻害剤存在下における **3b^{4-MeO}** および **3b^{4-Cl}の DNA** 切断活性では, 1.5 mL エッペンチ ューブに NaCl (10 mM), buffer (pH 6.0 (MES), 10 mM), pUC19 DNA (50 µM bp), Cu(OAc)₂ (70 µM), **3b^{4-MeO}** または **3b^{4-Cl}** (30 µM), AscNa (150 µM), 阻害剤 DMSO (1–10 mM)とな るように調製した溶液を用いて, 前述の阻害剤非存在下と同様の操作を行うことで評価 した.

6-5-4. 3b^{4-Cl}の Cyclic Voltammetry (CV)測定

200 mM Buffer 溶液(pH 7.4 (MOPS), 10 mL), 2 mM NaOAc に **3b**^{4-Cl} が 0.5 mM となるように溶液を調製した.この溶液に水系参照電極 (Ag/AgCl), 作用電極として glassy carbon, 対極として Pt wire を浸し, 窒素を 10 分間バブリングした後, CV 測定を行った.なお, 測定感度は 10 μA/V, 掃引速度は 10 mV s⁻¹ で行った.

6-5-5. coumarin を用いた HO•生成の検出

3, **3b^{4-MeO}** および **3b^{4-Cl}** (30 μM), coumarin (0.5 mM), NaCl (10 mM)の Buffer 溶液(pH 6.0 (MES), 10 mM)を 4 面セルに加え, 37±0.2°C に保った. この溶液に AscNa 水溶液を 150 μM になるように加え, 励起波長 332 nm での 452 nm の蛍光強度を 60 分間, スリット幅 5.0 nm で測定した.

6-5-6. 等温滴定型熱量(ITC)測定

セルに, 33 mer オリゴ二重鎖 DNA (18.75 μM), Buffer (pH6.0 (MES), 10 mM), NaCl (10 mM)となるように調製した溶液を加えた. シリンジには, **3b**^{4-MeO}および **3b**^{4-Cl} (1.0 mM), Buffer (pH6.0 (MES), 10 mM), NaCl (10 mM)の溶液を加えた. 37°C において DNA 溶液 に各錯体溶液を 28 回(10 μL/回)加え, その際に発生する熱量を測定した. 得られたデー タから希釈熱を引き, ORIGIN ソフトウェアを用いて解析した.

6-5-7. ct-DNA 存在下での Circular Dichroism (CD)スペクトル測定

ct-DNA (50 μM bp), NaCl (10 mM)の Buffer 溶液 (pH 6.0 (MES), 10 mM)を 2 面セルに 加え, 37±0.2°C に保った. この溶液に 3, 3b^{4-MeO}, 3b^{4-Cl}および 5 の水溶液を 0–100 μM まで順に加え,各錯体濃度での CD スペクトルを測定した.

6-5-8. ct-DNA 存在下での 3, 3b^{4-MeO} および 3b^{4-Cl}の電子スペクトル測定

3, **3b^{4-MeO}** および **3b^{4-Cl}** (10 μM), NaCl (10 mM)の Buffer 溶液(pH 6.0 (MES), 10 mM)を 2 面セルに加え, 37 ± 0.2°C に保った. この溶液に ct-DNA 水溶液を 30 μM bp 毎に 150 μM bp まで添加し, 300–1000 nm の範囲で各スペクトルを測定した.

6-6. 参考文献

[1] (a) M. Jinek, K.Chylinski, I. Fonfara, M. Hauer, J. A Doudna, E. Charpentier, *Science*. 2012, 337, 816–21. (b) C.-S. Wang, C.-H. Chang, T.-Y. Tzeng, A. M.-Y. Lin, and Y.-L. Lo, *Nanoscale Horiz.*, 2021, 6, 729–743.

[2] A. Ciccia, S. J. Elledge, Mol. Cell 2010, 40(2), 179-204.

[3] J. P. McNally, S.H. Millen, V. Chaturvedi, N. Lakes, C.E. Terrell, E.E. Elfers, K.R. Carroll,

S.P. Hogan, P.R. Andreassen, J. Kanter, C. E. Allen, M. M. Henry, J. N. Greenberg, S. Ladisch,

M. L. Hermiston, M. Joyce, D. A. Hildeman, J. D. Katz, M. B. Jordan, *Proc. Natl. Acad. Sci. USA* **2017**, *114*(24), E4782–E4791.

[4] U. S. Srinivasa, B. W. Q. Tan, B. A. Vellayappan, A. D. Jeyasekharan, *Redox Biology* **2019**, *25*, 101084.

[5] H. Yang, S. Ren, S. Yu, H. Pan, T. Li, S. Ge, J. Zhang, N. Xia, Int. J. Mol. Sci. 2020, 21(18), 6461.

[6] E. Bolderson, D. J. Richard, B. B. S. Zhou, K. K. Khanna, *Clin Cancer Res.* 2009, 15(20), 6314.

[7] N. J. Curtin, Nat. Rev. Cancer 2012, 12(12), 801-817.

[8] Roelfes, G. et al., Chem. Commun. 2007, 2, 180–182.

[9] (a) Y. Zhao, et. al., Chem. Eur. J. 2006, 12, 6621-6629. (b) P. U. Maheswari, et. al., Inorg.

Chem. **2008**, *47*, 3719–3727. (c) C. Lüdtke, et. al., *Chem. Eur. J.* **2021**, *27*, 3273. (d) Q. Pena, et. al. *Inorg. Chem.* **2021**, *60*, 2939–2952.

[10] W. Wang, Y. A. Lee, G. Kim, S. K. Kim, G. Y. Lee, J. Kim, Y. Kim, G. J. Park, C. Kim, J. *Inorg. Biochem.* **2015**, *153*, 143–149.

- [11] M. Hata, Y. Kadoya, Y. Hitomi, M. Kodera, Bull. Chem. Soc. Jpn. 2022, 95, 1546–1552.
- [12] S. Torelli, C. Belle, I. Gautier-Luneau, J. L. Pierre, E. Sain-Aman, J. M. Latour, L. L. Pape,
- L. D. Luneau, Inorg. Chem. 2000, 39, 3526.
- [13] D. Freifelder, B. Trumbo, *Biopolymers*, 1969, 7, 681.

[14] S. Kim, J. W. Ginsbach, J. Y. Lee, R. L. Peterson, J. J. Liu, M. A. Siegler, A. A. Sarjeant, E.

- I. Solomon, K. D. Karlin, J. Am. Chem. Soc. 2015, 137, 2867.
- [15] Y. Nosaka, A. Y. Nosaka, Chem. Rev. 2017, 117, 11302.
- [16] S. Leichnitz, J. Heinrich, N. Kulak, Chem. Commun. 2018, 54, 13411.
- [17] X. Dong, X. Wang, M. Lin, H. Sun, X. Yang, Z. Promotive, Inorg. Chem. 2010, 49, 2541.
- [18] O. I. Aruoma, B. Halliwell, M. Dizdaroglu, J. Biol. Chem. 1989, 264, 13024.

[19] A. Erxleben, Coord. Chem. Rev., 2018, 360, 92.

[20] M. Kodera, Y. Kadoya, K. Fukui, A. Nomura, Y. Hitomi, H. Kitagishi, *Bull. Chem. Soc. Jpn.* **2019**, *92*, 739.

[21] M. Anamika, C. Sankar, J. Phys. Chem. B 2012, 116, 5226-5233.

[22] K. Karidi, A. Garoufis, N. Hadjiliadis, J. Reedijk, Dalton Trans. 2005, 60, 728-734.

[23] X. B. Fu, D. D. Liu, Y. Lin, W. Hu, Z. W. Mao, X. Y. Le, Dalton Trans. 2014, 43, 8721.

[24] S. Mahadevan, M. Palaniandavar, Inorg. Chem. 1998, 37, 693.

[25] Y. Kadoya, M. Hata, Y. Tanaka, A. Hirohata, Y. Hitomi, M. Kodera, *Inorg. Chem.* **2021**, *60*, 5474.

6-7. Supporting Information

Figure S6-1. Agarose gel electrophoresis profiles upon reaction of pUC19 DNA (50 μ M bp) with **3b**^{4-MeO} (10–50 μ M) and AscNa (150 μ M) at pH 6.0. (a)–(f) correspond to [**3b**^{4-MeO}] of 10, 20, 30, 30, 40, and 50 μ M, respectively. (a)–(c), (e)–(f) Lane 1: DNA control; lane 2: DNA with Hind III; lanes 3–12: corresponded to the time of 0, 1, 2, 3, 5, 10, 20, 30, 40, and 60 min, respectively. (d) Lane 1: DNA control; lane 2: DNA with Hind III; lanes 3–11: corresponded to the time of 0, 0.25, 0.5, 0.75, 1, 2, 3, 5, and 10 min, respectively.

Figure S6-2. Agarose gel electrophoresis profiles upon reaction of pUC19 DNA (50 μ M bp) with **3b**^{4-Cl} (10–50 μ M) and AscNa (150 μ M) at pH 6.0. (a)–(f) correspond to [**3b**^{4-Cl}] of 10, 20, 30, 30, 40, and 50 μ M, respectively. (a)–(c), (e)–(f) Lane 1: DNA control; lane 2: DNA with Hind III; lanes 3–12: corresponded to the time of 0, 1, 2, 3, 5, 10, 20, 30, 40, and 60 min, respectively. (d) Lane 1: DNA control; lane 2: DNA with Hind III; lanes 3–11: corresponded to the time of 0, 0.25, 0.5, 0.75, 1, 2, 3, 5, and 10 min, respectively.

Complex	AscNa	Time	Form I	Form II	Form III
(µM)	(µM)	(min)	(%)	(%)	(%)
		0	92.7 ± 0.1	7.3 ± 0.1	-
		1	92.6 ± 0.0	7.4 ± 0.0	-
		2	91.4 ± 0.4	8.6 ± 0.4	-
		3	91.3 ± 0.5	8.7 ± 0.5	-
0	150	5	91.0 ± 0.4	9.0 ± 0.4	-
0	150	10	88.8 ± 1.5	11.2 ± 1.5	-
		20	87.2 ± 1.0	12.8 ± 1.0	-
		30	86.2 ± 1.8	13.8 ± 1.8	-
		40	85.2 ± 1.0	14.8 ± 1.0	-
		60	77.1 ± 1.0	22.9 ± 1.0	-
		0	91.7 ± 0.4	8.3 ± 0.4	-
		1	72.1 ± 1.1	27.9 ± 1.1	-
		2	56.7 ± 3.3	43.3 ± 3.3	-
		3	41.0 ± 3.6	59.0 ± 3.6	-
10	150	5	13.7 ± 2.4	86.3 ± 2.4	-
10	150	10	0.0 ± 0.0	98.4 ± 0.8	1.6 ± 0.8
		20	0.0 ± 0.0	87.9 ± 4.5	12.1 ± 4.5
		30	0.0 ± 0.0	69.6 ± 4.3	30.4 ± 4.3
		40	0.0 ± 0.0	54.9 ± 2.9	45.1 ± 2.9
		60	0.0 ± 0.0	41.0 ± 0.4	59.0 ± 0.4
		0	87.8 ± 3.2	12.2 ± 3.2	-
		1	0.0 ± 0.0	77.8 ± 4.0	22.2 ± 4.0
		2	0.0 ± 0.0	72.1 ± 4.5	27.9 ± 4.5
		3	0.0 ± 0.0	68.5 ± 3.4	31.5 ± 3.4
20	150	5	0.0 ± 0.0	64.5 ± 3.7	35.5 ± 3.7
20	150	10	0.0 ± 0.0	55.9 ± 2.2	44.1 ± 2.2
		20	0.0 ± 0.0	48.5 ± 1.5	51.5 ± 1.5
		30	0.0 ± 0.0	45.3 ± 2.0	54.7 ± 2.0
		40	0.0 ± 0.0	40.0 ± 2.6	60.0 ± 2.6
		60	0.0 ± 0.0	34.0 ± 2.3	66.0 ± 2.3

Table S6-1. Fraction of Form I, Form II, and Form III in the DNA cleavage of $3b^{4-MeO}$ (0–50 μ M) and AscNa (150 μ M).

		0	92.8 ± 4.2	7.2 ± 4.2	-
		0.25	0.0 ± 0.0	83.7 ± 4.9	16.3 ± 4.9
		0.5	0.0 ± 0.0	78.4 ± 3.5	21.6 ± 3.5
		0.75	0.0 ± 0.0	74.2 ± 2.2	25.8 ± 2.2
		1	0.0 ± 0.0	71.9 ± 4.5	28.1 ± 4.5
		2	0.0 ± 0.0	68.1 ± 3.9	31.9 ± 3.9
30	150	3	0.0 ± 0.0	64.4 ± 3.6	35.6 ± 3.6
		5	0.0 ± 0.0	58.7 ± 2.9	41.3 ± 2.9
		10	0.0 ± 0.0	50.8 ± 4.1	49.2 ± 4.1
		20	0.0 ± 0.0	45.4 ± 3.6	54.6 ± 3.6
		30	0.0 ± 0.0	42.6 ± 3.5	57.4 ± 3.5
		40	0.0 ± 0.0	38.4 ± 3.8	61.6 ± 3.8
		60	0.0 ± 0.0	34.9 ± 4.6	65.5 ± 4.2
		0	96.1 ± 1.2	3.9 ± 1.2	-
		1	0.0 ± 0.0	62.4 ± 2.7	37.6 ± 2.7
		2	0.0 ± 0.0	59.3 ± 2.9	40.7 ± 2.9
		3	0.0 ± 0.0	54.4 ± 1.6	45.6 ± 1.6
40	150	5	0.0 ± 0.0	47.9 ± 2.7	52.1 ± 2.7
40	150	10	0.0 ± 0.0	43.0 ± 1.3	57.0 ± 1.3
		20	0.0 ± 0.0	34.9 ± 1.9	65.1 ± 1.9
		30	0.0 ± 0.0	34.5 ± 1.1	65.5 ± 1.1
		40	0.0 ± 0.0	34.4 ± 2.3	65.6 ± 2.3
		60	0.0 ± 0.0	33.4 ± 3.6	66.6 ± 3.6
		0	96.8 ± 0.8	3.2 ± 0.8	-
		1	0.0 ± 0.0	64.6 ± 1.9	35.4 ± 1.9
		2	0.0 ± 0.0	59.7 ± 2.8	40.3 ± 2.8
50		3	0.0 ± 0.0	54.3 ± 0.9	45.7 ± 0.9
	150	5	0.0 ± 0.0	48.2 ± 1.4	51.8 ± 1.4
50	150	10	0.0 ± 0.0	42.4 ± 2.5	57.6 ± 2.5
		20	0.0 ± 0.0	35.9 ± 2.8	64.1 ± 2.8
		30	0.0 ± 0.0	33.4 ± 3.4	66.6 ± 3.4
		40	0.0 ± 0.0	30.7 ± 2.8	69.3 ± 2.8
		60	0.0 ± 0.0	29.0 ± 0.9	71.0 ± 0.9

Complex	AscNa	Time	Form I	Form II	Form III
(µM)	(µM)	(min)	(%)	(%)	(%)
		0	92.3 ± 0.3	7.7 ± 0.3	-
		1	61.2 ± 0.2	38.8 ± 0.2	-
		2	45.4 ± 0.8	54.6 ± 0.8	-
		3	31.5 ± 0.3	68.5 ± 0.3	-
10	150	5	12.4 ± 3.9	87.6 ± 3.9	-
10	150	10	0.3 ± 0.5	98.1 ± 0.3	1.6 ± 0.2
		20	0.0 ± 0.0	85.7 ± 1.3	14.3 ± 1.3
		30	0.0 ± 0.0	63.2 ± 3.3	36.8 ± 3.3
		40	0.0 ± 0.0	41.9 ± 4.9	58.1 ± 4.9
		60	n. d.*	n. d.*	n. d.*
		0	95.3 ± 2.0	4.7 ± 2.0	-
		1	0.0 ± 0.0	90.6 ± 3.7	9.4 ± 3.7
		2	0.0 ± 0.0	81.1 ± 4.1	18.9 ± 4.1
		3	0.0 ± 0.0	75.4 ± 2.2	24.6 ± 2.2
20	150	5	0.0 ± 0.0	66.3 ± 2.9	33.7 ± 2.9
20	150	10	0.0 ± 0.0	48.7 ± 4.5	51.3 ± 4.5
		20	0.0 ± 0.0	36.6 ± 0.2	63.4 ± 0.2
		30	n. d.*	n. d.*	n. d.*
		40	n. d.*	n. d.*	n. d.*
		60	n. d.*	n. d.*	n. d.*

Table S6-2. Fraction of Form I, Form II, and Form III in the DNA cleavage of $3b^{4-Cl}$ (0–50 μ M) and AscNa (150 μ M).

		0	95.0 ± 2.4	5.0 ± 2.4	-
		0.25	3.8 ± 1.4	94.1 ± 1.3	2.1 ± 0.4
		0.5	0.0 ± 0.0	95.5 ± 1.1	4.5 ± 1.1
		0.75	0.0 ± 0.0	92.8 ± 1.8	7.2 ± 1.8
		1	0.0 ± 0.0	88.4 ± 4.9	11.6 ± 4.9
		2	0.0 ± 0.0	79.1 ± 4.6	20.9 ± 4.6
30	150	3	0.0 ± 0.0	73.7 ± 3.7	26.3 ± 3.7
		5	0.0 ± 0.0	63.7 ± 3.2	36.3 ± 3.2
		10	0.0 ± 0.0	47.7 ± 3.6	52.3 ± 3.6
		20	0.0 ± 0.0	35.9 ± 1.5	64.1 ± 1.5
		30	n. d.*	n. d.*	n. d.*
		40	n. d.*	n. d.*	n. d.*
		60	n. d.*	n. d.*	n. d.*
		0	97.8 ± 0.6	2.2 ± 0.6	-
		1	0.0 ± 0.0	87.7 ± 3.4	12.3 ± 3.4
		2	0.0 ± 0.0	79.4 ± 4.0	20.6 ± 4.0
		3	0.0 ± 0.0	72.1 ± 4.0	27.9 ± 4.0
40	150	5	0.0 ± 0.0	58.6 ± 1.9	41.4 ± 1.9
40	150	10	0.0 ± 0.0	44.8 ± 1.9	55.2 ± 1.9
		20	n. d.*	n. d.*	n. d.*
		30	n. d.*	n. d.*	n. d.*
		40	n. d.*	n. d.*	n. d.*
		60	n. d.*	n. d.*	n. d.*
		0	93.5 ± 3.5	6.5 ± 3.5	-
		1	0.0 ± 0.0	83.0 ± 1.1	17.0 ± 1.1
		2	0.0 ± 0.0	75.7 ± 3.0	24.3 ± 3.0
		3	0.0 ± 0.0	63.8 ± 4.2	36.2 ± 4.2
50	150	5	0.0 ± 0.0	56.5 ± 1.4	43.5 ± 1.4
30	130	10	0.0 ± 0.0	41.2 ± 4.4	58.8 ± 4.4
		20	n. d.*	n. d.*	n. d.*
		30	n. d.*	n. d.*	n. d.*
		40	n. d.*	n. d.*	n. d.*
		60	n. d.*	n. d.*	n. d.*

*n. d. means cannot determine.

Figure S6-3. Agarose gel electrophoresis profiles upon reaction of pUC19 DNA (50 μ M bp) with **3b**^{4-MeO} (30 μ M) and AscNa (0–100 μ M) at pH 6.0. (a)–(c) correspond to [AscNa] of 0, 50, and 100 μ M, respectively. (a) Lane 1: DNA control; lane 2: DNA with Hind III; lanes 3–9: corresponded to the time of 0, 5, 10, 20, 30, 40, and 60 min, respectively. (b)–(c) Lane 1: DNA control; lane 2: DNA with Hind III; lanes 3–12: corresponded to the time of 0, 1, 2, 3, 5, 10, 20, 30, 40, and 60 min, respectively.

Figure S6-4. Agarose gel electrophoresis profiles upon reaction of pUC19 DNA (50 μ M bp) with **3b**^{4-CI} (30 μ M) and AscNa (0–100 μ M) at pH 6.0. (a)–(c) correspond to [AscNa] of 0, 50, and 100 μ M, respectively. (a) Lane 1: DNA control; lane 2: DNA with Hind III; lanes 3–9: corresponded to the time of 0, 5, 10, 20, 30, 40, and 60 min, respectively. (b)–(c) Lane 1: DNA control; lane 2: DNA with Hind III; lanes 3–12: corresponded to the time of 0, 1, 2, 3, 5, 10, 20, 30, 40, and 60 min, respectively.
Complex	AscNa	Time	Form I	Form II	Form III
(µM)	(µM)	(min)	(%)	(%)	(%)
		0	92.2 ± 0.4	7.8 ± 0.4	-
		5	91.7 ± 0.3	8.3 ± 0.3	-
		10	91.2 ± 0.1	8.8 ± 0.1	-
30	0	20	90.7 ± 0.3	9.3 ± 0.3	-
		30	90.6 ± 0.3	9.4 ± 0.3	-
		40	90.3 ± 0.4	9.7 ± 0.4	-
		60	90.0 ± 0.6	10.0 ± 0.6	-
		0	87.7 ± 1.3	12.3 ± 1.3	-
		1	0.0 ± 0.0	99.3 ± 0.1	0.7 ± 0.1
		2	0.0 ± 0.0	98.7 ± 0.2	1.3 ± 0.2
	50	3	0.0 ± 0.0	96.8 ± 0.7	3.2 ± 0.7
20		5	0.0 ± 0.0	96.1 ± 0.9	3.9 ± 0.9
50	30	10	0.0 ± 0.0	93.6 ± 1.5	6.4 ± 1.5
		20	0.0 ± 0.0	89.6 ± 1.7	10.4 ± 1.7
		30	0.0 ± 0.0	89.2 ± 1.5	10.8 ± 1.5
		40	0.0 ± 0.0	88.8 ± 1.8	11.2 ± 1.8
		60	0.0 ± 0.0	88.2 ± 1.8	11.8 ± 1.8
		0	89.3 ± 0.8	10.7 ± 0.8	-
		1	0.0 ± 0.0	91.3 ± 0.5	8.7 ± 0.5
		2	0.0 ± 0.0	87.4 ± 1.7	12.6 ± 1.7
		3	0.0 ± 0.0	85.5 ± 1.3	14.5 ± 1.3
20	100	5	0.0 ± 0.0	82.7 ± 1.5	17.3 ± 1.5
30	100	10	0.0 ± 0.0	75.5 ± 2.2	24.5 ± 2.2
		20	0.0 ± 0.0	73.9 ± 1.5	26.1 ± 1.5
		30	0.0 ± 0.0	72.7 ± 1.1	27.3 ± 1.1
		40	0.0 ± 0.0	70.3 ± 1.3	29.7 ± 1.3
		60	0.0 ± 0.0	69.0 ± 0.6	31.0 ± 0.6

Table S6-3. Fraction of Form I, Form II, and Form III in the DNA cleavage of $3b^{4-MeO}$ (30 μ M) and AscNa (0–100 μ M).

Complex	AscNa	Time	Form I	Form II	Form III
(μM)	(µM)	(min)	(%)	(%)	(%)
		0	93.3 ± 0.3	6.7 ± 0.3	-
		5	92.7 ± 0.1	7.3 ± 0.1	-
		10	92.3 ± 0.3	7.7 ± 0.3	-
30	0	20	91.9 ± 0.2	8.1 ± 0.2	-
		30	91.7 ± 0.4	8.3 ± 0.4	-
		40	91.6 ± 0.3	8.4 ± 0.3	-
		60	90.8 ± 0.7	9.2 ± 0.7	-
		0	96.1 ± 0.6	3.9 ± 0.6	0 ± 0
		1	24.0 ± 2.3	76.0 ± 2.3	0 ± 0
		2	12.7 ± 2.8	87.3 ± 2.8	0 ± 0
	50	3	8.2 ± 1.9	91.8 ± 1.9	0 ± 0
20		5	4.6 ± 0.6	95.4 ± 0.6	0 ± 0
30		10	0 ± 0	98.5 ± 0.4	1.5 ± 0.4
		20	0 ± 0	95.5 ± 1.1	4.5 ± 1.1
		30	0 ± 0	92.5 ± 1	7.5 ± 1.0
		40	0 ± 0	89.2 ± 1.3	10.8 ± 1.3
		60	0 ± 0	79.9 ± 1.1	20.1 ± 1.1
		0	92.8 ± 0.6	7.2 ± 0.6	-
		1	0.0 ± 0.0	94.4 ± 1.9	5.6 ± 1.9
		2	0.0 ± 0.0	89.8 ± 3.1	10.2 ± 3.1
		3	0.0 ± 0.0	84.7 ± 2.2	15.3 ± 2.2
20	100	5	0.0 ± 0.0	76.6 ± 3.3	23.4 ± 3.3
50	100	10	0.0 ± 0.0	63.3 ± 0.4	36.7 ± 0.4
		20	0.0 ± 0.0	43.6 ± 1.4	56.4 ± 1.4
		30	0.0 ± 0.0	27.0 ± 3.2	73.0 ± 3.2
		40	n. d.*	n. d.*	n. d.*
		60	n. d.*	n. d.*	n. d.*

Table S6-4. Fraction of Form I, Form II, and Form III in the DNA cleavage of $3b^{4-Cl}$ (30 μ M) and AscNa (0–100 μ M).

*n. d. means cannot determine.

Figure S6-5. Agarose gel electrophoresis profiles upon reaction of pUC19 DNA (50 μ M bp) with **3b^{4-MeO}** (0–10 μ M) and AscNa (50 μ M) at pH 6.0. (a)–(f) correspond to [**3b^{4-MeO}**] of 0, 2, 4, 6, 8, and 10 μ M, respectively. Lane 1: DNA control; lane 2: DNA with Hind III; lanes 3–12: corresponded to the time of 0, 1, 2, 3, 5, 10, 20, 30, 40, and 60 min, respectively.

Figure S6-6. Agarose gel electrophoresis profiles upon reaction of pUC19 DNA (50 μ M bp) with **3b^{4-MeO}** (5 μ M) and AscNa (0–150 μ M) at pH 6.0. (a)–(e) correspond to [AscNa] of 0, 10, 30 50, 100, and 150 μ M, respectively. Lane 1: DNA control; lane 2: DNA with Hind III; lanes 3–12: corresponded to the time of 0, 1, 2, 3, 5, 10, 20, 30, 40, and 60 min, respectively.

Figure S6-7. Agarose gel electrophoresis profiles upon reaction of pUC19 DNA (50 μ M bp) with **3b^{4-CI}** (0–10 μ M) and AscNa (150 μ M) at pH 6.0. (a)–(c) correspond to [**3b^{4-CI}**] of 0, 2, 5, and 10 μ M, respectively. Lane 1: DNA control; lane 2: DNA with Hind III; lanes 3–12: corresponded to the time of 0, 1, 2, 3, 5, 10, 20, 30, 40, and 60 min, respectively.

Figure S6-8. Agarose gel electrophoresis profiles upon reaction of pUC19 DNA (50 μ M bp) with **3b^{4-C1}** (5 μ M) and AscNa (0–150 μ M) at pH 6.0. (a)–(e) correspond to [AscNa] of 0, 10, 30 50, 100, and 150 μ M, respectively. Lane 1: DNA control; lane 2: DNA with Hind III; lanes 3–12: corresponded to the time of 0, 1, 2, 3, 5, 10, 20, 30, 40, and 60 min, respectively.

Complex	AscNa	Time	Form I	Form II	Form III
(µM)	(µM)	(min)	(%)	(%)	(%)
		0	90.6 ± 0.7	9.4 ± 0.7	-
		1	89.9 ± 1.1	10.1 ± 1.1	-
		2	89.4 ± 1.5	10.6 ± 1.5	-
		3	88.8 ± 1.5	11.2 ± 1.5	-
0	50	5	87.7 ± 1.6	12.3 ± 1.6	-
0	50	10	87.2 ± 0.5	12.8 ± 0.5	-
		20	87.1 ± 0.5	12.9 ± 0.5	-
		30	86.7 ± 1.5	13.3 ± 1.5	-
		40	84.2 ± 1.5	15.8 ± 1.5	-
		60	78.1 ± 1.0	21.9 ± 1.0	-
		0	89.3 ± 0.6	10.7 ± 0.6	-
	50	1	88.9 ± 0.6	11.1 ± 0.6	-
		2	88.4 ± 0.5	11.6 ± 0.5	-
		3	87.8 ± 0.6	12.2 ± 0.6	-
2		5	87.7 ± 0.5	12.3 ± 0.5	-
2		10	84.8 ± 1.8	15.2 ± 1.8	-
		20	79.0 ± 0.7	21.0 ± 0.7	-
		30	70.8 ± 0.7	29.2 ± 0.7	-
		40	61.3 ± 0.9	38.7 ± 0.9	-
		60	34.0 ± 3.9	66.0 ± 3.9	-
		0	90.7 ± 1.1	9.3 ± 1.1	-
		1	89.3 ± 0.5	10.7 ± 0.5	-
		2	87.4 ± 1.4	12.6 ± 1.4	-
		3	87.2 ± 1.4	12.8 ± 1.4	-
4	50	5	85.1 ± 0.7	14.9 ± 0.7	-
4	50	10	76.9 ± 2.3	23.1 ± 2.3	-
		20	57.6 ± 4.5	42.4 ± 4.5	-
		30	37.4 ± 3.9	62.6 ± 3.9	-
		40	20.2 ± 4.3	79.8 ± 4.3	-
		60	2.3 ± 2.7	96.8 ± 2	0.9 ± 0.9

Table S6-5. Fraction of Form I, Form II, and Form III in the DNA cleavage of $3b^{4-MeO}$ (0–10 μ M) and AscNa (50 μ M).

		0	87.2 ± 3.2	12.8 ± 3.2	-
		1	84.2 ± 4.1	15.8 ± 4.1	-
		2	82.7 ± 0.9	17.3 ± 0.9	-
		3	78.7 ± 1.8	21.3 ± 1.8	-
ſ	50	5	66.9 ± 3.0	33.1 ± 3.0	-
0	50	10	33.4 ± 2.8	66.6 ± 2.8	-
		20	8.3 ± 4.7	91.1 ± 4.1	0.6 ± 0.8
		30	1.0 ± 1.4	94.6 ± 1.4	4.4 ± 2.5
		40	0.0 ± 0.0	93.3 ± 2.7	6.7 ± 2.7
		60	0.0 ± 0.0	87.9 ± 2.6	12.1 ± 2.6
		0	90.7 ± 0.9	9.3 ± 0.9	-
		1	81.7 ± 2.7	18.3 ± 2.7	-
		2	74.5 ± 1.4	25.5 ± 1.4	-
		3	65.6 ± 1.3	34.4 ± 1.3	-
0	50	5	45.2 ± 2.0	54.8 ± 2.0	-
8	50	10	9.2 ± 0.1	90.8 ± 0.1	-
		20	0.0 ± 0.0	97.5 ± 0.2	2.5 ± 0.2
		30	0.0 ± 0.0	93.4 ± 0.7	6.6 ± 0.7
		40	0.0 ± 0.0	90.5 ± 0.1	9.5 ± 0.1
		60	0.0 ± 0.0	83.4 ± 1.3	16.6 ± 1.3
		0	88.1 ± 0.8	11.9 ± 0.8	-
		1	60.4 ± 0.7	39.6 ± 0.7	-
		2	37.3 ± 1.9	62.7 ± 1.9	-
		3	20.6 ± 0.4	79.4 ± 0.4	-
10	50	5	4.4 ± 0.1	95.6 ± 0.1	-
10	50	10	0.0 ± 0.0	97.5 ± 0.4	2.5 ± 0.4
		20	0.0 ± 0.0	93.3 ± 0.1	$\boldsymbol{6.7\pm0.1}$
		30	0.0 ± 0.0	89.5 ± 0.4	10.5 ± 0.4
		40	0.0 ± 0.0	87.1 ± 1.0	12.9 ± 1.0
		60	0.0 ± 0.0	83.8 ± 2.2	16.2 ± 2.2

Complex	AscNa	Time	Form I	Form II	Form III
(µM)	(µM)	(min)	(%)	(%)	(%)
		0	92.2 ± 0.4	7.8 ± 0.4	-
		1	91.6 ± 0.2	8.4 ± 0.2	-
		2	91.4 ± 0.2	8.6 ± 0.2	-
		3	91.1 ± 0.0	8.9 ± 0.0	-
5	0	5	90.9 ± 0.1	9.1 ± 0.1	-
5	0	10	90.7 ± 0.0	9.3 ± 0.0	-
		20	90.5 ± 0.0	9.5 ± 0.0	-
		30	90.5 ± 0.0	9.5 ± 0.0	-
		40	90.4 ± 0.1	9.6 ± 0.1	-
		60	89.2 ± 0.7	10.8 ± 0.7	-
		0	92.7 ± 0.3	7.3 ± 0.3	-
		1	90.6 ± 0.0	9.4 ± 0.0	-
	10	2	90.3 ± 0.1	9.7 ± 0.1	-
		3	90.1 ± 0.3	9.9 ± 0.3	-
5		5	89.6 ± 0.2	10.4 ± 0.2	-
5	10	10	87.1 ± 0.4	12.9 ± 0.4	-
		20	81.6 ± 0.5	18.4 ± 0.5	-
		30	74.8 ± 1.1	25.2 ± 1.1	-
		40	68.4 ± 0.7	31.6 ± 0.7	-
		60	56.0 ± 1.1	44.0 ± 1.1	-
		0	92.5 ± 0.3	7.5 ± 0.3	-
		1	90.0 ± 0.0	10.0 ± 0.0	-
		2	89.4 ± 0.2	10.6 ± 0.2	-
		3	89.0 ± 0.2	11.0 ± 0.2	-
5	20	5	87.6 ± 1.1	12.4 ± 1.1	-
5	30	10	82.4 ± 1.6	17.6 ± 1.6	-
		20	67.2 ± 3.5	32.8 ± 3.4	-
		30	50.0 ± 4.2	50.0 ± 4.2	-
		40	35.2 ± 5.0	64.8 ± 5.0	-
		60	14.3 ± 4.7	85.5 ± 4.7	0.2 ± 0.0

Table S6-6. Fraction of Form I, Form II, and Form III in the DNA cleavage of $3b^{4-MeO}$ (5 μ M) and AscNa (0–150 μ M).

		0	93.1 ± 0.5	6.9 ± 0.5	-
		1	90.7 ± 0.4	9.3 ± 0.4	-
		2	90.5 ± 0.6	9.5 ± 0.6	-
		3	89.8 ± 0.0	10.2 ± 0.0	-
-	50	5	86.1 ± 0.0	13.9 ± 0.0	-
3	50	10	79.0 ± 0.0	21.0 ± 0.0	-
		20	57.7 ± 0.9	42.3 ± 0.9	-
		30	38.2 ± 1.8	61.8 ± 1.8	-
		40	24.2 ± 0.8	75.8 ± 0.8	-
		60	5.9 ± 0.3	93.8 ± 0.3	0.3 ± 0.0
		0	93.2 ± 0.4	6.8 ± 0.4	-
		1	91.4 ± 0.1	8.6 ± 0.1	-
		2	90.9 ± 0.3	9.1 ± 0.3	-
		3	88.7 ± 1.1	11.3 ± 1.1	-
5	100	5	85.6 ± 1.0	14.4 ± 1.0	-
3	100	10	76.6 ± 1.8	23.4 ± 1.8	-
		20	55.0 ± 2.6	45.0 ± 2.6	-
		30	33.4 ± 3.7	66.6 ± 3.7	-
		40	21.1 ± 3.6	78.9 ± 3.6	-
		60	4.8 ± 1.2	94.6 ± 1.0	0.6 ± 0.2

Complex	AscNa	Time	Form I	Form II	Form III
(µM)	(µM)	(min)	(%)	(%)	(%)
		0	92.8 ± 0.3	7.2 ± 0.3	-
		1	90.8 ± 0.3	9.2 ± 0.3	-
		2	90.6 ± 0.3	9.4 ± 0.3	-
		3	90.3 ± 0.2	9.7 ± 0.2	-
2	150	5	89.5 ± 0.2	10.5 ± 0.2	-
2	150	10	87.2 ± 0.4	12.8 ± 0.4	-
		20	81.0 ± 1.4	19.0 ± 1.4	-
		30	71.8 ± 3.2	28.2 ± 3.2	-
		40	60.4 ± 3.9	39.6 ± 3.9	-
		60	37.2 ± 2.6	62.8 ± 2.6	-
		0	92.6 ± 0.7	7.4 ± 0.7	-
	150	1	92.0 ± 1.6	8.0 ± 1.6	-
		2	91.0 ± 0.3	9.0 ± 0.3	-
		3	88.9 ± 0.5	11.1 ± 0.5	-
5		5	86.1 ± 0.3	13.9 ± 0.3	-
5	150	10	69.9 ± 1.8	30.1 ± 1.8	-
		20	55.1 ± 1.6	44.9 ± 1.6	-
		30	32.6 ± 0.9	67.4 ± 0.9	-
		40	17.7 ± 0.5	82.3 ± 0.5	-
		60	4.1 ± 0.0	95.5 ± 0.0	0.4 ± 0.0
		0	92.3 ± 0.3	7.7 ± 0.3	-
		1	61.2 ± 0.2	38.8 ± 0.2	-
		2	45.4 ± 0.8	54.6 ± 0.8	-
		3	31.5 ± 0.3	68.5 ± 0.3	-
10	150	5	12.4 ± 3.9	87.6 ± 3.9	-
10	150	10	0.3 ± 0.5	98.1 ± 0.3	1.6 ± 0.2
		20	0.0 ± 0.0	85.7 ± 1.3	14.3 ± 1.3
		30	0.0 ± 0.0	63.2 ± 3.3	36.8 ± 3.3
		40	0.0 ± 0.0	41.9 ± 4.9	58.1 ± 4.9
		60	n. d.*	n. d.*	n. d.*

Table S6-7. Fraction of Form I, Form II, and Form III in the DNA cleavage of $3b^{4-Cl}$ (0–10 μ M) and AscNa (50 μ M).

Complex	AscNa	Time	Form I	Form II	Form III
(µM)	(µM)	(min)	(%)	(%)	(%)
		0	93.3 ± 0.0	6.7 ± 0.0	-
		1	92.4 ± 0.2	7.6 ± 0.2	-
		2	92.0 ± 0.4	8.0 ± 0.4	-
		3	90.8 ± 0.2	9.2 ± 0.2	-
5	0	5	90.7 ± 0.2	9.3 ± 0.2	-
5	0	10	90.4 ± 0.1	9.6 ± 0.1	-
		20	90.3 ± 0.1	9.7 ± 0.1	-
		30	90.2 ± 0.0	9.8 ± 0.0	-
		40	89.9 ± 0.2	10.1 ± 0.2	-
		60	89.7 ± 0.3	10.3 ± 0.3	-
		0	92.5 ± 0.1	7.5 ± 0.1	-
		1	90.6 ± 0.3	9.4 ± 0.3	-
		2	90.4 ± 0.4	9.6 ± 0.4	-
		3	89.8 ± 0.2	10.2 ± 0.2	-
5	10	5	88.4 ± 0.6	11.6 ± 0.6	-
3	10	10	86.2 ± 0.4	13.8 ± 0.4	-
		20	81.4 ± 1.6	18.6 ± 1.6	-
		30	77.9 ± 1.2	22.1 ± 1.2	-
		40	72.9 ± 1.8	27.1 ± 1.8	-
		60	63.8 ± 2.5	36.2 ± 2.5	-
		0	92.6 ± 0.2	7.4 ± 0.2	-
		1	90.8 ± 0.5	9.2 ± 0.5	-
		2	90.3 ± 0.6	9.7 ± 0.6	-
		3	89.8 ± 0.3	10.2 ± 0.3	-
5	20	5	$88.8 \pm 1.2.$	11.2 ± 1.2	-
5	50	10	83.3 ± 1.8	16.7 ± 1.8	-
		20	69.5 ± 4.8	30.6 ± 4.8	-
		30	50.4 ± 4.7	49.6 ± 4.7	-
		40	33.9 ± 4.9	66.1 ± 4.9	-
		60	12.1 ± 3.3	87.7 ± 3.4	0.2 ± 0.0

Table S6-8. Fraction of Form I, Form II, and Form III in the DNA cleavage of $3b^{4-Cl}$ (5 μ M) and AscNa (0–150 μ M).

		0	93.4 ± 0.1	6.6 ± 0.1	-
		1	91.2 ± 0.1	8.8 ± 0.1	-
		2	90.4 ± 0.4	9.6 ± 0.4	-
		3	89.4 ± 1.0	10.6 ± 1.0	-
5	50	5	87.7 ± 0.2	12.3 ± 0.2	-
3	30	10	81.3 ± 0.1	18.7 ± 0.1	-
		20	59.9 ± 0.8	40.1 ± 0.8	-
		30	38.6 ± 1.5	61.4 ± 1.5	-
		40	23.1 ± 0.7	76.9 ± 0.7	-
		60	5.2 ± 0.6	94.1 ± 0.7	0.7 ± 0.0
		0	93.5 ± 0.5	6.5 ± 0.5	-
		1	92.3 ± 0.7	7.7 ± 0.7	-
		2	91.5 ± 0.9	8.5 ± 0.9	-
		3	90.4 ± 0.1	9.6 ± 0.1	-
5	100	5	85.8 ± 0.8	14.2 ± 0.8	-
5	100	10	75.6 ± 2.0	24.4 ± 2.0	-
		20	48.2 ± 5.0	51.9 ± 5.0	-
		30	25.9 ± 5.0	74.1 ± 5.0	-
		40	12.1 ± 3.6	87.4 ± 3.1	0.5 ± 0.5
		60	1.3 ± 1.3	97.1 ± 0.7	1.6 ± 0.6

Figure S6-9. Agarose gel electrophoresis profiles upon reaction of pUC19 DNA (50 μ M bp) with complex (**3b**^{4-MeO} (a) and **3b**^{4-Cl} (b)) (30 μ M) and AscNa (150 μ M) at pH 7.4, respectively. Lane 1: DNA control; lane 2: DNA with Hind III; lanes 3–12: corresponded to the time of 0, 1, 2, 3, 5, 10, 20, 30, 40, and 60 min, respectively.

Table S6-9. Fraction of Form I, Form II, and Form III in the DNA cleavage of complex (30 μ M) and AscNa (150 μ M) at pH 7.4.

Complex	Time	Form I	Form II	Form III
Complex	(min)	(%)	(%)	(%)
	0	98.1 ± 0.4	1.9 ± 0.4	-
	1	1.6 ± 1.1	95.3 ± 1.7	3.1 ± 2.3
	2	0.0 ± 0.0	93.3 ± 0.6	6.7 ± 0.6
	3	0.0 ± 0.0	89.8 ± 1.8	10.2 ± 1.8
21. 4-MeO	5	0.0 ± 0.0	86.6 ± 2.3	13.4 ± 2.3
30	10	0.0 ± 0.0	79.7 ± 1.9	20.3 ± 1.9
	20	0.0 ± 0.0	73.4 ± 2.3	26.6 ± 2.3
	30	0.0 ± 0.0	70.5 ± 1.4	29.5 ± 1.4
	40	0.0 ± 0.0	68.8 ± 1.9	31.2 ± 1.9
	60	0.0 ± 0.0	65.9 ± 2.9	34.1 ± 2.9
	0	97.7 ± 0.8	2.3 ± 0.8	-
	1	0.0 ± 0.0	77.4 ± 0.7	22.6 ± 0.7
	2	0.0 ± 0.0	64.0 ± 2.4	36.0 ± 2.4
	3	0.0 ± 0.0	52.8 ± 1.5	47.2 ± 1.5
ah4-Cl	5	0.0 ± 0.0	39.1 ± 2.7	60.9 ± 2.7
30	10	n. d.*	n. d.*	n. d.*
	20	n. d.*	n. d.*	n. d.*
	30	n. d.*	n. d.*	n. d.*
	40	n. d.*	n. d.*	n. d.*
_	60	n. d.*	n. d.*	n. d.*

*n. d. means cannot determine.

Figure S6-10. Isothermal calorimetric titration curves: $3b^{4-MeO}$ (A) or $3b^{4-Cl}$ (B) at pH 6.0. Experimental conditions: A solution of $3b^{4-MeO}$ or $3b^{4-Cl}$ (1 mM) in a syringe was added, in an equal interval 28 times, to a solution of the linear 33 mer ds-DNA (18.75 μ M) in the cell in the presence of NaCl (10 mM) in pH 6.0 (MES, 10 mM) at 37°C.

第七章: Enhancement of DNA double-strand breaks by a dicopper complex with a phenanthrene amide-tether ligand conjugate

7-1. 要旨

本章では、DNA 特異的な標的部位導入により、二核銅錯体による supercoiled plasmid pUC19DNA の二本鎖切断(DNA double-strand breaks, dsb)を経る Form III 生成の初期の速 い反応(burst)が加速されることを見出した.具体的には、第五章で示した 2,6-bis(amidetether dpa)-p-cresol 配位子(HL3)の p-cresol のメチル基を 9-phenanthrenyl (P)または methyl (M)末端を持つ-CONH(CH₂CH₂O)₂CH₂CH₂NHCO-リンカーに置換した DNA 標的/二核化 配位子結合体(HL3^X, X = P and M)とその錯体[Cu₂(µ-1,1-OAc)(µ-1,3-OAc)(L3^X)](OAc) (3^X) を新たに開発した. 3^xを用い, AscNa 存在下の還元的 O₂活性化による supercoiled plasmid pUC19DNA の酸化切断を行った. DNA dsb で生じる Form III の生成速度を HL3 の錯体 [Cu₂(µ-1,1-OAc)(µ-1,3-OAc)(L3)](OAc) (3)を用いた反応と比較した結果, DNA dsb の burst が 3^M<3<3^Pの順で増大した.特に 3^Pの Form III の生成の burst は錯体濃度に顕著に依 存した. この原因を調べるため、これら3つの錯体の還元的O2活性化によるヒドロキ シラジカル(HO•)生成の初期速度, Form III 生成に対する DMSO の阻害効果, 33 mer DNA との相互作用の等温滴定カロリメトリー(ITC), 仔ウシ胸腺 DNA(ct-DNA)との相互作用 における電子スペクトル変化を測定した. HO・生成の初期速度は 3^M=3^P<3 であり, ア ミド結合導入による電子求引性の効果で3^xのCu(I)が安定化されたために3よりもHO• 生成速度が遅くなったと考えられる. ITC 測定の結果から, 3^Pは3や3^Mよりも DNAと エンタルピー駆動の強固な結合を形成していることが明らかになった. 3^Pは, DMSO に よる Form III 生成の阻害効果がほとんど見られないことから、その DNA との強固な結 合のため,生成した HO•は拡散する前に DNA 切断に使用されることが示唆された.し たがって、DNA dsb の大きな burst には HO•生成速度よりも DNA との強固な結合が重 要である.これらの研究から,DNA dsb の活性向上には錯体と DNA の結合を強固にす ることが重要であり、そのためにはインターカレーションにより DNA と特異的に結合 する phenanthrenvl 基を配位子に導入することが効果的であることが示された.

260

7-2. 緒言

既存の抗がん剤である Bleomycin の鉄錯体(Fe-BLM)は DNA 標的部位を持ち, DNA 二 本鎖切断(DNA double-strand breaks, dsb)を促進する. したがって, DNA dsb の burst を引 き起こす錯体の開発は遺伝子編集やがん治療薬の開発の観点から重要であり, DNA dsb を起こす金属錯体がこれまでに多数合成されてきた. しかし, これら合成金属錯体の DNA dsb 活性は低く, 遺伝子編集やがん治療薬への利用などの観点からは不十分であ る. その活性向上に向けて Fe-BLM の構造を模倣し, DNA 標的を導入する手法が報告 されている. 第二, 三章で述べたように, DNA 標的の導入で, 1^{P2} は1より DNA 結合 能力が9倍, H_2O_2 存在下における supercoiled plasmid pUC19DNA の二本鎖切断(doublestrand breaks, dsb)活性が 9.3 倍にそれぞれ向上した^[1,2].

第五, 六章では, HL3 および HL3⁴ 配位子(X = MeO, Cl)の二核銅錯体[Cu₂(µ-1,1-OAc)(µ-1,3-OAc)(L3)](OAc) (**3**)^[3], [Cu₂(µ-1,1-OAc)(µ-1,3-OAc)(L3^{4-MeO})](OAc) (**3b**^{4-MeO})およ び[Cu₂(µ-1,3-OAc)₂(L3^{4-Cl})](OAc)(3^{4-Cl})が,空気下,アスコルビン酸ナトリウム(AscNa)存 在下の還元的 O2 活性化によって,supercoiled plasmid pUC19DNA (Form I)を二本鎖切断 して直鎖状 DNA (Form III)へ変換する反応で初期に burst を起こすことを示した. これ までに報告されてきた幾つかの錯体による DNA 切断の中でも, 3, 3b^{4-MeO} および 3b^{4-Cl} の Form III 生成の burst は大きかった. これらの錯体は DNA と rigid な結合を形成し, 還元的 O2 活性化でヒドロキシラジカル(HO•)を生成して DNA 酸化切断を促進した.そ して、これらの rigid な DNA 結合により 10 塩基対の範囲内で DNA の相補的な二本鎖 の同時切断が起こることが Form III 生成の burst の理由であることが明らかになった. これらの研究の中で電子供与性の MeO 基を持つ 3b^{4-MeO}の Form III 生成活性が最も高 く、大きな burst を与え、錯体の濃度が低くても高活性を示した. 3b^{4-MeO}は MeO 基の電 子効果で,還元的 O2 活性化における HO•の初期の生成量が多く,負に大きい ΔH°を示 す DNA との結合を形成することで, 効率的な Form III 生成を可能にしている. しかし, Fe-BLM は, **3b^{4-MeO}**よりもはるかに高い DNA dsb 活性を示す. また, その結果, Fe-BLM はより高い細胞毒性を示す.したがって,Fe-BLMの様に高い細胞毒性を実現するには, さらに高い DNA dsb 活性を示す合成金属錯体を開発する必要がある.

本章では、高い DNA dsb 活性を示す錯体の開発を目指し、HL3 の *p*-cresol のメチル基 を 9-phenanthrenyl (P)または methyl (M)末端を持つ-CONH(CH₂CH₂O)₂CH₂CH₂NHCO-リ ンカーで置換した DNA 標的/二核化配位子結合体(HL3^x, X = P, M)とその錯体[Cu₂(µ-1,1-OAc)(µ-1,3-OAc)(L3^x)](OAc) (**3**^x)を新たに合成し、**3**^Pが Form III 生成の burst を増大させ ることを見出した. 錯体濃度が**3**は 20 µM、**3**^Pおよび**3**^Mは 18 µM の時、5 分間の Form

261

III 生成率は 3^{M} (5.9%) <3 (25.3%) < 3^{P} (71.8%)であり, DNA 標的部位を持つ 3^{P} の Form III 生成活性が最も高く, 錯体の濃度が低くても大きな burst を示した.また, 顕著な錯 体濃度依存性を示した.そこで, 3, 3^{P} , 3^{M} の DNA 切断活性, 電気化学的性質, HO•生 成速度, DNA 結合様式を比較し, rigid な DNA への結合が, 低濃度の 3^{P} による高速の Form III 生成を可能にする特徴であることを明らかにした.本章で用いた HL3, HL3^x, 3, 3^{X} (X = P, M)の化学構造を Figure 7-1 に示す.

Figure 7-1. Chemical Structures of $HL3^{X}$ and 3^{X} (X = P, M).

7-3. 結果と考察

7-3-1. 配位子と二核銅(II)錯体の合成

HL3^p および HL3^M は, HL3 の *p*-cresol 部位のメチル基を DNA 標的である 9phenanthrenyl (P)または methyl (M)末端を持つ-CONH(CH₂CH₂O)₂CH₂CH₂NHCO-リンカー に置換した配位子であり,合成経路は Scheme 7-1 に示す.まず triethylene glycol の末端 を NH₂基と N₃基で置換した誘導体を合成し,これを 3,5-diformyl-4-hydroxybenzoic acid にアミド結合で導入した.このホルミル基を酸化してカルボキシ基に変換した後,SOCL₂ で酸塩化物とし、dpa をアミド結合で導入した.さらに、末端の N₃基を還元して NH₂基 に変換した後,9-phenanthrenyl (P)または methyl (M)をアミド結合で導入し,HL3^Pおよび HL3^M を得た.これを MeCN 中,Cu(OAc)₂ と反応させて二核銅(II)錯体 [Cu₂(μ -OAc)₂(L3^P)](OAc) (**3^P**)および[Cu₂(μ -OAc)₂(L3^M)](OAc) (**3^M**)を得た.単離された錯体は, MeCN/Et₂O から再結晶して精製した.HL3^X,**3^X**(X=P,M)の詳細な合成法,元素分析お よび ESI MS のデータを **7-5-3** の実験項に示す.

Scheme 7-1. Synthetic Route of $HL3^X$ (X = P, M).

7-3-2. 二核銅(II)錯体の構造

DNA 標的部位を導入した 3^{P} と 3^{M} の二核銅部位の構造は 3 のそれと同様であると考 えられる. 3^{X} の溶液中の構造は分光学的測定により同定された.電子吸収スペクトルで は、 3^{P} は 430 nm と 730 nm、 3^{M} は 425 nm と 700 nm に PhO⁻から Cu(II)への LMCT と dd 遷移に帰属される吸収帯が観測された.これらは、3 の 441 nm (PhO⁻から Cu(II)への LMCT)と 700 nm (d-d 遷移)の吸収帯とほぼ一致した(Figure 7-2). ESI-MS (Figure 7-3, 7-4) では、 3^{P} と 3^{M} はそれぞれ、m/z 1165.26 に $[L3^{P}+2Cu(II)+2OAc]^{+}$ 、m/z 1003.2 に $[L3^{M}+$ $2Cu(II) + 2OAc]^{+}$ に帰属される分子イオンピークを与えた.これらの結果から、 3^{P} と 3^{M} は水溶液中で μ -OPh⁻ μ -OAc の架橋構造を保持していることが示された.

Figure 7-2. Electronic absorption spectra of 3^{P} (0.5 mM) (red), and 3^{M} (0.5 mM) (blue) in H₂O at room temperature.

Figure 7-3. ESI MS spectrum of **3**^P measured in MeCN at room temperature at orifice 1: 10 V, orifice 2: 10 V, ring lens voltage: 10 V.

Figure 7-4. ESI MS spectrum of **3^M** measured in MeCN at room temperature at orifice 1: 10 V, orifice 2: 10 V, ring lens voltage: 10 V.

7-3-3. AscNa 存在下での 3^P および 3^Mの DNA 酸化切断活性

Supercoiled plasmid DNA (Form I)を基質として **3**, **3**^P および **3**^M の DNA 切断活性を調べた.反応条件と解析法は実験項に示す.**3**^P や AscNa の濃度変化に対する Form I, II, III の割合(%)の時間経過とゲル写真を Figure 7-5–7-6, Figure S7-1–S7-2, Table S7-1–S7-2 に示す.**3**^P の DNA 切断活性は,**3** と同様に[**3**^x]と[AscNa]に大きく依存した.**3**^P や AscNa 不在下では,60 分間で 80%以上の Form I が未反応だった.したがって,**3**^P と AscNa は どちらも速い DNA dsb に必須である.DNA dsb の burst は[**3**^P]に大きく依存した.また, AscNa (150 μ M)存在下,**3** (20 μ M)または**3**^P および**3**^M (18 μ M)による還元的 O₂活性化を 経る反応における Form III の生成率の比較を Figure 7-7 に示す.この条件下での**3** と**3**^M の Form I, II, III の割合(%)の時間経過とゲル写真を Figure S7-3–S7-4, Table S7-3 に示 す.5分間の Form III 生成率は**3**^M (5.9%)<**3** (25.3%)<**3**^P (71.8%)であり,**3**^P の DNA 酸化 切断では DNA 標的である phenanthrene の存在で Form III 生成が**3**^M の反応に比べて 12 倍以上増加した.また,**3** に対しては,**3**^P の濃度が10%少ないにも関わらず,**3**^P による Form III 生成量が大きいことから,**3**^P は phenanthrene と DNA の結合を通して DNA dsb を加速していることが明らかになった.

Figure 7-5. Time courses for Form I (A) and Form III (B) dependent on $[3^{P}]$ in the DNA cleavage by 3^{P} . Experimental conditions: [pUC19 DNA] = 50 µM bp, $[3^{P}] = 0-18 µM$, [AscNa] = 150 µM, [Cu(OAc)₂] = 90 µM, [NaCl] = 10 mM, [MES buffer] = 10 mM (pH 6.0) at 37°C. Experiments were carried out at least three times.

Figure 7-6. Time courses for Form I (A) and Form III (B) dependent on [AscNa] in the DNA cleavage by 3^{P} . Experimental conditions: [pUC19 DNA] = 50 μ M bp, [3^{P}] = 18 μ M, [AscNa] = 0–200 μ M, [Cu(OAc)₂] = 90 μ M, [NaCl] = 10 mM, [MES buffer] = 10 mM (pH 6.0) at 37°C. Experiments were carried out at least three times.

Figure 7-7. (A) Time courses for Form III in the DNA cleavage by **3** (red) (20 μ M), **3**^P (green) (18 μ M), and **3**^M (purple) (18 μ M) in the presence of AscNa (150 μ M). (B) DNA cleavage profile promoted by **3** (red) (20 μ M), **3**^P (green) (18 μ M), and **3**^M (purple) (18 μ M) in the presence of AscNa (150 μ M) after 5 min reaction.

7-3-4.3, 3^Pおよび 3^Mの酸化還元挙動

第五章では、3 は AscNa との反応で Cu(I)Cu(II)と Cu(I)Cu(I)に速やかに還元されるこ とが示された.本章では、DNA 切断活性の違いの理由を明らかにするため、3^Pおよび 3^Mの酸化還元挙動を調べた.まず、Figure 7-8 に AscNa 添加時の錯体の UV-vis スペク トル変化を示す.3^Pおよび 3^Mは、3 と同様に 2 eq の AscNa で容易に還元された.

Figure 7-8. Absorption spectral changes (red to blue lines, 0.1 min at every interval) of 3^{P} (A) and 3^{M} (B) (0.50 mM) upon addition of AscNa (1.0 mM) in MES buffer (200 mM, pH 6.0) and NaOAc (2 mM) at rt under N₂ (inset: time courses monitored at 725 nm (A) and 700 nm (B)).

3^Pおよび **3^M**の pH 6.0 の MES 緩衝液(200 mM)中のサイクリックボルタモグラム(CV) を Figure 7-9 に示す. **3^P**は, $E_{pc} = 0.015$, $E_{pa} = 0.13$ V に Cu(I)Cu(I)/Cu(I)Cu(I)の準可逆 波と, $E_{pc} = 0.015$, $E_{pa} = 0.21$ V に Cu(II)Cu(II)Cu(I)O不可逆波を与えた. **3^M**は, $E_{1/2} = -0.003$ V ($\Delta E_p = 0.076$ V, v = 10 mV s⁻¹)に Cu(II)Cu(I)/Cu(I)Ou(I)の可逆波と, $E_{pc} = 0.02$, $E_{pa} = 0.17$ V に Cu(II)Cu(II)Cu(I)Ou(I)OT可逆波を与えた. **3^P**および **3^M**の 還元時に OAc 架橋の解離を伴うために Cu(II)Cu(II)Cu(II)Cu(I)O redox couple が不可逆 になると考えられる. **3^P**および **3^M**は **3** よりも酸化還元電位が正側にシフトしたことか ら, **3^P**および **3^M**では phenoxo 基4位の電子求引性のアミド基が Cu(I)を安定化している と考えられる. しかし, AscNa 添加時の UV-vis スペクトル変化では還元速度に大きな 差はみられず, いずれも十分に速い反応だった.

Figure 7-9. Cyclic voltammograms of 3 (red), 3^{P} (green), and 3^{M} (purple). The measurements were made at 23°C \pm 0.2°C under N₂. Glassy carbon, Pt wire, and Ag/AgCl are used as working, counter, and reference electrodes, respectively. Scan rate was 10mVs⁻¹, and sensitivity was 10 μ A/V.

7-3-5.3, 3^Pおよび 3^Mの還元的 O₂活性化

3 が AscNa との反応で Cu(I)Cu(II), Cu(I)Cu(I)に還元され,これらが律速段階の O₂活 性化に関与することを第五章で記述した.これらの還元種は,O₂の3電子還元を促進 し、プロトン化されて Cu(II)Cu(I)O₂H 種を形成する.これは、 3^{P} でも同様であり、DNA dsb 活性が pH 7.4 よりも pH 6.0 の方が高いという事実と一致する(Figure 7-10, Figure S7-5, Table S7-4). Cu(I)O₂H のホモリティックな O-O 開裂はエネルギー的に有利であ り Cu(II)Cu(I)O₂H から HO•が生成するのは **3** の反応と同様に有利な反応であるといえ る.

Figure 7-10. pH-dependent profile for DNA cleavage promoted by **3**^P. Time courses for Form III at pH 6.0 (red) and pH 7.4 (purple). Experimental conditions: $[pUC19 DNA] = 50 \ \mu\text{M}$ bp, $[complex] = 18 \ \mu\text{M}$, $[AscNa] = 150 \ \mu\text{M}$, $[Cu(OAc)_2] = 90 \ \mu\text{M}$, $[NaCl] = 10 \ \text{mM}$, $[buffer] = 10 \ \text{mM}$ (pH 6.0 (MES) and pH 7.4 (MOPS)) at 37°C. Experiments were carried out at least three times.

次に、AscNaを用いた**3**、 3^{P} および 3^{M} の還元的O₂活性化におけるHO•生成は coumarin、 H₂O₂ 生成は PBSF を用いて蛍光スペクトル変化で追跡した. coumarin は HO•と反応し て umbelliferone を生成し、332 nm で励起すると 452 nm に蛍光帯、PBSF は H₂O₂ と反応 して fluorescein を生成し、485 nm で励起すると 513 nm に蛍光帯を示す^[4, 5]. これらの 452、513 nm で追跡した蛍光強度の時間変化を Figure 7-11 に示す.**3**、 3^{P} および 3^{M} /AscNa の反応で、それぞれの蛍光強度が増加した.初期の反応では、**3** は 3^{P} および 3^{M} よりも O₂分子と速く反応し、HO•を多く生成したが、その後は 3^{P} および 3^{M} の方が HO•を多く 生成した. また、H₂O₂の生成では、**3** は 3^{P} および 3^{M} よりも多量の H₂O₂を生成した.

Figure 7-11. Time courses of the normalized emission intensity monitored at 452 nm (A) and 513 nm (B) for **3** (red), **3**^P (green), and **3**^M (purple). Experimental conditions: [NaCl] = 10 mM, [buffer] = 10 mM (MES, pH 6.0), [complex] = 30 μ M, [AscNa] = 150 μ M, [coumarin] = 0.5 mM or [PBSF] = 25 μ M, under air at 37°C.

7-3-6.3, 3^Pおよび 3^Mの DNA 結合

33 mer オリゴ ds-DNA と **3**^P および **3**^M の結合相互作用を等温滴定熱量測定(Isothermal titration calorimetry, ITC)と UV-vis スペクトルにより調べた ^{38,39}. まず, 37°C, pH 6.0 で の ITC の結果を Table 7-1, Figure S7-6 に示す. **3**, **3**^P および **3**^M の結合定数 *K* はそれぞ れ 1.31 × 10⁵, 0.79 × 10⁵, 1.67 × 10⁵ M⁻¹ で, **3**^P < **3** < **3**^M である. しかし, 錯体濃度が 10 µM 以上, DNA 濃度が 50 µM bp を用いる DNA 切断実験の条件では, **3**, **3**^P および **3**^M の DNA 結合はほぼ飽和しているため, *K* の大きさは DNA dsb の burst には重要ではない といえる. Tabe 7-1 に示すように, **3**^P の *AH*^e, *AS*^oはそれぞれ–3.85 kcal•mol⁻¹, 10.0 cal•mol⁻¹•K⁻¹ であり, **3**^P の *AH*^o, *AS*^oはそれぞれ–1.79 kcal•mol⁻¹, 18.1 cal•mol⁻¹•K⁻¹ であった. 以上の結果から, **3**^P および **3**^M の DNA 結合は **3** と同様に *AH*^o駆動である. ここ で *AH*^o値は **3**^M < **3**^P < **3** であるので, **3**^P は DNA 標的である phenanthrene が DNA にイン ターカレーションすることによって **3** や **3**^M に比べてより強い DNA 結合を形成してい ると考えられる.

for binding of 3, 3° , and $3^{\circ\circ}$ with a linear 33 mer ds-DNA						
Complex	3	3 ^p	3 ^M			
N(sites)	3.81 ± 0.21	6.91 ± 0.28	6.09 ± 0.09			
$K (\times 10^5 \mathrm{M}^{-1})$	1.31 ± 0.21	0.79 ± 0.17	1.67 ± 0.16			
ΔH° (kcal•mol ⁻¹)	-2.25 ± 0.10	-3.85 ± 0.23	-1.79 ± 0.04			
$\Delta S^{\circ} (cal \cdot mol^{-1} \cdot K^{-1})$	16.1	10.0	18.1			

Table 7-1. Thermodynamic parameters determined by ITC for binding of 3. 3^p, and 3^M with a linear 33 mer ds-DNA

錯体溶液に ct-DNA 溶液を添加した際の電子スペクトル変化を Figure 7-12 に示す. ct-DNA 溶液を加えると, 220–270 nm の benzenoid band の吸光度が減少した. これは 3^{p} が phenanthrene 部位で DNA にインターカレーションしたことを支持する結果である.

以上の結果より、 3^{P} は phenanthrene 部位で DNA にインターカレートして $3 \approx 3^{M}$ よ りも強固に DNA に結合するといえる. その結果, 3^{P} は $3 \approx 3^{M}$ よりも低濃度で高い DNA dsb 活性を示したと考えられる.

Figure 7-12. Electronic absorption spectral change of 3^{P} upon addition of ct-DNA (0 (red)–15 (purple) eq) to a solution of complex (10 μ M) in MES buffer (10 mM, pH 6.0), and NaCl (10 mM). The absorption band of DNA is subtracted from each absorption spectrum obtained upon addition of DNA to 3^{P} .

7-4. 結論

本章では 9-phenanthrenyl (P)や methyl (M)を持つ-CONH(CH₂CH₂O)₂CH₂CH₂NHCO-リ ンカーを導入した錯体 [Cu₂(μ -1,1-OAc)(μ -1,3-OAc)(L3^P)](OAc) (**3**^P) および [Cu₂(μ -1,1-OAc)(μ -1,3-OAc) (L3^M)](OAc) (**3**^M)を開発し, **3**^P が AscNa 存在下の還元的 O₂ 活性化で DNA dsb を大きく促進することを見出した.速度論的,分光学的,電気化学的,阻害, HO•生成,DNA 結合測定から,**3**^Pの DNA 結合様式が DNA dsb の burst を可能にする重 要な特徴であることが明らかになった.これらの結果は,遺伝子編集や治療への応用に 有用な DNA 二本鎖切断剤の開発に新たな方法論を提供する可能性がある.

7-5. 実験方法

7-5-1. 試薬

試薬については、合成中間体や錯体を除き、高純度製品を和光純薬工業、東京化成、 シグマアルドリッチ社製から選択して購入した.溶媒については、合成に用いるものは 必要に応じて乾燥蒸留した.スーパーコイルドプラスミド pUC19 DNA は、ニッポンジ ーン社から購入した試薬を使用した.仔ウシ胸腺由来のデオキシリボ核酸ナトリウム塩 (type I、fibers) (ct-DNA)は Sigma-Aldrich から購入した.33 mer oligo DNA 5'-d(GAC TCC ACA GTG CAT ACG TGG GCT CCA ACA GGT)-3'とその相補鎖を Thermo Fisher Scientific から購入し、アニーリングすることで 33 mer 二本鎖 DNA にした.3 は既報の論文に従 って合成した^[3].

7-5-2. 測定装置

元素分析(C, H, N)は, Perkin-Elmer 社製 Elemental Analyzer 2400 II を用いて測定した. UV-vis 吸収スペクトルは, Agilent 社製 8454 紫外可視分光光度計を用いて測定した.pH 測定は, HORIBA 製 LAQUA electrode を標準緩衝液で校正した後に測定した. Electron spray ionization MS (ESI MS)及び Cold spray ionization MS (CSI MS)スペクトルは, 日本電 子製 JMS-T100CSRX the AccuTOF CS を用いて, MeOH, MeCN または H₂O を溶媒として 測定した.赤外線(IR)スペクトルは, SHIMADZU Single Reflection HATR IRAffinity-1 MIRacle 10 で測定した. ¹H NMR スペクトルは, 日本電子製 ECA-500RX フーリエ変換 核磁気共鳴装置(500 MHz)を使用し,基準物質として tetramethylsilane (TMS)または sodium 3-(trimethylsilyl)propionate-2,2,3,3-*d*₄ (TSP)を用いて測定した. 蛍光スペクトルは, HITACHI Spectral fluorometer F-7000 で測定した. 等温滴定型熱量(ITC)測定は, Malvern 社製 MicroCal Isothermal Titration Calorimeter VP-ITC を用いて行った.

7-5-3. 配位子 (HL3^x)およびその二核銅(II)錯体 (3^x)の合成

N-(8-azido-3,6-dioxaoctyl)-2,6-bis(N,N-bis(2-pyridylmethyl)carbamoyl)-1-hydroxy-4-benz amide (35)の合成

100 mL の二ロナスフラスコに回転子を入れ、ジムロートと三方コックを取り付けた後、真空乾燥し、ヒートガンで炙った。100 mL のナスフラスコに 18 (n = 2) (1.01 g, 1.35 mmol)と CH₂Cl₂ (5 mL), SOCl₂ (445 µL)を加えた後、60℃の油浴下で 2 時間攪拌した. dart-MS にて反応追跡を行った後、SOCl₂ を留去し、真空乾燥した. K₂CO₃ (2.30 g, 16.6 mmol), DPA (1.18 g, 5.94 mmol), CH₂Cl₂ (10 mL)を窒素雰囲気下で先の 100 mL の二口 ナスフラスコに加え, 脱気及び窒素置換しアルミで遮光した後一晩攪拌した. ESI-MS で反応追跡後, セライト濾過で K₂CO₃を取り除くと濃い黄色の濾液が得られた. 濾液を 100 mL 分液漏斗に移し, H₂O (3×15 mL)で分液洗浄した. CH₂Cl₂層に Na₂SO₄を加えて 脱水した後, ヌッチェで濾過し, 濾液をロータリーエバポレーターで濃縮, 真空乾燥す ると濃い黄色の油状物質を得た. この油状物質を最小量の CHCl₃ に溶解させ, アルミナ カラムクロマトグラフィー(gradient CHCl₃/MeOH from 100/0 to 30/1)及び HPLC で精製し た. 目的物の入っている分液を集め, ロータリーエバポレーターで濃縮, 真空乾燥する と淡黄色の固体が得られた(1.46 g, Yield 72 %). ¹H NMR (500 MHz, CDCl₃); δ /ppm: 8.50 (d, J=4.6 Hz, 4H, CH), 7.97 (s, 2H, CH), 7.74 (t, J=6.9 Hz, 2H, CH), 7.65 (t, J=6.9 Hz, 2H, CH), 7.54 (d, J=6.9 Hz, 2H, CH), 7.23 – 7.26 (m, 2H, CH), 7.19 – 7.23 (m, 4H, CH), 6.71 (s, 1H, NH), 4.96 (s, 4H, CH₂), 4.63 (s, 4H, CH₂), 3.60 – 3.69 (m, 10H, CH₂), 3.38 (t, J=5.7 Hz, 2H, CH₂).

5-((2-(2-(2-Aminoethoxy)ethoxy)ethyl)carbamoyl)-1,3-di(bis(2-pyridylmethyl)carbamoyl)-2-hydroxybenzene (36)の合成

50 mL ナスフラスコに回転子を入れ、三方コック、バルーンを取り付けて真空乾燥した.反応容器に **35** (204 mg, 274 mM), Pd-C (230 mg), dry MeOH (3 mL)加えて H₂ 置換し 30 分激しく攪拌した. IR で N₃ のピークがないことを確認しセライト濾過, ロータリーエバポレーターで濃縮し真空乾燥すると淡黄色固体が得られた(178 mg, Yield 90%). ESI MS (MeOH *m/z*, positive mode). Calcd for [**36** + H]⁺: 719.3. Found: 719.2.

5-((2-(2-(Carbamoyl-9-phenanthrene)ethoxy)ethoxy)ethyl)carbamoyl)-1,3-di(bis(2pyridylmethyl)carbamoyl)-2-hydroxybenzene (HL3^P)の合成

100 mL 二ロナスフラスコに回転子, **36**(178 mg, 0.247 mmol)を入れ, THF (17 mL)に溶かした後, Et₃N (158 μ L)加えると溶液が橙色に変化した. それを氷浴中で激しく攪拌しながら, Phenanthrene-9-carbonyl chloride (**8**) (54.2 mg, 0.225 mmol)を THF (15 mL)に溶かしたものをパスツールでゆっくりと加えた. 脱気窒素置換後, 氷浴に浸しながら攪拌した. 1 時間攪拌後, 室温に戻して一晩攪拌した. ロータリーエバポレーターで THF を留去すると, 白色の固体が生成した. その固体を CHCl₃(20 mL)に溶解させ, H₂O (3×5 mL)で分液し, 有機層に Na₂SO₄ を加えて脱水した. ヌッチェを用いて吸引濾過し, 真空乾燥すると白色固体が得られた. この固体を最小量の CHCl₃ に溶解させ, アルミナカラムクロマトグラフィー(gradient CHCl₃/MeOH from 100/0 to 30/1)で精製した. 目的物の入っ

ているフラクションを集め、ロータリーエバポレーターで濃縮、真空乾燥すると白色の 固体が得られた(128 mg, Yield 62%). ESI MS (MeCN *m/z*, positive mode). Calcd for [**HL3^P** + H]⁺: 922.4. Found: 922.6.

5-(((Me-9-carbamoyl-3,6-dioxaoctyl)carbamoyl)-1,3-di(bis(2-pyridylmethyl)carbamoyl)-2hydroxybenzene (HL3^M)の合成

100 mL ナスフラスコに **36** (200 mg, 0.278 mmol)と K₂CO₃ (77.0 mg, 0.557 mol)を入れ, CH₂Cl₂ (5 mL)に溶かした. そこに, CH₂Cl₂ (5 mL)に溶解させた acetyl chloride (21.0 μ L, 0.296 mmol)を加え、窒素置換した. 一晩撹拌した後、濾過した. 濾液を H₂O (3×10 mL) で分液し、有機層に Na₂SO₄を加えて脱水した. 濾過後、エバポレーターで濾液を濃縮 すると褐色固体が得られた. この固体を最小量の CHCl₃ に溶解させ、アルミナカラムク ロマトグラフィー(gradient CHCl₃/MeOH from 100/0 to 30/1)で精製した. 目的物の入って いるフラクションを集め、ロータリーエバポレーターで濃縮、真空乾燥すると白色の固 体が得られた(131 mg, Yield 62%). ESI MS (MeCN *m/z*, positive mode). Calcd for [**HL3^M** + H]⁺: 760.3. Found: 760.5.

二核銅(II)錯体 3^Pの合成

MeCN (3 mL)に Cu(OAc)₂ (27.5 mg, 0.151 mmol)を溶解させた溶液に, MeCN (2 mL)に HL3^P (47.0 mg, 0.0757 mmol)を溶解させた溶液をゆっくり加え,室温で 30 分間攪拌した. 反応溶液をロータリーエバポレーターで濃縮し,最終体積を約1 mL 程度にした.この 溶液に Et₂O を加えると固体が析出したので,これを濾過し,真空乾燥すると緑色の固 体が得られた(50.0 mg, Yield: 80%). ESI MS (MeCN *m/z*, positive mode). Calcd for [**3**^P – OAc]⁺: 1165.3. Found: 1165.2.

二核銅(II)錯体 3^Mの合成

MeCN (3 mL)に Cu(OAc)₂ (24.2 mg, 0.151 mmol)を溶解させた溶液に, MeCN (2 mL)に HL3^M (50.0 mg, 0.0657 mmol)を溶解させた溶液をゆっくり加え, 室温で 30 分間攪拌し た.反応溶液をロータリーエバポレーターで濃縮し,最終体積を約1 mL 程度にした. この溶液に Et₂O を加えると固体が析出したので,これを濾過し,真空乾燥すると緑色 の固体が得られた(57.3 mg, Yield: 82%). ESI MS (MeCN *m/z*, positive mode). Calcd for [**3**^M – OAc]⁺: 1005.0. Found: 1004.8.

7-5-4. DNA 切断実験

3^P, **3^M**の DNA 切断活性は, pUC19 DNA を用い, アガロースゲル電気泳動法によっ て評価した. 1.5 mL エッペンチューブに NaCl (10 mM), buffer (pH 6.0 (MES)または pH 7.4 (MOPS)), 10 mM), pUC19 DNA (50 μ M bp), Cu(OAc)₂ (90 μ M), **3^P**, **3^M** (0–18 μ M), AscNa (0–200 μ M)となるように調製した溶液を加え, 37°C の暗所でインキュベーショ ンした. 0, 1, 2, 3, 5, 10, 20, 30, 40, 60 分毎にサンプルを採取し, loading buffer (0.025% bromophenol blue, 0.025% xylene cyanol FF, 1.0 mM EDTA and 30% glycerol)を用いて反応 をクエンチした. 各サンプルを TAE buffer (Tris/acetate/EDTA)を用いて作成した 1%アガ ロースゲルにローディングし, 100 V で約1時間電気泳動を行った. その後, EtBr (0.5 μ g μ L⁻¹)染色を1時間行い, VILBER LOURMAT E-BOX-CX5.TS Edge-20.M を用いてゲ ルバンドを撮影した. 撮影したバンドを, Form I の染色補正値 1.06 を用い, ImageJ ソ フトウェアによって解析を行った. この測定は最低 3 回行い, 再現性をとった.

7-5-5. 3^P, 3^Mの Cyclic Voltammetry (CV)測定

200 mM Buffer 溶液(pH 6.0 (MES), 10 mL), 2 mM NaOAc に 3^{x} が 0.5 mM となるように 溶液を調製した. この溶液に水系参照電極(Ag/AgCl),作用電極として glassy carbon,対 極として Pt wire を浸し,窒素を 10 分間バブリングした後, CV 測定を行った. なお, 測定感度は 10 μ A/V, 掃引速度は 10 mV s⁻¹ で行った.

7-5-6. coumarin を用いた HO・生成の検出

3, **3^P**, **3^M** (30 μM), coumarin (0.5 mM), NaCl (10 mM)の Buffer 溶液(pH 6.0 (MES), 10 mM)を 4 面セルに加え, 37 ± 0.2°C に保った. この溶液に AscNa 水溶液を 150 μM にな るように加え, 励起波長 332 nm での 452 nm の蛍光強度を 60 分間, スリット幅 5.0 nm で測定した.

7-5-7. Pentafluorobenzenesulfonyl Fluorescein (PFBS)を用いた H₂O₂ 生成の検出

3, **3**^P, **3**^M (30 μM), PFBS (25 μM), NaCl (10 mM)の Buffer 溶液(pH 6.0 (MES), 10 mM) を 4 面セルに加え, 37 ± 0.2°C に保った. この溶液に AscNa 水溶液を 150 μM になるように加え, 励起波長 485 nm での 513 nm の蛍光強度を 60 分間, スリット幅 5.0 nm で測定した.

7-5-8. 等温滴定型熱量(ITC)測定

セルに, 33 mer オリゴ二重鎖 DNA (18.75 μM), Buffer (pH6.0 (MES), 10 mM), NaCl (10 mM)となるように調製した溶液を加えた.シリンジには, **3**, **3^P**, **3^M** (1.0 mM), Buffer (pH6.0 (MES), 10 mM), NaCl (10 mM)の溶液を加えた. 37°C において DNA 溶液に各錯 体溶液を 28 回(10 μL/回)加え, その際に発生する熱量を測定した.得られたデータから 希釈熱を引き, ORIGIN ソフトウェアを用いて解析した.

7-5-9. ct-DNA 存在下での 3^Pの電子スペクトル測定

3^P (10 μM), NaCl (10 mM)の Buffer 溶液(pH 6.0 (MES), 10 mM)を 2 面セルに加え, 37 ± 0.2°C に保った. この溶液に ct-DNA 水溶液を 30 μM bp 毎に 150 μM bp まで添加し, 300–1000 nm の範囲で各スペクトルを測定した.

7-6. 参考文献

[1] M. Hata, I. Saito, Y. Kadoya, Y. Tanaka, Y. Hitomi, and M. Kodera, *Dalton Trans.* **2022**, *51*, 4720–4727.

- [2] M. Hata, J. Ueno, Y. Hitomi, and M. Kodera, ACS Omega, 2023, 8, 28690–28701.
- [3] M. Hata, Y. Kadoya, Y. Hitomi, and M. Kodera, Bull. Chem. Soc. Jpn. 2022, 95, 1546–1552.
- [4] Y. Nosaka, and A. Y. Nosaka, Chem. Rev. 2017, 117, 11302.
- [5] S. Leichnitz, J. Heinrich, and N. Kulak, Chem. Commun. 2018, 54, 13411.
7-7. Supporting Information

Figure S7-1. Agarose gel electrophoresis profiles upon reaction of pUC19 DNA (50 μ M bp) with **3**^P (2–18 μ M) and AscNa (150 μ M) at pH 6.0. (a)–(f) correspond to [**3**^P] of 2, 5, 8, 10, 15, and 18 μ M, respectively. Lane 1: DNA control; lane 2: DNA with Hind III; lanes 3–12: corresponded to the time of 0, 1, 2, 3, 5, 10, 20, 30, 40, and 60 min, respectively.

Complex	AscNa	Time	Form I	Form II	Form III
(µM)	(µM)	(min)	(%)	(%)	(%)
		0	99.6 ± 0.2	0.4 ± 0.2	-
		1	99.3 ± 0.3	0.7 ± 0.3	-
		2	99 ± 0.3	1 ± 0.3	-
		3	98.8 ± 0.5	1.2 ± 0.5	-
0	150	5	98.7 ± 0.5	1.3 ± 0.5	-
0	150	10	98.3 ± 0.7	1.7 ± 0.7	-
		20	98.1 ± 0.7	1.9 ± 0.7	-
		30	97.9 ± 0.8	2.1 ± 0.8	-
		40	97.6 ± 1.0	2.4 ± 1.0	-
		60	97.2 ± 1.3	2.8 ± 1.3	-
		0	97.8 ± 0.5	2.2 ± 0.5	-
		1	97.7 ± 0.5	2.3 ± 0.5	-
	150	2	97.4 ± 0.7	2.6 ± 0.7	-
		3	97.2 ± 0.9	2.8 ± 0.9	-
2		5	96.8 ± 1.1	3.2 ± 1.1	-
Z		10	96.2 ± 1.0	3.8 ± 1.0	-
		20	96.1 ± 1.0	3.9 ± 1.0	-
		30	94.1 ± 0.3	5.9 ± 0.3	-
		40	89.6 ± 1.8	10.4 ± 1.8	-
		60	76.3 ± 2.3	23.7 ± 2.3	-
		0	95.7 ± 3.9	4.3 ± 3.9	-
		1	91.1 ± 4.4	8.9 ± 4.4	-
		2	88.5 ± 4.4	11.5 ± 4.4	-
		3	85.9 ± 2.0	14.1 ± 2.0	-
5	150	5	79.7 ± 2.0	20.3 ± 2.0	-
5	150	10	68.4 ± 3.5	31.6 ± 3.5	-
		20	42.1 ± 3.9	57.9 ± 3.9	-
		30	22.5 ± 3.6	77.3 ± 3.6	0.3 ± 0.4
		40	12.9 ± 4.1	86.6 ± 3.7	0.6 ± 0.8
		60	4.4 ± 2.7	93.7 ± 2.7	1.9 ± 2.3

Table S7-1. Fraction of Form I, Form II, and Form III in the DNA cleavage of 3^{P} (0–18 μ M) and AscNa (150 μ M).

		0	97.4 ± 0.3	2.6 ± 0.3	-
		1	89.2 ± 1.1	10.8 ± 1.1	-
		2	84.5 ± 2	15.5 ± 2	-
		3	78.7 ± 3.8	21.3 ± 3.8	-
0	150	5	70.1 ± 3.1	29.9 ± 3.1	-
8	150	10	48.8 ± 6.7	51.2 ± 6.7	-
		20	18.5 ± 7.9	81.5 ± 7.9	-
		30	8 ± 4.1	91.6 ± 3.6	0.5 ± 0.5
		40	1.6 ± 1.6	95 ± 3.4	3.4 ± 1.8
		60	0.0 ± 0.0	92.6 ± 0.1	7.4 ± 0.1
		0	98.2 ± 0.8	1.8 ± 0.8	-
		1	83.1 ± 4.1	16.9 ± 4.1	-
		2	71.6 ± 4.2	28.4 ± 4.2	-
	150	3	55.2 ± 3.9	44.8 ± 3.9	-
10		5	33.1 ± 3.5	66.9 ± 3.5	-
10		10	7.8 ± 3.7	91.3 ± 3.1	0.9 ± 1.0
		20	2.0 ± 3.0	93.9 ± 2.1	4.1 ± 1.9
		30	0.0 ± 0.0	88.4 ± 3.5	11.6 ± 3.5
		40	0.0 ± 0.0	82.5 ± 4.4	17.5 ± 4.4
		60	0.0 ± 0.0	68.6 ± 4.2	31.4 ± 4.2
		0	96.5 ± 2.3	3.5 ± 2.3	-
		1	0.8 ± 1.9	97 ± 1.6	2.1 ± 1.6
		2	0.0 ± 0.0	93.7 ± 2.9	6.3 ± 2.9
		3	0.0 ± 0.0	86.1 ± 3.6	13.9 ± 3.6
15	150	5	0.0 ± 0.0	67.0 ± 2.6	33.0 ± 2.6
15	150	10	0.0 ± 0.0	42.5 ± 4.2	57.5 ± 4.2
		20	0.0 ± 0.0	24.5 ± 3.0	75.5 ± 3.0
		30	n. d.*	n. d.*	n. d.*
		40	n. d.*	n. d.*	n. d.*
		60	n. d.*	n. d.*	n. d.*

		0	94.4 ± 3.1	5.6 ± 3.1	-
		1	0.0 ± 0.0	71.9 ± 3.5	28.1 ± 3.5
		2	0.0 ± 0.0	54.0 ± 4.9	46.0 ± 4.9
		3	0.0 ± 0.0	34.8 ± 3.3	65.2 ± 3.3
10	150	5	0.0 ± 0.0	28.2 ± 3.0	71.8 ± 3.0
16	130	10	n. d.*	n. d.*	n. d.*
		20	n. d.*	n. d.*	n. d.*
		30	n. d.*	n. d.*	n. d.*
		40	n. d.*	n. d.*	n. d.*
		60	n. d.*	n. d.*	n. d.*

Figure S7-2. Agarose gel electrophoresis profiles upon reaction of pUC19 DNA (50 μ M bp) with **3**^P (18 μ M) and AscNa (0–150 μ M) at pH 6.0. (a)–(f) correspond to [AscNa] of 0, 50, 100, and 200 μ M, respectively. Lane 1: DNA control; lane 2: DNA with Hind III; lanes 3–12: corresponded to the time of 0, 1, 2, 3, 5, 10, 20, 30, 40, and 60 min, respectively.

Complex	AscNa	Time	Form I	Form II	Form III
(µM)	(µM)	(min)	(%)	(%)	(%)
		0	98.6 ± 0.6	1.4 ± 0.6	-
		1	98.1 ± 1.0	1.9 ± 1.0	-
		2	97.8 ± 1.0	2.2 ± 1.0	-
		3	96.3 ± 0.1	3.7 ± 0.1	-
10	0	5	95.1 ± 0.2	4.9 ± 0.2	-
18	0	10	94.0 ± 0.1	6.0 ± 0.1	-
		20	92.4 ± 0.6	7.6 ± 0.6	-
		30	90.0 ± 0.3	10.0 ± 0.3	-
		40	87.9 ± 0.6	12.1 ± 0.6	-
		60	85.7 ± 0.8	14.3 ± 0.8	-
		0	97.0 ± 2.0	3.0 ± 2.0	-
		1	0.0 ± 0.0	95.1 ± 1.9	4.9 ± 1.9
	50	2	0.0 ± 0.0	89.4 ± 3.4	10.6 ± 3.4
		3	0.0 ± 0.0	84.0 ± 2.2	16.0 ± 2.2
10		5	0.0 ± 0.0	75.3 ± 3.5	24.7 ± 3.5
18		10	0.0 ± 0.0	54.1 ± 3.5	45.9 ± 3.5
		20	0.0 ± 0.0	24.9 ± 4.6	75.1 ± 4.6
		30	n. d.*	n. d.*	n. d.*
		40	n. d.*	n. d.*	n. d.*
		60	n. d.*	n. d.*	n. d.*
		0	94.9 ± 3.7	5.1 ± 3.7	-
		1	0.0 ± 0.0	90.9 ± 3.6	9.1 ± 3.6
		2	0.0 ± 0.0	73.7 ± 2.8	26.3 ± 2.8
		3	0.0 ± 0.0	65.6 ± 3.5	34.4 ± 3.5
18	100	5	0.0 ± 0.0	42.8 ± 3.7	57.2 ± 3.7
	100	10	0.0 ± 0.0	24.4 ± 3.3	75.6 ± 3.3
		20	n. d.*	n. d.*	n. d.*
		30	n. d.*	n. d.*	n. d.*
		40	n. d.*	n. d.*	n. d.*
		60	n. d.*	n. d.*	n. d.*

Table S7-2. Fraction of Form I, Form II, and Form III in the DNA cleavage of 3^{P} (18 μ M) and AscNa (0–200 μ M).

		0	94.0 ± 3.9	6.0 ± 3.9	-
		1	0.0 ± 0.0	61.7 ± 4.6	38.3 ± 4.6
		2	0.0 ± 0.0	33.3 ± 4.7	66.7 ± 4.7
		3	0.0 ± 0.0	25.8 ± 4.0	74.2 ± 4.0
10	200	5	n. d.*	n. d.*	n. d.*
18	200	10	n. d.*	n. d.*	n. d.*
		20	n. d.*	n. d.*	n. d.*
		30	n. d.*	n. d.*	n. d.*
		40	n. d.*	n. d.*	n. d.*
		60	n. d.*	n. d.*	n. d.*

Figure S7-3. Time courses for Form I (red), II (green), and III (purple) in the reaction of **3** (20 μ M) (A) and **3^M** (18 μ M) (B). Experimental conditions: [pUC19 DNA] = 50 μ M bp, [**3**] = 20 μ M or [**3^M**] = 18 μ M, [AscNa] = 150 μ M, [Cu(OAc)₂] = 90 μ M, [NaCl] = 10 mM, [MES buffer] = 10 mM (pH 6.0) at 37°C. Experiments were carried out at least three times.

Figure S7-4. Agarose gel electrophoresis profiles upon reaction of pUC19 DNA (50 μ M bp) with **3** (20 μ M) (a) or **3**^M(18 μ M) (b), and AscNa (150 μ M) at pH 6.0. Lane 1: DNA control; lane 2: DNA with Hind III; lanes 3–12: corresponded to the time of 0, 1, 2, 3, 5, 10, 20, 30, 40, and 60 min, respectively.

Complex	AscNa	Time	Form I	Form II	Form III
(μM)	(µM)	(min)	(%)	(%)	(%)
		0	96.9 ± 1.2	3.1 ± 1.2	-
		1	0.0 ± 0.0	91.8 ± 2.0	8.2 ± 2.0
		2	0.0 ± 0.0	86.0 ± 1.9	14 ± 1.9
		3	0.0 ± 0.0	82.3 ± 2.5	17.7 ± 2.5
3 (20 ··· N 4)	150	5	0.0 ± 0.0	74.7 ± 2.5	25.3 ± 2.5
3 (20 µWI)	130	10	0.0 ± 0.0	64.5 ± 2.8	35.5 ± 2.8
		20	0.0 ± 0.0	39.1 ± 2.2	60.9 ± 2.2
		30	0.0 ± 0.0	31.0 ± 2.4	69.0 ± 2.4
		40	n. d.*	n. d.*	n. d.*
		60	n. d.*	n. d.*	n. d.*
		0	96.6 ± 2.6	3.4 ± 2.0	-
		1	3.2 ± 3.2	96.1 ± 3.6	0.7 ± 0.4
		2	0.0 ± 0.0	98.5 ± 1.0	1.5 ± 1.0
		3	0.0 ± 0.0	96.8 ± 1.7	3.2 ± 1.7
2M (18 M)	150	5	0.0 ± 0.0	94.1 ± 2.2	5.9 ± 2.2
3 (18 μM)	150	10	0.0 ± 0.0	86.0 ± 0.8	14.0 ± 0.8
		20	0.0 ± 0.0	72.0 ± 0.7	28.0 ± 0.7
		30	0.0 ± 0.0	61.7 ± 4.1	38.3 ± 4.1
		40	0.0 ± 0.0	49.2 ± 2.2	50.8 ± 2.2
		60	0.0 ± 0.0	39.7 ± 2.2	60.3 ± 2.2

Table S7-3. Fraction of Form I, Form II, and Form III in the DNA cleavage of 3 (20 μ M) or 3^M (18 μ M), and AscNa (150 μ M).

Figure S7-5. Agarose gel electrophoresis profiles upon reaction of pUC19 DNA (50 μ M bp) with **3**^P (18 μ M) and AscNa (150 μ M) at pH 6.0. Lane 1: DNA control; lane 2: DNA with Hind III; lanes 3–12: corresponded to the time of 0, 1, 2, 3, 5, 10, 20, 30, 40, and 60 min, respectively.

Table S7-4. Fraction of Form I, Form II, and Form III in the DNA cleavage of 3^{P} (18 μ M) and AscNa (150 μ M) at pH 7.4.

Complex	AscNa	Time	Form I	Form II	Form III
(µM)	(µM)	(min)	(%)	(%)	(%)
		0	98.3 ± 1.0	1.7 ± 1.0	-
		1	0.0 ± 0.0	99.4 ± 0.1	0.6 ± 0.1
18		2	0.0 ± 0.0	98.6 ± 0.2	1.4 ± 0.2
		3	0.0 ± 0.0	98.2 ± 0.4	1.8 ± 0.4
	150	5	0.0 ± 0.0	97.1 ± 0.7	2.9 ± 0.7
		10	0.0 ± 0.0	90.9 ± 2.5	9.1 ± 2.5
		20	0.0 ± 0.0	63.4 ± 4.4	36.6 ± 4.4
		30	0.0 ± 0.0	42.3 ± 3.7	57.7 ± 3.7
		40	0.0 ± 0.0	32.9 ± 5.0	67.1 ± 5.0
		60	n. d.*	n. d.*	n. d.*

Figure S7-6. Isothermal calorimetric titration curves: $\mathbf{3}^{P}$ (A) or $\mathbf{3}^{M}$ (B) at pH 6.0. Experimental conditions: A solution of $\mathbf{3}^{P}$ or $\mathbf{3}^{M}$ (1 mM) in a syringe was added, in an equal interval 28 times, to a solution of the linear 33 mer ds-DNA (18.75 μ M) in the cell in the presence of NaCl (10 mM) in pH 6.0 (MES, 10 mM) at 37°C.

第八章:総括

本博士論文では,抗がん剤の副作用軽減を目指して,正常細胞とは異なるがん細胞の 微小環境でのみ細胞毒性を示す二核銅錯体の開発を行った.二核銅錯体の構造機能相関 の解明は,副作用の少ない抗がん剤の設計および開発を行う上で重要であるといえる. 以下に,各章で得られた知見と各章で開発した二核銅錯体を横断的に比較することで得 られた知見をまとめ,本論文の総括とする.

第二章では、当研究室で開発した *p*-cresol の 2,6 位にペンダント基として環状アミン 1,4,7,10-tetraazacyclododecane (cyclen)を持つ amide-tether 型配位子の二核銅錯体[Cu₂(μ -OH)(L1)](ClO₄)₂(1)の 4 位メチル基を-CONH(CH₂CH₂O)₂CH₂CH₂NHCO-phenanthrene で置 換した DNA 標的部位を持つ二核銅錯体[Cu₂(μ -OH)(L1^{P2})](ClO₄)₂(1^{P2})を新たに開発した. 分光学測定から、1^{P1}は 1 と同様に H₂O₂ との反応で安定な μ -1,1-hydroperoxodicopper(II) 錯体(2^{P2})を形成することが示された. Phenanthrene の導入で 1^{P2} は 1 と比べて DNA 結合 能力が 9 倍向上し、過酸化水素(H₂O₂)存在下での DNA 切断活性が 9.3 倍向上した. さらに、1^{P2}の細胞毒性は 1 と比べて約 12 倍向上した. また、細胞死経路の同定から、1^{P2} がミトコンドリア経由のアポトーシスを誘導することを明らかにした. 以上より、phenanthrene 部位は DNA 標的部位として作用し、1^{P2}のミトコンドリア経由の内因性アポトーシスを介したがん細胞選択的毒性を大きく向上させることが明らかになった.

第三章では、第二章で見出された phenanthrene による DNA 標的の抗がん活性機能の 解明とその向上を目指し、-CONH(CH₂CH₂O)_nCH₂CH₂NHCO-phenanthrene (P-リンカー)の 鎖長を変化させた二核銅錯体[Cu₂(μ -OH)(L1^{Pn})](ClO₄)₂ (1^{Pn} (n = 1, 3))と phenanthrenyl 基を methyl で置換した-CONH(CH₂CH₂O)_nCH₂CH₂NHCO-methyl (M-リンカー)を導入した二核 銅錯体[Cu₂(μ -OH)(L1^{Mn})](ClO₄)₂ (1^{Mn} (n = 1, 2, 3))を新たに開発した. DNA 二本鎖切断活 性と細胞毒性はいずれも、P-リンカーは M-リンカーよりも高く、P-リンカーの長さが 短い程高かった. 鎖長が最も短い n = 1 の P-リンカーを持つ錯体はすい臓がん細胞に対 してシスプラチンに匹敵する高い細胞毒性を示すと共に肺がん細胞に対してはシスプ ラチンでは全く見られない 10 倍以上の高いがん細胞選択的毒性を示した. DNA 二本鎖 切断活性と HeLa 細胞に対する細胞毒性の相関を調べたところ、1^{PI-3}は 44%相関したが、 1^{MI-3}では 5%であった. この結果から、細胞に取り込まれたときに P-リンカーは特異的 に DNA に結合して細胞毒性を大きく向上させるが、M-リンカーは DNA 特異性がない ために向上させない事が明らかになった. 従って、P-リンカーを持つ 1^{PI-3}はミトコンド

292

リア DNA の二本鎖切断を通してアポトーシスを誘導することが裏付けられ, DNA 標 的としての P-リンカーの役割が明確に示された.

第四章では、p-cresol の 2,6 位にペンダント基として dipyridylmethylamine (dpa)を有す る amide-tether 型二核銅錯体[Cu₂(μ -1,1-OAc)(μ -1,3-OAc)(L3)](OAc) (**3**)の dpa の 4 位に置 換基(電子供与 MeO 基および電子求引 Cl 基)を導入した二核銅(II)錯体[Cu₂(μ -1,1-OAc)(μ -1,3-OAc)(L3^{4-MeO})][Y] [Y = PF₆ (**3a^{4-MeO}**), OAc (**3b^{4-MeO}**)], [Cu₂(μ -1,3-OAc)₂(L3^{4-Cl})][Y] [Y = ClO₄ (**3a^{4-Cl}**), OAc (**3b^{4-Cl}**)]を合成した.分光学的測定と結晶構造解析の結果,置換基の電 子効果で銅の配位構造が変化することが示された.この電子効果により、還元剤である アスコルビン酸ナトリウム(AscNa)との反応で生成する ROS の種類が **3b^{4-MeO}** では H₂O₂ が優勢であり、**3b^{4-Cl}**では HO・が優勢であった.また、細胞を用いた測定から、**3b^{4-MeO}** 、さらに、がん細胞中でしか ROS 生成を確認できなかった **3b^{4-MeO}** はがん細胞選択的 な細胞毒性を示したのに対し、がん細胞と正常細胞の両者において ROS を生成してい た **3b^{4-Cl}** は正常細胞選択性を示したことから、細胞選択的毒性にはがん細胞と正常細胞 の環境に応答した ROS 生成が重要であることが示唆された.

第五章では、**3** が、空気下、アスコルビン酸ナトリウム(AscNa)による還元的酸素活性 化で supercoiled plasmid pUC19DNA の 26%を 1 分間で直鎖状 DNA に変換する、**3** の高 速の DNA 二本鎖切断(dsb)の反応機構を解明した.ここでは、**3** の活性を Robson 型二核 銅(II)錯体[Cu₂(μ -OH)(bpmp)](ClO₄)₂(**4**), N4Py の鉄(II)錯体[Fe(MeCN)(N4Py)](ClO₄)₂(**5**)を 用いて比較した.**3**は、**4** と異なり、AscNa で容易に還元され、還元された二核銅錯体 の 2 分子が O₂を 3 電子還元してヒドロキシラジカル(HO•)を生成して高速で DNA を酸 化切断した.またこの反応において、**3**は、**5** と異なり DNA に対してエンタルピー駆動 で強く結合することが示された.この結果、**3** の速い HO•生成と DNA 結合様式が、高 速の DNA dsb を可能にする重要な特徴であることが明らかとなった.

第六章では、 $3b^{4-MeO}$ 、 $3b^{4-Cl}$ の AscNa 存在下の DNA 切断活性を評価して、第五章で 見出した 3 による高速の DNA dsb の機構解明と要件の裏付けを行った. DNA dsb 活性 は $3b^{4-Cl} < 3 < 3b^{4-MeO}$ であり、この関係は短時間での HO•の生成量と一致し、電子効果に 起因することが明らかとなった. また、錯体低濃度条件での $3b^{4-MeO}$ の DNA dsb 活性は $3b^{4-Cl}$ 、3 の約 2 倍以上であった. 熱力学的パラメーターの測定から $3b^{4-MeO}$ が最もエン

293

タルピー駆動であった. また CD スペクトル測定から **3b^{4-MeO} が最も低濃度で DNA の二** 重らせん構造を緩めることが明らかとなった.以上の結果より, DNA に自由度が低い 状態で強く結合することが低濃度で高速の DNA dsb を可能にすることが示された.

第七章では、低濃度での高速の DNA dsb には DNA との強い結合が重要であることを 踏まえ、 $3 \text{ 0} 4 \text{ dcc P-} \text{J} \vee \pi \text{J} - \pi \text{M-} \text{J} \vee \pi \text{J} - \infty \text{For } \pi \text{Gas}(\text{II})$ 錯体[Cu₂(μ -1,1-OAc)(μ -1,3-OAc)(L3^x)](OAc)(3^x (X=P,M))を開発した. AscNa 存在下で 3^p は 3 よりも高い DNA dsb 活性を示したが、 3^M は 3 よりも活性が低かった. ITC 測定から 3^p は phenanthrene 部位 で DNA に対して、 $3 \approx 3^M$ よりもエンタルピー駆動で結合することが明らかとなった. これらの結果から、DNA に対して強く結合させることは、生じた HO・は拡散すること なく直接的に DNA を切断できるため DNA dsb 活性の向上に有効であることが示唆された.

第二章から第四章で用いた二核銅錯体の比較を通して,細胞内での二核銅錯体の挙動 には①金属結合部位であるペンダント基の構造と②二核銅錯体の疎水性が大きく関与 していることが明らかとなった.まず、①金属結合部位であるペンダント基の構造に関 する知見を述べる.ペンダント基の構造は二核銅錯体が形成する活性種の生成しやすさ を変化させることが可能であるため、細胞死誘導機構に影響を及ぼす.1をはじめとす るペンダント基として環状アミン 1,4,7,10-tetraazacyclododecane (cyclen)を持ち,内因性 配位子からの配位が各銅に四座である安定な二核銅錯体は, 酸化還元電位が負に存在し, 還元されにくい(Figure 8-1 (A)). そのため,がん細胞内に数 mM で存在する抗酸化剤(還 元剤)と反応せず, サブ μM で存在する H₂O₂と反応することが可能である. そして, H₂O₂ との反応で形成される活性種は、活性の低い安定な μ-1,1-hydroperoxodicopper(II)錯体種 であるため, DNA の C4'の水素を特異的に引き抜き, ミトコンドリア経由の内因性アポ トーシスを誘導したと考えられる.一方で、3をはじめとするペンダント基として dipyridylmethylamine (dpa)を有し,内因性配位子からの配位が各銅に三座である二核銅 錯体は,酸化還元電位を±0 付近に有しており,還元されやすい(Figure 8-1 (B)–(D)). そ のため、細胞内で容易に還元された後、酸素を還元的に活性化することで、HO•を活性 種として生成する.HO•は反応性が高いため,細胞内で無作為に反応し,酸化ストレス を誘発したと考えられる.また、反応性の高い活性種である HO•を生成する dpa を有す る二核銅錯体の方がより高い細胞毒性を示したが、がん細胞選択性((selectivity factor, SF) =(正常細胞の IC₅₀)/(がん細胞の IC₅₀))は低かった(Table 8-1). 電子求引基を導入した, 酸

294

化還元電位を正に有する最も還元されやすい二核銅錯体 **3b**^{4-CI}に関しては,がん細胞よ りも酸化ストレス耐性の低い正常細胞に対してより高い細胞毒性を示した(Table 8-1). 以上の結果から,反応性の低い安定な活性種を形成し,混雑系である細胞内においても 特異的に作用させることが,がん細胞選択性の向上に重要であることが示唆された.加 えて,がん細胞中の H₂O₂ 濃度は正常細胞中の約 100 倍濃いことが報告されており,ど ちらにおいても数 mM で存在する抗酸化剤(還元剤)と比較すると,よりがん細胞環境で 選択的に活性種が形成される H₂O₂ との反応の方ががん細胞選択性の向上には有効であ ると考えられる.このように,細胞内環境で起こる反応は二核銅錯体の酸化還元電位に 依存するため,形成したい活性種に合わせてペンダント基を変化させることは重要であ る.

Figure 8-1. Cyclic voltammograms of 1 (A), $3b^{4-MeO}$ (B), 3 (C), and $3b^{4-Cl}$ (D). The measurements were made at $23 \pm 0.2^{\circ}$ C under N₂. Glassy carbon, Pt wire, and Ag/AgCl are used as working, counter, and reference electrodes, respectively. Scan rate was $10mVs^{-1}$, and sensitivity was $10 \mu A/V$.

	IC ₅₀ (μM) (Mean ± SD)					
Complex	Lung					
	A549	WI-38	SE			
	(Cancer)	(Normal)	51			
1	$1,\!430\pm40$	$2,960 \pm 30$	2.1			
1 ^{P1}	94.0 ± 5.0	231 ± 1	2.5			
3	92.7 ± 1.4	121 ± 11	1.3			
3b ^{4-MeO}	20.0 ± 1.6	22.0 ± 2.3	1.1			
3b ^{4-Cl}	21.3 ± 1.5	2.94 ± 0.28	0.14			

Table 8-1. In vitro cytotoxicity of 1, 1^{P1}, 3, 3b^{4-MeO}, and 3b^{4-Cl} against various cancer and normal cells by mean of MTT assay (24 h) (Mean ± SD)

次に, ②二核銅錯体の疎水性に関する知見を述べる. 二核銅錯体の疎水性は細胞内局 在位置に、ひいては細胞死誘導機構に影響を及ぼす. ER や Golgi 体のような細胞内膜 系の細胞小器官は疎水性の高い化合物が集積しやすく,外膜と内膜で形成させるミトコ ンドリアは疎水性とカチオン性の両者を有する化合物が集積しやすいことが報告され ている.本研究を通して、1をはじめとするペンダント基として cyclen を持つ二核銅錯 体とペンダント基として dpa を持つ二核銅錯体3はミトコンドリアに、3のペンダント 基 dpa に疎水性置換基を導入した二核銅錯体 **3b^{4-MeO} および 3b^{4-CI} は ER および Golgi** 体 に主に局在することが明らかとなった. cyclen を有する二核銅錯体は, 疎水性 phenanthren リンカーの導入により疎水性が向上したものの, phenanthren リンカーの有 無に関わらず log Pow が負の値となる親水性の化合物であった.また、内因性配位子か らの配位数が多いために二核銅錯体全体としてのチャージが 2+であり、カチオン性も 高い.3に関しても, dpa の疎水性によって,1よりも疎水性が向上したものの, log Pow が負の値となる親水性の化合物であった.そのため,これらの二核銅錯体は疎水性とカ チオン性の両者を有する化合物が集積しやすいミトコンドリアに主に局在したと考え られる. 一方で, 3 のペンダント基 dpa に疎水性置換基を導入した 3b^{4-MeO} および 3b^{4-CI} は、log Powが正の値となる疎水性の化合物であった。そのため、疎水性の高い化合物が 集積しやすい ER や Golgi 体に局在したと考えられる.以上の結果から,化合物の疎水 性により、細胞内局在位置を制御可能であることが明らかとなった。さらに、疎水性で

制御可能な細胞内局在位置は細胞毒性の向上に重要であることも見出された. H₂O₂ と 反応することで活性種を生成する二核銅錯体は, H₂O₂を生成する場であり, DNA を有 するミトコンドリアに局在させることが有効であるといえる.事実, DNA 標的能と疎 水性を併せ持つ phenanthren を導入した 1^{Pn} では, 1 よりも 10 倍以上細胞毒性が向上し た.そして,還元剤との反応を介して ROS を活性種として生成する二核銅錯体は, 酸 化ストレス応答機構を有している ER や Golgi 体に局在させることが有効であるといえ る.実際, ER や Golgi 体に主に局在する $3b^{4-MeO}$ および $3b^{4-Cl}$ は, ミトコンドリアに主 に局在する 3 よりも 4 倍以上細胞毒性が高かった.これらの結果から,疎水性の制御に より,二核銅錯体の特性に合った細胞小器官に局在させることが細胞毒性の向上に有効 であることが示された.

Complex	Hydrophobicity (log P _{ow})	Intracellular localization
1	-2.38 ± 0.04	Mitochondria
1 ^{P1}	-1.22 ± 0.02	Mitochondria
3	-0.55 ± 0.09	Mitochondria
3b ^{4-MeO}	0.18 ± 0.05	ER, Golgi body
3b ^{4-Cl}	1.94 ± 0.09	ER, Golgi body

Table 8-2. Hydrophobicity (log Pow) and Intracellular localization

第五章から第七章で用いた二核銅錯体の比較を通して, supercoiled plasmid DNA (Form II)を直鎖状DNA (Form III)に変換するDNA二本鎖切断(double-strand breaks, dsb)活性の向上,特に,DNA dsbの初期の速い反応(burst)の向上には,DNAとの結合状態が重要であることが明らかとなった.3に置換基やDNA標的部位を導入した結果,DNAとの結合が,負に大きな*ΔH*°値であるエンタルピー駆動である二核銅錯体ほど,低錯体濃度でのDNA dsbを促進した.エンタルピー駆動によるDNAへの結合は自由度の低い結合であり,活性種である拡散しやすいHO•のDNAへの指向性が向上したためであると考えられる. DNA結合定数(*K*(M⁻¹))はエントロピー駆動であるほど向上したが,DNA切断実験の条件では二核銅錯体のDNAへの結合はほぼ飽和しているため,*K*の大きさはDNA dsbの burstには重要ではない.DNAとエントロピー駆動型の結合を形成する二核銅錯体の開 発が、遺伝子編集やがん治療薬の開発の観点から重要なDNA dsb活性の向上に有効であることが示唆された.

本博士論文で得られた知見は、がん細胞の微小環境を標的とした新規抗がん剤の開発 や既存の抗がん剤の問題点である副作用の軽減において大変意義深いものであり、重要 な指針となるといえる.

謝辞

本研究の遂行及び本修士論文の執筆にあたり,終始適切かつ丁寧な御指導・御鞭撻を 賜りました同志社大学大学院 理工学研究科 小寺 政人 教授に心より厚く御礼申し上 げます.本研究を進めるにあたり,終始適切な御指導・御助言を賜りました同志社大学 大学院 理工学研究科 人見 穣 教授,野村 章子 研究員に心より厚く御礼申し上げます.

学位論文審査において, 御多忙の中, 副査として有益な御指導をしていただきました 同志社大学大学院 理工学研究科 水谷 義 教授ならびに古賀 智之 教授に心より感謝 申し上げます.

細胞実験や等温滴定熱測定を行うにあたり,細胞提供や御指導・御助言を賜りました 同志社大学大学院 理工学研究科 北岸 宏亮 教授に心より感謝申し上げます.円二色性 分散計での測定の際に,御指導・御助言を賜りました同志社大学大学院 理工学研究科 西村 慎之介 助教に心より感謝申し上げます.細胞実験の際,御指導・御助言を賜りま した同志社大学大学院 理工学研究科 田原 義朗 准教授に心より感謝申し上げます. FACS等を用いた細胞実験の際,御指導・御助言を賜りました同志社大学大学院 医生命 科学研究科 野口 範子 教授,浦野 泰臣 准教授に心より感謝申し上げます.

学部から博士前期課程において,実験のいろはを教えてくださり,私の話に常に耳を 傾けてくださった角谷 優樹 氏に心より感謝申し上げます.第二章の研究において合成 の礎を築いてくださった斎藤 樹 氏をはじめとする諸先輩方に感謝申し上げます.また, 研究では切磋琢磨し,研究以外でも多くの思い出をくれた同期の空田 知樹 氏,田中 芳 樹 氏,田中 佑季 氏,和田 一仁 氏に深く感謝申し上げます.そして,新規金属錯体 の開発に尽力し,測定を通して新たな知見を与えてくれた高松 泰司 氏,長尾 美佳 氏, 上野 ジン 氏,徳永 拓人 氏,児玉 愛実 氏,松本 拓之 氏をはじめとする後輩達に心 より御礼申し上げます.

最後になりましたが、常に私の背中を押してくれ、献身的に支えてくれた家族に深甚 なる謝意を表します.

> 同志社大学大学院 理工学研究科 応用化学専攻 分子生命化学研究室

> > 畑 真知