
Boundary Uncertainty-based
Classifier Evaluation

David Ha

ID 4G163101

May 2019

Graduate School of Science and Engineering
Department of Information and Computer Science

Doshisha University
Kyoto, JAPAN

Thesis Committee:
Shigeru Katagiri, Chair

Tsuneo Kato
Xugang Lu

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright© 2019 David Ha

Acknowledgments

Thanks to Professor Katagiri who gave me this research opportunity, his supervision,

and the necessary environment.

Thanks to all the professors who lent me their advice so far, just to name a few:

Professor Watanabe, Professor Ohsaki, Professor Wu, Professor Kato, Professor Lu.

Thanks to Doshisha University who hosted me in its inspiring environment, and to

Ecole Centrale de Lille who gave me the chance to live this experience. Thanks

to the laboratory mates who supported me, in particular to the ones who actively

worked with me in this research. A Emilie: le Prudent et le Temeraire. A Charles et

Juliette: merci aux tout premiers. A Nicolas: j’ai apprecie les discussions.

Thanks to every colorful encounter who accepted me on their track, and helped me

run through Springs and Falls, rifts and meadows. Thanks to the precious guide of

the sunny hill.

Thanks to my family, who has always guided me and welcomed me.

May 31, 2019

Abstract

We propose a general method that makes the accurate evaluation of any classifier

model a realistic task, both in a theoretical sense despite the finiteness of the available

data, and in a practical sense in terms of computation and memory costs.

Classification, namely predicting a class label on a data, is a ubiquitous task in our

daily lives. Common applications include classification of pictures, prediction of

whether a patient is positive, and assignment of a topic label to a document. The te-

dious task of manually assigning a label to each data can be performed by computers

if they can learn the data patterns that distinguish one class from another (training

step), and then use the learned patterns to classify unseen data (classification step).

Given a classification task, the ultimate goal of pattern classification is to classify

unseen (infinite) data with the lowest possible error probability. The classifier eval-

uation challenge arises from the bias of the classification error estimate that is only

based on finite data. The difficulty of accurately estimating the error probability may

be understood as the need to integrate the classification error all over the data space,

only based on the binary information of correctness at each data point.

Several approaches such as Structural Risk Minimization, Cross Validation, and

Bootstrap aim at overcoming this fundamental difficulty. However, all this ap-

proaches come at a quite high cost, such as a quite loose estimation, or the difficulty

to apply the approach to a wide range of classifiers, or the sacrifice of some data

to separately estimate the error probability, or repetitions of the classifier training

that can be prohibitively expensive in real-life tasks, or the impossibility to directly

optimize the estimate of the error probability in a training procedure.

We propose to bypass the existing difficulties by defining a new classifier evalua-

tion measure called “boundary uncertainty” whose finite estimate can be considered

a reliable representative of its expectation. This characteristic of the boundary un-

certainty estimate makes classifier evaluation a realistic task even using finite data,

furthermore at a low cost in contrast to existing approaches. Similarly to the error

probability, lower values of the (sign reversed) boundary uncertainty correspond to

more optimal classifier statuses.

The possibility to easily and accurately estimate the boundary uncertainty comes

from a sharp focus of the boundary uncertainty on the classification decision bound-

ary, which contains the essential information of the classification process. As a

result, the difficulty of the estimation task is dramatically reduced. The optimal

decision boundary is uniquely identified by equality of the adjacent class posterior

probabilities along the boundary. Based on this necessary and sufficient condition

for optimality, our boundary uncertainty measures the similarity between the de-

cision boundary with the optimal decision boundary in order to evaluate classifier

optimality.

In this thesis, the possibility to evaluate the classifier optimality based on the esti-

mation of our boundary uncertainty is demonstrated on three widely used classifier

models, and on more than thirteen real-life datasets. We illustrate these results with

a theoretical analysis, and propose guidelines to further improve our classifier eval-

uation method.

Contents

1 Introduction 1

1.1 Traditional error probability-based classifier evaluation 1

1.2 Boundary uncertainty-based classifier evaluation 4

2 A First Boundary Uncertainty-Based Classifier Evaluation Method 7

2.1 Introduction . 7

2.2 Notations and goal . 8

2.2.1 The classification problem . 8

2.2.2 Goal . 9

2.3 Proposed method for boundary uncertainty-based classifier evaluation 10

2.3.1 Outline . 10

2.3.2 Step 1: selection of the near-boundary set NB(Λ) 12

2.3.3 Step 2: computation of uncertainty measure U(Λ) 13

2.3.4 Adaptation of Step 1 to multi-class datasets 17

2.3.5 Adaptation of Step 2 to multi-class datasets 18

2.4 Experimental evaluation . 20

2.4.1 Datasets . 20

2.4.2 Classifier . 21

2.4.3 Hyperparameters . 21

i

2.4.4 Evaluation estimation . 22

2.4.5 Results of Step 1 . 24

2.4.6 Results on the classifier selection . 25

2.4.7 Influence of data imbalance on classifier status selection 29

2.5 Summary . 30

3 Optimality analysis of uncertainty measure 33

3.1 Overview and preparations . 33

3.2 Convergence to true value for ratio-based probability density estimator 34

3.3 Convergence to true value for ratio-based joint probability density estimator . . . 35

3.4 Probabilistic convergence to true value for ratio-based posterior probability esti-
mator . 37

3.5 Practical advantages supported by optimality in ratio-based posterior probability
estimation . 38

3.6 Experiments . 39

3.7 Summary . 42

4 An Improved Boundary Uncertainty-Based Classifier Evaluation Method 45

4.1 Background for our improved boundary uncertainty estimation 45

4.1.1 Reminder: Goal . 46

4.1.2 Towards Proposal 1 . 47

4.1.3 Reminder: Outline of Proposal 1 . 48

4.1.4 From Proposal 1 to Proposal 2 . 50

4.2 Outline of Proposal 2 . 52

ii

4.3 Continuous measure of near-boundary-ness . 53

4.4 Improved Step 1 . 54

4.4.1 Class-by-class determination of the number of anchors to generate 54

4.4.2 Class-by-class generation of anchors . 56

4.5 Improved Step 2 . 57

4.6 Benefits in terms of memory and time . 60

4.6.1 Experiments . 61

4.6.2 Classifiers . 61

4.6.3 Datasets . 62

4.6.4 Hyperparameters . 63

4.6.5 Treatment of the class imbalance in datasets 64

4.6.6 Effect of the dimensionality on Proposal 1 65

4.6.7 Classifier evaluation results . 66

4.6.8 About the equivalence between maximum boundary uncertainty and clas-
sifier optimality . 70

4.7 Summary . 72

4.7.1 Sample-dependent Parzen estimator . 73

4.7.2 Cross Validation Maximum Likelihood (CVML) estimation of h 74

5 Conclusion 79

5.1 Summary of Dissertation . 79

5.2 Future Works . 80

A Notation List 85

iii

A.1 Notations . 85

B Publication List 87

iv

List of Figures

2.1 Graphical explanation of our two-step method on two-dimensional data. (a):
Decision boundary B(Λ) represented in blue. (b): Step 1 arbitrarily generates
anchors (red dots) on B(Λ). (c): Step 1 selects the nearest neighbor for each
anchor. This results in a set of near-boundary samples denotedNB(Λ). (d): From
now, the method only considers NB(Λ) to focus on the decision boundary. (e):
Step 2 uses a partitioning method to break downNB(Λ) into clusters, represented
in green dashed ovals. (f): After estimating the class posterior probabilities in
each cluster by application of the kNN class posterior probability estimation rule
(shortened to “kNN estimation” for convenience), Step 2 computes the boundary
uncertainty U(Λ). 11

2.2 Anchor generation based on a random pair [a, b] belonging to a pair of differ-
ent estimated classes Ĉ1 and Ĉ2, where we illustrate the need for a case-by-case
treatment. In the two-class data case, the segment [a, b] strides only two class
regions, and only the boundary B12(Λ) can pass through the segment (case (A)).
In the multi-class data case, the segment [a, b] can stride multiple class regions,
and multiple boundaries can pass through the segment (case (B)); when the seg-
ment strides multiple class regions, we divide the segment in the class-by-class
manner and generate an anchor for every pair of two adjacent classes. 17

2.3 SVM evaluation results on the GMM dataset. In the upper graph, the horizontal
axis corresponds to the kernel width γ, the left vertical axis corresponds to Lte

(red) and Lval (green), and the right vertical axis corresponds to −U (blue). For
each of the four classifier statuses A, B, C, D, we represent the following three
plots in the corresponding row. From left to right: data with true class labels;
data with labels estimated by the classifier, and anchors in black dots; zoom
on the set of one nearest neighbors of the anchors, represented with their true
class label. These nearest neighbors are assumed representative of the decision
boundary. Local balance between purple and red labels all along the decision
boundary corresponds to more optimal classifier statuses. 24

v

2.4 Classifier evaluation results for synthetic GMM dataset and 11 real-life datasets.
From top to bottom: GMM, Abalone, Breast Cancer, Cardiotocography, Iono-
sphere, and Landsat Satellite. Horizontal axis indicates the value of γ. Each
panel shows the estimated error probability curve based on the CV’s training
folds (Ltr, yellow), the estimated error probability curve based on the CV’s vali-
dation folds (Lval, green), and our uncertainty measure curve (−U, blue). In the
top GMM panel, we also display the error probability estimate based on the extra
20,000 validation samples (Lval2, red). 28

2.5 Parameter status selection results for Cardiotocography data. In the top panel,
the blue curve represents uncertainty measure −U with the prior probability cor-
rection; the red dashed curve for −U without the correction. In the bottom panel,
the black curve represents the number of near-boundary samples; the gray and
red curves represent the numbers of near-boundary samples belonging to C0 and
to C1, respectively. 30

3.1 Comparison of three neighbor selection schemes in Step 2 (near-boundary sam-
ple selection) for Ionosphere dataset: fixed kNN considering neighbors selected
from T (top panel), fixed kNN considering neighbors selected fromNB(Λ) (mid-
dle panel), and adaptive partitioning in NB(Λ) (bottom panel). 40

3.2 Effect of using different k in applying kNN to T for the Ionosphere dataset. Lval

is shown by green dashed line. Curves for k = 5, 7, 10, 15 are shown in red,
green, orange, and blue, respectively. 41

3.3 Effect of using different k in applying kNN to NB(Λ) for the Ionosphere dataset.
Lval is shown by green dashed line. Curves for k = 5, 7, 10, 15 are shown in red,
green, orange, and blue, respectively. 41

3.4 Geometric distance distribution for the samples used in the posterior probability
estimation for Breast Cancer data (left) and Ionosphere data (right) (γ = 2−5).
The green histogram shows distance distribution for the near-bounday samples;
the red histogram for the neighbors selected from the entire sample set. 42

vi

4.1 kNN estimation at the decision boundary performed in different ways, from (i)
to (iv). (i): ideal estimation: at a ∈ B(Λ) (red dot), possibility to draw class
labels an infinite number of times. (ii): basic kNN estimation at a in presence of
finite data: use of the class labels surrounding a (green circle), regardless of their
closeness to B(Λ). (iii.1) to (iii.3): kNN estimation focused on B(Λ) as done in
Proposal 1. First, selection of the samples nearest to B(Λ) (red crosses selected
by on-boundary red dots). Second, clustering on these selected samples to obtain
target volumes focused on B(Λ) (green circles in (iii.2) and (iii.3)). (iv): kNN
estimation centered on B(Λ) as done in Proposal 2, detailed in the later sections. . 47

4.2 Graphical explanation of our original two-step classifier evaluation method on
two-dimensional data. (a): Decision boundary B(Λ) represented in blue. (b):
Step 1 arbitrarily generates anchors (red dots) on B(Λ). (c): Step 1 selects the
nearest neighbor for each anchor. This results in a set of near-boundary samples
denotedNB(Λ). (d): From now, the method only considersNB(Λ) to focus on the
decision boundary. (e): Step 2 uses a partitioning method to break down NB(Λ)
into clusters, represented in green dashed ovals. (f): After estimating the class
posterior probabilities in each cluster by application of the kNearest Neighbor
class posterior probability estimation rule, Step 2 computes the boundary uncer-
tainty U(Λ). Step 2 is repeated R times, and the final estimate of U(Λ) is the
average of the results over the R runs. 49

4.3 Determination of N0
a on synthetic data for some trained SVM classifier. The

originally multi-dimension vector samples of C0 are solely represented by their
measure of near-boundary-ness (horizontal axis). To estimate N0

a , we read the
value at zero of the histogram on this one-dimensional data. In this example, the
histogram indicates that N0

a = 175 anchors should be generated for C0 to respect
P(C0). 55

4.4 Illustration of anchor generation in Proposal 2 for two-class data. (a): Estimated
labels for class 1 (Ĉ1) and class 2 (Ĉ2) are shown in yellow squares and green
triangles, respectively. (b): for each training sample, ∇x f (x) is represented in
a black arrow, and corresponds to the locally most efficient direction to search
for B(Λ). (c): For each training sample x, an on-boundary anchor (red dot) is
tentatively generated along the direction provided by ∇x f (x) within a distance d
from x. 56

4.5 The horizontal axis corresponds to the degree of near-boundary-ness for samples
of class Ci, and the opposite of the degree of near-boundary-ness for samples of
class C j. On this axis, the anchor a (value zero) and its M = 39 nearest neighbors
are represented. Among NN(M,a), 24 neighbors belong to Ci (orange), and 15
neighbors belong to C j (blue). We perform a smooth histogram for each class
in red and black, respectively. We use these two histograms to obtain a smooth
count ki and k j of Ci and C j on B(Λ) . Here ki = 1.5 and k j = 1.9. 58

vii

4.6 Different possible function candidates to the uncertainty measure. The binary
Shannon entropy and the Gini impurity are represented in brown and pink, re-
spectively. 64

4.7 Histograms of the absolute value of the near-boundary-ness of the training sam-
ples T (on-boundary-ness corresponds to the value 0). Blue: histogram for all
T . Orange: histogram for the selected near-boundary samples NB(Λ). 65

4.8 From left to right and top to bottom, SVM classifier status selection results
for Abalone_01, Breast Cancer, Cardiotocography, German, GMM, Ionosphere,
Landsat Satellite_47, Spambase. Left vertical axis, green: Lval and red: Lte. Right
vertical axis, blue: −U(Λ). Horizontal axis: γ. 66

4.9 From left to right and top to bottom, PBC classifier status selection results for
Abalone, Avila, Breast Cancer, Cardiotocography, German, GMM_5c, GMM,
Letter Recognition, MNIST (test), Landsat Satellite_47, Landsat Satellite, Spam-
base, Thyroid, Wine Quality Red, Wine Quality White. Left vertical axis, green:
Lval and red: Lte. Right vertical axis, blue: −U(Λ). Horizontal axis: k. 67

4.10 SVM evaluation results on the GMM_inclusion dataset. In the upper graph, the
horizontal axis corresponds to the kernel width γ, the left vertical axis corre-
sponds to Lte (red) and Lval (green), and the right vertical axis corresponds to
−U (blue). For each of the four classifier statuses A, B, C, D, we represent the
following three plots in the corresponding row. From left to right: data with true
class labels; data with labels estimated by the classifier, and anchors in black
dots; zoom on the set of one nearest neighbors of the anchors, represented with
their true class label. 70

viii

List of Tables

2.1 Datasets . 20

4.1 Datasets . 62

ix

x

1Introduction

1.1 Traditional error probability-based classifier evaluation

Classifier evaluation lies at the heart of the optimal classifier design. We first remind some basics

of pattern classification, and then remind the existing challenges in classifier evaluation. Pattern

classification is the task of correctly assigning a class label to any unseen data point. To do so, a

classifier is given training data pairs (samples) that consist of a data point and of a corresponding

class label assumed correct. The classifier uses these training pairs to learn a mapping between

data points and class labels, and then applies the learned mapping to classify unseen data points.

However, statistical pattern classification fundamentally assumes that all classes exist at each

data point with a given probability. It can be shown [1] that the optimal classification decision is

the decision that assigns each data point to the class with the highest posterior probability at this

data point, and that this classification decision leads to the lowest achievable classification error

probability, called Bayes error or minimum error probability. This intuitive and natural result

can equivalently be viewed in terms of decision regions: the optimal classifier forms decision

regions inside each of which a given class has the highest posterior probability. Decision regions

are delimited by the decision boundary that is locally determined by the equality between the two

highest class posterior probabilities. For convenience, we call the optimal decision boundary

“Bayes boundary”. On the Bayes boundary, the optimal classifier cannot decide for a single

class, so we call the samples on the Bayes boundary “uncertain samples”.

1

Under this assumption, the goal of pattern classification is not to “correctly” classify a data point,

but rather to “optimally” assign it to the class label that has the highest probability. However,

in presence of finite data, class posterior probabilities at the training data points are essentially

unknown, therefore the empirical error rate cannot be representative of the error probability. This

issue is called overfitting, and usually corresponds to a serious bias downward of the empirical

error rate [2].

An analytic estimation of this bias is provided by Structural Risk Minimization (SRM) in the

form of an upper bound on the expected error probability. In practice the bound tends to be

loose, however the trend rather than the value itself of the upper bound may be sufficient to select

the classifier status that is closest to optimality [3]. Although SRM applies to any classifier, de-

riving the upper bound for each considered classifier model is not always easy [2, 4]. Therefore,

even assuming that the trend is reliable enough, directly using the analysis provided by SRM to

practically evaluate or select classifier statuses may not always be possible.

Several approaches aim at directly estimating the error probability in a data-driven way without

explicitly and analytically estimating this bias. A common approach called Hold Out (HO)

evaluation can be simply applied to any classifier as follows: split the available finite data into

training data and validation data, then train the classifier on the training data, and finally use the

empirical error rate on the validation data as an estimate of the error probability. The role of

the validation data is reduce the bias due to the training data, by simulating infinite data with

new data points and new data labels. However, even in this case, there is still a bias of the HO

estimate due to the finiteness of the validation data, hence performing the estimation on several

validation sets is preferable.

Based on this idea, in Cross Validation (CV) [5] several training-validation splits are prepared,

and then the error probability estimate is taken as the average over the empirical error rate from

each validation fold, which also reduces the variance of the error probability estimation. The

extreme case of CV is when each sample in turn is used as a validation set. This case called

Leave-One-Out leads to an unbiased estimation of the Bayes error. Perhaps similar to CV, Boot-

strap produces several sample sets by applying sampling with replacement to the given set, and

2

then increases the estimation reliability by repeating the estimation on each resampled set, while

averaging the estimates over those resampled sets.

While Bootstrap and CV reduce both bias and variance of the error probability estimate [6, 7],

they require costly training repetitions that can be prohibitive in real-life tasks [8]. Furthermore,

evaluation of the error probability solely based on the training data would be preferable to the

sacrifice of some precious data for evaluation.

One alternative to reduce the variance of the error probability estimation is to consider a smooth

error count instead of a binary error count [9]. One issue is how to appropriately smooth the

error count to bridge the gap with the error probability, without the need to empirically adjust

smoothing parameters with validation data. Minimum Classification Error training [10] proposes

a rationale to such smoothing that can be easily applied to any classifier model. It was shown that

the smoothing in [10] is equivalent to consider virtual samples that provide a direct relationship

between the resulting smoothed empirical error rate and the error probability [11], however it is

yet not necessarily sufficient to accurately estimate the error probability [12].

As can be seen above, a wide range of directions were explored to accurately estimate the error

probability. However due to the difficulty of estimating the error probability that requires to

integrate errors over the entire space only based on the rough information of “correctness”, this

estimation comes at a cost. So far, an accurate estimation either requires several costly training

repetitions, or the accurate error probability estimate is not directly embedded in the training

objective, or the method is not easily applicable to a wide range of classifiers.

Incidentally, even assuming that an accurate estimate of the error probability can be obtained, its

value itself cannot directly inform whether the optimal classification decision is reached or how

close it is to the current classification decision, because the Bayes error that should serve as a

reference for optimality is essentially unknown [13] and its value is specific to each dataset.

Another approach is to directly estimate probability distributions for each class to obtain the class

posterior probabilities. Several methods aim at such estimation, such as information criteria [14]

and Bayesian model selection [15]. However, for classification, the quality of the class posterior

3

probability estimation only needs, and should focus on the decision boundary. Probability dis-

tribution estimation methods tend to be mainly influenced by the center of the class probability

distributions where more samples are gathered, which leads in a poorer estimation quality near

the classification decision where usually less samples can be found. Such methods may therefore

not be the most accurate or the most efficient for classification [16, 17, 18].

1.2 Boundary uncertainty-based classifier evaluation

We remark that achieving or detecting the minimum error probability status does not necessarily

require to use the classification error as a classifier evaluation measure, and focusing on accu-

rately estimating the information close to the decision boundary is not only easier, but also a

more direct estimation goal in regard to classification.

The optimal decision is achieved if and only if the decision boundary is the Bayes boundary,

and we remind that the Bayes boundary is defined by the samples where the two highest class

posterior probabilities are equal. We use this constraint on the decision boundary to define a new

classifier evaluation measure called “boundary uncertainty”. Our boundary uncertainty quanti-

fies the similarity between the decision boundary and the Bayes boundary by measuring on the

decision boundary how close to equality are the two posterior probabilities of the two adjacent

classes, and then averages the local uncertainty scores into a single boundary score. In our def-

inition, closer values of class posterior probabilities at each location on the decision boundary

correspond to a higher value of the boundary uncertainty. Furthermore, under mild assumptions

that we further discuss in Chapter 4, a maximum value of our boundary uncertainty gives a nec-

essary and sufficient condition for classifier optimality. Besides, this maximum value is the same

regardless of the dataset, which clearly informs whether the optimal classification decision was

reached in contrast to an error probability-based classifier evaluation.

A class posterior probability estimation that focuses on the decision boundary is a much sim-

pler task than traditional class posterior probability estimation in the entire data space and error

4

probability estimation. Indeed, only requiring to know the class posterior probabilities on the

decision boundary can be intuitively understood as only having to smooth training samples onto

the decision boundary. This smoothing is locally a one-dimensional task, where the only rele-

vant dimension is the degree of closeness of data points to the decision boundary. Finding an

appropriate smoothness in this single dimension is a quite simple task that can even be done

analytically without the need for validation data.

Furthermore, our boundary uncertainty estimation is robust to estimation errors, which makes

it quite easy to accurately estimate. To fix ideas, let’s assume that in a given neighborhood of

the decision boundary, the class posterior probabilities are 0.3 for one class and 0.7 for the other

class. The class posterior probability ratio at a given data point could indifferently consist of 0.3

for the first class class and 0.7 for the second class, or 0.7 for the first class and 0.3 for the second

class. This would still result in the same overall closeness of the two class posteriors around the

equality value 0.5.

In contrast to error probability estimation or probability distribution estimation, the key novelty

of our boundary uncertainty-based evaluation approach is to reduce the classifier evaluation prob-

lem to an estimation target that is easy to estimate, robust to estimation errors, and that efficiently

focuses on the goal of classification. Admittedly, sharply focusing on the decision boundary has

a price. Focusing on the decision boundary means that we have basically fewer samples avail-

able for the estimation; we may compensate for this with a more robust design of our boundary

uncertainty estimation method. Furthermore, a focus only on the few essential samples implies

that a change on the decision boundary directly impacts the value of the boundary uncertainty,

which may help to discriminate between classifier statuses.

Among our several attempts [19, 20, 21] at boundary uncertainty estimation, [21] was our first

proposal that showed consistently encouraging results on several datasets and classifier models.

We introduce this first proposal in Chapter 2. After analyzing the strong points and weaknesses of

this first proposal in Chapter 3, we propose in Chapter 4 an improved estimation of the boundary

uncertainty that is significantly more reliable and more scalable.

5

We tested our two boundary uncertainty-based classifier evaluation methods on well-known and

widely used classifiers such as Support Vector Machines (SVM), Prototype-Based Classifiers

(PBC), and Multilayer Perceptrons (MLP). Experimental results and analysis on more then thir-

teen real-life datasets and two synthetic datasets demonstrate the possibility to perform a reliable

classifier evaluation and classifier selection using our boundary uncertainty.

6

2A First Boundary Uncertainty-Based

Classifier Evaluation Method

2.1 Introduction

In this chapter, we propose a first basic method to estimate the boundary uncertainty that can be

transparently applied to any classifier model. In this chapter we show the experimental results

of our method to evaluate and select the classifier status of SVMs, but more experimental results

can be found about the application to Prototype-Based Classifiers and Multilayer Perceptrons in

[22].

In our comparative experiments, we compare classifier evaluation results based on our decision

boundary uncertainty with classifier evaluation results based on a reliable estimate of the error

probability. The simplest candidate to perform such a reliable estimate would be a Hold Out

(HO) evaluation that uses a large validation set. However, a large amount of data for both classi-

fier training and validation is not always available. We only performed such gorgeous evaluation

of the error probability on synthetic datasets, because arbitrarily large amounts of data can be

generated for synthetic datasets. For real-life datasets, we instead performed the reliable eval-

uation of the error probability using Cross Validation (CV). Not only is the reliability of CV

a well-documented topic [6], but the possibility of transparently applying CV to any classifier

model makes it both an appropriate and a strong competitor.

Although our proposed method is not restricted to SVMs, error probability estimation methods

that are SVM-specific are still relevant candidates for comparison. Existing SVM-specific meth-

7

ods rely on the approximation of LOO-CV [23], or on Minimum Description Length [24], or on

Information Criteria [25]. While [23] produces accurate results for small-sized datasets, it may

be excessively time-consuming and unpractical for large-sized datasets. Moreover, compared to

[23], the other less time-consuming methods [24, 25] basically provide less reliable classifier

evaluation. Basically, these studies seemed to consider LOO as the most reliable method to es-

timate the error probability. Therefore, we simply focused our comparison with CV-based error

probability estimation, and ensured that the number of CV folds is sufficiently high to approxi-

mate LOO.

2.2 Notations and goal

2.2.1 The classification problem

Given a pattern sample x ∈ X, where X is a D-dimensional pattern space, we consider a task

of classifying x into one of J classes (C1, . . . ,CJ). Our proposal assumes a general form of

classification decision rule:

Ĉ(x) = Ck iff k = arg max
j∈[1,J]

g j(x; Λ), (2.1)

where Ĉ(·) is a classification operator, Λ is a set of classifier parameters, and g j(x; Λ) is a dis-

criminant function for C j. g j(x; Λ) represents the degree of confidence of the classifier for class

C j, and is assumed continuous in regard to x and Λ. The notation Ĉ(x) rather than C(x) is meant

to clearly distinguish between the original class label C(x), and the class label estimated by the

classifier Ĉ(x).

At a given sample location x, the highest (dominant) discriminant function score g j(·; Λ) enables

the classifier to assign x to class C j. When the two highest scores are equal, the classifier cannot

decide between the two corresponding classes, and we say that x lies on the decision boundary

between the two classes.

8

For convenience, we denote D j(x) as the index of the j-th highest discriminant function at x

ranked in descending order (for example, the highest score at x corresponds to gD1(x)(x; Λ)).

Dependency of D j(x) in Λ is dropped to simplify the notations. Furthermore, we denote Biy(Λ) as

the decision boundary that separates Cy and Ci. Naturally, Biy(Λ) and Byi(Λ) are interchangeable.

The concept of boundary directly extends to three or more classes; however, equality among the

three or more highest scores at a sample location is less likely. Therefore, the rest of this thesis

assumes boundaries between two classes. Under this assumption, at a given sample location

x, we only consider the scores of class indexes D1(x) and D2(x), and multi-class classification

tasks are locally treated as two-class tasks. Although this assumption is reasonable, we can quite

easily adapt our procedures to consider more than two D j(·), j ∈ [1, J] if necessary.

2.2.2 Goal

Our goal is to evaluate classifier statuses based on the estimation of the boundary uncertainty,

whose higher values correspond to more optimal status. Given a classifier model whose param-

eter status Λ leads to the decision boundary B(Λ), given a data point x on B(Λ), we denote

U(x; Λ) as the uncertainty at x; U(x; Λ) takes higher values when class posterior probabilities

are closer to equality. To summarize the overall amount of uncertainty on B(Λ), we define the

boundary uncertainty E[U(Λ)] is the expectation of uncertainties on B(Λ):

E[U(Λ)] =

∫
x∈

(
B(Λ)+δV

) U(x; Λ)p(x)dx, (2.2)

where p(x) corresponds to the density at sample x. The δV in Eq. (2.2) means that we consider

a volume of infinitesimal width centered on B(Λ) instead of just B(Λ) itself, to avoid a proba-

bility measure trivially equal to zero. Although slightly paradoxical, this aspect of our current

formalization does not impact on the conceptual potential of using boundary uncertainty to per-

form classifier evaluation. To lighten notations, in what follows we shorten integrals or sums

over B(Λ) + δV to integrals or sums over B(Λ), and “on B(Λ)” actually strictly refers to “quasi

on B(Λ)”.

9

The integral in Eq. (2.2) assumes that we can sample an infinite amount of data from p(x) on

B(Λ), which is not the case with finite training data. With a finite training set T , we instead

consider:

U(Λ) =
∑

x∈B(Λ)

U(x; Λ)p(x). (2.3)

2.3 Proposed method for boundary uncertainty-based classi-

fier evaluation

2.3.1 Outline

Our method takes as input a set ΛTR of candidate classifier statuses to evaluate. For each input

classifier status Λ, our method performs the estimation of Eq. (4.1) through a two-step treatment,

and then chooses the classifier status Λ that corresponds to the highest (estimated) boundary

uncertainty. The two steps correspond to:

• Step 1: selection the training samples on B(Λ), or at least closest to B(Λ).

• Step 2: estimation of E[U(Λ)] using Eq. (4.1).

We summarize our boundary uncertainty-based method in Algorithm 1, and illustrate it in Figure

4.2.

10

Figure 2.1: Graphical explanation of our two-step method on two-dimensional data. (a): De-
cision boundary B(Λ) represented in blue. (b): Step 1 arbitrarily generates anchors (red dots)
on B(Λ). (c): Step 1 selects the nearest neighbor for each anchor. This results in a set of near-
boundary samples denotedNB(Λ). (d): From now, the method only considersNB(Λ) to focus on
the decision boundary. (e): Step 2 uses a partitioning method to break downNB(Λ) into clusters,
represented in green dashed ovals. (f): After estimating the class posterior probabilities in each
cluster by application of the kNN class posterior probability estimation rule (shortened to “kNN
estimation” for convenience), Step 2 computes the boundary uncertainty U(Λ).

11

Algorithm 1: Boundary uncertainty-based classifier selection
Input: Set ΛTR of trained classifier parameters

Output: arg maxΛ∈ΛTR U(Λ)

1 for Λ ∈ ΛTR do

/* Step 1: Selection of near-boundary samples */

2 Randomly generate anchors on B(Λ) (Algorithm 2, or Algorithms 4 and 5);

3 Select the set NB(Λ) that consists of the 1-nearest neighbor of each anchor;

4

/* Step 2: Computation of the boundary uncertainty */

5 Break NB(Λ) into clusters (Algorithm 3);

6 Apply the kNN estimation to the clusters, deduce U(Λ) (Eq. (2.7));

7 end

8 return arg maxΛ∈ΛTR U(Λ)

2.3.2 Step 1: selection of the near-boundary set NB(Λ)

We first cover the two-class data case, C1 and C2. In this case, we simply denote B(Λ) as the

boundary B12(Λ) between estimated classes Ĉ1 and Ĉ2.

Although the sum Eq. (4.1) should ideally be performed on B(Λ), in practice there are no training

samples on B(Λ), but rather at best training samples close to B(Λ). To detect such training

samples, we first generate data points exactly on B(Λ) called “anchors”, whose set we denote

A(Λ). Then, we select the nearest training sample for each anchor. We call the selected training

samples “near-boundary set”, and denote it NB(Λ).

To generate anchors, we remark that anchors are defined by f (·; Λ) = (g1 − g2)(·; Λ) = 0, where

g1(·; Λ) and g2(·; Λ) are fully known. Training samples assigned to Ĉ1 by the classifier satisfy

f (x; Λ) > 0, while the training samples assigned to Ĉ2 satisfy f (x; Λ) < 0. Therefore, given

{x,x′} ∈ Ĉ1 × Ĉ2, the theorem of intermediate values applied to f (·; Λ) guarantees that we can

find at least one anchor on [x;x′], as illustrated in Case (A) of Figure 2.2). The search of each

12

anchor between such pair of training samples can be done efficiently by dichotomy, because it

simply corresponds to the search of (necessarily existing) zeros of f (·; Λ) along segments [x;x′].

One issue is how many anchors to generate, and which couples of training samples to use for

the anchor generation. We remark that the training set is finite, therefore the number of training

samples that are closest to B(Λ) is finite, and a finite number of anchors should be enough to

select all near-boundary samples. Based on this remark, we proceed as follows. We generate

anchors in batches from randomly selected pairs from Ĉ1 × Ĉ2, and after the generation of each

anchor batch, we add to NB(Λ) their nearest neighbors. If almost no samples are added to

NB(Λ), or if a preset maximum number of iterations iM is reached, then we stop the process. We

summarize the generation of anchors and the selection of NB(Λ) in Algorithm 2.

Algorithm 2: selection of the near-boundary set NB(Λ) for two-class data
Input: Classifier model parameters Λ that were trained on T

Output: NB(Λ)

1 if ∀x,x ∈ Ĉ1 or ∀x,x ∈ Ĉ2 then NB(Λ)← ∅;

2 else

3 while not stop do

4 Randomly pick {x,x′} ∈ Ĉ1 × Ĉ2;

5 Find α ∈ [0, 1] : g1(αx + (1 − α)x′; Λ) = g2(αx + (1 − α)x′; Λ);

6 end

7 end

8 return NB(Λ)

2.3.3 Step 2: computation of uncertainty measure U(Λ)

The goal of this section is to define the uncertainty measure U(·; Λ). Given a target sample a,

U(a; Λ) should reach its maximum when P(C1|a) = P(C2|a), and take a lower value when the

two class posterior probabilities are less equal. As one possible choice (e.g. Gini impurity [26]),

we adopt the Shannon entropy defined in Eq (2.4). We discuss the influence of this choice in

13

later chapters.

U(a; Λ) = −

2∑
j=1

P(C j|a) log(P(C j|a)). (2.4)

To use Eq. (2.4), we must estimate class posterior probabilities and choose the target sample a

in Eq (2.4). The kNN class posterior probability estimation rule (simply called kNN estimation

in what follows) provides a simple local method to estimating class posterior probabilities that

does not need to assume a probability model on the data, although it requires to properly adapt

the concept of “local” to the estimation task. The kNN class posterior estimation rule estimates

P(C1|a) and P(C2|a) as follows:

I. Define a local volume V(a) around a. The size and shape of V(a) can be chosen, however

the size should not be too big. A bigger size provides more samples for the class posterior

probability estimation, however the resulting estimation focuses less accurately on a.

II. Denote k the number of training samples contained by V(a). Count the number k1 of

training samples contained by V(a) that are labeled C1, and the number k2 of training

samples contained by V(a) that are labeled C2.

III. Application of the Bayes theorem gives P(C1|a) = k1/k and P(C2|a) = k2/k.

Assuming that we could choose a, we must set its surrounding volume V(a) in a way that

the class posterior probability estimation focuses on B(Λ). The simplest choice would be to

select the k nearest neighbors to a (denoted NN(a, k)) using the Euclidean distance. This would

correspond to the definition of a spherical volume V(a). However, such volume would mostly

contain non-boundary information, and the resulting class posterior probability estimation would

not be useful to evaluate boundary uncertainty.

To define volumes that only contain on-boundary information, we propose to only use samples

from NB(Λ) as follows: first, break down NB(Λ) into smaller volumes (clusters); second, apply

the kNN estimation to each obtained cluster. With this method, in each volume, the centroid

of the volume can be implicitly seen as a target sample a for the estimation, and each volume

14

only contains near-boundary information that is relevant for the estimation of the boundary un-

certainty. Ideally, such volumes should locally adapt to the density as specified in Eq. (4.1) by

the coefficient p(x).

Clustering methods provide a natural way to form clusters whose size adapt to the density. We

therefore use the hierarchical clustering method summarized in Algorithm 3, that consists of R

iterations over which we average estimation results to increase the reliability. Each r-th iteration

of the outer loop (r ∈ [1,R]) of Algorithm 3 forms smaller clusters out ofNB(Λ) by hierarchically

(recursively) applying the 2-means clustering to NB(Λ) until each cluster p in P(r) contains less

than NM samples. We also define a minimum number of cluster members Nm under which we do

not use the cluster for class posterior probability estimation. Here, each iteration r is controlled

by a specific random initialization of the 2-means clusterings, and P(r) is the set of clusters

produced by the r-th iteration.

Given a cluster centroid a in P(r), we denote k(a) as the number of samples in the cluster that

surrounds a, and ki(a) as the number of samples in this cluster that belong to class Ci. For

convenience, we denote C(r) as the set of the cluster centroids associated with P(r). With these

notations, the application of Eq. (4.1) and Eq (2.4) to the clusters obtained at iteration r gives:

U(Λ)(r) = −
∑
a∈C(r)

k(a)
k(P(r))

[
k1(a)
k(a)

log
k1(a)
k(a)

+
k2(a)
k(a)

log
k2(a)
k(a)

]
, (2.5)

where U(a; Λ) =
k1(a)
k(a) log k1(a)

k(a) +
k2(a)
k(a) log k2(a)

k(a) contributes to U(Λ)(r) with a weight k(a)/k(P(r)).

This simplifies to:

U(Λ)(r) = −
1

k(P(r))

∑
a∈C(r)

[
k1(a) log

k1(a)
k(a)

+ k2(a) log
k2(a)
k(a)

]
, (2.6)

We use as final estimate U(Λ) of the boundary uncertainty the average over each estimate U (r)(Λ).

If we denote the concatenation of C(1), ...,C(r) as C, and the concatenation of P(1), ...,P(R) as P,

15

then U(Λ) is written as:

U(Λ) = −
1

k(P)

∑
a∈C

[
k1(a) log

k1(a)
k(a)

+ k2(a) log
k2(a)
k(a)

]
, (2.7)

Algorithm 3: Hierarchical divisive clustering
Input: NB(Λ),Nm,NM,R

Output: P

1 P ← ∅

2 for r ∈ [1,R] do

3 P(r) ← NB(Λ)

4 while ∃p ∈ P(r) : k(p) > NM do

5 for p ∈ P(r) do

6 if k(p) > NM then Perform 2-means clustering(p) ;

7 if k(p) < Nm then Remove p from P(r) ;

8 end

9 end

10 P ← P,P(r)

11 end

12 return P

Incidentally, if all the training samples have the same estimated label, then it is neither possible

to generate anchors, nor to selectNB(Λ). This case corresponds to a strong bias of B(Λ), and we

accordingly assign a default worst value for U(Λ).

16

2.3.4 Adaptation of Step 1 to multi-class datasets

Algorithm 4: Anchor generation based on one random sample pair for multi-class data
Input: Random sample pair {a, b}, that satisfies C(a) , C(b)

1 xa ← a,xb ← b

2 while [xa,xb] does not satisfy (R) do

3 xb ← (xa + xb)/2;

4 end

5 Generate an anchor from [xa,xb] and then select the nearest near-boundary sample s as in

Algorithm 2

6 return s

Figure 2.2: Anchor generation based on a random pair [a, b] belonging to a pair of different
estimated classes Ĉ1 and Ĉ2, where we illustrate the need for a case-by-case treatment. In the
two-class data case, the segment [a, b] strides only two class regions, and only the boundary
B12(Λ) can pass through the segment (case (A)). In the multi-class data case, the segment [a, b]
can stride multiple class regions, and multiple boundaries can pass through the segment (case
(B)); when the segment strides multiple class regions, we divide the segment in the class-by-
class manner and generate an anchor for every pair of two adjacent classes.

For the case of two classes C1 and C2, Algorithm 2 used the magnitude of g1(·; Λ) − g2(·; Λ)

along random segments [x,x′] to generate anchors on the decision boundary between Ĉ1 and

Ĉ2. However, in the multi-class case, if a third estimated class Ĉ3 lies between Ĉ1 and Ĉ2, then

considering the difference between g1(·; Λ) and g2(·; Λ) no longer makes any sense (case (B) in

Figure 2.2). In such a case, before applying Algorithm 2, we must come back to a segment

17

[xa,xb], along which we consider only two adjacent estimated classes, and then instead consider

either g1(·; Λ) − g3(·; Λ) to generate anchors on B13(Λ) or g2(·; Λ) − g3(·; Λ) to generate anchors

on B23(Λ).

A segment [xa,xb] is included in a region of adjacency between only two estimated classes, if

∀x ∈ [xa,xb] and the two highest discriminant function scores are gC(xa)(x,Λ) and gC(xb)(x,Λ)

(this situation corresponds to case (A) in Figure 2.2.). In practice, we approximate this property

using the two highest discriminant function scores at only (xa + xb)/2 (Algorithm 4). For con-

venience, we call this approximated property (R). So long as (R) is not satisfied, we halve the

considered segment (case (B) in Figure 2.2). Incidentally, after an anchor is produced on Bi j(Λ),

it is reasonable to search for only its one nearest neighbor among the near-boundary samples

x ∈ Ĉi or x ∈ Ĉ j.

Algorithm 2 enables the creation of anchors on specific estimated boundaries; however, its ran-

domness leaves little control over which boundary Bi j(Λ) should create an anchor. To address

this potential issue, we preliminarily sorted all samples in a matrix A, whose element Ai j con-

tains the list of training samples for which the highest discriminant function score is gi(·; Λ) and

the second highest score is g j(·; Λ) (Algorithm 5). When selecting candidates for near-boundary

sample set NB
i j(Λ) for Ci and C j, we used A to preferentially form anchors based on pairs of

samples xa,xb ∈ Ai j × A ji.

The number of anchors to be generated can be fixed similarly to that in the two-class case. The

final near-boundary set NB(Λ) is the concatenation of various sets {NB
i j(Λ)}.

2.3.5 Adaptation of Step 2 to multi-class datasets

For readability in this section, given a sample a, we simply denote i = D1(a) and j = D2(a) as

the indexes of the two locally highest discriminant functions, and {I, II} as the class indexes of

the two locally highest class posterior probabilities. In the multi-class case, it might happen that

{i, j} , {I, II}. This corresponds to a portion of boundary Bi j(Λ) that is not even on a region near

18

Algorithm 5: Selection of NB(Λ) for multi-class data
Input: Classifier parameters Λ trained on T

1 ∀i, j ∈ [1, J],NB
i j(Λ)← ∅

2 Construct A
3 for i ∈ [1, J] do
4 for j ∈ [1, J] do
5 while stop criterion not met do
6 if Ai j = ∅ then break;
7 else
8 if A ji , ∅ then
9 Select random pair {a, b} ∈ Ai j × A ji;

10 end
11 else
12 Select random pairs {a, b} ∈ Ai j × Aki, k , j;
13 end
14 Denote s: output of Algorithm 4 provided with input (a, b);
15 If s < NB

i j(Λ) then add to NB
i j(Λ);

16 end
17 end
18 end
19 end
20 return NB(Λ) = {NB

i j(Λ)}i, j∈[1,J]2

true classes Ci and C j, in other words Bi j(Λ) is strongly biased around a. In this case, by default

we set the uncertainty measure to its worst value. Similarly to the concept of entropy branching,

this results in the following conditional branching definition of Ui j(a; Λ):

I. If {I, II} , {i, j}, then set Ui j(a; Λ) to its worst value.

II. Else normalize P(CI |a) and P(CII |a) so that their sum equals 1. Apply the uncertainty mea-

sure defined in the two-class case to the normalized posterior probabilities, by replacing

class indexes {1, 2} with {I, II}. Here, normalization is necessary because formally reduc-

ing the problem to two classes assumes P(CI |a)+ P(CII |a) = 1, which does not necessarily

hold in the presence of more than two classes.

19

2.4 Experimental evaluation

2.4.1 Datasets

We conducted evaluations on fixed-dimensional vector pattern datasets from the UCI Machine

Learning Repository1. Especially for the Abalone, Wine Quality Red, and Wine Quality White

datasets, we used our custom versions, where the original categories were grouped into three

categories due to the presence of very few represented classes. For the Wine Quality White

dataset, we used a randomly sampled subset of the mother dataset. For analysis purposes, we

also prepared a two-dimensional two-class synthetic dataset called GMM, which modeled each

class with two Gaussian mixtures and 1100 samples. We summarize these datasets in Table 4.1,

where N refers to the number of samples available, D to the dimensionality, and J to the number

of classes.

For all datasets, we normalized the datasets, by removing the mean and then scaling to a unit

variance dimension-wise.

Table 2.1: Datasets

Dataset N D J Remarks
GMM 2,200 2 2 synthetic data
Abalone 4,177 7 3 custom version
Breast Cancer 683 9 2 2:1 imbalance
Cardiotocography 1,831 30 2 10:1 imbalance
Ionosphere 351 34 2 2:1 imbalance
Letter Recognition 20,000 16 26
MNIST (test) 10,000 784 10
Landsat Satellite 6,435 36 7
Sonar (all data) 208 60 2
Spambase 4,601 57 2
Thyroid 7,200 21 3 18:1:1 imbalance
Wine Quality Red 1599 11 3 custom version
Wine Quality White 1470 11 3 custom version

1http://archive.ics.uci.edu/ml/index.php

20

2.4.2 Classifier

As a classifier for evaluation, we chose SVM [3] using a Gaussian kernel whose implementation

is available online2. In this case, Λ consists of a set of kernel weights optimized during the

training, regularization parameter C, and Gaussian kernel width γ. To simplify the analysis,

we fixed C beforehand using another CV-based preliminary experiment and then focused on the

optimal setting (status selection) of the single parameter γ .

For the multi-class datasets, we used a one-versus-all multi-class SVM. Actually, the one-versus-

all formalization of the multi-class problem is different from the multi-class formalization de-

scribed in Section 2.2.1. However, in our understanding, the SVM implementation that we used

draws boundaries such that a region near the decision boundary Bi j(Λ) is characterized by gi(·; Λ)

and g j(·; Λ), being the two highest discriminant function scores. This is adequate for Step 1 (Sec-

tion 2.3.4) to be applicable.

2.4.3 Hyperparameters

Although our proposed method contains several hyperparameters, we indifferently set them to the

same values for all the datasets as follows. In Step 1 (Algorithm 2), we set the maximum number

of dichotomy loops to 30 and the maximum number of repetitions lM for generating anchors to

a high value such as 10,000. In Step 2 (Algorithm 3), Nm and NM control the granularity of the

clusters, each of which should ideally have as small a volume as possible and yet contain enough

samples to perform a reliable estimation of the ratio between class posterior probabilities. We

imposed clusters to contain 10 or fewer samples by setting Nm = 8 and NM = 12. Moreover, the

number of repetitions R should be higher than 1 to increase the reliability of the estimation, so

we set it to 10.
2http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

21

2.4.4 Evaluation estimation

We want to check whether classifier statuses that were assigned a high boundary uncertainty

by our evaluation method really correspond to more optimal classifier statuses, and in particular

whether the highest boundary uncertainty really corresponds to the most optimal classifier status.

However, so far evaluating the optimality of a classifier status requires to know (the true value

of) its error probability, which is unknown.

So far, CV is one of the most reliable methods to estimate the error probability. In our experi-

ments, the CV estimate of the error probability therefore plays both the role of a competitor, and

of a reference that is assumed close to the true value of the error probability. To further ensure

a reliable estimation of the error probability, we preliminary tested several values of the number

of folds in CV, and increased it until no significant change was observed in the resulting error

probability estimation. Ten folds seemed sufficient to estimate the error probabilities of SVMs

trained with different values of γ. Only for the Breast Cancer, Ionosphere, and Sonar datasets, we

applied Leave One Out evaluation owing to the few samples available. We denote Lval as the CV

estimate of the error probability, and remind that Lval is the average over the empirical error rates

corresponding to each validation fold. To later visualize the gap between the empirical error rate

on the training data and the true error probability (here approximated by Lval), we also computed

the average Ltr of the empirical error rates corresponding to the training folds.

For the GMM dataset, in order to obtain a nearly perfect estimate of the error probability, we

simulated infinite data by generating another large validation set made of 20, 000 independent

samples using the same Gaussian mixture model as that used for the original 1100 samples. We

denote Lval2 as the error probability estimate based on this large validation set, and we assume

that Lval2 is the true value of the error probability.

To compute our boundary uncertainty, we used all of the samples for each dataset. For conve-

nience of discussion, we use a sign-reversed measure −U(Λ) and analyze the similarity between

−U(Λ) and Lval in later sections. In our graphs (Figures 2.3, 2.4, 2.4, Ltr, Lval, Lval2, and −U are

represented by a yellow, green, red, and blue curve respectively.

22

It is known that the quality of posterior probability estimation can degrade when the samples are

imbalanced in classes, and traditional solutions to the presence of an under-represented minority

class modify the classifier objective or resample the minority-class samples to force class balance

[27]. In our method, rather than changing the samples or the classification process, we simply

evaluate classification uncertainty in a non-intrusive way. Our solution is to superficially take

the class imbalance into account during the posterior probability estimation. More precisely, we

replace the estimated posterior probabilities P̂(Ci|x) with P̂(Ci|x)/P̂(Ci) in Eq. (2.4). By doing

so, we will raise the estimated posterior probability for a low prior probability, while we will

bring down the estimated posterior probability for a high prior probability. The next sections

assume this simple correction.

23

2.4.5 Results of Step 1

Figure 2.3: SVM evaluation results on the GMM dataset. In the upper graph, the horizontal axis
corresponds to the kernel width γ, the left vertical axis corresponds to Lte (red) and Lval (green),
and the right vertical axis corresponds to −U (blue). For each of the four classifier statuses A, B,
C, D, we represent the following three plots in the corresponding row. From left to right: data
with true class labels; data with labels estimated by the classifier, and anchors in black dots; zoom
on the set of one nearest neighbors of the anchors, represented with their true class label. These
nearest neighbors are assumed representative of the decision boundary. Local balance between
purple and red labels all along the decision boundary corresponds to more optimal classifier
statuses.

24

For the GMM dataset, we observe the near-boundary sets obtained by Algorithm 2 with different

settings of γ (Figure 2.3). A higher γ should correspond to a more complex boundary (a lower

one for a simpler boundary). The results show that the selected near-boundary samples were

accurately selected along the decision boundary. For excessively low values of γ, the estimated

boundaries were too simple. For excessively high values of γ, the estimated boundaries were

very complex, and formed discontinuous regions in the data space. For γ = 2, the decision

boundary seems identical to the Bayes boundary.

2.4.6 Results on the classifier selection

On figure 2.3, Lval (green) and Lval2 (red) closely fit each other. This confirms that the CV-

based estimation of the error probability can reliably serve as a competitor and reference in our

comparison.

For all datasets in Figures 2.3, 2.4, 2.4, for lower boundary complexity (lower γ), Ltr is close to

Lval, but a gap between these two estimates can be seen growing wider and wider as the classifier

draws more complex boundaries (higher γ). This confirms the impossibility of evaluating a

classifier using the classification error on the training data, as predicted by [2, 28]. Next, to

assess the utility of our boundary uncertainty estimate, we check whether its values and its trend

behave as expected.

Trend of the boundary uncertainty. For almost all the datasets, our uncertainty measure −U

(blue) almost always shows the same trend as Lval; in particular, the minimum of −U is close

to the minimum of Lval, namely to the optimal classifier status. As found in the values of Lval,

classification for the Abalone, Landsat Satellite, Wine Quality Red, and Wine Quality White

datasets was rather difficult; for these datasets, the Bayes error values estimated by CV were

higher than 0.3. Even for these difficult datasets, −U closely followed Lval, which shows the

potential of our uncertainty measure-based method to select the optimal classifier status.

25

Value of the boundary uncertainty. As explained in Chapter 1, based on mild assumptions

that we can check more thoroughly in a later stage of our research, a classifier status is optimal

if and only if the boundary uncertainty reaches its maximum value, and the latter is the same

regardless of the dataset. Using the binary Shannon entropy as the uncertainty measure gives a

maximum boundary uncertainty value of ln 2. We can use this particular value in several ways

based on either of these three sets of assumptions:

• Assuming that the set of candidate classifier statuses contains the optimal classifier status,

and assuming that CV is reliable, then the minimum of CV corresponds to the optimal

classifier status, and −U (blue curve) should be − ln 2 ≈ −0.7. Under these assumptions,

we can assess the reliability of our boundary uncertainty estimation by checking whether

the minimum value of −U is around −0.7.

• Assuming that CV is reliable, but assuming that the set of candidate classifier statuses

does not contain the optimal classifier status, then we cannot assess the reliability of our

boundary uncertainty estimation solely based on its values, and observing its trend instead

is more useful. This case may happen if the classifier is intrinsically not powerful enough,

or if the dataset is very difficult, or if we did not appropriately chose our candidate classifier

statuses.

• Assuming that our boundary uncertainty is reliable, then we can check whether the set

of candidate classifier statuses contains the optimal classifier status, by checking if the

minimum value observed for −U is around −0.7.

At this early stage of our research, the first and the second set of assumptions are safer than

the third one. If we assume the first set of assumptions, then we can see that on the Breast

Cancer, GMM, Wine Quality Red, and Wine Quality White datasets, −U reaches a minimum

value of around −0.7, which may indicate a reliable boundary uncertainty estimation; on the

other datasets, the minimum of −U is quite different from −0.7, therefore on these more difficult

tasks the boundary uncertainty estimation may lack reliability and require refinements. However,

on the Letter Recognition, MNIST (test), Spambase and Sonar datasets, the trend of −U looks

quite reasonable. Therefore, the second and third set of assumptions might also be reasonable,

26

and it might mean that owing to the difficulty of these two datasets, the classifier could not

achieve the optimal classifier status. However, based on the notorious difficulty of the Wine

Quality Red and Wine Quality White datasets, drawing any conclusions is difficult, and either

our method or the classifier, or CV, or a combination of the three may suffer from an unreliable

estimation.

This discussion above illustrates the difficulty of drawing clearcut conclusions about the classi-

fier optimality with the current approaches. If we improve our boundary uncertainty estimation

enough so that its results can always be considered reliable, our boundary uncertainty-based

approach may be very useful to draw clear conclusions about the classifier optimality.

27

Figure 2.4: Classifier evaluation results for synthetic GMM dataset and 11 real-life datasets.
From top to bottom: GMM, Abalone, Breast Cancer, Cardiotocography, Ionosphere, and Land-
sat Satellite. Horizontal axis indicates the value of γ. Each panel shows the estimated error
probability curve based on the CV’s training folds (Ltr, yellow), the estimated error probability
curve based on the CV’s validation folds (Lval, green), and our uncertainty measure curve (−U,
blue). In the top GMM panel, we also display the error probability estimate based on the extra
20,000 validation samples (Lval2, red).

28

Figure 2.4 (cont.): From top to bottom: Letter Recognition, MNIST (test), Sonar, Spambase,
Wine Quality Red, and Wine Quality White.

2.4.7 Influence of data imbalance on classifier status selection

To better understand the influence of class imbalance, we focus on the Cardiotocography dataset

(176 samples for C0 and 1,655 samples for C1) in Figure 2.5. We break down the number of

near-boundary samples (black curve) into the numbers of near-boundary samples belonging to

C0 (gray curve) and to C1 (red curve). As γ increases, the number of near-boundary samples

belonging to C0 rapidly increases, stays high, and drastically decreases in NB(Λ), while the

29

number of samples belonging to C1 almost always stays around 176; for most γ values, the

total number of near-boundary samples is dominated by one of the two classes. In this case, the

computation of the uncertainty measure is obviously biased and there is no way that uncertainty

around B∗ can be achieved. The posterior probability computation with the superficial prior

probability correction described in Section 2.4.4 indeed gives better results (blue curve) than

without the prior correction (red dashed curve); however, more efficient posterior estimation

methods must be applied for such an imbalanced case.

Figure 2.5: Parameter status selection results for Cardiotocography data. In the top panel, the
blue curve represents uncertainty measure −U with the prior probability correction; the red
dashed curve for −U without the correction. In the bottom panel, the black curve represents
the number of near-boundary samples; the gray and red curves represent the numbers of near-
boundary samples belonging to C0 and to C1, respectively.

2.5 Summary

In order to overcome the fundamental limitations of the standard error probability-based meth-

ods, we defined a new robust classifier evaluation criterion that can potentially be estimated

without the need for validation data for any classifier model, and takes the optimal boundary

as a reference. The experimental results and a comparison with the benchmark CV method

indicate the possibility of selecting the optimal model on several real-life classification tasks.

Despite the encouraging results, there is room for improvement in terms of accuracy, further-

more the proposed method relies on random repetitions and some heuristic settings that can be

30

time-consuming. A better use of the information provided by the discriminant functions can

probably simplify the current complicated Step 1. Furthermore, a theoretical analysis about the

quality of the proposed boundary uncertainty estimation is necessary.

31

32

3Optimality analysis of uncertainty measure

The reliability of our proposal in Chapter 2 relies on the quality of the estimation of the uncer-

tainty measure, which relies on the estimation of class posterior probabilities along the estimated

boundary. In this chapter, we mathematically analyze the class posterior probability estimation

procedure introduced in Section 2.3.3, by analyzing its convergence properties. We show how the

reliability of this estimator ensures that our boundary uncertainty-based classifier evaluation can

reliably evaluate classifier statuses. Then, we experimentally validate our analysis by comparing

the results from Chapter 2 with boundary uncertainty-based classifier evaluation performed with

more naive class posterior probability estimation methods.

3.1 Overview and preparations

We consider point x in a finite-dimensional Euclidian space; furthermore let X1, ..., XN be N

samples independently sampled from a probability distribution function (pdf) p(·)1. Then, every

point in the space is assumed to belong to one or multiple classes among J classes C1, ...,CJ
2.

Moreover, letting R(N)(x) and V (N)(x) be a small region containing x and the volume of this

region, respectively, we assume the following:

I. The distance between any two points in R(N)(x) goes to 0 as N → ∞.

II. pdf p(·) and class likelihoods p(·|C j) (j = 1, ..., J) are continuous functions.

III. For all N and all x, R(N)(x) is a finite and closed set.
1The term “sample” means random variable in this subsection.
2Class label (index) is basically a random variable in this subsection.

33

In the above, no assumption is made about the shape of R(N)(x).

3.2 Convergence to true value for ratio-based probability den-

sity estimator

First, the probability P(N)(x) that sample X is contained in R(N)(x) is equal to the expected value

of 1R(N)(x)(X):

P(N)(x) = E
[
1R(N)(x)(X)

]
=

∫
R(N)(x)

p(u)du, (3.1)

where 1A(·) refers to the indicator function that outputs 1 if the predicate A holds true, and 0

otherwise. Then, there exists point x(N) ∈ R(N)(x) such that P(N)(x) = p(x(N)) · V (N)(x) (see

Appendix 1). Furthermore, the variance of 1R(N)(x)(X) is

Var
[
1R(N)(x)(X)

]
= E

[
{1R(N)(x)(X)}2

]
− {P(N)(x)}2

= E
[
1R(N)(x)(X)

]
− {P(N)(x)}2

= P(N)(x){1 − P(N)(x)}. (3.2)

For the N i.i.d. samples, we next denote the number of samples contained in R(N)(x) by K(N)(x).

Then, K(N)(x) is represented as

K(N)(x) =

N∑
n=1

1R(N)(x)(Xn). (3.3)

Because X1, ..., XN are i.i.d. samples, the expectation and variance of K(N)(x) are

E
[
K(N)(x)

]
= NE

[
1R(N)(x)(X)

]
= NP(N)(x), (3.4)

Var
[
K(N)(x)

]
= NVar

[
1R(N)(x)(X)

]
= NP(N)(x){1 − P(N)(x)}, (3.5)

34

and accordingly the following holds:

E
[K(N)(x)
NV (N)(x)

]
=

1
NV (N)(x)

E
[
K(N)(x)

]
= p(x(N)), (3.6)

Var
[K(N)(x)
NV (N)(x)

]
=

NP(N)(x){1 − P(N)(x)}
{NV (N)(x)}2

=
p(x(N)){1 − P(N)(x)}

NV (N)(x)
. (3.7)

If V (N)(x) is chosen so that it satisfies V (N)(x)→ 0 and NV (N)(x)→ ∞3, then from the continuity

of p(·) it follows that

p(x(N))→ p(x) (N → ∞); (3.8)

furthermore, from Eqs. (3.6) and (3.7), we reach

E
[K(N)(x)
NV (N)(x)

]
→ p(x),Var

[K(N)(x)
NV (N)(x)

]
→ 0(N → ∞). (3.9)

Therefore, K(N)(x)/{NV (N)(x)} converges to p(x) in the mean-square (L2) sense, and in particular

to p(x) in probability:
K(N)(x)

NV (N)(x)
P
−→ p(x) (N → ∞), (3.10)

where
P
−→ denotes convergence in probability.

3.3 Convergence to true value for ratio-based joint probabil-

ity density estimator

The reasoning in this subsection is similar to that in the previous subsection.

The data available for training is a set of N realizations {x1, . . . , xn, . . . , xN} , where xn is a

realization of Xn that is deterministically associated with class label (index) yn. On the other

3For example, given V > 0, we can set V (N)(x) as V/(Nα) (0 < α < 1) or V/(ln N)β (N > 1, β > 0), etc.

35

hand, each random variable Xn (n = 1, . . . ,N) is probabilistically associated with multiple class

labels, since different class regions can overlap in the Euclidean sample space. Therefore, we

regard a class label for Xn (n = 1, . . . ,N) as a random variable Yn (∈ {1, . . . , J}) and discuss

sample pairs {(X1,Y1), . . . , (Xn,Yn), . . . , (XN ,YN)} as follows, assuming that these sample pairs

are independent.

For one sample pair (X,Y), we denote the expectation of 1R(N)(x)(X) · 1{ j}(Y) by P(N)
j (x). Then,

this expectation is the probability that X is included in V (N)(x) and labeled by C j (see Appendix

2):

P(N)
j (x) = E

[
1R(N)(x)(X) · 1{ j}(Y)

]
= Pr(C j)

∫
R(N)(x)

p(u|C j)du. (3.11)

Moreover, because p(·|C j) is continuous, there exists point x(N, j) ∈ R(N)(x), and P(N)
j (x) is equal

to Pr(C j)p(x(N, j)|C j) ·V (N)(x) (see Appendix 1); the variance of 1R(N)(x)(X) · 1{ j}(Y) can be written

as

Var
[

1R(N)(x)(X) · 1{ j}(Y)
]

= E
[
{1R(N)(x)(X) · 1{ j}(Y)}2

]
− {P(N)

j (x)}2

= E
[
1R(N)(x)(X) · 1{ j}(Y)

]
− {P(N)

j (x)}2

= P(N)
j (x){1 − P(N)

j (x)}. (3.12)

For the N i.i.d. samples, we denote the number of samples included in R(N)(x) and labeled by C j

as K(N)
j (x). Then, K(N)

j (x) is represented as

K(N)
j (x) =

N∑
n=1

1R(N)(x)(Xn) · 1{ j}(Yn). (3.13)

36

Moreover, because (X1,Y1), . . . , (XN ,YN) are i.i.d., the expectation and variance of K(N)
j (x) are

E
[
K(N)

j (x)
]

= NP(N)
j (x), (3.14)

Var
[
K(N)

j (x)
]

= NP(N)
j (x){1 − P(N)

j (x)}, (3.15)

and it follows that

E
[K(N)

j (x)

NV (N)(x)

]
=

NP(N)
j (x)

NV (N)(x)
= Pr(C j)p(x(N, j)|C j), (3.16)

Var
[K(N)

j (x)

NV (N)(x)

]
=

NP(N)
j (x){1 − P(N)

j (x)}

{NV (N)(x)}2

=
Pr(C j)p(x(N, j)|C j){1 − P(N)

j (x)}

NV (N)(x)
. (3.17)

Here, if we set V (N)(x) similarly to that used to derive Eq. (3.8), and then we reach the following,

since p(·|C j) is a continuous function:

E
[K(N)

j (x)

NV (N)(x)

]
→ Pr(C j)p(x|C j),Var

[K(N)
j (x)

NV (N)(x)

]
→ 0(N → ∞). (3.18)

Accordingly, K(N)
j (x)/{NV (N)(x)} converges to Pr(C j)p(x|C j) in the mean-square sense, and in

particular to Pr(C j)p(x|C j) in probability:

K(N)
j (x)

NV (N)(x)
P
−→ Pr(C j)p(x|C j) (N → ∞). (3.19)

3.4 Probabilistic convergence to true value for ratio-based pos-

terior probability estimator

In previous subsections, we found that the simple ratio-based estimators for the probability den-

sity and the joint probability density converge to their true values in probability, respectively (see

Eqs. (3.10) and (3.19)). From these results and the nature of four arithmetic operations for the

37

random variable sequences that converge in probability, we finally obtain

K(N)
j (x)

K(N)(x)
=

K(N)
j (x)/{NV (N)(x)}

K(N)(x)/{NV (N)(x)}
P
−→

Pr(C j)p(x|C j)
p(x)

= Pr(C j|x) (N → ∞). (3.20)

Because the above convergences in Eqs. (3.8) through (3.20) assume that V (N)(x)→ 0 (N → ∞),

the following should be satisfied for K(N)(x), K(N)
j (x) and N:

I. If p(x), p(x|C j) > 0, then K(N)(x),K(N)
j (x)→ ∞ (N → ∞).

II. K(N)(x)/N,K(N)
j (x)/N → 0 (N → ∞).

The first condition is necessary because if K(N)(x) and K(N)
j (x) do not go to infinity when N → ∞,

then they would tend to 0 for sufficiently small values of V (N)(x). The second condition ensures

that K(N)(x)/{NV (N)(x)} and K(N)
j (x)/{NV (N)(x)} do not diverge even when the first condition is

satisfied.

3.5 Practical advantages supported by optimality in ratio-based

posterior probability estimation

In addition to the property of convergence to the true posterior probability in Eq. (3.20), the

formalization clearly expresses the practical advantages, which will be useful in a real-life finite

sample regime, of our own kNN-based posterior probability estimation using only near-boundary

samples. Assuming that point x is sufficiently close to estimated boundary B(Λ), we summarize

them in the following:

I. We should decrease region R(N)(x) to reduce the bias in the expectation of K(N)
j (x)/K(N)(x)

so that p(x(N)) and p(x(N, j)|C j) become closer to p(x) in Eq. (3.6) and p(x|C j) in Eq. (3.16),

respectively.

38

II. By increasing R(N)(x), we can basically reduce the variance of kNN-based posterior prob-

ability estimate K(N)
j (x)/K(N)(x). This result can also be proved in a more accurate manner

using the perturbation technique [29].

III. When estimated boundary B(Λ) is close to the Bayes boundary, we can reduce both the

bias and the variance, based on Eqs. (3.6), (3.7), (3.16), and (3.17), in the posterior prob-

ability estimate by applying region R(N)(x) to only the near-boundary samples in NB(Λ)

and increasing its size (in other words, increasing the number of the near-boundary sam-

ples used for kNN-based posterior probability estimation). Here, all individual estimates

P(C j|x) will be close to 0.5, and, moreover, the numerators in Eqs. (3.7) and (3.17) are

bounded by N/4; therefore, the corresponding variances are bounded by 1/{4N(V (N)(x))2}

and tend to 0 as V (N)(x) grows larger. This valuable property enables our method to use

large regions (clusters) for the posterior probability estimation in Algorithm 3 and leads to

accurate and reliable performances even if it adopts a simple kNN-based estimation.

IV. When accepting the incursion of samples outside NB(Λ) to region R(N)(x) and increasing

its size, we clearly face a dilemma between the bias and the variance: Increasing R(N)(x)

decreases the variance but increases the bias, while decreasing R(N)(x) increases the vari-

ance but decreases the bias. This phenomenon, which is generally observed in a regular

kNN-based posterior probability estimation, proves again the validity of using only near-

boundary samples for posterior probability estimation.

V. All the estimators’ properties such as the convergence to true value hold regardless of the

shape of region R(N)(x).

3.6 Experiments

To validate the analysis conducted in this chapter, we performed a step-by-step analysis of Step

2, which executes the posterior probability estimation using the kNN. However, instead of the

traditional estimation based on a fixed-size neighborhood selected from the entire T , we chose to

consider only the near-boundary samples inNB(Λ) as neighbors and also determined the number

39

of neighbors adaptively by the hierarchical clustering procedure.

In this section, we analyze the influence of this choice on the quality of the estimation of posterior

probabilities along the estimated boundary. To this end, we compared the overall parameter

status selection results obtained on the Ionosphere dataset by three neighbor-selection schemes

(Figure 3.1): fixed kNN considering neighbors selected from the entire T (top panel), fixed kNN

considering neighbors selected from NB(Λ) (middle panel), and adaptive partitioning in NB(Λ)

(bottom panel). For the top and middle panels, we first fixed k to 5 (results shown using different

values of k). The setting of Nm,NM,R, for the adaptive partitioning was the same as in Chapter

??.

Figure 3.1: Comparison of three neighbor selection schemes in Step 2 (near-boundary sample
selection) for Ionosphere dataset: fixed kNN considering neighbors selected from T (top panel),
fixed kNN considering neighbors selected from NB(Λ) (middle panel), and adaptive partitioning
in NB(Λ) (bottom panel).

First, the top panel basically shows noise: there is no trend and the range of values for −U(Λ)

is close to 0 (see the right vertical axis), which means the method does not measure any reliable

uncertainty measure score around B(Λ), even when B(Λ) is close to B∗. By contrast, the middle

panel seems to clearly detect a range of suitable candidate parameter values similar to the range

provided by the CV-based method. The neat improvements from the top panel to the middle

panel show the necessity of filtering out samples outside of NB(Λ). Here, note that the range

of −U(Λ) in the top panel is significantly smaller than that in the middle and bottom panels.

Accordingly, these results can be understood as follows. To evaluate the classifier status, our

measure strictly focuses on estimation of the posterior probability imbalance on the estimated

40

boundary. In practice, with finite samples, NB(Λ) contains only samples close to B(Λ). Step 1

can be seen as a filter that effectively cuts noise, i.e. samples away from the estimated boundary.

Second, the clear improvement from the middle panel to the bottom panel shows that the adaptive

partition of the near-boundary samples further enhances the quality of the neighbors used in the

kNN-based estimation. Intuitively, adapting the number of neighbors to the local density and

ignoring excessively small neighbors improves the quality of the posterior estimation.

For exhaustiveness, using the Ionosphere dataset, we also tried k = 5, 7, 10, 15 when using the

kNN posterior estimation in the top and middle panels of Figure 3.1, and we summarized the

results in Figure 3.2 (for top panel of Figure 3.1) and Figure 3.3 (for middle panel of Figure

3.1). Compared to the choice of k for T , the choice of k for the near-boundary sample setNB(Λ)

clearly has a minor impact on the quality of the uncertainty measure computation.

Figure 3.2: Effect of using different k in applying kNN to T for the Ionosphere dataset. Lval is
shown by green dashed line. Curves for k = 5, 7, 10, 15 are shown in red, green, orange, and
blue, respectively.

Figure 3.3: Effect of using different k in applying kNN to NB(Λ) for the Ionosphere dataset. Lval

is shown by green dashed line. Curves for k = 5, 7, 10, 15 are shown in red, green, orange, and
blue, respectively.

To further analyze the influence of neighbor selection, focusing on one typical case of k = 7 and

41

on the two datasets of Breast Cancer and Ionosphere, we observed how far the near-boundary

samples in NB(Λ) and their neighbors selected from T are from B(Λ), by plotting the histogram

of their geometric distance to B(Λ); the near-boundary samples in green and the neighbors in

red (Figure 3.4). An important point here is that differently from the neighbor selection for our

proposed method, which selects the neighbors (of the cluster centroids) only from NB(Λ), we

selected the neighbors (of the near-boundary samples) from the entire set of T . In the figure, the

value of 0 on the horizontal axis represents on-boundary samples on B(Λ). As the figure shows,

the near-boundary samples in NB(Λ) are not quite on B(Λ), but the neighbors that can include

the samples outside NB(Λ) are spreading further. This helps understand that the use of other

samples than the near-boundary samples as the neighbors in the kNN can degrade the quality

of the computation of posterior probability and uncertainty measure, proving the importance of

restricting the neighbors to the near-boundary samples.

Figure 3.4: Geometric distance distribution for the samples used in the posterior probability esti-
mation for Breast Cancer data (left) and Ionosphere data (right) (γ = 2−5). The green histogram
shows distance distribution for the near-bounday samples; the red histogram for the neighbors
selected from the entire sample set.

3.7 Summary

In this chapter, we mathematically analyzed and proved the validity of our posterior probability

estimation procedure, which plays a central role in the proposed method for finding the opti-

mal classifier parameter status. Furthermore, this analysis of the posterior probability estimation

along the estimated boundary may clarify guidelines on the selection and on the use of the bound-

ary neighborhood to improve the accuracy of our classifier evaluation procedure.

42

Appendix 1

p(·) is continuous, therefore it has minimum value m and maximum value M within the bounded

and closed set R(N)(x):

m ≤ p(u) ≤ M (u ∈ R(N)(x)).

Then, integration over R(N)(x) gives

m · V (N)(x) ≤
∫
R(N)(x)

p(u)du ≤ M · V (N)(x),

and thus

m ≤
P(N)(x)
V (N)(x)

≤ M.

Because m and M correspond to values taken by p(·) on R(N)(x), the intermediate value theorem

guarantees the existence of x(N) ∈ R(N)(x), which satisfies

P(N)(x)
V (N)(x)

= p(x(N)).

Appendix 2

We denote the probability space that governs the random variables by (Ω,F ,Pr), where Ω is the

space of all events, F is a completely additive class over Ω, and Pr is a probability measure over

43

F . Then, the following holds:

P(N)
j (x) = E

[
1R(N)(x)(X) · 1{ j}(Y)

]
=

∫
Ω

1R(N)(x)(X(ω)) · 1{ j}(Y(ω)) Pr(dω)

=

∫
Ω

1X−1(R(N)(x))∩Y−1({ j})(ω) Pr(dω)

= Pr
(
X−1(R(N)(x)) ∩ Y−1({ j})

)
= Pr{X ∈ R(N)(x) ∩ Y = j}

= Pr{Y = j} · Pr
(
{X ∈ R(N)(x)}

∣∣∣∣{Y = j}
)

= Pr(C j)
∫
R(N)(x)

p(u|C j)du,

where for mapping f : U → V and set B (⊂ V), f −1(B) represents the inverse image of B:

f −1(B) = {x ∈ U | f (x) ∈ B}, and also Pr(C j) = Pr{Y = j} = Pr(Y−1({ j})).

44

4An Improved Boundary Uncertainty-Based

Classifier Evaluation Method

We propose an improved method to perform classifier evaluation. In Chapter 2, we originally

proposed a classifier evaluation method that introduced two novelties: the concept of classifier

evaluation in terms of “boundary uncertainty” instead of the traditional classification error prob-

ability, and the possibility to accurately estimate the boundary uncertainty based on the same

data that was used to train the classifier, in a single run. Our original method led to the suc-

cessful evaluation and selection of the optimal classifier status for SVMs on several real-life

datasets. However, our boundary uncertainty estimation also lacked accuracy on some datasets.

Furthermore, it relied on several hyperparameters, heuristics, and random repetitions that were

not computationally efficient, and that affected the accuracy of the estimation. These drawbacks

clearly called for refinements that we introduce in this improved method. Results of classifier

evaluation for SVM classifiers and Prototype-Based Classifiers (PBC) on more then thirteen real-

life datasets and two synthetic datasets show the increased accuracy of our classifier selection.

4.1 Background for our improved boundary uncertainty esti-

mation

For convenience, we call “Proposal 1” our original proposal described in Chapter 2, and “Pro-

posal 2” the improved proposal.

45

4.1.1 Reminder: Goal

We assume the same notations as in Chapter 2, and remind that given a classifier parameter status

Λ, our estimation goal is the boundary uncertainty U(Λ):

U(Λ) =
∑

x∈B(Λ)

U(x; Λ)p(x), (4.1)

where U(x; Λ) called uncertainty measure takes as input the two highest values of the class pos-

terior probabilities P(CI |x), P(CII |x) at x, and measures the degree of equality between P(CI |x)

and P(CII |x).

We can see from Eq. (4.1) that the accurate estimation of U(Λ) requires a sharp focus of the class

posterior probability estimation on B(Λ). More precisely this estimation should satisfy three

requirements: (A) access to target samples located on the decision boundary; (B) sampling of

these on-boundary samples from the probability density function p(x); (C) at these on-boundary

samples, focus of their class posterior probability estimation on the decision boundary, because

Eq. (4.1) only considers on-boundary samples.

In both Proposal 1 and Proposal 2, we use the kNN class posterior probability estimation rule

to estimate the class posterior probabilities (for convenience from now we shorten “k Nearest

Neighbor class posterior probability estimation rule” to “kNN estimation”), because this method

does not require to assume a probability model, but instead bases its estimation on the local

information of class labels. The way we apply the kNN estimation to appropriately focus on

the local information of the decision boundary plays a key role in the accuracy of the boundary

uncertainty estimation, therefore we first detail the background of this focus before reminding

the broader outline of Proposal 1, and how Proposal 1 handles the above requirements (A), (B),

(C).

46

4.1.2 Towards Proposal 1

Figure 4.1: kNN estimation at the decision boundary performed in different ways, from (i) to
(iv). (i): ideal estimation: at a ∈ B(Λ) (red dot), possibility to draw class labels an infinite
number of times. (ii): basic kNN estimation at a in presence of finite data: use of the class
labels surrounding a (green circle), regardless of their closeness to B(Λ). (iii.1) to (iii.3): kNN
estimation focused on B(Λ) as done in Proposal 1. First, selection of the samples nearest to B(Λ)
(red crosses selected by on-boundary red dots). Second, clustering on these selected samples to
obtain target volumes focused on B(Λ) (green circles in (iii.2) and (iii.3)). (iv): kNN estimation
centered on B(Λ) as done in Proposal 2, detailed in the later sections.

In Figure 4.1, we illustrate several possible ways (i) to (iv) of applying the kNN estimation. To

fix ideas, we consider an anchor a ∈ B(Λ) (red dot in Figure 4.1), and the goal is to estimate the

(degree of equality between) class posterior probabilities at a.

(i): The most ideal situation corresponds to the possibility to draw class labels from a an infinite

number of times. Class posterior probabilities correspond to the expected frequencies of class

labels. Actually, our estimation target is actually more B(Λ) itself than only the point a itself.

Therefore, drawing class labels from a volume included in B(Λ) around a (instead of only from

a) would not incur a serious bias in terms of our estimation target (the boundary uncertainty)

as was explained in Chapter 3. This quite ideal target volume is illustrated in (i) with a green

47

segment included in B(Λ) of length l. When many samples are available, sampling from a green

segment characterized by a smaller l to tend to the ideal case becomes possible.

(ii): The quite ideal situations described in (i) are not easy satisfy when only a finite amount of

data is available. The most basic way of applying the kNN estimation is to use the class labels of

the M nearest neighbors to a to approximate a repeated class label drawing at a (M = 5 in the

illustration). This results in considering class labels in a spherical volume around a (green circle

in (ii)). However such spherical volume does not specifically focus on the class labels along the

decision boundary B(Λ).

(iii): To focus on B(Λ), in Proposal 1 proposed to restrict the class labels used in the kNN

estimation to the samples that are “closest” to B(Λ), and the set of near-boundary samples were

denotedNB(Λ). NB(Λ) was obtained by generating on-boundary anchors (red dots in (iii.1)), and

then selecting the set of their one-nearest neighbors as NB(Λ) (selection represented by green

arrow in (iii,1)). Then, Proposal 1 used a clustering procedure to locally break down NB(Λ) into

smaller target volumes that were then used for the kNN estimation (green ovals in (iii.2) and

(iii.3)).

If the clustering went as desired, the obtained target volumes would center on the decision bound-

ary as in (iii.2), which brought us closer to the quite ideal green segment-like shape in (i). How-

ever the undesirable case (iii.3) was also possible. In (iii.3), the target volumes obtained by the

clustering are completely included in one side or the other of the decision boundary, which leads

to a biased class posterior probability estimation, “biased” in the sense that it is off-centered from

the decision boundary that is central to our purpose.

(iv): This corresponds to our current Proposal 2, and we will describe it later.

4.1.3 Reminder: Outline of Proposal 1

With the above principles for our decision boundary-focused kNN estimation in mind, we now

remind the entire outline of Proposal 1 in Figure 4.2.

48

Figure 4.2: Graphical explanation of our original two-step classifier evaluation method on two-
dimensional data. (a): Decision boundary B(Λ) represented in blue. (b): Step 1 arbitrarily
generates anchors (red dots) on B(Λ). (c): Step 1 selects the nearest neighbor for each anchor.
This results in a set of near-boundary samples denoted NB(Λ). (d): From now, the method
only considers NB(Λ) to focus on the decision boundary. (e): Step 2 uses a partitioning method
to break down NB(Λ) into clusters, represented in green dashed ovals. (f): After estimating
the class posterior probabilities in each cluster by application of the kNearest Neighbor class
posterior probability estimation rule, Step 2 computes the boundary uncertainty U(Λ). Step 2 is
repeated R times, and the final estimate of U(Λ) is the average of the results over the R runs.

Proposal 1 handled each of the three accuracy requirements (A), (B), (C) described in Section

4.1.1 as follows (the handling of the requirements does not necessarily follow the flow of Pro-

posal 1). (A): specification of near-boundary target volumes for the kNN estimation (green

dashed ovals in Figure 4.2). The volume centroids may be seen de facto as near-boundary

target samples for the kNN estimation; (B): implicit adaptation of these target volumes to the

density p(x), because a clustering procedure is used to form the target volumes, and clustering

procedures tend to adapt to the density ((e) in Figure 4.2); (C): restriction of these volumes to

near-boundary samples ((d) in Figure 4.2), so that the kNN estimation focuses on the decision

boundary.

49

4.1.4 From Proposal 1 to Proposal 2

However, the handling of (A), (B), (C) by Proposal 1 suffered several drawbacks. Although

these drawbacks overlap, and sometimes result from the same item in Proposal 1, for clarity we

separate them into three categories: lack of accuracy of the boundary uncertainty estimation, un-

clearness and use of heuristic settings, and memory and time costs. We enlisted all the drawbacks

in each category for exhaustivity, however the understanding of some drawbacks in the two last

categories may require to refer to Chapter 2. Because these drawbacks tend to be less essential

to estimation accuracy, they may be skipped without hindering the understanding of Proposal 2.

Lack of accuracy of the boundary uncertainty estimation. The following characteristics of

the estimation in Proposal 1 fundamentally hindered its accuracy:

• Discrete definition of “near-boundary-ness”. In Proposal 1, a sample is considered near

or not to the decision boundary. Not only is a binary “threshold” for near-boundary-ness

difficult to define, but slight changes in the threshold definition result in accepting as near-

boundary samples either too many samples that are far from the decision boundary, or to

too few samples to reliably estimate the boundary uncertainty.

• Too rough kNN estimation that assigns the same weight to all the selected near-boundary

samples regardless of their relative closeness to the decision boundary.

• Possible bias in the class posterior probability estimation as illustrated in (iii.3) of Figure

4.1.

Unclearness and use of heuristic settings. Several treatments in Proposal 1 heavily relied on

randomness, repetitions, and heuristic settings that increased the computations. Not only did this

pose an obstacle to clearly assess the time costs of our method, but this also seriously hindered

the scalability of our method:

• No rationale to control the number of anchors to generate, hence the necessity to generate

50

some high number of anchors by default.

• No rationale to choose the pairs of training samples that anchors are generated from, hence

the necessity to randomly pick the pairs by default.

• No direct control on the formation of target volumes. This formation depends on repeated

random initializations in the clustering procedure and heuristic settings to indirectly control

the size of the target volumes.

• No clear relationship guaranteed between p(x) and the target volumes (requirement (B)).

Memory and time costs. The following treatments were time-consuming, and were an obsta-

cle to scalability:

• Expensive class-by-class storage and treatment of random pairs as described in Section

2.3.4.

• Tedious case-by-case checks when generating anchors as described in Algorithm 4.

• Nearest neighbor search for every newly generated anchor. This cost is further aggravated

by the absence of a rationale to set the necessary number of anchors to generate.

• Necessity to perform repeat the tree clustering R times in Step 2 because of the random

initializations in the clustering procedure.

While preserving the overall two-step structure of Proposal 1, Proposal 2 improves the two steps

to better handle requirements (A), (B), (C) as follows (the handling of the requirements does not

necessarily follow the flow of Proposal 2). Requirement (B): the improved Step 1 also generates

anchors to select near-boundary samples, however in contrast to the arbitrary generation of an-

chors in Proposal 1, the number and the location of the generated anchors is carefully prepared to

emulate sampling from p(x) as indicated in Eq. (4.1). These carefully sampled anchors are then

directly used as target samples for the kNN estimation. Requirement (C): the kNN estimation in

the improved Step 2 implicitly weighs samples based on their closeness to the decision boundary,

and samples closed to the decision boundary are given a higher weight. This avoids the difficult

dilemma in Proposal 1 between a too strict and a too loose definition of near-boundary samples.

51

Besides the simplicity, this weighting decreases the variance by potentially using more samples

for the estimation, while not decreasing the bias by weighting down samples further away from

B(Λ). Requirement (A): although we detail it in Section 4.5, the kNN estimation in Proposal 2 is

less biased in the sense that it is centered exactly on B(Λ).

Besides these improvements in terms of accuracy, Proposal 2 is deterministic, more scalable, and

free from repetitions and unclearness as we will describe in the next sections.

4.2 Outline of Proposal 2

Proposal 2 takes the same inputs and output as Proposal 1: its purpose is to choose the most

optimal classifier status among a set ΛTR of trained classifier parameters. We provide the outline

of Proposal 2 in Algorithm 6, where the differences with Proposal 1 are emphasized in italics.

Details of this implementation are described in Sections 4.4.1, 4.4.2, and 4.5.

Algorithm 6: Outline of the improved procedure for classifier selection
Input: Set ΛTR of trained classifier parameters, M ← 40
Output: arg maxΛ∈ΛTR U(Λ)

1 for Λ ∈ ΛTR do
/* Step 1: Selection of near-boundary samples */

2 Appropriately generate anchors on B(Λ) (Section 4.4);
3

/* Step 2: Computation of the boundary uncertainty */
4 For each anchor, apply a weighted kNN estimation to the cluster formed by the anchor

itself and its M-nearest neighbors (Section 4.5);
5 Compute U(Λ) (Eq. (4.1));
6 end
7 return arg maxΛ∈ΛTR U(Λ)

52

4.3 Continuous measure of near-boundary-ness

Before entering the description of the improved Step 1 and Step 2, we describe a new backbone

component of Proposal 2, that is, the definition of a smooth measure of near-boundary-ness (here,

“smooth”, or “continuous”, is opposed to “binary”). This measure is used both in the improved

Step 1 to appropriately generate anchors, and in the improved Step 2 to weigh samples and focus

exactly on B(Λ) during the kNN estimation.

The Euclidean distance between a sample and the decision boundary B(Λ), or some other tra-

ditional distance (e.g., Manhattan distance) may be an intuitive measure of near-boundary-ness.

However, such distance may not be the most appropriate measure of near-boundary-ness, as we

describe in the following qualitative analysis.

The decision boundary is defined by equality between the two locally highest discriminant func-

tions, that we denote gD1(·) and gD2(·). If the values of gD1(·) and gD2(·) change a lot around B(Λ),

then samples should be chosen very “close to” B(Λ) for gD1(·) and gD2(·) to be close to equal-

ity. Conversely, if gD1(·) and gD2(·) are almost uniform around B(Λ), then samples can be chosen

quite “far from” B(Λ), while still almost satisfying the equality between gD1(·) and gD2(·). Here,

“close to” and “far from” were meant in terms of some traditional distance such as the Euclidian

distance. Based on this qualitative analysis, near-boundary-ness of a sample should be directly

defined based on some measure of difference between gD1(·) and gD2(·), rather than based on some

traditional distance that ignores the definition of B(Λ). Incidentally, the computation of such

difference is easy for any classifier model.

To preserve the information of which side (correct or incorrect classification) of the boundary the

samples are found, by convention we impose the value of the near-boundary-ness to be negative

in the case of a correctly classified sample x (ε(x) = −1), and negative otherwise (ε(x) =

1). We therefore define the measure of near-boundary-ness as nb(x; Λ) = ε(x)(gD1(x)(x; Λ) −

gD2(x)(x; Λ)), that we shorten to nb(x) for simplicity.

53

4.4 Improved Step 1

Ideally, the training set T would contain on-boundary samples sampled from p(·) so that we

can apply Eq. (4.1), however there are usually no such samples. This improved Step 1 aims at

generating such samples. To fix ideas, we consider x ∈ B(Λ). Then p(x) can be decomposed as:

p(x) =

J∑
j=1

P(C j)p(x|C j), (4.2)

which we interpret as follows: whenever we draw a sample x on B(Λ) according to p(·), it has

the probability p(x,C j) = P(C j)p(x|C j) to be labeled (exist) with C j. The value of p(x,C j)

is determined by two components: the class prior probability P(C j) and the class likelihood

p(x|C j). P(C j) globally constraints the number of samples of each class in the dataset. Then, for

each class, p(·|C j) locally constraints how to distribute the samples of this class accross the data

space.

The particularity is that we want to apply these sampling constraints just on the decision bound-

ary B(Λ). For each class C j, the improved Step 1 emulates these two constraints to generate

anchors as follows:

I. Emulation of the class prior probability constraint on B(Λ): determine the number N j
a of

anchors that should be generated on B(Λ) (Section 4.4.1).

II. Emulation of the class likelihood constraint on B(Λ): generate N j
a on-boundary samples

that stay as close as possible to the class likelihood distributions observed in the training

set T (Section 4.4.2).

4.4.1 Class-by-class determination of the number of anchors to generate

Given a class C j, the total number of samples in T of C j carries the constraint defined by P(C j).

Therefore, to reflect the constraint defined by P(C j) on B(Λ), we propose to determine the num-

ber of samples in T of C j that fall (within a small region centered) on B(Λ). This number

54

provides an estimate of N j
a.

Concretely, we proceed as follows. We first represent the samples of C j solely by their measure

of near-boundary-ness. In this new one-dimensional representation, B(Λ) is identified by the

value zero. By applying a histogram on the distribution of these newly represented samples, the

desired N j
a corresponds to the value of the histogram at zero. If we denote H the automatically

determined bin width, then this value at zero corresponds in the original data space to the total

number of samples of C j that fall in a region centered on B(Λ) with a width H in the direction

orthogonal to B(Λ). Before further explanations, we first illustrate this estimation in Figure 4.3.

Figure 4.3: Determination of N0
a on synthetic data for some trained SVM classifier. The orig-

inally multi-dimension vector samples of C0 are solely represented by their measure of near-
boundary-ness (horizontal axis). To estimate N0

a , we read the value at zero of the histogram on
this one-dimensional data. In this example, the histogram indicates that N0

a = 175 anchors should
be generated for C0 to respect P(C0).

55

4.4.2 Class-by-class generation of anchors

Figure 4.4: Illustration of anchor generation in Proposal 2 for two-class data. (a): Estimated
labels for class 1 (Ĉ1) and class 2 (Ĉ2) are shown in yellow squares and green triangles, respec-
tively. (b): for each training sample, ∇x f (x) is represented in a black arrow, and corresponds
to the locally most efficient direction to search for B(Λ). (c): For each training sample x, an
on-boundary anchor (red dot) is tentatively generated along the direction provided by ∇x f (x)
within a distance d from x.

Given a class C j, the goal of this section is to generate N j
a on-boundary samples (anchors) while

staying as close as possible to the class likelihood distribution p(x|C j). The training samples

of C j naturally follow p(x|C j), therefore we propose to generate anchors that are as close as

possible to the distribution of training samples.

Illustrations of our proposed anchor generation are provided in Figure 4.4. We proceed by per-

forming parsimonious searches simultaneously around all the training samples: for each training

sample x, search for the decision boundary in a small neighborhood around x, and if the deci-

sion boundary can be found in this neighborhood, then generate an anchor on it. The size of the

neighborhood is set to be the same for all the training samples. A big size implies that we can

produce an anchor from almost every training sample. A small size implies that we can only

produce an anchor from training samples that are very close to B(Λ). By adjusting the size of the

neighborhoods, we can generate exactly N j
a anchors as desired, and the obtained anchors are as

close as possible to p(x|C j).

We now describe how to search in the neighborhood around each training sample, and how

to adjust the size of the neighborhoods. To fix ideas, we consider a training sample x, and

56

we remind that B(Λ) is defined by: B(Λ) = {x ∈ X, gD2(x; Λ) − gD1(x; Λ) = 0}. We denote

f (x; Λ) = gD2(x; Λ) − gD1(x; Λ). To simplify notations, we shorten to f (x).

To generate an anchor close to x, we want to find in a small neighborhood of x a sample x′ that

satisfies Ĉ(x) , Ĉ(x′). If we can find such x′, then the existence of an anchor (zero of f (·)) on

the segment [x;x′] is guaranteed by the theorem of intermediate values applied to f (·).

By construction, ∇x f (x) locally points to the direction where the difference gD2(·; Λ) − gD1(·; Λ)

decreases in absolute value. Therefore, in order to search for B(Λ) in the neighborhood of x,

the most efficient direction to explore is given by ∇x f (x). We can use this property to search for

anchors by progressively shifting away from x along ∇x f (x).

Denote u(x) =
∇x f (x)
||∇x f (x)|| the unit vector carried by ∇x f (x). Given a small distance d to determine,

define:

xb(d;x) = x + du(x). (4.3)

Here, d corresponds to the size of the search neighborhoods that we described above. In practice,

we can search for the desired value of d that produces Ny
a anchors by dichotomy: first define a

wide range [dm; dM], and then consider the middle d0 of the segment [dm; dM]. If d0 generates

a number of anchors higher than Ny
a , then reduce the search to [dm; d0], else reduce the search

[d0; dM]. Repeat this segment reduction until we obtain N j
a anchors, or until we obtain a number

of anchors close enough to N j
a, or until a maximum number iM of dichotomy iterations was

reached.

4.5 Improved Step 2

Given an anchor a ∈ B(Λ) appropriately sampled from p(·) produced by Step 1, consider the clus-

ter formed by the M nearest neighbors NN(M,a) of a, and resume the notation i = D1(a), j =

D2(a) for the indexes of the two most represented classes in NN(M,a). The main idea in this

57

improved Step 1 is to perform a smooth count of the class labels of NN(M,a) exactly on B(Λ) as

was illustrated in (iv) of Figure 4.1. This smoother and appropriately centered estimation relies

on two components:

I. Representation of the M neighbors of a by their degree of near-boundary-ness. Again,

the decision boundary B(Λ) in this new one-dimensional representation is identified by the

value zero.

II. Smooth count of these M labels for each class Ci and C j on the zero of this one-dimensional

represented data, that we denote ki and k j, respectively. The kNN estimation gives P(Ci|a) =

ki
ki+k j and P(C j|a) =

k j

ki+k j
, respectively.

We illustrate this estimation in Figure 4.5.

Figure 4.5: The horizontal axis corresponds to the degree of near-boundary-ness for samples
of class Ci, and the opposite of the degree of near-boundary-ness for samples of class C j. On
this axis, the anchor a (value zero) and its M = 39 nearest neighbors are represented. Among
NN(M,a), 24 neighbors belong to Ci (orange), and 15 neighbors belong to C j (blue). We perform
a smooth histogram for each class in red and black, respectively. We use these two histograms to
obtain a smooth count ki and k j of Ci and C j on B(Λ) . Here ki = 1.5 and k j = 1.9.

To perform the smooth histogram described in Figure 4.5 with a Parzen estimation [30]. As a

58

reminder, given h > 0, a kernel function φ(·), NV training samples x1, ...,xNv
, and a target sample

x, a Parzen estimator counts the number of samples count(a; h) that falls within a region centered

on x whose volume is controlled by h, and whose shape is controlled by φ(·):

count(x; h) =

k∑
m=1

φ
(x − xm

h

)
. (4.4)

For example, a common choice for the kernel function is the Gaussian kernel. In our case, given

a target anchor a ∈ B(Λ) and a1,a2, ...,aM its M nearest neighbors, the target sample for the

Parzen estimation is the value nb(a) = 0 of the near-boundary-ness of a target anchor a, and the

training samples for the Parzen estimation are the values nb(a1), nb(a2), ..., nb(aNv
) of the near-

boundary-ness of the M nearest neighbors. Implicitly, when counting on the zero, data points

are weighted based on their distance to the zero, i.e. based on their near-boundary-ness, and the

weight for each data points is φ
(

nb(a)−nb(am)
h

)
. When using a Gaussian kernel, we can see that this

weight decreases exponentially fast as data points get further away from B(Λ).

The crucial issue that determines the quality of the count (and by extension, of the class posterior

probability estimation and therefore of our boundary uncertainty estimation) is the value of the

kernel width h. A too small value of h leads to an overfit for the boundary uncertainty estimation,

while a too large value smoothes the data too much and also leads to an underfit for the boundary

uncertainty estimation.

[31] provides a setting of h based on the analytic estimation of the expected Mean Squared Error,

however it seems that the method does not always perform accurately depending on the data

distribution. Therefore, as another possibility, we use a setting of h that estimates the expected

likelihood based on a more CV-like data-driven way, and for this simple one-dimensional task

the CV-like mechanism can be directly incorporated in the objective function. Although details

about this expected likelihood-based setting are provided in Section 4.7, through this example

we can see that by sharply focusing our class posterior probability estimation on the decision

boundary, we reduced the estimation problem to a simple task (nonparametric local count on

one-dimensional data) that can be carried out accurately and efficiently.

59

Finally, by denoting A(Λ) the set of anchors generated by the improved Step 1, and S the number

of generated anchors, we estimate the boundary uncertainty with:

U(Λ) =
1
S

∑
a∈A(Λ)

U(x; Λ), (4.5)

Interpretation in the data space. This one-dimensional count is equivalent in the data space

to a count of class labels in a region centered on B(Λ), and of width h in the direction orthogonal

to B(Λ).

4.6 Benefits in terms of memory and time

One of the main motivations underlying the proposal in this chapter was to improve the scalability

of our boundary uncertainty-based classifier evaluation. In this section, we enlist the time and

memory savings compared to Proposal 1. This Section may require to refer to Chapter 2, and may

be skipped if necessary because it is less essential to the accuracy of the boundary uncertainty

estimation.

No expensive storage of sample pairs. To search for anchors, Section 2.3.4 covered the ne-

cessity to store lists of random pairs of training samples in a matrix A of size J2. This can quickly

become expensive for larger tasks. In Proposal 2, the anchor generation in Section 4.4.2 starts

the search for anchors from training samples considered individually, which removes the need

for A.

No case-by-case treatments during the anchor generation. The case-by-case treatment in

Algorithm 4 was necessary because training samples in each random pair were potentially far

from each other. In Proposal 2, the anchor generation in Section 4.4.2 does not consider such

far pairs, but instead considers pairs of training samples x and generated samples x′ located at

60

a distance d, where d is so small as it could be. This parsimonious distance between pairs skips

the need for the above case-by-case treatment.

No repetitive nearest-neighbor searches. In Algorithm 6, we can avoid searching the k near-

est neighbors for each newly generated anchor. Indeed, Section 4.4.2 generates anchors that are

(very) close to the training samples that they were generated from. Assuming an anchor a was

generated from the neighborhood of x ∈ T , we can reasonably approximate NN(a,M) with

NN(x,M). We can therefore preliminary compute and store NN(T , k), and then apply the above

approximation. As a reminder, the time complexity of searching for the nearest neighbor in a

dataset of size N using a KD tree varies from O(log(N)) to O(N) depending on the dimensional-

ity D of the task.

Easily parallelized procedures. In Step 1, the generation of anchors in batches can easily be

vectorized. In Step 2, the estimation of h and the smooth count in the Parzen estimation (Eq.

(4.4)) can be efficiently implemented on parallel hardware.

4.6.1 Experiments

The experimental setting in this section is the basically the same as in Section 2.4, and we re-use

notations, datasets, and layout of the graphs from Section 2.4. In this section, we therefore focus

our description on the differences with Section 2.4.

4.6.2 Classifiers

We test our improved boundary uncertainty-based classifier evaluation on a Gaussian kernel

SVM classifier and on a Prototype-Based Classifier (PBC). For the SVM, our goal is to select

the optimal value of the Gaussian kernel width γ as was done in Chapter 2, although this time

we focus our SVM experiments on two-class datasets. For the PBC, prototypes are applying

61

the kmeans clustering to each class, and by using the resulting class centroids as prototypes

{p jm}m∈[1,k] that represent each class j. We constraint k to be the same for all classes, and our

goal is to select is the optimal number of prototypes per class k. More details about PBCs can be

found in [32].

4.6.3 Datasets

On top of the datasets used in Chapter 2, we also consider the Avila and the Thyroid datasets

from the UCI Machine Learning Repository. For the evaluation of two-class SVMs, we prepared

two more two-class datasets: Abalone_01 corresponds to the classes 0 and 1 from the Abalone

dataset, Landsat Satellite_47 corresponds to the classes 4 and 7 from the Landsat Satellite dataset.

Table 4.1: Datasets

Dataset N D J Remarks
GMM 2,000 2 2 synthetic data
GMM_5c 1000 2 5 synthetic data
Abalone 4,177 7 3 custom version, high class overlap
Abalone_01 4,177 7 3 custom version
Avila 20,772 10 10 access to test set (20,772 samples)
Breast Cancer 683 9 2 2:1 imbalance
Cardiotocography 1,831 30 2 10:1 imbalance
Ionosphere 351 34 2 2:1 imbalance, few data and quite high dimension
Letter Recognition 20,000 16 26 easy
MNIST (test) 10,000 784 10 easy but many (correlated) dimension
Landsat Satellite_47 2,134 36 2 custom version
Landsat Satellite 6,435 36 7
Spambase 4,601 57 2 many zeros in the feature values
Thyroid 7,200 21 3 18:1:1 imbalance
Wine Quality Red 1599 11 3 custom version, difficult
Wine Quality White 1470 11 3 custom version, difficult

62

4.6.4 Hyperparameters

The main hyperparameter in this procedure is the size M of the cluster around each anchor a in

Step 2. M should be small to focus on the local information around a, however it should be high

enough to perform a meaningful Parzen estimation (Algorithm 7). A rule of thumb, 30 or 40

samples seem to be a minimum estimate a Gaussian in one dimension, so we set M = 40 for all

the datasets in our experiments.

In Section 4.4.2, setting dm and dM was necessary. Although a magnitude of dm and dM might be

deduced from the bin width H described in Section 4.4.1, this bin width cannot be used directly,

because contrary to dm and dM, H is not homogeneous to a Euclidian distance. Therefore for now

we simply set safely extreme values for dm = 2−10 and dM = 25, a maximum number of iterations

for the dichotomy iM = 20, and a tolerance Ny
a ± 10 anchors.

These other hyperparameters correspond to the maximum number of iterations in some itera-

tive procedure, and they should simply be set to a high value. From our experience with these

procedures, for all datasets, we set the maximum number of weights re-estimation kM = 3 in

Algorithm 7, and the maximum number of iterations lM = 10 in the CVML estimation of h in

Algorithm 8.

The histogram counts in the improved Step 1 determine the desirable number of anchors, which

may not require so much accuracy as the counts used in Step 2 for the kNN rule. Therefore for

the improved Step 1, we used traditional histograms instead of smoothed histograms. Derivation

of the optimal width was done using 1, which itself seems to rely on [33, 34].

Choice of the uncertainty measure Chapter 2 used the binary Shannon entropy as an un-

certainty measure, however the bell-like shape of this function does not almost penalize non-

uncertainty in the range [0.4, 0.6], and then strongly penalizes non-uncertainty outside this range.

To achieve a more stable measurement of uncertainty, in this experiment we use the Gini impu-

rity, because its simple triangle shape does not exhibit the extreme behaviors that result from the

1https://docs.scipy.org/doc/numpy-1.15.0/reference/generated/numpy.histogram_bin_edges.html

63

curvature of the binary Shannon entropy.

Figure 4.6: Different possible function candidates to the uncertainty measure. The binary Shan-
non entropy and the Gini impurity are represented in brown and pink, respectively.

4.6.5 Treatment of the class imbalance in datasets

In chapter 2, to address the class imbalance in datasets, we modified the class posterior proba-

bilities output by the kNN estimation (we divided them by their corresponding class prior prob-

abilities). Although this modification seemed to have a positive effect shown in Section 2.4.7,

unequal prior probabilities are fundamentally handled in the kNN class posterior probability esti-

mation through its application of the Bayes theorem. Therefore, our ad hoc modification was not

the correct solution to address the potential degradation of our boundary uncertainty estimation

64

in the case of imbalanced datasets. For this reason, we do no longer apply our modidication of

estimated class posterior probabilities in our new experiments.

4.6.6 Effect of the dimensionality on Proposal 1

Figure 4.7: Histograms of the absolute value of the near-boundary-ness of the training samples
T (on-boundary-ness corresponds to the value 0). Blue: histogram for all T . Orange: histogram
for the selected near-boundary samples NB(Λ).

The results in Figure 4.7 clearly show that in higher dimensions, all training samples tend to be

close to B(Λ) when adopting the definition of near-boundary-ness of Proposal 1. It seems that

in higher dimensions, for almost any training sample, it is possible to find a close on-boundary

anchor. This may be a consequence of the curse of dimensionality. Figure 4.7 shows that our

binary definition of near-boundary-ness was too rough, and that a more continuous definition

was necessary.

65

4.6.7 Classifier evaluation results

Figure 4.8: From left to right and top to bottom, SVM classifier status selection results for
Abalone_01, Breast Cancer, Cardiotocography, German, GMM, Ionosphere, Landsat Satel-
lite_47, Spambase. Left vertical axis, green: Lval and red: Lte. Right vertical axis, blue: −U(Λ).
Horizontal axis: γ.

66

Figure 4.9: From left to right and top to bottom, PBC classifier status selection results for
Abalone, Avila, Breast Cancer, Cardiotocography, German, GMM_5c, GMM, Letter Recog-
nition, MNIST (test), Landsat Satellite_47, Landsat Satellite, Spambase, Thyroid, Wine Quality
Red, Wine Quality White. Left vertical axis, green: Lval and red: Lte. Right vertical axis, blue:
−U(Λ). Horizontal axis: k.

67

Similarly to Chapter 2, we now assess the experimental results of our boundary uncertainty by

observing its trend and its values. These results can be compared to the results in Section 2.4.6.

Trend of the boundary uncertainty. Figure 4.8 for SVMs show that the improved procedure

consistently performs at least as well as our previous procedure in Section 2.4, or better on

the more challenging datasets, such as the Cardiotocography, the German, and the Spambase

datasets.

Figure 4.9 for PBCs also shows consistently favorable trends, except on the Spambase dataset

and perhaps on the Cardiotocography dataset. Analyzing this issue will be a next research item.

Value of the boundary uncertainty. For all the datasets, −U shows a minimum value of

around −0.75 for the SVM classifier. The minimum value of the boundary uncertainty is −1,

which shows that our boundary uncertainty estimation is quite reliable, but still has room for

improvement.

Influence of imbalanced datasets on our boundary uncertainty estimation Despite not us-

ing our ad hoc modification of class posterior probabilities (Section 4.6.5), basically none of the

classifier evaluation results seems disappointing on imbalanced datasets including on the Car-

diotocography and the Thyroid datasets in Figures 4.8 and 4.9.

The discrete selection ofNB(Λ) (a training sample was close to B(Λ), or not) was more likely the

cause behind the weakness of our previous procedure to imbalanced datasets. Indeed, the lower

panel in Figure 2.5 showed thatNB(Λ) reached a saturation for the minority class for almost any

Λ, while more samples from the majority class could be freely added toNB(Λ) as the complexity

of B(Λ) increased.

This saturation phenomenon pointed to the lack of sensitivity of our previous class posterior

estimation based on the discrete selection of NB(Λ): by ignoring informations such as the rel-

ative distance of samples to B(Λ), our previous method heavily relied on pure counts of class

68

labels, and therefore suffered in more extreme settings (dataset imbalance aggravated by higher

dimensionality), where the local number of class labels carries little information.

69

4.6.8 About the equivalence between maximum boundary uncertainty and

classifier optimality

Figure 4.10: SVM evaluation results on the GMM_inclusion dataset. In the upper graph, the
horizontal axis corresponds to the kernel width γ, the left vertical axis corresponds to Lte (red)
and Lval (green), and the right vertical axis corresponds to −U (blue). For each of the four
classifier statuses A, B, C, D, we represent the following three plots in the corresponding row.
From left to right: data with true class labels; data with labels estimated by the classifier, and
anchors in black dots; zoom on the set of one nearest neighbors of the anchors, represented with
their true class label.

70

So far, we assumed that the maximum value of our boundary uncertainty provides a necessary

and sufficient condition for classifier optimality. In this section, we refine on this statement,

and illustrate with a synthetic data called GMM_inclusion that we specifically prepared for this

purpose.

Our definition of boundary uncertainty actually only measures the degree of inclusion of the

decision boundary in the Bayes boundary. Therefore, the maximum value of our boundary un-

certainty only guarantees a strict inclusion of the decision boundary in the Bayes boundary, but

not necessarily equality of the two boundaries. In a theoretical sense, a maximum value of the

boundary uncertainty only gives a necessary condition for classifier optimality, but not a suffi-

cient condition, and the strict inclusion of the Bayes boundary in the decision boundary should

also be ensured. However, in a practical sense, strict inclusion of the decision boundary in the

Bayes boundary without satisfying the opposite strict inclusion would correspond to a decision

boundary that somehow managed to perfectly fit some parts of the Bayes boundary, while com-

pletely “missing” some other parts of the Bayes boundary.

We illustrate with Figure 4.10 a situation where this issue may almost happen. For the GMM_inclusion

dataset, for which we tried several values of the classifier status γ (horizontal axis), and estimated

the error probability with CV (Lval: green curve), our boundary uncertainty (−U: blue curve), and

the error probability with a large validation set (Lval2: red curve). The coincidence of the mini-

mums of Lval, Lval2,−U seem to clearly point at the classifier status (C) as the optimal classifier

status, and we represent the corresponding decision boundary (presumably the Bayes boundary)

through on-boundary anchors on the third row of graphs.

We can see that this Bayes boundary is made of several disconnected boundary parts. If the

decision boundary does not have a sufficient representation capability to fit all these parts, then

it may simply result in a very biased decision boundary such as in the classifier status (A).

However, for such kind of Bayes boundary, under quite specific classifier settings of insufficient

representation capability, we may also get quite close to strict inclusion of the decision boundary

in the Bayes boundary such as for the classifier status (B).

71

Although probably not so common, we should handle such phenomenon in a later stage of our

research. This phenomenon should be quite easy to detect. Indeed, a decision boundary that

“misses” entire parts of the Bayes boundary would basically result in a trivially high amount of

incorrect classifications even far from the decision boundary. Every time the maximum boundary

uncertainty value is reached, we will therefore perform a rough check to detect such increasing

amount of incorrect classification further away from the decision boundary. Adding this check to

our classifier evaluation method will ensure that we provide a necessary and sufficient condition

for classifier optimality.

4.7 Summary

In this chapter we improved the reliability and scalability of our boundary uncertainty-based clas-

sifier evaluation. In the improved Step 1, we emulate the more ideal situation of on-boundary

anchors sampled from the mother set. In the improved Step 2, we apply at these ideally sampled

targets a robust kNN estimation that is unbiased (centered on the boundary) and reduces variance

through an appropriate smoothing. Proposal 1 is basically free from hyperparameters, and scal-

able contrary to Proposal 1. However, there is still room for improvement in terms of reliability

as is shown on some datasets. Furthermore, there are still items to clarify: two items to clarify

are the case of strict inclusion of the decision boundary in the Bayes boundary, and the use of

discriminant functions to represent the degree of near-boundary-ness.

72

Appendix

The Parzen procedures detailed in this section can be found in [35].

4.7.1 Sample-dependent Parzen estimator

For convenience, we denote h = {h1, ..., hk}. Given a one-dimensional training set {z1, ..., zNz}, a

sample-dependent Parzen estimator can be written as:

p(z;h) =
1
Nz

Nz∑
n=1

1
zn
φ
(z − zn

hn

)
(4.6)

In contrast to a basic Parzen estimator whose kernel width is the same for all the training samples,

the idea behind a sample-dependent Parzen estimator is that the window width value for each

training point is adapted to the value of the density estimate at this point. Training samples

where the density is lower are assigned a larger width to improve the quality of the smoothing.

To produce sample-dependent Parzen windows, we perform the following decomposition into a

common factor h and a sample-dependent contribution wn:

∀n ∈ [1,Nz], hn = hwn (4.7)

For convenience, we denote w = {w1, ..., wNz}

Algorithm 7 introduces a practical procedure for weights estimation, where the common factor

h is adequately estimated at each step. For the purpose of completeness, Section 4.7.2 describes

the procedure used to estimate h.

73

Algorithm 7: parzen: Estimation of h for a sample dependent kernel density estimator
Input: Training samples zt, kM

Output: h,w
1 w ← 1
2 h← h(0) using Eq. (4.20)
3 k ← 0
4 while k < kM do

5 g←
(∏Nz

n=1 p(xn; hw)
) 1

Nz using Eq. (4.6)

6 w ←
(

p(zt;h)
g

)−η
7 h← parzen(hw) (Algorithm 8)
8 k ← k + 1
9 end

4.7.2 Cross Validation Maximum Likelihood (CVML) estimation of h

Algorithm 7 assumed a proper estimation of h at every step. This section describes the estimation

of h from the Nz training samples zt = {zn}n∈[1,Nz]. The purpose of the Parzen estimation is to find

h that optimally fits the underlying density distribution. Therefore, to estimate the optimal h, the

likelihood appears as a natural objective function to optimize.

However, naively using the likelihood defined over the entire zt would return h = 0, in other

words we would simply overfit to the training distribution. To circumvent this issue, the Parzen

density is constructed by removing the n-th data sample, zn from zt:

∀n ∈ [1,Nz], p−n(zt;h) =
1

Nz − 1

Nz∑
m,n

1
hwm

φ
(z − zm

hwm

)
. (4.8)

The associated likelihood function is the product over the training samples zt of the Parzen

density functions:

f (h;w) =

Nz∏
n=1

p−n(zt;h) (4.9)

Although the gradient descent is a possible way of maximizing f (h;w), it would require a careful

74

manual initialization of the learning coefficient. To avoid such manual tuning, we re-formalize

the CVML estimation procedure by using the concept of auxiliary function. We first summarize

the optimization procedure is summarized in Algorithm 8.

Algorithm 8: Cross Validation Maximum Likelihood (CVML) estimation of the window
width h

Input: Training samples zt, ε ← 0.001
Output: h

1 l← 0 stop← False
2 h← parzen_init(zt)
3 Fprev ← F(h;w) using Eq. (4.10)
4 while not stop do
5 E Step: compute q using Eq. (4.11)
6 M step: compute h using Eq. (4.18)
7 Fcurr ← F(h;w) using Eq. (4.10)
8 stop← l = lM or |Fcurr−Fprev

Fcurr
| < ε

9 l← l + 1
10 Fprev ← Fcurr

11 end

What follows are the details of the derivation of Algorithm 8. We define F(h;w) as the logarithm

of (Nz − 1)Nz f (h;w).

F(h;w) =

Nz∑
n=1

ln
(Nz∑

m,n

1
hwm

φ

(
zn − zm

hwm

))
. (4.10)

While being a monotone increasing function of f (h;w), F(h;w) is more optimization-friendly.

Next, define

qn,m(h;w) =

1
hwm

φ
(

zn−zm
hwm

)
∑Nz

k,n
1

hwk
φ
(

zn−zk
hwk

) , (4.11)

where {qn,m}
Nz
m,n satisfies qn,m > 0 and

∑Nz
m,n qn,m = 1. For convenience, we denote q as {qn,m, n ∈

[1,Nz],m ∈ [1,Nz]}.Assuming that F(h;w) is optimized by an iterative procedure and that esti-

mate ĥ has already been calculated before the last preceding iteration step, we define the follow-

75

ing auxiliary function for the successive iteration step:

W(h;w) =

Nz∑
n=1

Nz∑
m,n

qn,m(̂h;w)ln
(φ

(
zn−zk
hwk

)
qn,m(̂h;w)

)
. (4.12)

We also define the following difference function:

K(h;w) = F(h;w) −W(h;w). (4.13)

Substituting (4.10) and (4.12) into (4.13), and considering (4.11), we reach the following expres-

sion:

K(h;w) =

Nz∑
n=1

Nz∑
m,n

qn,m(̂h;w) ln
(
qn,m(h;w)

qn,m(̂h;w)

)

≥

Nz∑
n=1

Nz∑
m,n

qn,m(̂h;w)
(
1 −

qn,m(h;w)

qn,m(̂h;w)

)
= 0. (4.14)

We used the logarithm-based inequality: ∀x,−ln(x) >= 1 − x, that only achieves equality for

x = 1. Therefore, the inequality in (4.14) becomes an equality if and only if ∀n,m ∈ [1,Nz],m ,

n, qn,m(h) = qn,m(̂h).

In other words, K(h;w) is minimized at h = ĥ, and the minimum value is zero. Considering

(4.13), this leads to:

F (̂h;w) = W (̂h;w) (4.15)

Also,

∇F (̂h;w) = ∇W (̂h;w). (4.16)

From (4.14) and (4.15), we get:

F(h;w) ≥ W(h;w) > W (̂h;w) = F (̂h;w). (4.17)

76

Furthermore, based on (4.16), unless ĥ is a stationery point of W(h;w), ∇W (̂h;w1, ..., wn) is

nonzero. We can find h such that W(h;w) > W (̂h;w). Consequently, applying the following

steps leads to a monotonic increase of F(h;w) until h reaches its local maximum point:

I. Initialize ĥ.

II. Find h such that W(h;w) > W (̂h;w).

III. Replace ĥ with h, go back to item II.

The point h which maximizes the auxiliary function W(h;w) is given as the following closed-

form formula:

h =

√√√
1
Nz

Nz∑
n=1

Nz∑
m,n

qn,m(̂h;w) (zn − zm)2. (4.18)

Computing h from qn,m(̂h;w) in Eq. (4.18) (item II), and then replacing ĥ with h (item III) leads

to the iterative procedure described in Algorithm 8.

Initialization The iterative procedure described in Algorithm 8 requires a proper initialization

for h. qn,m corresponds to the degree to which each data point zm is assigned to another point

zn(m , n). Based on this interpretation, a possible initialization method is to assign each data

point zn to its nearest-neighbour zk(n).

is obtained by redefining qn,m(h) as

qn,m(h) =


1, if m = k(n)

0, otherwise.
(4.19)

Substituting this into Eq. (4.18) provides the initial value for h:

h(0) =

√√√
1
Nz

Nz∑
n=1

Nz∑
m,n

(
zn − zk(n)

)2. (4.20)

77

78

5Conclusion

5.1 Summary of Dissertation

We introduced a new method to evaluate a general form of classifier. The purpose was to over-

come the fundamental limitations of the standard methods (i.e. training repetition, data splitting

in validation, difficulty in applying them). Accordingly, we defined a new classifier evaluation

measure called boundary uncertainty that is easy to accurately estimate despite the finiteness of

the data, due to a sharp focus of the estimation task on specific and well-defined regions. More

precisely, our boundary uncertainty sharply focuses on the equality of the class posterior prob-

abilities on the decision boundary. Incidentally, this estimation target is robust to estimation

errors. We proposed a procedure to accurately estimate our boundary uncertainty.

The experimental results and a comparison with the benchmark CV method first indicated the

possibility of selecting the optimal model on several real-life classification tasks. To better un-

derstand our encouraging results, we mathematically analyzed and proved the validity of our

posterior probability estimation procedure, which plays a central role in the proposed method for

finding the optimal classifier parameter status.

Based on this analysis, we improved the accuracy of our procedure to improve its accuracy,

and at the same time, its scalability and robustness. The improved procedure clearly showed

improvements compared to the baseline, and can readily be applied on any types of classifier.

79

5.2 Future Works

• Further improvements in terms of accuracy and scalability, in particularly Step 1, as it still

constitute the most costly and complicated part of our method.

• Theoretical analysis of the improved procedures to assess the accuracy of our boundary

uncertainty estimate.

• Refine the method to even more safely ensure the equivalence between classifier optimal-

ity and maximum value of boundary uncertainty (detection of the strict inclusion of the

decision boundary in the Bayes boundary).

• Application to larger tasks, such as speech classification.

• Boundary uncertainty-based classifier training: a characteristic of our boundary uncer-

tainty is its potential to be used as a training objective function. To this end, our improved

procedure successfully formalized the boundary uncertainty as a function of the classifier

parameters, which opens the way to a new form of classifier training.

80

Bibliography

[1] C. Bishop, “Pattern recognition and machine learning,” chapter 1.5.1 Minimizing the

misclassification rate, pp. 39–40. Bishop, 2006.

[2] T. Hastie, R. Tobshirani, and J. Friedman, “The elements of statistical learning,” chapter

7.4. Optimism of the Error Rate, pp. 228–230. Springer Science, 2009.

[3] C. Burges, “A tutorial for support vector machines for pattern recognition,” Data Mining

and Knowledge Discovery, vol. 2, pp. 1485–1510, 2009.

[4] I. Guyon, V. Vapnik, B. Boser, L. Bottou, and S.A. Solla, “Structural risk minimization

for character minimization,” in Proceedings of Advances in Neural Information Processing

Systems 4 (NIPS 1991), 1991, pp. 471–479.

[5] M. Stone, “Cross-validatory choice and assessment of statistical predictions,” Journal of

the Royal Statistical Society, vol. 36, no. 2, pp. 111–147, 1974.

[6] L. Devroye, L. Gyorfi, and G. Lugosi, “A probabilistic theory of pattern recognition,”

chapter 24 Deleted Estimates of the Error Probability, pp. 407–419. Springer, 1997.

[7] B. Efron and R. Tibshirani, An Introduction to the Bootstrap, Chapman and Hall, 1993.

[8] S. Demyanov, J. Bailey, K. Ramamohanarao, and C. Leckie, “Aic and bic based approaches

for svm parameter value estimation with rbf kernels,” Journal of Machine Learning Re-

search, vol. 25, pp. 97–112, 2012.

[9] L. Devroye, L. Gyorfi, and G. Lugosi, “A probabilistic theory of pattern recognition,”

chapter 31.1 Smoothing the Error Count, pp. 550–554. Springer, 1997.

[10] B.-H. Juang and S. Katagiri, “Discriminative learning for minimum error classification,”

IEEE Transactions on Signal Processing, vol. 30, pp. 3043–3054, 1992.

[11] E. MacDermott and S. Katagiri, “A derivation of minimum classification error from the

81

theorretical classification risk using parzen estimation,” in Computer Speech and Language,

2004, vol. 18, pp. 107–122.

[12] T. Ohashi, H. Watanabe, J. Tokuno, S. Katagiri, M. Ohsaki, S. Matsuda, and H. Kashioka,

“Increasing virtual samples through loss smoothness determination in large geometric mar-

gin minimum classification error training,” in Proceedings of 2012 International Confer-

ence on Acoustics, Speech and Signal Processing (ICASSP 2012), 2012, pp. 2081–2084.

[13] L. Devroye, L. Gyorfi, and G. Lugosi, “A probabilistic theory of pattern recognition,”

chapter 8.5. Estimating the Bayes error, p. 128. Springer, 1997.

[14] H. Akaike, “A new look at the statistical model identification,” IEEE Transactions on

Automatic Control, vol. 19, pp. 716–722, 1974.

[15] C. Bishop, “Pattern recognition and machine learning,” chapter 3.4. Bayesian model selec-

tion, pp. 42–44. Bishop, 2006.

[16] G. Bouchard and G. Celleux, “Selection of generative models in classification,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 28, no. 4, pp. 544–554,

2006.

[17] A. Biem, “A model selection criterion for classification: Application to hmm topology

optimization,” in Proceedings of IEEE Seventh International Conference on Document

Analysis and Recognition, 2003.

[18] A. Biem, “Discriminative model selection for belief net structures,” in Proceedings of AAAI

Twentieth National Conference on Artificial Intelligence (AAAI-05), 2005.

[19] D. Ha, J. Maes, Y. Tomotoshi, C. Melle, H. Watanabe, S. Katagiri, and M. Ohsaki, “A class

boundary selection criterion for classification,” in Proceedings of IPSJ Kansai-Branch

Convention 2017, 2017.

[20] D. Ha, J. Maes, Y. Tomotoshi, H. Watanabe, S. Katagiri, and M. Ohsaki, “A classification-

uncertainty-based criterion for classification boundary,” in IEICE Technical Report, 2018,

pp. 121–126.

[21] D. Ha, E. Delattre, Y. Tomotoshi, M. Senda, H. Watanabe, S. Katagiri, and M. Ohsaki, “Op-

82

timal classifier model status selection using bayes boundary uncertainty,” in Proceedings

of 2018 IEEE International Workshop in Machine Learning for Signal Processing, 2018.

[22] Y. Tomotoshi, D. Ha, E. Delattre, H. Watanabe, S. Katagiri, and M. Ohsaki, “Optimal

classifier status selection using class boundary uncertainty measure for prototype-based

and neural network classifier,” in International Symposium on Integrated Uncertainty in

Knowledge Modeling and Decision Making, 2019.

[23] O. Chapelle and V. Vapnik, “Model selection for support vector machines,” Advances in

Neural Information Processing Systems, vol. 12, 2000.

[24] U. Luxburg, Olivier Bousquet, and Bernhard Scholkopf, “Compression approach to support

vector model selection,” Journal of Machine Learning Research, vol. 5, pp. 293–323, 2004.

[25] S. Demyanov, J. Bailey, K. Ramamohanarao, and C. Leckie, “Aic and bic based approaches

for svm parameter value estimation with rbf kernels,” 2012, vol. 25, pp. 97–112.

[26] C. Bishop, “Pattern recognition and machine learning,” chapter Combining models, p. 666.

Springer, 2006.

[27] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote: Synthetic minority

over-sampling technique,” Journal of Artificial Intelligence Research, vol. 16, pp. 321–357,

2002.

[28] V. Vapnik, “Statistical learning theory,” chapter The Structural Risk Minimization Princi-

ple. Wiley, 1998.

[29] K. Fukunaga, “Introduction to statistical pattern recognition (2nd edition),” chapter 2.1.,

pp. 313–321. Academic Press, 1990.

[30] C. Bishop, “Pattern recognition and machine learning,” chapter Kernel density estimators,

pp. 122–124. Bishop, 2006.

[31] B. Silverman, Density Estimation for Statistics and Data Analysis, Chapman and Hall,

1986.

[32] H. Watanabe, T. Ohashi, S. Katagiri, M. Ohsaki, S. Matsuda, and H. Kashioka, “Robust

and efficient pattern classification using large geometric margin minimum classification

83

error training,” Journal of Signal Processing Systems, vol. 74, pp. 297–310, 2014.

[33] D. Doane, “Aesthetic frequency classifications,” The American Statistician, vol. 30, pp.

181–183, 1976.

[34] D. Freedman and P.Diaconis, “On the histogram as a density estimator: L2 theory,”

Zeitschrift fur Wahrscheinlichkeitstheorie und Verwandte Gebiete, vol. 57, pp. 453–476,

1981.

[35] H. Watanabe, J. Tokuno, T. Ohashi, S. Katagiri, and M. Ohsaki, “Minimum classifica-

tion error training with automatic setting of loss smoothness,” in 2011 IEEE international

Workshop on machine Learning for Signal Processing, 2011.

84

ANotation List

A.1 Notations

Formalization of the Classification Problem

X pattern space

D dimensionality of the pattern space

x data sample in the pattern space

J number of classes

C j class j

Λ classifier parameter status

Ĉ(·) classifier decision function (classification operator)

Ĉ j estimated class j

B(Λ) estimated boundary

Bi j(Λ) boundary between Ĉi and Ĉ j

B∗ Bayes boundary

Λ∗ classifier parameter status that corresponds to the Bayes boundary

Proposed Procedure

T training set

NN(x,m) set of m nearest neighbors of sample x in T

k(S) given finite set S, number of elements in S

NB(Λ) set of selected near-boundary samples

A(Λ) set of generated anchors

E[U(Λ)] expected value of the boundary uncertainty

U(Λ) estimated boundary uncertainty

85

86

BPublication List

Journal Papers

I. David Ha, Yuya Tomotoshi, Masahiro Senda, Hideyuki Watanabe, Shigeru Katagiri, Miho

Ohsaki, "A Practical Method Based on Bayes Boundary-ness for Optimal Classifier Param-

eter Status Selection," Journal of Signal Processing Systems, 2019.

Peer-Reviewed International Conference Proceedings

I. David Ha, Hideyuki Watanabe, Yuya Tomotoshi, Emilie Delattre, Shigeru Katagiri, "Op-

timality Analysis of Boundary-Uncertainty-Based Classifier Selection Method," ACM In-

ternational Conference on Signal Processing and Machine Learning, 2018.

II. David Ha, Emilie Delattre, Yuya Tomotoshi, Masahiro Senda, Hideyuki Watanabe, Shigeru

Katagiri, Miho Ohsaki, "Optimal Classifier Model Status Selection Using Bayes Boundary

Uncertainty," IEEE International Workshop on Machine Learning for Signal Processing,

2018.

III. Yuya Tomotoshi, David Ha, Emilie Delattre, Hideyuki Watanabe, Shigeru Katagiri, Miho

Ohsaki, "Optimal Classifier Status Selection Using Class Boundary Uncertainty Measure

for Prototype-Based and Neural Network Classifier," International Symposium on Inte-

grated Uncertainty in Knowledge Modeling and Decision Making, 2019.

IV. David Ha, Emilie Delattre, Yuya Tomotoshi, Masahiro Senda, Hideyuki Watanabe, Shigeru

Katagiri, Miho Ohsaki, "Improvement for Boundary-Uncertainty-Based Classifier Param-

eter Status Selection Method," IEEE International Conference on Computational Electro-

87

magnetics, 2019.

s

Non-Reviewed Domestic Workshop Proceedings

I. David Ha, Juliette Maes, Yuya Tomotoshi, Charles Melle, Hideyuki Watanabe, Shigeru

Katagiri, Miho Ohsaki, "A Class Boundary Selection Criterion for Classification," Pro-

ceedings of IPSJ Kansai-Branch Convention 2017, 2017.

II. David Ha, Juliette Maes, Yuya Tomotoshi, Hideyuki Watanabe, Shigeru Katagiri, Miho

Ohsaki, "A Classification-Uncertainty-Based Criterion for Classification Boundary," IE-

ICE Technical Report, pp. 121-126, 2018.

88

