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Classification, namely predicting a class label on a data, is a ubiquitous task in our daily lives.
Common applications include classifying pictures, predicting whether a patient is positive,
and assigning a topic label to a document. The tedious task of manually assigning a label to
each data can be performed by computers if they can learn the data patterns that distinguish
one class from another (training step), and then use the learned patterns to classify unseen
data (classification step). This is the basic process of pattern classification, which is an active
field of research since the development of computers.

Given a classification task, the ultimate goal of pattern classification is to classify all the
unseen data with the highest possible accuracy. This ideal situation is difficult to achieve.
Indeed, while there is an infinite amount of unseen data, only a finite amount of data is
available during the training. This fundamental gap raises the issue of how to predict the
classification accuracy of a classifier on unseen data only based on its classification results on
finite data. This issue is addressed during the evaluation step, which is performed between
the training and classification steps.

On the one hand, evaluation is traditionally performed by holding out some of the available
data (called validation data) from the training phase, and then using it as unseen data to
estimate the classification accuracy on unseen data. Although powerful and simple, this
method can provide biased results depending on how the data was split between the training
and validation steps. Repeating training and validation over different training-validation
splits, and then averaging the results improves the reliability of the evaluation, however it
can be prohibitively costly on huge classification tasks. On the other hand, to the best of our
knowledge, traditional methods that do not require data splitting either provide quite loose
evaluation results, or they are specific to some classifier model, or they hardly scale to large
datasets.

Motivated by these fundamental issues, we investigate a novel way of evaluating the
classifier that basically enables the same data to be simultaneously used for the training and
for the evaluation steps. The key idea behind our proposal is to give up on the direct
estimation of the classification accuracy on unseen data, because the above gap of
information on the classification accuracy on the finite training data and infinite data is
difficult to bridge. Instead, we define a score that measures the ideality of a classifier status.
In this dissertation, we will show that measuring the ideality of a classifier status without
the need to peek at unseen data is basically possible if one makes the most of the information



available during the training step. We propose a procedure to estimate this ideality measure.
Our procedure is basically directly applicable to any classifier model, and does not require
any repetition of the training step in contrast to the traditional approach.

Application of our classifier evaluation method on several benchmark real-life datasets and
several classifier models show the potential of our new approach to reliably perform classifier
evaluation.



