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Abstract

Large-scale categorical data are often obtained in various fields. As an interpretation of

large-scale data tends to be complicated, methods to capture the latent structure in data,

such as a cluster analysis and a visualization method are often used to make data more

interpretable.

However, there are some situations where these methods failed to capture the latent

structure which is interpretable. Therefore in this paper, two problems that often occur

in large-scale categorical data analysis is considered, new methods to address these issues

are proposed.

In Chapter 2, a problem of response style often contained in ordinal categorical data

is considered. A response style is defined as a respondent’s systematic response tenden-

cies irrespective of the item content. For example, some respondents may tend to select

categories at the ends of the scale, which is called an “extreme response style”. A clus-

ter of respondents with an “extreme response style”, can be mistakenly identified as an

item based cluster. To address this issue, I, van de Velden and Yadohisa propose a new

method to cluster respondents based on their indicated preferences for a set of items while

simultaneously correcting for response style bias, which we call Correcting and Clustering

Response Style (CCRS). Specifically, we assume the existence of response functions that

can be used to model response styles. We then simultaneously estimate these response

functions and perform a cluster analysis based on the corrected preference data. A simu-

lation study is performed to evaluate the proposed method by comparing the accuracy of

clustering with the existing methods. In addition, we apply our CCRS to empirical data

from four diffrent countries concerning social values, and show using CCRS, we can get a

result which seems more interpretable than the one by existing method, in the sense that

results by existing methods seem to only indicate individual’s response style information.

In Chapter 3, enhancing an interpretation of visualization method on categorical data

is considered. When categorical data are large scale, Multiple Correspondence Analysis

(MCA) is often used to visualise the data structure by reducing the dimension of data. In

general, incorporating external information on MCA biplot can be useful to enhance the

interpretation. In this chapter, only categorical variables are considered as the external

information. Then the aim is set to visually interpret how associations among the cate-

gorical variables differ with respect to external information class. The naive approach to

achive our objective is to get the average of quantification for each class, and plot them

as well as other categories. However with this approach, when there are heterogeneous

tendencies within a class, all of them cannot be interpreted in the MCA biplot. Therefore,



I and van de Velden propose Multiple Set Cluster CA (MSCCA), to address the issue.

Specifically, we find clusters for different classes of data, and then simultaneously estimate

quantifications for categories and clusters from each class in common low dimensional

space. By doing this, we can visualize heterogeneous tendencies in each class in a single

biplot. By a simulation study, we investigate how the selection of external information

variable affects the accuracy of biplot and clustering. In addition, we apply MSCCA to

empirical data set about accidents, and show MSCCA yields a biplot which visualizes

heterogeneous tendencies in each class, which helps characterize the external information

class, compared to the existing methods.

By proposing these two new methods, we can expect that large-scale categorical data

which has not been easily interpreted can be more interpretable, and this can help finding

new knowledge via data analysis.
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Chapter 1

Introduction

Large-scale categorical data are often obtained in the social sciences, biomedical, and

marketing research (Agresti, 2013). For interpretation of large-scale data, it is useful to

capture the latent structure in data. Methods to achive this objective include a cluster

analysis such as k-means, a method to identify group of individuals having similar ten-

dencies, and a visualization method such as Multiple Correspondence Analysis (MCA), a

method to visualize the latent structure of categorical data by reducing the dimension of

data.

However, with these methods, sometimes it is difficult to interpret the result. For

example, ordinal categorical data are often affected by response style, here which is defined

as an individual-specific response tendency irrespective of item contents. If data contains

response style bias, cluster analysis may yield clusters of respondents with similar response

styles, which is not of interest of the analysis. For example, some respondents may tend

to select categories at the ends of the scale, which is called an “extreme response style”.

A cluster of respondents with an “extreme response style”, can be mistakenly identified

as an item based cluster.

Another example of failing to obtain interpretable result is in visualization method of

categorical data. To visualize categorical data, Multiple Correspondence Analysis (MCA)

is often used. In MCA, the external information on individuals (e.g. gender and nation-

ality) is often incorporated to enhance the interpretation of MCA biplot. Using external

information, it can be interesting to know how associations among the categorical vari-

ables differ with respect to external information class. However, tendencies that many

individuals have in common in each class are only interpretable. That is, when there are

heterogeneous tendencies within a class, all of them are cannot be interpreted in the MCA

biplot.

Therefore, in this paper, these issues to enhance the interpretation of categorical data

are addressed. In Chapter 2, the response style bias problem is considered, and a new

method proposed by , to cluster respondents based on their indicated preferences for a set

of items while simultaneously correcting for response style bias, is mentioned. In Chapter

3, I consider the second problem in MCA biplot, and propose a new visualization method

by extending MCA. By the proposed method, I can visualize heterogeneous tendencies in
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each external information class in a single biplot.

Both methods are evaluated by conducting simulation study and applying empirical data

set. In empirical data example, by comparing the result of proposed method with the one

by existing methods, I show how interpretation of result by data analysis is enhanced by

our proposed methods.
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Chapter 2

Correcting and clustering response

style biased

categorical data

2.1 Problem of response style in ordinal categorical data

In cluster analysis, respondents are allocated to groups of similar observations (MacQueen,

1967). In many applications, respondents are clustered based on ordinal categorical data,

when cluster structure is assumed to exist in data. In this section, among ordinal categori-

cal data, we mainly consider preference data, which is often measured in questionnaires in

which respondents indicate their preference using a rating scale, e.g., a Likert scale, where

respondents make selections from a set of predetermined preference categories. Clustering

respondents relative to their answers may be useful to identify latent clustering structures.

Questionnaire-based preference data may be affected by so-called response styles. The

response styles have been defined in several ways depending on the context. Baumgartner

and Steenkamp (2001) mentioned that

response styles may be defined as tendencies to respond systematically to ques-

tionnaire items on some basis other than what the items were specifically de-

signed to measure (Baumgartner & Steenkamp, 2001, p.143).

Response styles discussed in Baumgartner and Steenkamp (2001) and commonly seen in

the literature can be categorized as follows: tendencies to respond based on contents but

not based on what the item intended to measure (e.g., socially desirable responding), and

tendencies to respond irrespective of item content. Baumgartner and Steenkamp (2001)

mainly focused on the latter category of response styles.

Moreover, the latter category can be further divided into two types: tendencies to select

specific categories irrespective of content (e.g., tendencies to select only categories at the

ends of the scale), and others (e.g., tendencies to respond carelessly, or nonpurposefully).

In this paper, we focus on the first type of response styles in the latter category. That is,

in this paper, response styles are defined as respondent’s systematic response tendencies
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selecting specific categories irrespective of item content, such as extreme response style

and a midpoint response style, a tendency to only select the middle of the scale. We

focus on this type of response styles in this paper, because these are commonly seen in

practice, it is rather simple to quantify such response styles from responses, and thus many

statistical methods have been proposed for this type of response styles (e.g., van Rosmalen,

Van Herk, & Groenen, 2010; Schoonees, van de Velden, & Groenen, 2015; Böckenholt &

Meiser, 2017). In this paper, we refer to data in which observations are affected by these

response styles as “response-style-biased data”.

Response styles are related to various factors, including culture (Cheung & Rensvold,

2000; Meisenberg & Williams, 2008), education (Meisenberg & Williams, 2008), gen-

der (Austin, Deary, & Egan, 2006; Weijters, Geuens, & Schillewaert, 2010), and age

(Stukovsý, Palat, & Sedlakova, 1982). In cross-cultural surveys, typically several of the

above-mentioned factors are present and response style bias is considered particularly

significant (Baumgartner & Steenkamp, 2001). Moors (2012) and Cheung and Rensvold

(2000) showed that response styles can lead to incorrect conclusions. Biases due to response

styles can be considered as “systematic error”, rather than “random error” (Baumgartner

& Steenkamp, 2001). Therefore, to perform a meaningful data analysis, such systematic

errors must be considered.

In practice, if data contains response style bias, cluster analysis may yield clusters of re-

spondents with similar response styles (“response-style-based clusters”), rather than clus-

ters with similar item preferences (“content-based clusters”). For example, assume that

in a survey one group of respondents tends to select midpoint categories, while another

group tends to favor endpoint categories, regardless of their preferences. Applying cluster

analysis to the resulting data may extract clusters of respondents who have selected mid-

point and endpoint categories. However, these clusters only reflect their response styles

and any content-based structure in the data remains undetected.

Several methods have been proposed to detect and control for response style bias. The

previous works can be divided into two types: probabilistic or non-probabilistic method.

Many of former methods are proposed within the Item Response Theory (IRT) frame-

work, Böckenholt and Meiser (2017) reviewed two types of IRT models designed to handle

response styles: threshold-based models such as polytomous Rasch models and their mix-

ture extensions (Rost, 1991; von Davier & Yamamoto, 2007), and an item response (IR)

tree model (Böckenholt, 2012, 2017), which can be used to distinguish the effects of the

judgment processes associated with content and response style. Plieninger and Meiser

(2014) also validated several IR tree methods using an empirical dataset. In other IRT

related research involving response styles, IRT and mixture IRT models have further been

applied to correct for response style by adjusting parameters representing the response

styles (Austin et al., 2006; Bolt & Johnson, 2009; Meiser & Machunsky, 2008; Morren,

Gelissen, & Vermunt, 2012).

The other probabilistic method proposed in non-IRT framework was proposed by van

Rosmalen et al. (2010). The primary objective of their latent-class bilinear multinomial

logit model was to investigate how response style and item content (and background
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variables, if relevant) affect responses in a low-dimensional space.

In many probabilistic models, probabilities for selecting each category are modeled, and

these probabilities are then used to identify the presence of response-styles. However, this

requires many assumptions (e.g. the distribution on data), and tends to need relatively

large sample sizes for the parameter estimation (e.g., Finch & French, 2012, p. 177).

On the other hand, as non-probabilistic model, Schoonees et al. (2015) proposed con-

strained dual scaling (CDS), which was designed to detect several, typically more than

two, types of response styles and, compared to other studies, focuses more on correcting

the response style bias. While other probabilistic models control for response styles by

adjusting parameters related to the probabilities for selecting specific ratings, in CDS the

correction is done by transforming the original value.

In this paper, we focus on non-probabilistic method, because in Schoonees et al. (2015),

the accuracy of correction was investigated using a simulation, while other papers tend

to examine the correction only by the empirical study. Then, we consider the application

of k -means cluster analysis to CDS-corrected data and refer to this as “CDS tandem

analysis”.

CDS is an extension of dual scaling for preference data (Nishisato, 1980), which in-

volves dimension reduction. Specifically, Schoonees et al. (2015) formulated a constrained

dual scaling approach that yields parameters that can be interpreted as response styles.

To estimate the parameters in CDS, dimension reduction is applied. In particular, a

one-dimensional solution is required to estimate the response styles. However, the use

of dimension reduction implies a loss of respondent-specific information that may com-

plicate the retrieval of accurate content-based clusters. In other words, CDS can remove

respondents’ differences that may be useful for content-based clustering.

To address these problems, we propose a new method for correcting and clustering

response-style-biased data. Throughout this paper, we refer to our new method as CCRS.

To achieve our objective, we first focus on correction of response styles, and introduce

a framework to detect, and correct for, response styles by generalizing the definition of

response styles used in CDS. In this way, we obtain a new correction method that does not

require dimension reduction and that includes CDS as a special case. Next, we consider

content-based clustering of the corrected data. However, rather than performing these

steps sequentially, we propose to simultaneously correct for respondent-specific response

styles and apply content-based clustering to the corrected data. By this simultaneous

approach, we avoid a potential problem associated with the CDS tandem analysis, where

the response style correction removes information relevant for the content-based cluster

analysis. Note that, although in this paper we only consider content-based clustering, our

new correction method can be used in combination with other data analysis methods as

well.

The remainder of this chapter is organized as follows. In Section 2.2, we formalize the

idea of response functions to identify and correct for response styles. In Section 2.3, we

introduce our CCRS method, briefly describe CDS to show how it is different from CCRS as

a correction method. Also, several characteristics and properties of CCRS are considered.
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Figure 2.1: Response style bias: On the upper scale [υ1, υ2] ⊂ R, respondent-specific

boundaries are shown, while on the lower scale (equal-spaced) reference boundaries are

shown. x∗ij indicates the true preference, and x̂
∗
ij ∈ (b2, b3] is the estimation of x∗ij on a scale

with reference boundaries bℓ, when xij = 3 is obtained. The set of ηiℓ (ℓ = 1, . . . , q − 1)

on the upper scale represents a response style in which the fourth and fifth categories are

more likely to be selected.

We evaluate the proposed method and compare its performance to existing methods using

a simulation study and an empirical example in Sections 2.4 and 2.5, respectively.

2.2 Formalizing response functions

To describe the proposed methodology, a new framework is first introduced to formalize

the concept of a “response function”. Herein, response styles and corrected values are

defined more rigorously than in previous studies by van de Velden (2008) and Schoonees et

al. (2015). This framework can be used more generally when dealing with preference data

possibly contaminated by response style effects. The relationship between our framework

and CDS is elaborated on in Section 2.3.4.

2.2.1 Category boundaries in preference data

Response style problems occur when the interpretation of the preference categories dif-

fers for different respondents. For example, with 5-point scale data, if a respondent has

an acquiescence response style, that is, a tendency to agree with items regardless of item

content, the third category indicates a low preference of the respondent for that item, even

though that category is the midpoint of the scale.

To express this formally, let xij ∈ {1, . . . , q} denote the q scale preference data provided

by the ith respondent for the jth item, (i = 1, . . . , n ; j = 1, . . . ,m). Suppose the observed
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preference data xij are related to the true preference data x∗ij ∈ R as follows:

xij =

q∑
ℓ=1

ℓ I{ηi(ℓ−1) < x∗ij ≤ ηiℓ}

where I{·} is an indicator function, and ηiℓ (ℓ = 0, . . . , q) are respondent-specific bound-

aries. We refer to the set of boundaries bℓ (ℓ = 0, . . . , q), which are equal for all respondents

and are spaced equally, as reference boundaries. In this paper, we consider a bounded in-

terval, that is, ηi0 = b0 = υ1 and ηiq = bq = υ2.

Using these notations, “response-style-biased data” are data for which the true prefer-

ences x∗ij are categorized based on equally-spaced reference boundaries bℓ even though each

respondent has respondent-specific boundaries ηiℓ. This process is illustrated in Figure

2.1.

In Figure 2.1, respondent i has true preference x∗ij and boundaries ηiℓ (ℓ = 1, . . . , q − 1)

as shown on the upper scale. The aim is to “estimate” x∗ij from xij . In this example,

the observed preference is xij = 3. If we ignore the possibility that each respondent has

different boundaries and simply assume that the reference boundaries are used as shown

on the lower scale in Figure 2.1, a rough estimation of x∗ij , say x̂∗ij , would be far from

the true one x∗ij . This indicates that depending on the unobservable respondent-specific

boundaries, we obtain a bias from the true x∗ij .

2.2.2 response functions

To correct for response-style-biased data, we introduce a definition of a response function

in more rigorous way than previous studies as follows.

Definition 2.2.1. Response function

Suppose reference boundaries bℓ (ℓ = 1, . . . , q−1) and respondent-specific boundaries ηiℓ (ℓ =

1, . . . , q − 1) are given. Let both boundaries be monotonically increasing for ℓ. Then

ϕi : bℓ 7−→ ηiℓ, (ℓ = 1, . . . , q − 1),

is defined as the response function for respondent i.

From this definition, it follows that ϕi is a monotonically increasing function. In addi-

tion, I assume that the response function is continuous. For later purposes, it is useful to

specifically define the response function corresponding to the absence of a response style:

Definition 2.2.2. No response style

If ηiℓ = bℓ (ℓ = 1, . . . , q − 1), we say that respondent i has no response style.

If ϕi is known for all respondents, we can use it to correct response-style-biased data,

and to interpret respondent’s response styles.

Definition 2.2.3. Correcting preference data using the response functions

Given q scale preference data xij with reference boundaries b1, · · · , bq−1, and a response

function ϕi, when xij = ℓ, the corrected value of xij is

yij = ϕi(τ(ℓ)), where τ(ℓ) ∈ (bℓ−1, bℓ].

7
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Figure 2.2: Example depicting how the observed value, xij = 6, corresponds to the cor-

rected value. The solid line indicates the response function, ϕi. The horizontal axis rep-

resents the reference boundary (scale), while the vertical axis represents the respondent-

specific boundary.

This definition indicates that the corrected value of xij is defined as the product of the

transformation of some value between bℓ−1 and bℓ, τ(ℓ), according to ϕi. In this paper, as

in CDS, we fix τ(ℓ) = (bℓ+ bℓ−1)/2. As this definition implies, in this paper the estimated

value of x∗ij from xij using ϕ is considered as a corrected value.

Figure 2.2 illustrates how a response function can be used to correct for response style

bias. Suppose that we want to know x∗ij when the observed rating is xij = 6 on a 7-point

scale. In this case, the argument of ϕi can be any value in the interval (b5, b6]. Following

Definition 2.2.3, we use the midpoint of the interval, and call it the representative value

of category 6. If we set bℓ = ℓ, (ℓ = 1, . . . , q− 1), 5.5 (i.e., the point on the horizontal axis

in Figure 2.2) will be the argument of ϕi. Assuming that the true response function is

continuous, the output value of the response function corresponding to the representative

value of category (i.e., the point on the vertical axis in Figure 2.2), can be read (i.e.,

interpolated) of the vertical axis. The resulting value, yij in this case, is the corrected

value.

Response functions can be used to interpret the respondents’ response styles. Figure

2.3 shows examples of typical response functions corresponding to respondents who have

no, acquiescence, disacquiescence (a tendency to disagree), midpoint, or extreme response

styles.

8
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Figure 2.3: Response functions. The horizontal axis represents the reference boundary

(scale), while the vertical axis represents the respondent-specific boundary.

2.3 Correcting and clustering preference data in the pres-

ence of response style bias

Based on the ideas and definitions introduced in Section 2.2, we consider estimation of

respondent-specific response functions. Moreover, we show that the estimated response

functions can be used to correct for response style bias and, at the same time, to find

clusters of respondents based on their corrected item preferences. In this paper, these

response tendencies shown in Figure 2.3 are considered as response styles, and it is as-

sumed that there are no respondents having response-style-like preference (e.g, there are

no respondents whose true responses agree with all items). In addition, it is assumed that

categories in all items to be applied to CCRS have the same direction (e.g., a category

indicating “agree” has a high number in all items).

2.3.1 Modeling response functions

To estimate a response function, data that represent respondent-specific boundaries are

required. Here, similar to dual scaling and CDS, we code the preference data as “rank-

ordered boundary data”. This means that the indicated item preferences and the reference

boundaries are converted to rank-orders for each respondent. The obtained boundary

rankings reflect respondents’ tendencies to select certain rating categories.

Suppose that q scale preference data X = (xij) (i = 1, . . . , n ; j = 1, . . . ,m) are given

with the reference boundaries b1, b2, · · · bq−1. Then, the rank-ordered boundary data fiℓ,

(ℓ = 1, . . . , q − 1) can be obtained as follows.

fiℓ =

m+q−1∑
t=1

(I{ξit < bℓ}+
1

2
I{ξit = bℓ})−

1

2

where ξit =


bℓ+bℓ−1

2 (t = 1, . . . ,m, xit = ℓ)

bt−m (t = m+ 1, . . . ,m+ q − 1)
(2.3.1)

For t = 1, . . . ,m, ξit indicate the representative values of a category, in our case, (bℓ +

bℓ−1)/2. On the other hand, for t = m+1, . . . ,m+q−1, ξit indicate reference boundaries.
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Figure 2.4: (Left) An example of rank-ordered boundary data. The horizontal axis cor-

responds to reference boundaries, the vertical axis shows fiℓ values corresponding to

each boundary. Each dot represents, fi1, . . . , fi6. (Right) Three I-spline basis functions.

I1, I2, I3 are shown with solid, dot and dashed line, respectively.

The same idea was used in CDS (constrained dual scaling) (Schoonees et al., 2015), in

which the use of this idea followed from dual scaling for successive data (Nishisato, 1980).

To illustrate how this works in practice, consider 7-point scale preference data, xi =

(5, 6, 7), is given. Using Equation (2.3.1), we obtain ξi = (4.5, 5.5, 6.5, 1, 2, 3, 4, 5, 6), where

ξi = (ξit), (t = 1, . . . ,m+q−1). Then, sorting and converting these to rank-orders (starting

from 0) yields ( )
ξsortedi = 1 2 3 4 4.5 5 5.5 6 6.5

rank : 0 1 2 3 4 5 6 7 8

Since ξi4 = 1, ξi5 = 2, ξi6 = 3, ξi7 = 4, ξi8 = 5, ξi9 = 6 corresponds to rank 0, 1, 2, 3, 5 and 7,

respectively, we get fi = (0, 1, 2, 3, 5, 7). Figure 2.4 (left) plots the fi = (fiℓ) (ℓ = 1, . . . , 6)

against these reference boundaries. Using this converted fi, we see that respondent i

demonstrates an acquiescence response style. For example, for fi1, . . . , fi4, the values

increase one by one, which indicates that respondent i does not select categories between

the first and fourth reference boundaries frequently (i.e., the respondent does not often

assign a rating smaller than 4). On the other hand, there is a large gap between fi4 and

fi6, which indicates that categories between the fourth and sixth reference boundaries are

often selected.

Using fiℓ, we consider a model for response functions corresponding to Definition 2.2.1,

using I-Spline basis functions. Let f̄iℓ = fiℓ/p, where p = m + q − 1, so that f̄iℓ ∈ [0, 1].

10



Also, from here on, we use bℓ = ℓ/q, (ℓ = 1, . . . , q − 1). In CCRS, f̄iℓ is approximated as

f̄iℓ ≈ ϕCCRS
i (ℓ/q), (i = 1, . . . , n ; ℓ = 1, . . . , q − 1)

where ϕCCRS
i (x) =

3∑
r=1

βirIr(x)

s.t.

3∑
r=1

βir = 1, βir ≥ 0 (r = 1, 2, 3)

(2.3.2)

Here, Ir (r = 1, 2, 3) are I-Spline basis functions, and βi1, βi2 and βi3 are the coefficients

of I1, I2 and I3, respectively. I1, I2 and I3 are defined by

I1(x) =


2t(x−υ1)−(x2−υ2

1)
(t−υ1)2

(υ1 ≤ x < t)

1 (t ≤ x ≤ υ2)

I2(x) =


(x−υ1)2

(t−υ1)(υ2−υ1)
(υ1 ≤ x < t)

(t−υ1)
(υ2−υ1)

+ 2U(x−υ1)−(x2−t2)
(υ2−t)(υ2−υ1)

(t ≤ x ≤ υ2)
(2.3.3)

I3(x) =

0 (υ1 ≤ x < t)

(x−t)2

(υ2−t)2
(t ≤ x ≤ υ2)

and x ∈ [υ1, υ2], t = (υ1 + υ2)/2. Note that in this definition of I-spline functions,

similar to Schoonees et al. (2015), we fix the number of order is 2, and use a single knot

at the median of the given interval, as recommended by Ramsay (1988); Ramsay and

Abrahamowicz (1989). For more general definition and its property, see, for example,

Ramsay (1988).

In CCRS, we use υ1 = 0, υ2 = 1. Nonnegative conditions, βir ≥ 0 (r = 1, 2, 3), are

required for ϕi to be a monotone increasing function. See Section 2.3.5 for a more detailed

justification of the rationale underlying the scaling of [υ1, υ2], fiℓ and bℓ to [0, 1] as well as

the advantages of adding the constraint
∑3

r=1 βir = 1.

By using three I-spline basis functions (as shown in Figure 2.4, right), we can handle

the five types of response styles shown in Figure 2.3. Further, in this model, only βi1, βi2

and βi3 need to be considered to interpret the response styles. For example, a greater

βi3 value indicates a stronger tendency to select high categories because it results in more

weight being placed on I3, which alters the shape of function to be more similar to the

shape of the response function corresponding to the acquiescence response style (shown in

Figure 2.3).

Now we can define a new correction method. Using the model defined in Equation

(2.3.2), the response function can be estimated by “smoothing” via the constrained least

squares method. In other words, given a q × 1 vector f̄i = (f̄iℓ) and a (q − 1)× 3 matrix,

I = (Ir(ℓ/q)) (ℓ = 1, . . . , q − 1 ; r = 1, 2, 3), βi is obtained by minimizing

n∑
i=1

∥f̄i − Iβi∥2, s.t.

3∑
r=1

βir = 1, βir ≥ 0 (2.3.4)

where βi = (βi1, βi2, βi3). Using the estimated value of β̂i, we can construct the “esti-

mated” response function (see Definition 2.2.3), ϕ̂(x) =
∑3

r=1 β̂irIr(x). By transforming
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all responses in the preference data X using ϕ̂(x), we obtain a (n×m) “corrected data”

matrix, where response style bias is removed. Note that our new correction method can

be considered as a special case of the framework introduced in Section 2.2.

In order to cluster respondents based on content in corrected data matrix, content-based

clustering, such as k -means clustering, can be applied to the corrected data. We shall refer

to this type of analysis as CCRS tandem.

Sequentially applying two methods (smoothing and clustering) may not yield optimal

results for the correction and content-based clustering as the criteria of correction and

clustering are optimized separately (e.g., Arabie, 1994). Therefore, we propose a method

to conduct these two procedures simultaneously.

2.3.2 CCRS: Correcting and clustering response-style-biased data

Simultaneous smoothing and clustering can be achieved by simply adding the two mini-

mization criteria (e.g., Hwang, Dillon, & Takane, 2006). Let K be the number of content-

based clusters. Then we define the objective function of CCRS as follows;

ψ(B,G,U | F̄ , Z, I1, I2, I3) = λ

n∑
i=1

∥f̄i − Iβi∥2 + (1− λ)
n∑

i=1

K∑
k=1

uik∥ZiĨβi − gk∥2

(2.3.5)

s.t.

3∑
r=1

βir = 1, βir ≥ 0 (r = 1, 2, 3 ; i = 1, . . . , n)

where B = (βi), G = (gk), U = (uik), F̄ = (f̄i), (i = 1, . . . , n ; k = 1, . . . ,K), and,

Z = (Zi), Zi = (zijℓ) (j = 1, . . . ,m ; ℓ = 1, . . . , q). The first term in equation (2.3.5) is

the smoothing term, and the second term is the content-based clustering term. Note that

λ ∈ [0, 1] weighs these two terms and needs to be determined prior to the analysis.

In the content-based clustering term, k -means clustering is performed on the corrected

data, namely, ZiĨβi = (ŷij) (i = 1, . . . , n ; j = 1, . . . ,m). Specifically, the q × 1 vector

zij = (zijℓ) (ℓ = 1, . . . , q) is a dummy vector that takes zijℓ = 1 if respondent i selects

category ℓ for the jth item; otherwise, zijℓ = 0. q × 3 matrix Ĩ = (Ir(τ(ℓ))) (ℓ =

1, . . . , q ; r = 1, 2, 3) is a basis function matrix; however, unlike I, it takes the middle

points of the boundaries as arguments to construct the corrected data in Definition 2.2.3.

The K × 1 vector ui = (uik) (k = 1, . . . ,K) is an indicator vector for the content-based

cluster, where uik = 1 if respondent i belongs to the kth content-based cluster; otherwise,

uik = 0. G is the K ×m content-based cluster centroid matrix.

Choosing an appropriate value for λ is a complicated task as there is no clear criterion

that can be used. In Section 2.4, we show how different values of λ affect the clustering

results and, in Section 2.5, we propose a pragmatic approach to determine λ and K at the

same time.

Technically both CCRS and the correction method defined in Equation (2.3.4) can be

applied to any ordinal categorical data, if the data are assumed to be contaminated by

the effect of response styles.
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2.3.3 CCRS parameter estimation

Algorithm to estimate CCRS parameters

To obtain parameters B,G,U , two operations, i.e., estimation of the response functions

(estimation of B) and content-based clustering (estimation of G and U), are performed

sequentially. For fixed B, minimizing Equation (2.3.5) reduces to k -means clustering of

the (response style corrected) data ZiĨβi (i = 1, . . . , n). On the other hand, when G

and U are fixed, solving for B is less trivial as this appears in both terms in Equation

(2.3.5). However, minimizing Equation (2.3.5) with respect to B can be reduced to a

simple constrained least squares problem as follows;

Proposition 2.3.1. The objective function of CCRS (2.3.5) can be written as follows.

ψ(B,G,U | F̄ , Z, I1, I2, I3) =
n∑

i=1

∥∥∥∥∥
( √

λf̄i

(
√
1− λ)G′ui

)
−

( √
λI

(
√
1− λ)ZiĨ

)
βi

∥∥∥∥∥
2

Proof.

ψ(B,G,U | F̄ , Z, I1, I2, I3) = λ

n∑
i=1

∥f̄i − Iβi∥2 + (1− λ)
n∑

i=1

K∑
k=1

uik∥ZiĨβi − gk∥2

=

n∑
i=1

∥
√
λ(f̄i − Iβi)∥2 +

n∑
i=1

K∑
k=1

uik∥
√
1− λ(ZiĨβi − gk)∥2

Note for any vector a′ = (a′
1,a

′
2)

′, b′ = (b′1, b
′
2)

′, it can be shown

∥a1 − b1∥2 + ∥a2 − b2∥2 =

∥∥∥∥∥
(

a1

a2

)
−

(
b1

b2

)∥∥∥∥∥
2

.

Using this and gk = G′ui, the proposition can be verified immediately.

Using this property, parameters in CCRS are estimated based on the following algorithm.

Step 1: Initialization. Set λ and a convergence criterion ε, randomly choose an initial

value for B,G,U , and set the number of iterations w to w = 1.

Step 2: Response function estimation. For fixed G,U , update B in such a way that

Equation (2.3.1) is minimized with the constraint in Equation (2.3.2) (Haskell &

Hanson, 1981).

Step 3: Content-based clustering. For fixed B, update G,U using the following for-

mula.

gk =

∑n
i=1 uik(ZiĨβi)∑n

i=1 uik

uik =


1 (k = argmin

s∈{1,...,K}
∥(
√
1− λ(gs −ZiĨβi)∥2

0 (others)

(i = 1, . . . , n ; k = 1, . . . ,K)
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Step 4: Convergence test Compute ψ(w), the value of the objective function (2.3.5)

using updated parameters and, for w > 1, if ψ(w)−ψ(w−1) < ε, terminate; otherwise,

let w = w + 1 and return to Step 2.

Convergence of the algorithm is guaranteed because the objective function (2.3.5) is

monotonically decreasing in subsequent steps. Note that in Step 1 of the algorithm, Ini-

tial values for B,G,U need to be selected. This can be done randomly, e.g., by randomly

generating values from uniform distribution. Alternatively, one could consider initial val-

ues for B,G,U by solving βi (i = 1, . . . , n) for the first term of Equation (2.3.5), that is,

the optimal fitting of the response functions to the boundary data, and applying k -means

to corrected data ZiĨβi (i = 1, . . . , n) to obtain initial values for G,U . We shall refer to

this type of initialization as CCRS tandem initialization.

Problem of local minimum in CCRS

In parameter estimation of CCRS, we apply k -means type algorithm, which is well-

known for causing a serious local minimum problem. Though we proposed using “CCRS

tandem initialization” above, this does not guarantees the global minimum. The commonly

used approach to tackle with this problem is to run algorithm many times with different

randomly generated initial values, and select the estimates which yields the minimum

value of objective function among estimates obtained by each run.

Figure 2.5 shows that the value of optimized CCRS objective function over the number

of algorithm runs. Note that this is monotone non-increasing because the initial value is

fixed at each t th time (t = 1, . . . , T, ; T = 1, . . . , 100 in this Figure). That is, for example,

the 1st, 2nd and 3rd initial values are the same both when the number of initial values is

3 (T = 3 at the horizontal axis), and when the number of initial values is 10 (T = 10 at

the horizontal axis).

This suggests that with λ = 0.2, the result of CCRS parameter estimation is unstable,

because until around T = 40, the optimized value is frequently decreased. On the other

hand, with λ = 0.8, the optimized value of CCRS objective function does not change over

100 runs, except the first three runs. That is, this figure suggests that in this case, the

estimation result does not change whether the number of runs is 4 or 100. This should

be because with λ = 0.2, the weight on k -means term is bigger than the smoothing term,

and thus the estimation result tends to be unstable similarly to k -means algorithm.

2.3.4 Correcting preference data in the presence of response style bias

by CDS

Schoonees et al. (2015) used constrained dual scaling (CDS) to estimate a response

function defined similarly as in Section 2.2. In dual scaling, which is equivalent to cor-

respondence analysis when analyzing contingency tables (van de Velden, 2000), category

quantifications are obtained such that the quantifications best capture variance in the

data in low dimensional space. For the analysis of preference data, dual scaling aims to
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Figure 2.5: The graph of optimized value of CCRS objective function over the number of

algorithm runs T with different initial values. That is, the horizontal axis T indicates how

many times the algorithm runs with different random initial values (t = 1, . . . , T ), and the

vertical axis indicates the minimum value of objective function among all T runs. In this

numerical example, we fixed the initial values at the tth time of run for each t = 1, . . . , T ,

for all T = 1, . . . , 100, so that the randomness of initial values can be removed to investigate

the stability of the algorithm. The artificial data used in this numerical example are with

n = 300, m = 10, D = 3, K = 3 and q = 5. How to generate the artificial data is explained

in later Section 2.4.1.
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quantify respondents, items and boundaries. In particular, in CDS, one-dimensional quan-

tifications for respondents and boundaries are obtained to model monotonically increasing

response functions for clusters of respondents. Response style bias can then be corrected

for in a manner similar to that described in Section 2.2. A sequential analysis where we

first correct for response style effects using CDS, after which k -means is applied to the

corrected data, can be seen as an alternative to the CCRS approach. We refer to such an

approach as CDS tandem analysis.

As CDS is based on dual scaling, there are several restrictions. To explain this in detail,

let vi and wdℓ denote quantified values by CDS for respondent i, and the ℓth boundary for

the dth response-style-based cluster (d = 1, . . . , D), respectively. In addition, suppose that

a respondent i belongs to the dth response-style-based cluster. In CDS, wdℓ = ϕCDS
d (ℓ),

where ϕCDS
d is the CDS response function for the dth response-style-based cluster. Then,

ϕCDS
d approximates the rank ordered boundary data fiℓ as

f̃iℓ ≈ viϕCDS
d (ℓ), (i = 1, . . . , n ; ℓ = 1, . . . , q − 1) (2.3.6)

where ϕCDS
d (x) = µd +

3∑
r=1

αdrIr(x)

s.t. αdr ≥ 0, (r = 1, 2, 3)

and f̃iℓ = fiℓ − p/2, where p = m+ q− 1. For the spline basis function Ir in CDS, υ1 and

υ2 are set to 0 and q (rather than 0 and 1 as is the case in CCRS) respectively. For more

details, see Schoonees et al. (2015).

Comparing Equation (2.3.6) with Equation (2.3.2), it is clear that CDS only estimates

response functions for response-style-based clusters d = 1, . . . , D. Hence, due to the

one-dimensional approximation only one parameter vi (i = 1, . . . , n) in Equation (2.3.6)

is respondent-specific. Therefore, estimating response functions in CDS could incur a

significant loss of respondent-specific information.

Note that, by setting D = n and fixing the cluster indicator, CDS may be used to

estimate respondent-specific αd (d = 1, . . . , n) values. However, in practice, this process

only yields degenerate solutions in which the parameters are zero or close to zero due to

the one-dimensional reduction.

2.3.5 Properties and interpretation of CCRS

In addition to yielding content based clusters, CCRS can provide several insights into

response styles. In particular, the constraint,
∑3

r=1 βir = 1, the lack of a constant term,

and the scaling of the range of fiℓ and boundaries bℓ to [0, 1] are useful for two reasons:

first, these constraints restrict the corrected data to [0, 1] for all respondents and items.

Second, these constraints facilitate a straightforward visualization of response styles.
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The range of corrected data

Proposition 2.3.2. Let

ϕi(x) =

3∑
r=1

βirIr(x), x ∈ [0, 1]

where βir ≥ 0 (r = 1, 2, 3 ; i = 1, . . . , n)

be a monotone response function of respondent i. Imposing the constraint
∑3

r=1 βir = 1

is equivalent to imposing

ϕi(0) = 0, ϕi(1) = 1.

Equivalently,

ŷij ∈ [0, 1]

where ZiĨβi = (ŷij) (i = 1, . . . , n ; j = 1, . . . ,m)

Proof. The proposition follows immediately from Equation (2.3.3) by setting υ1 = 0 and

υ2 = 1.

In other words, the constraint
∑3

r=1 βir = 1 implies a constraint on the range of ϕi, and,

as a result, a constraint on the range of the corrected data, ŷij . This is useful for avoiding

excessive values for βir. If respondent i could receive a very large βir for some r, the

corrected data ŷij (j = 1, . . . ,m) would also become quite big, and as a result, respondent

i would be considered as an outlier in the cluster analysis. However, large values for βir do

not necessarily indicate that a respondent i is an outlier with respect to item preferences,

even though the observation could be considered to be an outlier with respect to response

styles. Thus, the summation constraints prevents the corrected values to be affected by

strong response style effects.

Visualization of response styles

Constraining βir (r = 1, 2, 3) to a sum of 1 allows for a simple visualization of these

coefficients. Such a visualization can be used to interpret the respondent-specific response

tendencies. In particular, by combining a scatterplot of the respondent-specific estimates

of βi1 against βi3, we obtain a visualization of the estimated response functions. Figure

2.6 illustrates this for an example dataset. Note that respondents having no response style

(Definition 2.2.2) can be expressed as the single cross point in this plot, as indicated in

the following proposition.

Proposition 2.3.3. Let

ϕi(x) =
3∑

r=1

βirIr(x), x ∈ [0, 1]

be the true response function of respondent i, and suppose βir ≥ 0 (r = 1, 2, 3),
∑3

r=1 βir =

1. Then respondent i has no response style, if and only if

βi1 = βi3 = 0.25, βi2 = 0.5.
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Proof. First, we show that having no response style =⇒ βi1 = βi3 = 0.25. From Definition

2.2.2, having no response style means having the identity function as response function.

In that case,

∂2

∂x2
ϕi(x) = 0.

On the other hand, when υ1 = 0 and υ2 = 1, from Equation (2.3.3) it follows that

∂2

∂x2
ϕi(x) =

−8β1 + 4β2 (0 ≤ x < 1/2)

−4β2 + 8β3 (1/2 ≤ x ≤ 1)

Therefore having no response style implies β1 = 2β2 for 0 ≤ x < 1/2, and β3 = 2β2 for

1/2 ≤ x ≤ 1. Since βir (r = 1, 2, 3) is common for all x ∈ [0, 1],

2βi1 = βi2 = 2βi3.

From the constraint
∑3

r=1 βir = 1, the result immediately follows.

Next, to proof that βi1 = βi3 = 0.25 =⇒ having no response style, note that from

the constraint
∑3

r=1 βir = 1 it immediately follows that βi2 = 0.5. Then, substituting

βi1 = βi3 = 0.25 and βi2 = 0.5 into Equation (2.3.2) yields

∂

∂x
ϕi(x) = 1,

∂2

∂x2
ϕi(x) = 0, x ∈ [0, 1].

Hence, ϕi(x) is an identity function. □

From this proposition, it follows that the purple cross in Figure 2.6, with coordinates

(0.25, 0.25), corresponds to no response style. The black points close to this purple point

also correspond to respondents who do not have clear response style and deviations from

this point indicate the presence of response styles.

2.4 Simulation study of CCRS

We conducted a simulation study to evaluate the performance of CCRS. In this simu-

lation study, we investigated two things:

• the accuracy of correction comparing our CCRS correction defined in Equation

(2.3.4) with CDS correction.

• the accuracy of content-based clustering comparing our CCRS in Equation (2.3.5)

with k -means and CDS tandem.

Note that in CDS tandem, preference data are first corrected using CDS. Then, k -means

is applied to the corrected data.

To assess the performance of the methods, we consider two scenarios. In scenario I, we

assume that there are two kinds of underlying clustering structures: content and response-

style-based clusters. In scenario II, only an content-based clustering structure is assumed.

By considering these two scenarios, data are generated corresponding to situations that are

assumed to underlie, either implicitly or explicitly, both the CDS and the CCRS methods.
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Figure 2.6: A scatterplot of βi1 and βi3 for each respondent (i = 1, . . . , n) estimated by

CCRS using λ = 0.8 for a simulated data set with n = 300, m = 20, K = 2, q = 7. The

colors correspond to the true response styles. The way to generate these data is explained

in Section 2.4.

2.4.1 Data generation

The data generation process can be divided into two steps: (i) generation of true pref-

erences x∗ij ∈ R and (ii) mapping of the true preferences to q scale data xij ∈ {1, . . . , q}.
Content-based clusters and, for scenario I only, response-style-based clusters, are induced

in steps (i) and (ii), respectively.

(i) Generation of the true preferences

As we want a subset of items to be related to the clustering structure, the m items are

divided into two groups: items related to the clustering structure and “noisy” items that

are unrelated to the clusters.

In addition, the cluster-related items are divided further into three groups with different

means of true preferences to ensure that the content-based clusters do not resemble either

of the response-style-based clusters shown in Figure 2.7 (left). To see why this is useful,

consider a situation in which all cluster-related items have one common cluster center.

The corresponding content-based cluster could then be considered a response-style-based

cluster corresponding to acquiescence, disacquiescence, or midpoint depending on the mean

(e.g., if the means for all cluster-related items are high, it could be seen as an acquiescence

response-style-based cluster). Furthermore, if all items have two centers only, the resulting

cluster could be considered a response-style-based cluster corresponding to the extreme

response style (e.g., if the means for the two item groups is extremely either high or low).

Thus, both possibilities are avoided by dividing the cluster-related items into three groups
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and generating preferences from the item groups depending on the means.

Next, for the items related to the clustering structures, true preference data are gen-

erated as x∗ij ∼ N(ξjk, 0.1), where ξjk ∼ N(vsk, 0.01) for k = 1, . . . ,K. Here, vsk for

all s = 1, 2, 3 and k = 1, . . . ,K are randomly selected from the set {0.1, 0.3, 0.5, 0.7, 0.9}
under the conditions that vsk ̸= vsℓ for k, ℓ = 1, . . . ,K, s = 1, 2, 3 and k ̸= ℓ, and similarly,

vsk ̸= vtk for all s ̸= t. In other words, x∗ij is generated based on the cluster mean, vsk,

which differs depending on the three cluster-related item groups, s, and the content-based

clusters, k. For noisy items, i.e. the items unrelated to the clusters, the true preference

data are generated as x∗ij ∼ U(0, 1).

(ii) Categorization of true preference data into q scale data

The true preference data are categorized based on respondent-specific boundaries. Note

that this step differs between scenarios I and II.

First, for scenario I, we assume that there exist D response-style-based clusters d =

1, . . . , D. If respondent i belongs to the dth response-style-based cluster, xij is obtained

according to the following rule.

xij =

q∑
ℓ=1

ℓ I{ηd(ℓ−1) < x∗ij ≤ ηdℓ}.

Here, ηdℓ are the dth response-style-based cluster specific boundaries obtained using true

response functions, as shown in Figure 2.7 (left).

On the other hand, for scenario II, xij is obtained according to the following rule.

xij =

q∑
ℓ=1

ℓ I{ηi(ℓ−1) < x∗ij ≤ ηiℓ}.

In this case, ηiℓ are generated using βi1, βi2, βi3, which were randomly generated from

U(0, 1) and scaled so that
∑3

r=1 βir = 1.

Figure 2.7 (right) shows an example of how the artificial data described above is gener-

ated. Here, preference data with K = 2, m = 20 are assumed. The horizontal axis indi-

cates the item index, where an item set withm = 20, {1, . . . , 20} is divided such that items

{1, . . . , 4}, {5, . . . , 8}, and {9, . . . , 12} are related to clusters whereas items {13, . . . , 20}
are noisy items. The figure shows that the mean preferences (vsk) are v11 = 0.3, v12 = 0.1,

v21 = 0.7, v22 = 0.5, v31 = 0.9, and v32 = 0.7; note that the vsk values were determined

randomly under the condition that there is no overlap between both the cluster-related

item groups and the content-based clusters.

2.4.2 Simulation study design

We consider a full factorial design with n = 300, 600, m = 20, 30, q = 5, 7, and

K = 2, . . . , 5, to assess the performance of the methods in different settings. To evaluate

the correction accuracy, we only evaluate m = 20 case, because unlike k -means clustering,

the correlation among variables do not contribute to the performance of both correction

methods. In addition, for scenario I, in which response-style-based clusters exist, we
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Figure 2.7: (Left) True response functions used in simulation. Lines 1 through 5 cor-

respond to respondents having no response style, acquiescence, disacquiescence, extreme,

and midpoint response styles, respectively. (Right) Example image of the generation of ar-

tificial data. Item indices are on the horizontal axis and corresponding true preferences, x∗ij ,

on a scale of [0, 1], are on the vertical axis. The mean preferences, vsk (s = 1, 2, 3, k = 1, 2),

for the two clusters are indicated by the solid and dotted lines.

generated data with D = 3 and 5, where D corresponds to the number of response-style-

based clusters. For D = 3, the considered response styles are acquiescence, midpoint, and

no response style. For D = 5, disacquiescence and extreme response styles are added.

In this simulation, we assume that the true number of content and response-style-based

clusters K and D are known.

For each combination of parameters in our simulation, we randomly generated 100

different data sets. For each data set we apply all methods and assess, both for the

content and response-style-based clustering.

Evaluation

To evaluate the accuracy of correction, the median of sum of squared error (SSE) between

ŷij , the corrected value, and x∗ij , the corresponding true preference, is calculated. Here we

use the median instead of mean of SSE, because the variance of SSE by CDS tends to be

large in some situations.

To evaluate the content-based clustering, the accuracies of CCRS, CDS tandem, and k -

means clustering are compared. On the other hand, for the response-style-based clustering,

the accuracy of CDS is compared to that of CCRS with k -means clustering applied to the

estimated βi values (i = 1, . . . , n). The Adjusted Rand Index (ARI) is used to evaluate

the retrieval of the underlying structure (Hubert & Arabie, 1985). The ARI assesses the

similarity between two cluster allocations (a true and estimated cluster allocation, in this

case). It takes a value of 1 for a perfect recovery, and this value decreases as performance

worsens.
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Selecting the number of response-style-based clusters for CDS

CDS requires a choice for the number of response-style-based clusters D. In scenario

II, no response style clusters exist and we therefore need to find an estimate for this.

Schoonees et al. (2015) use a scree plot of the optimized objective function over different

D. However, this approach cannot be used when we want to compare the results from

different methods. Therefore, both in our simulation and empirical study, we use the

Krzanowski-Lai cluster index (KL index) (Krzanowski & Lai, 1988) to determine the

number of clusters. The KL index is based on an idea similar as the scree plot, but also

takes into account the number of variables.

In the simulation study, we selected different D depending on different n and K values

by first running a small simulation. For example, for n = 300 and K = 2 case, 10 data

sets were simulated for each combination of m = 20, 30 and q = 5, 7. The KL index

was calculated for the results obtained for each generated dataset. Among the resulting

2× 2× 10 = 40 KL indexes, the most frequently selected D value was used as the number

of response-style-based clusters for all settings with n = 300 and K = 2. This process was

performed for all different n and K values. The result of this procedure was that D = 3

was selected for n = 300 and K = 2, . . . , 5, and D = 4 was selected for n = 600 and

K = 2, . . . , 5. The resulting D are used to estimate CDS, for both evaluation of correction

and clustering accuracy.

Other setting

Concerning the choice of λ in CCRS, we considered values of 0.2, 0.5, 0.8 and compared

the results of each λ. In addition, all methods require some type of initialization. For

CDS we use the defaults from the “cds” package (Schoonees, 2016) in R (R Core Team,

2017); for k -means, we use 100 random starts; for the CCRS method, we consider the

CCRS tandem initialization as well as 49 random starts.

2.4.3 Correction accuracy

The SSE results for correction of response styles are shown in Figure 2.8 for scenario

I, and Figure 2.9 for scenario II. As it can be seen, the accuracy of CCRS correction

method is stable and higher than the one by CDS in all cases, regardless of the presence of

content-based cluster structure. While CDS seems to have the difficulty of correcting for

response styles especially when D = 3 and q = 7, our CCRS correction performs similarly

well to all cases.

There are two possible reasons for this improvement of CCRS correction. At first, CDS

conducts one dimensional reduction, which causes a serious information loss. In addition,

in CDS, since the range of corrected values is [0,∞], the corrected value can be inflated

if there exists the strong response style effects. On the other hand, the range of corrected

values in CCRS correction is [0, 1], due to the constraint as shown in Proposition 2.3.2.

Therefore the scale of corrected value is not affected by the strong response style effect.

These results suggest that by generalizing the concept of response functions introduced
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Figure 2.8: Parallel plot showing median SSE for correction for scenario I (presence of

content and response-style-based clusters), m = 20 and different parameter settings and

methods. The orange dashed line with a cross indicates SSE by CDS correction, while the

blue dot line with a square indicates SSE by CCRS correction.

by Schoonees et al. (2015), we can obtain a new correction method which yields more

accurate and stable correction performance.

2.4.4 Clustering accuracy

Scenario I : clustered response styles

Content-based clusters retrieval

The ARI results for the content-based clusters (content ARI) are shown in Figures

2.10 and 2.11. As can be seen, the k -means results are poor, possibly due to the pres-

ence of response style bias. However, CDS tandem, which does correct for response

style bias, also demonstrates poor results. Apparently, the joint, but uncorrelated

presence of content and response clusters, makes it difficult for CDS to detect the

true content clustering structure.

CCRS tandem and 0.8 appear to work well compared to all other methods. A general

tendency of the content ARI obtained by CCRS is that greater q and n, and smaller

m, K and D values yield better results. Larger q values may yield good results as the

estimation of the response function improves when there are more rating categories

and hence more boundaries. Note also that the performance of CCRS does not

appear to be strongly affected by an increase (from D = 3 to D = 5) in the number

of response styles.
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Figure 2.9: Parallel plot showing median SSE for correction for scenario II (no response

style clusters).

Response-style-based clusters retrieval

The ARI results for the response-style-based clusters (response style ARI) are shown

in Figures 2.12 and 2.13. As can be seen, the mean ARI’s for CDS are always below

those of CCRS. Furthermore, CCRS with λ = 0.8 outperforms the other methods in

nearly all cases. Note that the response style ARI results for λ = 0.8 are generally

better than those for CCRS tandem. An explanation for this could be that CCRS

tandem only uses the boundary data f̄i to estimate the response functions, while

simultaneous CCRS also exploits the underlying content related cluster structure in

its estimation.

Scenario II: respondent-specific response styles

Content-based clusters retrieval

The ARI results concerning the content-based cluster structure are shown in Figures

2.14 and 2.15. As can be seen, there are no big differences with regard to scenario

I, with the exception of the k -means results. The k -means results improved consid-

erably compared to the results in scenario I. An explanation for this could be that

the underlying content-based cluster structure in this scenario is no longer obscured

by an additional (uncorrelated) response-style-based cluster structure. However, de-

spite this improvement, CCRS still consistently outperforms k -means and appears to

be useful to obtain content-based clusters even when no response-style-based clusters

are present.

2.4.5 Conclusions of the simulation study

The results of the simulation study demonstrate that the proposed CCRS method out-

performs CDS for correction in all cases, and CDS tandem, and k -means for clustering in

all cases. Moreover, CCRS performed approximately equally well in both scenario I and

scenario II.
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Figure 2.10: Parallel plot showing mean content ARI’s for scenario I (presence of content

and response-style-based clusters), n = 300 and different parameter settings and methods.

λ = 0.2, 0.5, 0.8 indicate CCRS using each λ, where correction for response styles and

clustering are simultaneously conducted.
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Figure 2.11: Parallel plot showing mean content ARI’s for scenario I (presence of content

and response style based clusters), n = 600 and different parameter settings and methods.
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Figure 2.12: Parallel plot showing mean response style ARI’s for scenario I (presence of

content and response-style-based clusters), n = 300 and different parameter settings and

methods.
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Figure 2.13: Parallel plot showing mean response style ARI’s for scenario I (presence of

content and response style based clusters), n = 600 and different parameter settings and

methods.
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Figure 2.14: Parallel plot showing mean content ARI’s for scenario II (no response style

clusters) for n = 300.
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Figure 2.15: Parallel plot showing mean content ARI’s for scenario II (no response style

clusters) for n = 600.
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For clustering evaluation, k -means clearly performed worse in scenario I. These results

indicate that the proposed CCRS method appears to be robust to having both content

and response-style-based cluster structures. Overall, CCRS performs better for greater q

and smaller K. In addition, as the performance of CCRS does not appear to be strongly

affected by an increase in response styles D, indicating that CCRS can account for more

response styles.

The simulation study results showed that the content-based clustering results of CCRS

improved when λ increased although differences between the cluster retrieval results for

λ = 0.8 and CCRS tandem were very small. However, if a response-style-based clustering

structure was present, this structure was better retrieved by selecting λ = 0.8. In addition,

as is discussed in Section 2.3.3, the algorithm is more stable with high λ (e.g., λ = 0.8)

than low λ, (e.g., λ = 0.2). Therefore, we suggest to use λ ≥ 0.8, in order to obtain

optimal results for both response style and content-based clustering.

2.5 Empirical example of CCRS

2.5.1 Data

Table 2.1: Value research selected items. Each statement is rated from 1 (strongly dis-

agree) to 7 (strongly agree).
j Statement Value

1 It is more important for a wife to help her husband’s career than to pursue her own career1. Patriarchy/Gender Role

2 The authority of father in a family should be respected under any circumstances. Patriarchy/Gender Role

3 It is not desirable to oppose an idea which the majority of people accept, even if it is Harmony

different from one’s own.

4 One should not express one’s complaints about others in order to have good relationship Harmony

with them.

5 When hiring someone at a private company, even if an unacquainted person is more qualified, In-Group Orientation

it would still be better to give the opportunity to relatives or friends.

6 I would be honored when people who come from the same town play an important role in society. In-Group Orientation

7 A subordinate should obey the superiors’ instructions, even if the person cannot agree with them. Hierarchy/Authority

8 If I have capable leaders, it is better to let them decide everything. Hierarchy/Authority

9 A life full of risks and chances is more desirable than an ordinary and stable life. Uncertainty Avoidance/Risk Taking

10 With extra money, I would invest in items for high returns even if they are risky. Uncertainty Avoidance/Risk Taking

We illustrate the use of CCRS with an empirical application based on survey data

collected in 2008 by the East Asian Social Survey (EASS). The survey data include 8745

respondents and 107 questions (except demographic variables). The data were downloaded

from the ICPSR website

(http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/34607). More information about

the data is available in Chang, Iwai, Li, and Kim (2014). For our application, we se-

lected 10 items from the survey in which respondents were asked to evaluate five values:

Patriarchy/Gender Role, Harmony, In-Group Orientation, Hierarchy/Authority, and Un-

certainty Avoidance/Risk Taking. For each of these values respondents were asked to

assess two statements using a 7 point Likert scale ranging from 1: not important at all,

to 7: very important. The 10 statements and corresponding values can be found in Table

2.1. we removed respondents having missing values in chosen 10 items, and as a result,
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we have n = 7634 in data. In addition, the data contain respondents from four countries,

2838 Chinese, 1492 Japanese, 1448 Korean and 1856 Taiwanese.
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Figure 2.16: Proportion of rating categories 1-7 selected in different countries for all items.

In Figure 2.16, we see that there appears to be considerable difference in response

tendencies among the four countries. For example, the Chinese and Taiwanese respondents

selected the second highest category much more often than the Korean and Japanese

respondents. Moreover, the Japanese respondents tended to select the midpoint more

often than respondents from the other countries.

Below, we present the content and response-style-based clustering results obtained by

the CCRS and CDS tandem methods, as well as the content clustering results obtained

by k -means. For the response-style-based clustering in CCRS, k -means clustering was

applied to the estimated βi values (i = 1, . . . , n), same as in the simulation study.

2.5.2 Setting

As these are empirical data, no known true clustering structure exist and all parameters

need to be determined based on the data. Similar to the situation in cluster analysis,

where selection of the number of clusters is a complex task, selection of such parameters

in CDS and CCRS is difficult. In our application, we employed a pragmatic approach

and based our selections on the KL index also used in simulation study. Furthermore, to

ensure stability of the selected number of clusters, we based our choice on the results for

200 bootstrap samples. That is, from the complete sample we drew 200 bootstrap samples

and, for each bootstrap sample, we selected the K value that maximized the KL index.

1For Japanese respondents, this statement was phrased differently, even though the same value was

measured. Specifically, in the Japanese version the statement was: “A husband’s job is to earn money; a

wife’s job is to look after the home and family.”
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Figure 2.17: The number of times that different values of the parameter K was selected

for content-based clustering methods using the KL index.

Next, the K value that was most often selected in these 200 samples was used in the final

estimation. For the CCRS method, which requires two parameters (i.e., K and λ), the

combination of parameters that was selected most frequently was used.

To reduce computation times, we used 20 different initial values for each CCRS run

on bootstrap sample. In addition, for CDS tandem, K and D were selected sequentially.

That is, first D is selected in a similar fashion as described above. Then, using the optimal

D, K is determined in the same way.

Using the candidate values K,D = 2, . . . , 15 and λ = 0.7, 0.8, 0.9 and CCRS tandem,

we obtained K = 7, λ = 0.8 and D = 6 for CCRS, and K = 4 and D = 3 for CDS tandem,

and K = 3 for k -means.

The total number of times each parameter was selected is shown in Figures 2.17, 2.18 and

2.19 for content and response-style-based clusters, respectively. Note that, for k -means,

K = 3 was always selected. For the other methods, the value of K (or D) selected by the

KL index varied among the bootstrap samples. However, a clear peak can be identified

for most cases.

Once the parameters were set, the methods were applied using 500 different initial values

in the same manner as used in the simulation study.

2.5.3 Clustering results

The content-based clustering results obtained by CCRS are shown in Figure 2.20. From

the boxplots, we see how the clusters differ with respect to the assessment of the items. In

some case, these differences are limited to only one item (e.g., clusters 1 and 5) but mostly

difference concern at least two items corresponding to the same value (e.g., clusters 5 and

7).

30



2 4 6 8 10 12 14

0
5

10
15

CCRS (content−based cluster)

K

T
he

 n
um

be
r 

of
 ti

m
es

 to
 b

e 
ch

os
en

λ=0.7
λ=0.8
λ=0.9
CCRS tandem

Figure 2.18: The number of times that different values of the parameter K was selected

for content-based clustering methods using the KL index for different values of λ.
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Figure 2.19: The number of times that different values of the parameter D was selected,

using the KL index, in the response-style-based clustering.

31



1 3 5 7 9

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1st cluster (17%)

Item index

C
or

re
ct

ed
 s

ca
le

1 3 5 7 9
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

2nd cluster (13%)

Item index
1 3 5 7 9

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3rd cluster (12%)

Item index
1 3 5 7 9

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

4th cluster (12%)

Item index

1 3 5 7 9

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

5th cluster (16%)

Item index

C
or

re
ct

ed
 s

ca
le

1 3 5 7 9

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

6th cluster (13%)

Item index
1 3 5 7 9

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

7th cluster (17%)

Item index

Figure 2.20: Boxplot of the 10 items (horizontal axis) for the content-based (cont.) clusters

obtained with CCRS. The vertical axis indicates the scale of the corrected data using

estimated response functions.

In most cases, items corresponding to the same values are similarly evaluated within a

cluster. For the third value, i.e., “in-group orientation” this does not appear to be the

case. Apparently, the evaluation of in-group orientation differs depending on the group

considered. That is, relatives or people from the same town. However, the difference may

also be due to the phrasing of the two items. In particular, in question 5 respondents assess

whether they would favor relatives whereas question 6 merely ask respondents whether

they appreciate success of others (from the same town in this case).

In CCRS, respondent-specific response functions are used. Clustering the resulting func-

tions leads to a 6 cluster solution. The corresponding response functions are depicted in

Figure 2.21 (left). Moreover, recall that the coefficients in the response functions estimated

by CCRS can be used to visually capture the characteristics of response styles (c.f. Section

2.3.5). The results are shown in Figure 2.21 (right). The second and fourth response-style-

based clusters correspond to a low β1 and a high β3 value. This indicates an “acquiescence”

response style. Similarly, the third response-style-based cluster demonstrates low values

for both β1 and β3 corresponding to a “midpoint” response style.

To see whether the response-style-based clusters are related to nationalities, we consider

the distributions over the countries in Table 2.2. In the second and fourth clusters (acqui-

escence), most respondents are Chinese. On the other hand, the third response-style-based

cluster (midpoint) comprises over 50% Japanese.

To see how the response style clusters and content-based clusters correspond, we consider
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Figure 2.21: (Left) Estimated response functions of the response-style-based clusters ob-

tained by CCRS. (Right) Low dimensional plot for βd of the response-style-based clusters.

Numbers indicate response-style-based clusters, and correspond to those used in the left

plot.

a mosaic plot that visualizes the cross-tabulation of the two cluster solutions. Figure 2.22

shows that there does not appear to be significant overlap of respondents between the

content and response-style-based clusters. In each content-based cluster respondents from

all response-style-based clusters are present. That is, the content-based clusters and the

response-style-based clusters do not coincide.

Table 2.2: (%’s) Distribution of respondents nationalities over the response-style-based

clusters (d = 1, . . . , 6) obtained by CCRS. The absolute frequencies of each response-based

clusters are 1509, 692, 1781, 1822, 966 and 864, for the d = 1, . . . , 6 th response-based

clusters, respectively.

d China Japan Korea Taiwan

1 43.8 14.0 20.5 21.6

2 52.3 1.7 20.4 25.6

3 17.7 53.2 23.8 5.3

4 59.7 2.3 8.4 29.6

5 27.7 6.8 18.0 47.4

6 16.6 24.7 28.6 30.2

To assess whether results by CCRS are “better” than result obtained by the CDS tandem

and k -means methods is cumbersome as we do not know whether there are true underlying

cluster structures. Nevertheless, a comparison of results may be insightful and help to

interpret the results.

The CDS tandem content-based clustering results and cluster-wise response functions

are shown in Figure 2.23 and Figure 2.24, respectively. Looking at the association be-
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Figure 2.22: Mosaic plot of the CCRS content and response-style-based clusters. The

index of response-style-based clusters corresponds to the number used in Figure 2.21.

tween the content-based and response-style-based clusters as shown in Figure 2.25, we

see that there is significant overlap between respondents in the content and response-

style-based clusters. This indicates that the cluster-wise correction of response styles

results in content-based clusters that are similar to those response-style-based clusters.

Consequently, when interpreting content-based clusters one may merely be considering

response-style-based differences.

The k -means clustering results are shown in Figure 2.26. Here, the clusters also ap-

pear to correspond to some response tendencies. In the first and third content-based

clusters, for example, we see that respondents predominantly select high and midpoint

ratings, respectively. An interpretation relative to the item content appears difficult for

this solution.

In summary, it appears that the k -means results may only reflect response tendencies.

Moreover, when using CDS to correct for response style effect, the corrected data strongly

reflects certain response-style-based clustering results. Consequently, the content-based

cluster results obtained from the corrected data do not yield additional content-related

insights. On the other hand, with the proposed CCRS method, we obtain content-based

clusters that are dissimilar to the response-style-based clusters.

Finally, results of the empirical data application cannot be validated easily, and the

fact that we find “dissimilar” clusters, does not provide evidence that CCRS should be

preferred over CDS. This is because that we cannot observe “true preference”. However,

the results of this application, in combination with the results of the simulation study, do

suggest that CCRS is able to better retrieve content-based cluster structures.
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Figure 2.23: Boxplot of 10 items (horizontal axis) of the content-based clusters obtained

by CDS tandem. The vertical axis indicates the scale of the corrected data using the
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Figure 2.25: Mosaic plot of the content and response-style-based clusters by CDS tandem.

The index of response-style-based clusters corresponds to the number in Figure 2.24.
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Chapter 3

Visualizing class specific

heterogeneous tendencies in

categorical data

3.1 Problem of interpretation of MCA biplot

Correspondence analysis (CA) and multiple correspondence analysis (MCA) are popular

methods that support visual interpretations of the associations among categorical variables

(e.g., Greenacre, 1984). In MCA, obtained quantifications of categories and individuals

can be depicted in a biplot, which indicates not only the associations among categories

and among individuals but also those between individuals and categories (e.g., Greenacre,

1993; J. C. Gower & Hand, 1996).

In an MCA biplot, if many individuals choose the same two categories, the quantifica-

tions for these categories and corresponding individuals tend to locate in close proximity.

Therefore, an MCA biplot enables us to visually identify individuals with similar category

choice tendencies. Moving beyond this benefit, adding pertinent external information

about individuals can enhance interpretations of MCA biplots. By external information,

we refer to information that might not be of use for the estimation of the coordinates, but

that may be useful for interpreting the resulting biplot.

Several studies describe ways to incorporate external information about individuals

into an MCA biplot (e.g., Yanai, 1986, 1988; Böckenholt & Böckenholt, 1990; Takane,

Yanai, & Mayekawa, 1991; Van Buuren & de Leeuw, 1992; Böckenholt & Takane, 1994;

Yanai & Maeda, 2002; Hwang, Yang, & Takane, 2005). Hwang and Takane (2002) also

show that various objectives for incorporating the external information can be generalized

into a linear constraint framework. Here, we focus specifically on external information

that consists of a set of categorical variables, and we refer to subsets of these data that

correspond to the categories of the external information as classes.

To visually explicate how individuals’ tendencies differ depending on these classes, we

could integrate external variables before applying MCA, but this approach transforms

the information, such that the information is no longer external and instead becomes
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part of the original analysis. As an alternative approach, we might seek to establish

individual quantifications (i.e., points) visually, according to the classes. For example,

if gender is an external variable, points corresponding to men can be colored black, and

those corresponding to women are red. This approach incorporates external information

corresponding to only one categorical variable at the time. Another option would be

to obtain average quantifications for each class. By plotting these average points, as

well as the category points of the original (non-external) variables, we can depict the

relationship between the external information and the categories. We refer to this notion

as the averaging approach.

Yet the averaging approach only reveals the average tendencies of many individuals

within a class, obscuring their heterogeneous tendencies. When a relatively small group

in a class has a strong tendency toward a particular category that the majority group in

the class does not select, this preference would not be visible in a biplot that relies on an

averaging approach. Despite representing a minority, such tendencies could be interesting

to consider, especially to characterize tendencies by class.

Therefore, in this chapter, we propose a new approach to find class-specific clusters

and depict them together with the categories of the (original) variables. The result is

a visual depiction of the categories (i.e., category quantifications), together with points

that represent clusters for the different classes of data. With this visualization, we can

identify different heterogeneous tendencies within a class in a single MCA biplot, as well

as perceive the relationships among classes that correspond to the categories of external

variables.

The remainder of this paper is organized as follows. In Section 3.2, we introduce our

proposed method and its relationship with existing approaches, including the linear row

constraint framework. In addition, we compare a biplot obtained using the averaging ap-

proach and one obtained using our proposed method. The simulation study in Section 3.3

appraises the proposed method in various external information scenarios; the application

of our method to empirical data in Section 3.4 confirms its appeal.

3.2 Multiple set cluster CA (MSCCA)

In this Section, we introduce our approach, which we call multiple-set cluster CA

(MSCCA), as an extension of several existing methods, such as cluster CA (van de Velden,

D’Enza, & Palumbo, 2017), CA, and the linear row constraint framework.

3.2.1 The MSCCA objective function

Suppose that we have n observations of m categorical variables, and in conjunction,

that, for the same n observations, we have H additional categorical variables that contain

external information. We refer to these H additional variables as supplementary variables.

In this Section, notations to formulate the MSCCA objective function are defined as

follows.

Let qj (j = 1, . . . ,m) be the number of categories for the jth variable, and let Q =
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∑m
j=1 qj . We create dummy matrices Zj for the m categorical variables using the categor-

ical data, so the rows of Zj are (qj × 1) vectors zji = (zjiℓ) (i = 1, . . . , n ; ℓ = 1, . . . , qj),

where zjiℓ = 1 if individual i chooses the ℓth category in the jth variable, and the other

elements are 0. Similarly, we create dummy matrices for the H supplementary variables,

with Vh = (vhis) (h = 1, . . . , H; s = 1, . . . , rh), where rh is the number of categories for

the hth supplementary variable.

In addition, let Khs be the number of clusters for the sth category (class) of the hth

supplementary variable (h = 1, . . . , H ; s = 1, . . . , rh), with Kh =
∑rh

s=1Khs. Let Bj be

the qj × p quantification matrix for the categories of the jth variable, where p denotes the

number of dimensions, and let Uh and Gh be n×Kh cluster indicator matrices and Kh×p
quantification matrices for cluster centers in the hth supplementary variable, respectively.

The objective function of MSCCA then can be defined as

min
Uh,Gh,Bj

ψ(Uh,Gh,Bj |Zj ,Vh) =
1

nHm

m∑
j=1

H∑
h=1

∥UhGh −ZjBj∥2 (3.2.1)

s.t.
1

nm

m∑
j=1

B′
jZ

′
jZjBj = Ip, JnUhGh = UhGh

where Uh
(n×Kh)

=


u′
h11 · · · u′

h1rh
...

. . .
...

u′
hn1 · · · u′

hnrh


uhis = (uhis1, . . . , uhisKhs

)′

s.t.

uhisk ∈ {0, 1}, (k = 1, . . . ,Khs),
∑Khs

k=1 uhisk = 1 (vhis = 1)

uhisk = 0, (k = 1, . . . ,Khs) (vhis = 0)
(3.2.2)

(i = 1, . . . , n ; s = 1, . . . , rh ; h = 1, . . . , H).

Here, Jn = In − n−11n1
′
n is the centering matrix, In is an n× n identity matrix, and 1n

is an n× 1 vector of ones. When we estimate parameters, the number of dimension p, the

number of clusters for each class, Khs (h = 1, . . . ,H ; s = 1, . . . , rh), must be pre-specified.

The constraint on Uh in Equation (3.2.2) defines a two-level hierarchical cluster struc-

ture. Specifically, for each supplementary variable h, individuals first are divided into rh

known classes, corresponding to the categories of the variable as indicated by uhi1, . . . ,uhirh .

Then within each class s (s = 1, . . . , rh), individuals are assigned to Khs unknown clusters

based on variables, as indicated by uhis1, . . . , uhisKhs
.

We can illustrate the construction of Uh with a small example. Suppose that we have

five observations and that one supplementary variable, (e.g., h), corresponds to gender.

In addition, assume we want to find two clusters for the males and one cluster for females,

so that Kh1 = 2 and Kh2 = 1. Let observations i = 1, 3, 5 be males where i = 1, 3 are in

the first male cluster and i = 5 is in the second one, individuals i = 2, 4 are females.

When we consider the cluster indicator vector for individual i = 1, uh1, because we

partition the data by gender, the vector is split as u′
h1 = (u′

h11,u
′
h12), where uh11 and

uh12 denote the cluster indicator vectors of individual i in the male and female classes,
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respectively. Performing this partitioning for all individuals, we obtain

Uh =


u′
h11 u′

h12

u′
h21 u′

h22

u′
h31 u′

h32

u′
h41 u′

h42

u′
h51 u′

h52

 =


1 0 0

0 0 1

1 0 0

0 0 1

0 1 0

 .

Then, to relate our method to other methods, we can rewrite Equation (3.2.1) as

min
U ,G,B

ψ(U ,G,B |Z,V ) =
1

nHm

m∑
j=1

∥UG−ZH
j Bj∥2 (3.2.3)

s.t.
1

nHm

m∑
j=1

B′
jZ

H′
j ZH

j Bj = Ip, JnHUG = UG

where, ZH
j

(nH×qj)

=


Zj

...

Zj

 , G
(K×p)

=


G1

...

GH

 , (3.2.4)

U = b-diag(U1,U2, . . . ,UH) =


U1 0 · · · 0

0 U2 · · · 0
...

...
. . .

...

0 0 · · · UH

 ,

and K =
∑H

h=1Kh =
∑H

h=1

∑rh
s=1Khs. If we set H = 1 and define UH as a cluster

indicator matrix for KH clusters without the hierarchical clustering structure—that is,

UH = (uik), (i = 1, . . . , n ; k = 1, . . . ,KH) where
∑KH

k=1 uik = 1 and uik ∈ {0, 1}—then

Equation (3.2.3) is equivalent to cluster CA (van de Velden et al., 2017), which is equivalent

to GROUPALS (Van Buuren & Heiser, 1989) when applied to categorical variables.

Thus, MSCCA represents an extension of cluster CA that is able to specify the cluster

allocation for each class simultaneously in a common low-dimensional space, in which the

quantifications for categories Bj (j = 1, . . . ,m) are optimally estimated for all clusters.

The advantage of MSCCA is, by plotting the cluster results of each class in a common

low-dimensional space, we can not only identify different heterogeneous tendencies within

a class in a single MCA biplot, but also perceive the relationships among classes.

3.2.2 Algorithm of MSCCA

Algorithm to estimate MSCCA parameters

To estimate the parameters U ,G, and Bj (j = 1, . . . ,m), we use an alternating least

squares algorithm. The updating formulas come from a direct extension of cluster CA

(van de Velden et al., 2017).
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Step 1: Initialization. Determine Khs (h = 1, . . . , H ; s = 1, . . . , rh) and p. Set the

number of iterations to t = 0, and set a convergence criterion ε. Then, randomly

generate initial clusters for each class.

Step 2: Update Bj. Let B = (B′
1, . . . ,B

′
m)′ and ZH = (ZH

1 , . . . ,Z
H
m ). Then find

B(w+1) as

B(w+1) =
√
nmD−1/2B∗

where
1

m
D−1/2ZH′JnHU (w)(U (w)′U (w))−1U (w)′JnHZD−1/2 = BΛB∗′

D = Z̃ ′Z̃, Z̃ = b-diag(ZH
1 , . . . ,Z

H
m )

Step 3: Update G. Obtain G(w+1) as follows:

G(w+1) =
1

m
(U (w)′U (w))−1U (w)′JnHZB(w+1)

Step 4: Update U . To obtain U
(w+1)
h , the update proceeds by row. Specifically, each

element in the ith row of Uh, or uhis = (uhisk) (k = 1, . . . ,Khs), gets updated as

follows: If vhis = 1,

u
(w+1)
hisk =


1 (k = argmin

ℓ∈{1,...,Khs}
∥fi − g

(w+1)
hsℓ ∥2)

0 (others)

and otherwise, u
(w+1)
hisk = 0. Here, fi is the ith row of JnZB(w+1), and g

(w+1)
hsk is

the cluster center of the kth cluster in the sth category in the hth supplementary

variable.

Step 5: Convergence test Compute ψ(w), the value of the objective function from

Equation (3.2.1), using updated parameters. For t > 1, if ψ(w) − ψ(w−1) < ε,

terminate; otherwise, let t← t+ 1 and return to Step 2.

Problem of local minimum in MSCCA

Similar to CCRS algorithm, MSCCA applies k -means type algorithm, and thus has

a local minimum problem. Figure 3.1 shows the value of optimized MSCCA objective

function over the number of algorithm runs, similar to Figure 2.5. This figure suggests

that with more runs, the more stable results. However, after some T (in this example,

T should be around 25), the algorithm gets relatively stable. Therefore, in practice, it is

recommended to make a plot like Figure 3.1, and specify T around which the algorithm

gets relatively stable.

3.2.3 Biplot by MSCCA

Here, we show how MSCCA can be used to construct a biplot. In van de Velden et al.

(2017), cluster CA is formulated as a maximization problem.
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Figure 3.1: The graph of optimized value of MSCCA objective function over the number

of algorithm runs T with different initial values, similar to Figure 2.5. The artificial data

used in this example is n = 300, m = 10, H = 3, rh = 2, (h = 1, . . . ,H), Khs = 2,

(h = 1, . . . ,H ; s = 1. . . . , rh), and q = 5. How to generate the artificial data is explained

in Section 3.3.1.
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Proposition 3.2.1. the MSCCA in Equation (3.2.3) can be rewritten as the following

maximization problem:

max
U ,B

ψ(U ,B |ZH) = trB′ZH′JnHU ′(U ′U)−1U ′JnHZHB (3.2.5)

s.t.
1

nHm

m∑
j=1

B′
jZ

H′
j ZH

j Bj = Ip

Proof. To simplify the notation, in this proof we only consider H = 1 case without loss

of generality, and denote ZH and ZH
j by Z and Zj . At first the equivalence is shown

when U is fixed. Considering the constraints, Equation (3.2.3) can be rewritten as

ψ(U ,G,B) =
1

nm

m∑
j=1

∥UG−ZjBj∥2

=
1

nm

m trG′U ′UG− 2 tr
m∑
j=1

B′
jZ

′
jUG+ tr

m∑
j=1

B′
jZ

′
jZjBj


=

1

n
trG′U ′UG− 2

nm
trB′Z ′UG+ p,

because 1
nm

∑m
j=1B

′
jZ

′
jZjBj = Ip. Using JnUG = UG and omitting the constant, this

minimization will be

1

n
trG′U ′UG− 2

nm
trB′Z ′JnUG (3.2.6)

Solving this for G, we obtain

G =
1

m
(U ′U)−1U ′JnZB

Inserting this in Equation (3.2.6), it will be

1

nm2
trB′Z ′JnU

′(U ′U)−1U ′JnZB − 2

nm2
trB′Z ′JnU

′(U ′U)−1U ′JnZB

= − 1

nm2
trB′Z ′JnU

′(U ′U)−1U ′JnZB

Minimizing this is equivalent to maximizing Equation (3.2.5). Next, the equivalence is

shown when B is fixed and U is not. At first, a k -means type optimization problem

min
U ,G
∥UG− JnZB∥2

is equivalent to the optimization problem in Equation (3.2.5), since this can be rewritten

as

∥UG− JnZB∥2 = trG′U ′UG− 2 trB′Z ′JnUG+ trB′Z ′JnZB

= − trB′Z ′JnU
′(U ′U)−1U ′JnZB + trB′Z ′JnZB (3.2.7)

Here, we useG = m−1(U ′U)−1U ′JnZB. Omitting a constant term, minimizing Equation

(3.2.7) is equivalent to maximizing Equation (3.2.5). On the other hand, with Bj (j =
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1, . . . ,m) fixed, Equation (3.2.3) can be written as

m∑
j=1

∥UG−ZjBj∥2 = ∥UG−ZB∥2

= trG′U ′UG− 2 trB′Z ′JnUG+ trB′Z ′ZB

= − trB′Z ′JnU
′(U ′U)−1U ′JnZB + trB′Z ′ZB

This is the same as Equation (3.2.7). Thus, we obtain the proposition.

When we leave U fixed, maximizing Equation (3.2.5) is equivalent to minimizing

min
G,B

ψCA(G,B |ZH ,V ,U) = ∥P̃ −D1/2
r GB′D1/2

c ∥2 (3.2.8)

s.t.
1

nm
B′DcB = Ip

where P̃ = D−1/2
r (P − rc′)D−1/2

c (3.2.9)

P = (nm)−1U ′ZH , r = P1Q, c = P ′1K , Dr = diag(r), Dc = diag(c)

The proof of the equivalence is available from van de Velden et al. (2017). Here, P

indicates a K × Q scaled contingency table of clusters for each class (row) and category

(column), and each element in rc′, rkcℓ (k = 1, . . . ,K; ℓ = 1, . . . , Q), indicates the scaled

expected frequency with an assumption of independence between the kth cluster and the

ℓth category. Thus, the matrix P̃ represents the standardized deviations from the the

assumption of independence between cluster membership and the categorical variables.

From Equation (3.2.8), it follows that the inner product of D
1/2
r G and D

1/2
c B approx-

imates the matrix of standardized deviations from independence, P̃ . That is, in MSCCA,

we can use G and B to construct a biplot in which a greater the inner product of the kth

row vector of G and the ℓth row vector in B generally indicates a stronger association

between the kth cluster and the ℓth category.

Note that in the resulting biplot, the points of the row and column are not necessarily

similarly spread (e.g., J. Gower, Groenen, & van de Velden, 2010). In this case, the points

can be scaled using a constant, such that the average squared deviation from the origin of

the row and column points is the same. See van de Velden et al. (2017) for detail.

3.2.4 Relationship with linear row constraint approach

Hwang and Takane (2002) show that several approaches for incorporating external infor-

mation about individuals into an MCA biplot can be generalized, as a linear row constraint

framework.

To add linear row constraints in MCA, we formulate the following objective function

min
Γ,B

ψconst(Γ,B |Zj ,Vh) =
1

nm

m∑
j=1

∥CΓ−ZjBj∥2 (3.2.10)

s.t.
1

nm

m∑
j=1

B′
jZ

′
jZjBj = Ip, JnCΓ = CΓ,
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where C is the n × n matrix that contains linear row constraints for the quantifications.

If C = I, the problem reduces to the homogeneity formulation of MCA.

The choice of C depends on the objective that underlies the incorporation of the ex-

ternal information. For example, if we were to use C = V (V ′V )−1V ′, where V =

b-diag(V1, . . . ,VH), and we inserted ZH
j for Zj , then Equation (3.2.10) would produce

the averaging approach we described previously, because the class (category) would be

represented by the average quantification of individuals corresponding to that class. Al-

ternatively, if we aimed to “remove” the effect of external information from a biplot, then

we might use C = I −V (V ′V )−1V ′ (e.g., Takane & Shibayama, 1991; Takane & Hwang,

2002; Hwang & Takane, 2002), which is equivalent to deducting the class conditional means

from the data. For example, if as supplementary variable we have gender, the mean of all

males is deducted from all male observations.

Although MSCCA follows a different approach from these two examples to incorporate

external information, we can reformulate this method to fit into the linear row constraint

framework. In particular, for a fixed U , the MSCCA objective function in Equation (3.2.3)

can be rewritten as a minimization problem:

Proposition 3.2.2. Minimizing Equation (3.2.3) with respect to B is equivalent to min-

imizing

min
Γ,B

ψMSCCA(Γ,B |Z,U ,V ) =
1

nHm

m∑
j=1

∥CΓ−ZH
j Bj∥2 (3.2.11)

s.t.
1

nm

m∑
j=1

B′
jZ

H′
j ZH

j Bj = Ip, JnHCΓ = CΓ

where C = U(U ′U)−1U ′

where, U still features the hierarchical cluster structure constraint imposed by Equation

(3.2.2).

Proof. Similar to Proposition 3.2.1, in this proof we only consider H = 1 case without

loss of generality in order to simplify the notation.

Using constraints, Equation (3.2.11) can be rewritten as

ψMSCCA(Γ,B) =
1

n
trΓ′CΓ− 2

nm
trB′Z ′JnCΓ (3.2.12)

Solving this for Γ, we obtain

Γ =
1

m
JnZB

Inserting this into Equation (3.2.12), we obtain a minimization problem of

− 1

nm2
trB′Z ′JnU(U ′U)−1U ′JnZB. (3.2.13)

On the other hand, using the proof in Proposition 3.2.1, the optimization problem in

Equation (3.2.3) can also be rewritten as (3.2.13). Thus we obtain the proposition.
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Table 3.1: Categories of variables of artificial data for the simple illustration

Variable type Variable name Category

Variables to estimate quantifications Meal Western, Asian

Drink Fruits juice, Tea, Alcohol

Supplementary variables Nationality American, Japense

Gender Male, Female

From this formulation, it immediately follows that MSCCA represents a special case of

Equation (3.2.10), with C = U(U ′U)−1U ′.

Thus, even though MSCCA has a different objective to incorporate external information

from the existing approaches, this can be still considered as an extension of the linear row

constraint framework.

3.2.5 Numerical illustration of an MSCCA biplot

Here, we present a small example, using artificial data, to illustrate how MSCCA works.

With this example, we zoom in specifically on the differences between MSCCA and the

averaging approach for the visualization of heterogeneous tendencies.

To start, we artificially create categorical data of 200 individuals represented in Figure

3.2 that have two categorical variables (meal and drink preference), and two supplementary

variables (nationality and gender). Table 3.1 contains the variables and corresponding

categories. With this analysis, we seek to determine if different tendencies, with respect

to the meal and drink preferences, emerge for groups of individuals, depending on their

nationality and gender.

We created the data to establish three true clusters in the full data set. All individuals

in the first cluster choose “Western meal” for the meal variable, and “fruit juice” for the

drink variable (W&J), all in the second cluster choose “Asian meal” and “Tea” (A&T),

and in the third cluster, all individuals choose “Western meal” and “alcohol” (W&A).

The frequency distribution of the generated artificial data over each cluster in each class is

shown in Figure 3.2, revealing there are two clusters for Americans, Japanese and females

and three clusters for males.

The biplot that results from an averaging approach, in Figure 3.3 (left), clearly reveals

overall tendencies of many Americans and Japanese consumers, strongly associated with

W&J and A&T, respectively. However, the much smaller number of individuals who

choose “alcohol” makes it impossible to specify who (i.e., which nationality or gender)

makes this choice.

In contrast, by obtaining clusters for each class, the MSCCA biplot makes the tendencies

of this relatively small number of individuals visible. When we use the correct number

of clusters for each class, the MSCCA biplot result in Figure 3.3 (right) clearly reveals

that a small number of male Americans choose “alcohol”. In addition, this biplot still

depicts the tendencies of the larger groups, as obtained in the averaging approach. That

is, MSCCA reveals the tendencies of small groups, without losing the information about
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Figure 3.2: Frequency distributions for each combination of supplementary categories for

each true cluster

the tendencies of larger groups.

To understand why MSCCA can depict heterogeneous tendencies more clearly than the

averaging approach, we compare the methods that the two approaches use to calculate

associations between classes and categories. That is, both MSCCA and averaging reflect a

CA framework. Averaging is equivalent to CA for the
∑H

h=1 rh×Q contingency table (row

is class, column is category); MSCCA is equivalent to CA for the
∑H

h=1

∑rh
s=1Khs × Q

contingency table (row is clusters in each class, column is category), for a given cluster

allocation. Figure 3.4 shows heat maps of the relative deviations, P̃ ave and P̃MSCCA,

for each method calculated based on their respective contingency tables. Thus, using this

framework, we can say that the difference between the two methods is whether the rows

of the contingency table are split by clusters in each class.

This factor then distinguishes between averaging and MSCCA in the calculation of the

expected frequency, rc′. Specifically, in the averaging approach, the expected frequency

in the (3,1) element in P̃ ave is calculated using the number of individuals who are Amer-

ican and choose “alcohol”, whereas that for the (2,5) element in P̃MSCCA results from

calculating the number of individuals who are in the second cluster in the American class

and choose “alcohol”. That is, in MSCCA, the number of individuals used to calculate

expected frequency is less for each row in the contingency table than the number for the

averaging approach.

Note that the relative deviation indicates the size of the observed frequency (i.e., the

number of individuals choosing a particular category), compared with the expected fre-

quency (i.e., the expected number of individuals choosing the category under an assump-

tion of independence). Therefore, the relative deviation tends to increase when the ex-
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pected frequency is calculated using the limited number of individuals who select the same

categories.

Thus in MSCCA, clustering individuals for each class reveals the heterogeneous ten-

dencies within each class clearly, regardless of the size of the groups that exhibit similar

tendencies.

3.3 Simulation study of MSCCA

We conducted a simulation study to evaluate the performance of MSCCA in differ-

ent scenarios. By using simulations, we can determine the effects of the supplementary

variables on the accuracy of the clustering and biplots achieved through MSCCA.

3.3.1 Data generation

The data generation process consists of two steps: generating an n × m data matrix,

and generating n×H matrix of supplementary variables. First, we start by dividing the

m variables into two groups: active variables that relate to the clustering structure, and

noise variables that are unrelated to the cluster structure. Furthermore, we determine

the cluster allocation with a multinomial distribution. To generate data for the active

variables, we assign one category for each variable a high probability of 0.8. Then the (low)

probabilities assigned to the remaining categories are determined according to p̄ = (p̄ℓ)

(ℓ = 1, . . . , q−1), where p̄ = ((1−0.8)× (p1, . . . , pq−1)/
∑q−1

ℓ=1 pℓ) and pℓ ∼ U(0, (1−0.8)).

The high probability categories are cluster specific. Then to generate noise variables, we

use a multinomial distribution in which the proportion for each category is 1/q. In our

simulation study, we set the ratio of active to noise variables to 1 : 1.

Second, to generate the data matrix corresponding to the H supplementary variables,

we consider two scenarios: balanced and unbalanced distributions over the categories. In
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the balanced scenarios, the multinomial probabilities for all categories are equal. In the

unbalanced scenario, the probabilities are 1/S, . . . , rh/S, where rh denotes the number of

categories for the supplementary variable, and S =
∑rh

s=1 s.

3.3.2 Simulation study design

To assess the performance of the methods in different settings, we fix the number of

observations n = 300 and the number of variables m = 10. Then, we consider a full

factorial design with the number of categories for each variable q = 5, 7; the number of

clusters K = 2, 3; the number of supplementary variables H = 1, 3; and the number of

categories for the supplementary variables rh = 3, 5. Finally, for the supplementary vari-

ables we note the balanced and unbalanced scenarios. For each combination of parameters

in the simulation, we randomly generate 100 different n × m data matrices and n × H
supplementary variable matrices. For each data set, we apply MSCCA using 100 random

initial values.

3.3.3 Evaluation

We evaluate the performance of the proposed methods by checking the accuracy of both

the clustering and the biplots. To measure clustering accuracy, we turn to the ARI, same

as in Section 2.4. We calculate the ARI for the class-specific clustering results separately.

For biplot accuracy, we use a goodness-of-fit (GF) index (e.g., Gabriel, 2002), which is

equivalent to the so-called congruence coefficient (e.g., Lorenzo-Seva & Ten Berge, 2006).

The GF between configurations Y and H is defined as

GF(Y ,H) =
tr2(Y ′H)

tr(Y ′Y ) tr(H ′H)
= cos2(Y ,H).

Therefore, we calculate the GF between Y and H, where H = GB′ (with G and B as

the MSCCA solutions) and Y = P̃ true = Dr(P
true− rc′)Dc, such that P true = U ′Z and

U is the true cluster allocation. Note that by definition, GF∈ [0, 1]. In our calculation

of the GF index, we assume that the true cluster allocation is known. Therefore, cluster

accuracy does not affect the GF index.

3.3.4 Result

The results for the GF index in Figure 3.5 indicate that it tends to decrease as the

number of categories q increases. The number of supplementary variables H does not

substantially affect the GF. Rather, the GF tends to be somewhat better when there are

fewer categories rh in the supplementary variables and when the distribution over the

categories is balanced.

The cluster retrieval results in Figure 3.6 show that overall, ARI decreases when the

number of clusters K increases and when the number of categories q decreases. In con-

trast, the number of supplementary variables H and whether the distributions over the

categories are unbalanced do not affect the median ARI substantially. However, for more

supplementary variables with balanced distributions, we note more outlying results. In
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Figure 3.5: Boxplot of GF for each case. On the horizontal axis, b3 indicates balanced

categories in supplementary variables, and rh = 3 for all h = 1, . . . , H; while b5 has

balanced categories with rh = 5 for all h. Similarly, u3 and u5 indicate unbalanced

categories with rh = 3, 5, respectively.
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Figure 3.6: Boxplot of ARI for each case.

addition, the number of categories for the supplementary variables appears to affect vari-

ance in the ARI results, such that the ARI for rh = 5 has greater variance than that for

rh = 3.

3.3.5 Conclusions from the simulation study

The simulation study shows that the number of supplementary variables does not affect

the accuracy of the biplot or the clustering. We can increase the number of supplementary

variables H without harming the accuracy of the results. However, increasing the number

of supplementary variables H leads to more points in the biplot, resulting in a more

complicated visualization. We thus assert that H can be increased as long as the biplot

remains interpretable.

In addition, though the clustering results are hardly affected by the nature of the sup-

plementary variables (i.e., number of categories rh, and whether the distribution over the

categories is balanced), the simulation study indicates that biplot accuracy is affected.

In particular, using supplementary variables with more categories and unbalanced dis-

tributions over categories leads to a decrease in biplot accuracy. In conclusion, when

there are several candidates for supplementary variables, it is better to select balanced

supplementary variables with fewer categories.
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Table 3.2: Categories for each variable and their corresponding labels in biplots and

descriptions.

Variable type Variable name Label Description

Non-supplementary variables Light conditions Dark0 Daylight

Dark1 Darkness: street lights present and lit

Dark2 Darkness: street lights present but unlit

Dark3 Darkness: no street lighting

Weather conditions Fine Fine without high winds

Rain Raining without high winds

Snow Snowing without high winds

Fine w Fine with high winds

Rain w Raining with high winds

Snow w Snowing with high winds

Fog Fog or mist ― if hazard

Other Other

Road surface conditions Dry Dry

Wet Wet / Damp

Snow Snow

Frost Frost / Ice

Flood Flood (surface water over 3cm deep)

Speed limit ∼30 Speed limit is up to 30km/h

∼70 Speed limit is up to 70km/h

Supplementary variables Casualty class Driver Casualty is one driver

Ped Casualty is one pedestrian

Area Urban Occurring in urban area

Rural Occurring in rural area

3.4 Empirical example of MSCCA

In this Section, we illustrate the proposed method using data that reflect road accidents

in the United Kingdom. With these data, we seek to determine how the circumstances

in which a car accident occurs depends on the type of accident. We compare the results

using MSCCA, the averaging approach, and cluster CA, to establish how each method

would visualize the relationships.

3.4.1 Data and setting

The data were obtained from the U.K. Department for Transport’s road safety statistics

(https://data.gov.uk/dataset/road-accidents-safety-data). In these data, observations are

accidents, and the (categorical) variables refer to information about those accidents. For

this illustration, we selected accidents that occurred in January 2016, that involved one

casualty (either a driver or a pedestrian), and in which at most two parties were involved.

The resulting data set contains n = 3, 026 observations.

Regarding the circumstances of the accident, we consider four (i.e., m = 4) variables:

lighting conditions, weather conditions, road surface conditions, and speed limit. For the

types of accident, we select two (H = 2) supplementary variables: casualty class and area.

53



Table 3.2 summarizes the variables and their categories.

As is true of any cluster analysis method, determining the number of clusters is not

trivial. In MSCCA, the number of clusters must be prespecified for each class Khs (h =

1, . . . , H; s = 1, . . . , rh). For this study, we use the KL index to determine the number of

clusters for each class, with separate cluster CA analyses. Specifically, we apply cluster

CA to class-specific data (i.e., data corresponding to one category of the supplementary

variables) to determine the number of clusters Khs that corresponds to the optimal KL

index. This procedure results in four clusters for the driver class, five clusters for the

pedestrian class, four in the urban class and four clusters for the rural class (i.e., K11 = 4,

K12 = 5, K21 = 4 and K22 = 4). Henceforward, we refer to a cluster from the driver class

as driver cluster, clusters from the pedestrian class as pedestrian clusters, and so on.

In a comparative analysis, we also consider the averaging approach and cluster CA with

complete data (i.e., including the supplementary variables in the analysis to determine

clusters and quantifications). To select the number of clusters for the complete cluster CA

analysis, we employed the KL index and obtained K = 7 clusters.

3.4.2 Result

MSCCA result

In the biplot for the MSCCA solution (Figure 3.7), we see that the largest pedestrian

clusters, as well as the largest urban and rural clusters (P1, U1, and Ru1, respectively)

are related to categories such as “Fine,” “Fine w,” and “Dry.” That is, many accidents in

urban and rural areas result in pedestrian casualties and have a strong association with

what is generally be considered good driving conditions (e.g., fine weather, dry roads).

The driver cluster (D1) instead is related to categories such as “Dark3,” “Snow w

(weather condition),” and “Snow (road surface).” Therefore, accidents that result in driver

casualties tend to have a strong association with bad driving conditions, such as a dark

night or slippery road. Another driver cluster, close to the good conditions, is the small-

est one, indicating that accidents resulting in a driver casualty are less likely under good

driving conditions.

In the rural class, we also recognize that though the largest rural cluster is proximal to

categories that correspond to good conditions, the second largest rural cluster is close to

bad conditions. Therefore, accidents in rural areas occur in both good and bad driving

conditions.

The fourth-largest cluster for rural data and the third-largest clusters for the three

other classes indicate similar associations with categories such as “Rain,” “Rain w,” and

(to some extent) “Wet.” This indicates that for all classes of supplementary variables,

some clusters of accidents occur in rainy weather.

By inspecting the MSCCA biplot and relating the class-specific cluster points to the

category quantifications, we can visually perceive how accidents, split into different classes,

relate differently to weather and road conditions. For example, for pedestrians, the risk

of casualties exists even in favorable conditions, but accidents involving drivers are more

strongly related to bad conditions.
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Figure 3.7: Results using MSCCA. The numbered labels indicate cluster points with “D”

indicating driver clusters, “P” corresponding to the pedestrian class, “U” to the urban

class, and “Ru” to rural class clusters. The numbers reflect the size of each cluster within

its class (e.g., “D1” indicates the largest size cluster in the driver class), as also indicated

by the label sizes. Character labels also indicate light conditions “L”, weather conditions

“W”, road surface conditions “R”, and speed limits “S”.
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Note that since there are more sunny or cloudy days than rainy or other whether which is

unfavorable to drivers, we could not simply state that the good weather is more associated

with the car accidents. However, this result at least indicates the possible association

compared with other categories used in the data analysis.

Averaging approach result

The results using the averaging approach are in Figure 3.8. We can still interpret the

information regarding classes with respect to categories, but the averaging of the results

limits the available information. Specifically, we see that “Driver” and “Rural” relate to

categories indicating bad driving conditions (e.g., “∼70”, “Show”), while “Pedestrian” and
“Urban” are related to categories corresponding to good driving conditions (e.g., “∼30”,
“Fine”, “Dark0”). However, it is difficult to interpret the relationship between classes and

categories that are not close to the class quantifications. Averaging limits us to interpreting

tendencies that many accidents in each class have in common. Differentiation with respect

to smaller, relatively homogeneous subgroups is no longer possible.

Cluster CA result

Figure 3.9 shows the results using the cluster CA approach. In contrast with the averag-

ing approach, we can now distinguish different clusters corresponding to several accident

tendencies. For example, we find a cluster associated with rain-related categories, whereas

this relationship was not clear in the averaging results. Yet the cluster CA approach still

limits interpretations with respect to classes. For example, we can see that “Pedestrian”

and “Urban” are related to good driving conditions, but we cannot interpret the rela-

tionship between the “Pedestrian” and “Urban” class in conditions such as rainy or bad

driving conditions (e.g, “∼70” and “Dark3”). In contrast, with MSCCA, we can better

interpret these relationships (e.g., we can see that the “Pedestrian” class has a weaker

association with bad driving conditions than with good ones or with rainy conditions,

because the smallest pedestrian cluster is closest to bad driving conditions.)

3.4.3 Conclusions of empirical data analysis

In this Section, we have compared three visualization results to appraise differences in

how the biplots incorporate external information. All three methods can identify situations

in which many accidents occur in each class. However, only by using MSCCA were we able

to differentiate across conditions in which many or few accidents occurred. Specifically,

this method reveals that relatively many accidents in the “Pedestrian” and “Urban” classes

occur when conditions are good, but fewer occur when conditions are bad. Conversely, for

the “Driver” class, accidents predominantly occur under bad conditions, with only a few

appearing when conditions are good. For accidents corresponding to the “Rural” class, we

find that they occur in both good and bad conditions. Finally, for all classes, we uncover

relatively small clusters of accidents that relate strongly to rainy conditions.
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Chapter 4

Conclusion

In this paper, two problems in interpretation of large-scale categorical data are con-

sidered. When data is large scale, it is useful to apply methods to capture the latent

structure of data for simple interpretation. As such a method, a cluster analysis and a

visualization method are often used. However, in some situation, it is still difficult to

interpret with these methods. To overcome issues, new methods are proposed, in Chapter

2 and 3, respectively.

In Chapter 2, the problem of response style bias when clustering ordinal categorical data

was discussed. In this paper, as the response styles we focus on acquiescence, disacquies-

cence, midpoint, or extreme response styles, similar to Schoonees et al. (2015), and assume

that that there are no respondents having response-style-like preference. There have been

many methods to detect response style bias in both probabilistic and non-probabilistic

models, but not so many to correct for response styles. CDS, non-probabilistic model,

proposed by Schoonees et al. (2015), can correct for response styles, and they investigated

the accuracy of correction using the simulation study. In this paper, to conduct correction

and clustering on the corrected data more efficiently than CDS, which requires a dimen-

sional reduction, we proposed a new method, called CCRS, for simultaneously correcting

for response style bias and performing content-based clustering.

By generalizing the concept of a response function as introduced by van de Velden (2008)

and Schoonees et al. (2015), respondent-specific response functions were estimated without

first applying a dimension reduction technique. In CCRS, we obtain clusters which are

not affected by response style bias. Note that our new correction method explained in

Section 2.3.1, which is a part of CCRS, can also be used to correct for response style bias

in combination with other methods and applications.

In a simulation study, we demonstrated that our proposed CCRS method outperforms

existing methods such as a CDS tandem (CDS and k -means) as well as k -means in most

cases. In particular, when both content and response-style-based clustering structures ex-

ist, CCRS performs better concerning the retrieval of the content-based clustering struc-

ture. Overall, fewer clusters and more rating categories, i.e. a larger rating scale, yields

better CCRS results for both content and response-style-based clusters. In addition, we

showed that the performance of CCRS is not strongly affected by an increase in the number
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of response styles D and a decrease in the sample size n.

Using an empirical dataset, we illustrated that CCRS yields different content and

response-style-based clusters whereas both CDS tandem and k -means lead to content-

based clusters that are hard to distinguish from response-style-based clusters. Obviously,

the results of the empirical data are, as is often the case in cluster analysis studies, difficult

to validate. Nonetheless, these results do illustrate that the potential challenge associated

with existing methods (i.e., identifying clusters that are merely related to response tenden-

cies) can be mitigated with the proposed approach. Moreover, we implemented an R pack-

age, ccrs, which can be download from https://cran.r-project.org/web/packages/ccrs/.

There are many opportunities for future work based on CCRS. At first, in this paper,

only content-based clusters that differ from response-style-based clusters were extracted

in this paper; however, if there exists a response-style-like content-based cluster (such as

a content-based cluster of mostly midpoint values), additional tools, such as Anchoring

vignette (King, Murray, Salomon, & Tandon, 2004), may be required to distinguish them.

In addition, for the new framework described in Section 2.2, only the relationship with

CDS was considered in this paper. However, we should consider its relationship with

probability-based model, such as IRT methods as well as the method proposed by van

Rosmalen et al. (2010). Such an evaluation could possibly result in a very general frame-

work for correction that includes various existing correction methods and that would

facilitate a comparison of the correction accuracies of different correction methods.

In Chapter 3, we have proposed a new approach to incorporate and interpret external

information in a biplot for categorical data. Specifically, we introduce a multiple-set

extension to cluster CA, MSCCA, that can visually establish the relationship between

external information and categories. In MSCCA, unlike the averaging approach, the class-

specific clusters obtained make it possible to identify heterogeneous tendencies within each

class. In addition, by simultaneously biplotting clusters in different classes in a common

low dimension space, the relationships among classes can be perceived in a single MCA

biplot. Moreover, we show how MSCCA relates to the existing linear row constraint

framework, discussed in Hwang and Takane (2002). Note that MSCCA is especially useful

when there are many individuals in each class which is of interest.

To investigate the performance of this proposed method, we consider different condi-

tions, according to a simulation study. The results show that increasing the number of

supplementary variables H has little effect on cluster or biplot accuracies. However, the

results are better if the supplementary variables feature few categories and a balanced

distribution over categories.

Then with an empirical analysis of road accident data, we show that that the averaging

and cluster CA approaches can uncover only tendencies corresponding to the majority

of accidents in each class. The MSCCA biplot instead makes it possible to interpret

heterogeneous tendencies within each class, regardless of cluster sizes.

Finally, MSCCA introduced in Section 3.2 can be applied to different settings. In partic-

ular, it could be adopted in a three-way setting to depict the relationship among multiple

two-way data sets. For example, if we have n×m categorical data sets corresponding to
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T different time points, we could use MSCCA to reveal the relationships among clusters

at different times.

Since the increasing number of large-scale categorical data has been obtained recently,

it is important to capture the latent structure of data for simple interpretation. Therefore,

we can expect that these two proposed methods help data analyser interpret the result of

data analysis which has been considered complicated.
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Böckenholt, U., & Böckenholt, I. (1990). Canonical analysis of contingency tables with

linear constraints. Psychometrika, 55 (4), 633–639.
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