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Abstract

Speech is one of the most natural communication modalities for humans. Since the

advent of computers, the development of natural speech communication channels be-

tween humans and computers has been one of the greatest goals in computer science

research fields. For such natural communication channels, automatic speech recog-

nition (ASR) technology, which converts speech into text by computer programs,

has been scrutinized and comprises the core of such intelligent and user-friendly

applications as voice dictation, voice search, voice command, and spoken dialogue

systems.

Over the past several decades, machine learning (ML)-based approaches have been

a center pillar of ASR research, based on the advancement of such key ML method-

ologies as (artificial) neural networks and probabilistic modeling. With the recent

advent of deep learning (DL) techniques, ASR performances have significantly im-

proved in the past five years or so. However, such DL-based ASR technologies re-

main insufficient for appropriately coping with the variability of speakers and speak-

ing environments; there are obvious needs for further improving ASR technologies.

The most fundamental way for coping with the variability is to fully represent it in

training stages for ASR systems. However, it is basically unrealistic to predict the en-

tire variability. Accordingly, incorporating some effective compensation techniques

with DL-based ASR systems is a reasonable solution to the variability problem. Mo-

tivated by this understanding, in this dissertation, we investigate novel compensation

techniques for deep neural network (DNN)-based ASR systems by introducing an in-

ternal structure to DNN, which enables ASR systems to evoke the aptitude of DNN

for dealing with speaker and/or environment variability.



In this dissertation, we separately study two kinds of variability: 1) variability in

speakers, and 2) variability in speaking environments (changes in background noise

and reverberation). For the former issue, we propose a novel speaker adaptation

algorithm that incorporates the speaker adaptive training (SAT) concept into the

training of DNN in the framework of a hybrid DNN and Hidden Markov Model

(HMM) speech recognizer. Our proposed SAT-based speaker adaptation scheme

introduces modularity, more precisely, localizing a speaker dependent (SD) mod-

ule, in the DNN part of the hybrid system and optimizes the DNN part, assuming

that the SD module is adapted in the adaptation stage. For the latter environment-

related issue, we focus on a recently proposed end-to-end ASR architecture, which

is completely composed of neural networks, and propose a novel multichannel end-

to-end (ME2E) ASR architecture that integrates speech enhancement and speech

recognition components into a single neural network-based architecture. Our pro-

posed architecture allows the overall procedure of multichannel speech recognition

(i.e., from speech enhancement to speech recognition) to be optimized only under

a recognition-oriented training (learning) criterion using multichannel noisy speech

samples and their corresponding transcriptions.

We conducted several experimental evaluations of our proposed methods and suc-

cessfully demonstrated their effectiveness in further increasing the performances of

DNN-based ASR systems. The proposed SAT-based speaker adaptation methods

successfully increased the adaptability of DNN-HMM hybrid systems and reduced

the size of the adaptable parameters. The proposed ME2E ASR architecture success-

fully learned a noise suppression function through end-to-end recognition-oriented

optimization and improved ASR performances in various noisy environments.
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1Introduction

1.1 General Background

Speech is one of the most natural mediums through which humans communicate. For such

natural communication between humans and computers, automatic speech recognition (ASR)

technology, which converts speech into text by computer programs, has been continuously and

vigorously investigated in the computer science research field. Moreover, based on the recent

dramatic advancement of computer and telecommunication technologies, computers are now

being widely used in daily life. The expectations for the development of high-quality ASR

technology continue to increase.

Due to the progress of machine learning (ML) and probabilistic modeling technologies, ML-

based approaches have become the mainstream of recent ASR research and enable ASR systems

to automatically learn mapping functions that transfer speech to text, based on training sample

pairs, each of which consists of a speech sample and its corresponding transcription. Over the last

decade, deep learning (DL) techniques [1] have achieved remarkable successes in such tasks as

computer vision [2, 3, 4], machine translation [5, 6, 7], and ASR [8, 9, 10]. However, regardless

of the large success of DL-based approaches, the performances of DL-based ASR systems remain

insufficient, mainly because they have failed to cope with the high variability of speakers and/or

speaking environments (changes in noise and reverberation).
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1.2 Contributions

The objective of this dissertation is to develop methods for further increasing DL-based ASR

systems. With the recent advent of DL techniques, we focus on two types of DL-based ASR

frameworks: 1) a hidden Markov model (HMM)-based hybrid framework and 2) an end-to-

end framework. We also investigate these two frameworks by focusing on two major factors in

decreasing ASR performances: speaker and speaking environment variability. Our main idea

for solving the variability problems is to incorporate modularity into the DNN structure, which

embeds prior knowledge to the ASR architecture and evokes the aptitude of DNN for dealing

with such variabilities.

1.2.1 Speaker Variability: Speaker Adaptive Training for Deep Neural

Networks

To achieve high recognition performances, ASR systems must effectively cope with the speaker

variability derived from differences in speaker characteristics. The differences of such speaker

characteristics substantially change the speech waveforms whose linguistic content is identical

(such as words) and generally degrades ASR performances. In real world applications, ASR

systems must deal with the speech inputs spoken by myriad unknown speakers, which are not

included in training speakers. Therefore, for higher ASR performances, the speaker variability

problem must be solved. As one solution to it, speaker adaptation techniques have been studied

because they compensate the mismatch between the training speakers used for training ASR sys-

tems and unknown testing speakers by adapting ASR systems using the target speaker’s speech

data.

In parallel with the advancement of speaker adaptation techniques, speech recognizers, which

have long been constructed by Gaussian Mixture Models (GMMs) and HMMs [11, 12], are

welcoming a new hybrid structure of Deep Neural Networks (DNNs) and HMMs [8, 9, 10].

However, despite the high utility demonstrated by DNN in various tasks, the hybrid DNN-HMM

2



has not yet completely solved the sample finiteness problem in speaker adaptation frameworks,

i.e., insufficient adaptation to unseen speakers.

In light of the above backgrounds, our dissertation proposes a novel speaker adaptation algo-

rithm that incorporates the speaker adaptive training (SAT) concept into DNN training. The

proposed SAT-based speaker adaptation scheme introduces modularity (more precisely, localiz-

ing a speaker dependent (SD) module) in the DNN and optimizes the DNN on the premise that

the SD module is adapted in the adaptation stage, which increases the DNN’s adaptability.

1.2.2 Environment Variability: Multichannel End-to-end Speech Recogni-

tion

To achieve high recognition performance, we must also cope with various types of environ-

ment variability, including noise and reverberation. In real world applications, speech inputs

for ASR systems are generally contaminated by background noise and reverberation. The exis-

tence of such interferences changes the speech waveforms and substantially degrades the ASR

performance. Therefore, to compensate the speech contamination, a speech enhancement (noise

suppression) mechanism must be incorporated in ASR architecture.

Over the last decade with the advent of DL techniques, a hybrid DNN-HMM framework [8, 9, 10]

has become a standard approach for ASR tasks. In conjunction, significant interest exists in

developing fully end-to-end DL architectures, such as attention-based encoder-decoder networks

[13, 14] and connectionist temporal classification (CTC) systems [15, 16]. The benefits of such

approaches include 1) structural simplicity (the entire procedure from input to output consists

of a monolithic neural network-based architecture) and 2) optimization consistency (the entire

system is optimized with a single ASR-level objective). However, previous research on end-to-

end frameworks mainly focused on the ASR problem in a single-channel setup without speech

enhancement. Considering real world applications, studying such frameworks in a multichannel

setup with speech enhancement is a critical research direction.
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In light of the above trend, this dissertation focuses on recently proposed end-to-end ASR frame-

works and proposes a novel multichannel end-to-end (ME2E) ASR architecture that integrates

the speech enhancement and speech recognition components into a single neural network-based

architecture. Our proposed architecture optimizes the overall inference in multichannel speech

recognition (i.e., from speech enhancement to speech recognition) based on the end-to-end ASR

objective only using multichannel noisy speech samples and their corresponding transcription

and leads to an end-to-end framework that works well in the presence of strong background

noise.

1.3 Outline

The rest of this dissertation is organized as follows:

� Chapter 2–Preliminaries

This chapter describes the basic preliminaries of the DL and ASR technologies. After reviewing

the structure of DNNs and their training procedure, we describe an overview of recent ASR

frameworks that utilize DL techniques.

� Chapter 3–Speaker Adaptive Training for Deep Neural Networks

This chapter deals with a speaker adaptation problem for the hybrid DNN-HMM framework. We

propose a SAT-based speaker adaptation scheme for the hybrid DNN-HMM speech recognizer.

The effectiveness of the proposed methods was experimentally validated. Part of this research

was presented in the following publications [17, 18, 19, 20]:

– Tsubasa Ochiai, Shigeki Matsuda, Hideyuki Watanabe, Xugang Lu, Chiori Hori, Hisashi

Kawai, and Shigeru Katagiri, "Speaker Adaptive Training Localizing Speaker Modules in

DNN for Hybrid DNN-HMM Speech Recognizers," IEICE Transactions on Information

and Systems, vol. E99-D, no. 10, pp. 2431-2443, 2016.

– Tsubasa Ochiai, Shigeki Matsuda, Xugang Lu, Chiori Hori, and Shigeru Katagiri, "Speaker

adaptive training using deep neural networks," IEEE International Conference on Acous-
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tics, Speech and Signal Processing (ICASSP), pp. 6349-6353, 2014.

– Tsubasa Ochiai, Shigeki Matsuda, Hideyuki Watanabe, Xugang Lu, Chiori Hori, and

Shigeru Katagiri, "Speaker adaptive training using deep neural networks embedding linear

transformation networks," IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), pp. 4605-4609, 2015.

– Tsubasa Ochiai, Shigeki Matsuda, Hideyuki Watanabe, Xugang Lu, Hisashi Kawai, and

Shigeru Katagiri, "Bottleneck linear transformation network adaptation for speaker adap-

tation for speaker adaptive training-based hybrid DNN-HMM speech recognizer," IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5015-

5019, 2016.

� Chapter 4–Multichannel End-to-end Architecture for Automatic Speech Recognition

This chapter focuses on a noisy ASR problem for the end-to-end ASR framework. We extended

an existing attention-based encoder-decoder framework by integrating a neural beamformer and

proposed a unified architecture of an ME2E ASR. The effectiveness of the proposed architecture

was also experimentally validated. Part of this research was presented in the following publica-

tions [21, 22, 23]:

– Tsubasa Ochiai, Shinji Watanabe, Takaaki Hori, John R. Hershey, and Xiong Xiao, "A

Unified Architecture for Multichannel End-to-End Speech Recognition with Neural Beam-

forming," IEEE Journal of Selected Topics in Signal Processing, vol. 11, no. 8, pp. 1274-

1288, 2017.

– Tsubasa Ochiai, Shinji Watanabe, Takaaki Hori, and John R. Hershey, "Multichannel

End-to-end Speech Recognition," International Conference on Machine Learning (ICML),

pp. 2632-2641, 2017.

– Tsubasa Ochiai, Shinji Watanabe, and Shigeru Katagiri, "Does Speech Enhancement

Work with End-To-End ASR Objectives?: Experimental Analysis Of Multichannel End-

To-End ASR," IEEE International Workshop on Machine Learning for Signal Processing

(MLSP), 2017.
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� Chapter 5–Conclusion

This chapter summarizes the main contributions of this dissertation and discusses future research

directions.
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2Preliminaries

2.1 Deep Leaning Techniques

2.1.1 Deep Neural Networks

DNN is a multilayer perceptron (MLP) with multiple (deep) intermediate layers, which can be

used as a general function approximator. Given input feature vector x, it repeats the feature trans-

formation in the intermediate layers and finally produces the network output vector y. The mul-

tilayer structure enables the network to learn multilevel feature representations, which provides

high feature representation capability to DNN. Although DNN can be used for both classification

and regression tasks, this section denotes the DNN’s formalization focusing on the classification

task.

Figure 2.1 illustrate the overview of the DNN structure. The adopted DNN is a standard MLP

network whose node has trainable connection weights and a trainable bias. We denote the

weight matrix and the bias vector between network layers Ll−1 and Ll as Wl and bl. We also

denote the pair of Wl and bl as λl = {Wl, bl}. The example DNN in the figure has seven layers

{L0,L1, · · · ,L6}. For simplicity, we omit the biases in the figure.

Let y be the network output vector defined as y = {yk; k = 1, 2, · · · ,K}, where k corresponds to

k-th class label and K is the number of classes. Generally, the computation procedure of DNN
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Figure 2.1: DNN structure.

are formalized as follows:

h1 = φh(W1x + b1), (2.1)

hl = φh(Wlhl−1 + bl) (l = 2, 3, · · · , L − 1), (2.2)

y = φo(WLhL−1 + bL), (2.3)

where hl is the outputs from l-th intermediate layer, L is the number of transformation layers,

φh is an activation function for intermediate layers (e.g. sigmoid function), and φo is an activa-

tion function for output layer (e.g. softmax function). When we use softmax function for the

activation function, the posterior probability P(y|x) can be estimated as the network output.

2.1.2 Training Procedure

We assume that training samples X = {{xn, tn}; i = 1, · · · ,N} are available to train the DNN,

where xn is the n-th training feature vector, tn = {tn
k ; k = 1, 2, · · · ,K} is its corresponding target

label, and N is the number of such samples. Given training feature vector xn to input layer, DNN

emits network outputs yn = {yn
k; k = 1, 2, · · · ,K} at output layer.

Let Λ = {λl; l = 1, · · · , L} be a total set of trainable model parameters. When we assume that

Cross-Entropy (CE) error, which is a standard loss function for DNN-based classifier, is adopted
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for the objective function, DNN training is formalized as the following minimization problem:

Λ = arg min
Λ

ECE(Λ;X), (2.4)

where ECE is the accumulated CE error defined as:

ECE(Λ;X) = −

N∑
n=1

K∑
k=1

tn
k log yn

k . (2.5)

Here, tn
k is the teaching signal for yn

k that indicates 1 when xn belongs to class k but indicates 0

otherwise.

Because the computation procedure of DNN is fully differentiable, the above minimization prob-

lem can be solved using the arbitrary gradient-based optimization algorithms. Especially, Error

Back Propagation (EBP) method [24] is commonly adopted to optimize the objective, where the

optimization is conducted by the following iterative parameter update:

Λ← Λ − ε
∂ECE(Λ;X)

∂Λ
, (2.6)

where ε is the positive scalar training rate.

In practice, mini-batch mode minimization are commonly adopted for DNN’s optimization,

which was a mix of the batch and sequential modes that repeated the error calculation and pa-

rameter updates over every set of some selected training samples.

2.2 Automatic Speech Recognition

2.2.1 Fundamentals

ASR is a sequence-to-sequence mapping problem, which maps acoustic signal sequence X to

a linguistic symbol sequence W. Mathematically, ASR is formalized as a task to search the
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optimal word (character) sequenceW that maximizes P(W|X), i.e., the posterior probability of

the word sequenceW given the speech observationX , as follows:

W = arg max
W

P(W|X). (2.7)

In the recent ASR field, there exist two types of major ASR frameworks: 1) HMM-based hybrid

framework and 2) end-to-end framework. The main difference between them is how to model

the posterior probability P(W|X). The former HMM-based hybrid framework models P(W|X)

using several separate modules based on the Bayes rule. On the other hand, the latter end-to-end

framework directly models P(W|X) using the fully neural network-based architecture.

In the following subsection, we describe the overview of the HMM-based hybrid framework.

Since the end-to-end framework is integrated into our proposed ME2E ASR framework (Chap-

ter 4), we minutely describe it in Section 4.5.

2.2.2 HMM-based Hybrid Frameworks

Overview

In the HMM-based hybrid framework, based on the Bayes rule, we further derive the posterior

probability P(W|X) as follows:

P(W|X) =
P(X |W)P(W)

P(X)
. (2.8)

Given the speech observationX , the prior probability P(X) is constant with respect to the word

sequenceW. Therefore, the ASR task as in Eq. (2.7) is re-formalized as follows:

W = arg max
W

P(W|X) = arg max
W

P(X |W)P(W). (2.9)
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Figure 2.2: Overview of hybrid DNN-HMM framework.

The HMM-based hybrid framework separately models both probabilities P(X |W) and P(W).

Here, P(X |W) represents the likelihood of the speech observation X given the word sequence

W, which is estimated by an acoustic model. On the other hand, P(W) represents the prior

probability of the word sequence W, which is estimated by such language models as N-gram

[25, 26] and Recurrent Neural Network (RNN) language model [27, 28]. Figure 2.2 illustrates

the overview of the hybrid DNN-HMM framework, where a pronunciation lexicon represents the

mapping from the words to the phoneme sequence and is used to link the acoustic and language

models.

Since Chapter 3 studies the speaker adaptation techniques for the DNN in the acoustic model,

we focus on the acoustic modeling part of the hybrid DNN-HMM framework in the remaining

of this section.

DNN-based acoustic model

Figure 2.3 illustrates the structure of the acoustic model part in the hybrid DNN-HMM frame-

work. In this hybrid structure, the GMM part of the conventional GMM-HMM framework, which

is used to estimate state output probabilities in the HMM, is replaced by DNN.

Given a speech input, the system first converts it to a sequence of acoustic feature vectors X =

{xτ; τ = 1, · · · ,T }, where xτ is the τ-th acoustic feature vector and T is the sequence length.

Next, the system estimates posterior probability p(W|X) for the possible word sequences W
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Figure 2.3: Structure of acoustic model part in hybrid DNN-HMM framework.

and classifies X to the word sequence with the largest posterior probability valueW. Clearly,

the system’s classification accuracy depends on the estimation quality for p(W|X).

In the DNN-HMM framework, p(X |W) is estimated by p(X |W){ΛDNN,ΛHMM}, which is a func-

tion of ΛDNN (trainable parameters of DNN) and ΛHMM (trainable parameters of HMM). Ac-

cordingly, the training seeks the state of p(X |W){ΛDNN,ΛHMM} that achieves the highest possible

classification accuracies on testing speech data by updating ΛDNN and ΛHMM.

p(X |W){ΛDNN,ΛHMM} is calculated using such HMM probabilities as state output probability esti-

mates {p(xτ|θ){ΛDNN,ΛHMM}; τ = 1, · · · ,T , and θ = 1, · · · ,Θ}, where Θ is the number of possible

states of HMM. Here, again based on the Bayes theorem, p(xτ|θ){ΛDNN,ΛHMM} is replaced by

scaled likelihood p(θ|xτ)ΛDNN/p(θ)ΛHMM . State posterior probability p(θ|xτ)ΛDNN is estimated by

DNN, and state prior probability p(θ)ΛHMM is estimated based on the frequency of the state as-

signment produced by HMM’s forced alignment. Because p(θ|xτ)ΛDNN must maintain the nature

of the probability function, the DNN part uses the softmax activation function at its output nodes.

Recent hybrid DNN-HMM speech recognizers usually adopt context dependent acoustic models.

In this situation, the number of HMM states is too large to appropriately estimate state posterior

probability p(θ|xτ)ΛDNN . To circumvent this problem, the HMM states are often clustered into
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several thousands of sub-phonetic units, i.e., senones, each representing the HMM tied-state [29].

Following this strategy, in the DNN-HMM framework, the estimate of state posterior probability

p(θ|xτ)ΛDNN is replaced with the estimate of senone posterior probability p(k|xτ)ΛDNN , where k is

the senone class index (k = 1, · · · ,K), assuming that K is the number of senones.

In most cases of the recent hybrid DNN-HMM speech recognizer, the concatenation of several

acoustic feature vectors x̃τ = {xτ−τc , · · · ,xτ, · · · ,xτ+τc} is used in p(θ|xτ)ΛDNN instead of xτ,

where τc is a small natural number. Accordingly, p(k|xτ)ΛDNN is further replaced by p(k|x̃τ)ΛDNN .

DNN has enough potential to deal with such large-dimensional features, which includes rich

information within a relatively long context window. This point is one of the most important

factors that the hybrid DNN-HMM framework performs better than the conventional GMM-

HMM framework [30].

Training procedure

The training procedure is twofold: one for the HMM part and another for the DNN part. The

HMM part is first trained within the training for the GMM-HMM system. The DNN part is

subsequently trained using the senone labels produced by the forced alignment with the baseline

GMM-HMM system. These labels are used as teaching signals to train the acoustic feature

vector inputs. Using these labels, such an objective function as CE error is defined, and the DNN

parameters are optimized under a condition that minimizes the defined objective function, as

described in Section 2.1.2.
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3Speaker Adaptive Training for Deep

Neural Networks

3.1 Introduction

Unavoidably, the development of pattern recognizers has to cope with the training sample finite-

ness problem. The recognizers are trained using a finite amount of training samples in hand but

must accurately work over (practically infinite) unseen testing samples. In the speech recognition

field, this finiteness problem has been particularly investigated in the speaker adaptation frame-

work [31, 32, 33]. Assuming the problem’s existence, speech recognizers are often trained in a

speaker independent (SI) mode and adapted to the unseen testing samples of new speakers.

In many speaker adaptation scenarios, only a limited amount of speech samples are available.

Since the limitation of training samples makes it difficult to adapt the entire recognizer, usually

just some part of it is adapted. In this partial adaptation scheme, SI recognizers are not necessarily

the best choice for the initial status for the adaptation. SI training does not assume that part of

the trained recognizer will be replaced in the later adaptation stage. As one solution to this

inadequacy, SAT was proposed [34, 35, 36] for the conventional GMM-HMM framework. If we

assume that some part of the recognizer will be replaced later, the remainder should be trained

from the start, based on the assumption of such a replacement. Following this understanding,

SAT jointly trains the speaker-oriented part of the recognizer and its remainder on the premise

that the speaker-oriented part will be replaced in the adaptation stage.

In parallel with the advancement of speaker adaptation technologies, a hybrid DNN-HMM is
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consolidating its position as a new standard for speech recognizer structure [8, 9, 10]. However,

despite the high utility demonstrated by DNN-HMM recognizers, it is unrealistic to collect all

of the possible speech data, which are spoken by different speakers, and develop an almighty

recognizer that can recognize speech data correctly in a fully SI mode. Accordingly, adaptation

technology is still a key research issue even for the powerful hybrid DNN-HMM recognizers.

Motivated by the high discriminative power of the hybrid DNN-HMM and the advantages of

the SAT concept, we propose a new SAT-based speaker adaptation scheme for the hybrid DNN-

HMM speech recognizer, which is characterized by introducing modularity, more precisely, lo-

calizing an SD module, in the DNN part.

In Section 3.2, we describe the basic formalization of the proposed SAT-based speaker adaptation

scheme. The network weight matrix and bias vector of one layer in the DNN is treated as the SD

module and the DNN remainder is treated as the SI module. Based on the SAT concept, multiple

SD modules for training speakers and the SI module are jointly trained over the training speech

data of many speakers, the trained SD modules are replaced by a new SD module for a target

speaker, and only the new SD module is adapted using the speech data of the target speaker.

In Section 3.3, we extend the preceding SAT-based speaker adaptation scheme by embedding

Linear Transformation Network (LTN). The linearity introduced by the LTN SD module enables

to perform the SAT and speaker adaptation steps using a more appropriate anchorage state of

network parameters in the regularization.

In Section 3.4, we theoretically analyze the relation between the number of adaptable parameters

and their feature-representation capability in the LTN SD module, and further extend the preced-

ing SAT-based speaker adaptation scheme by introducing a bottleneck structure, which enables

to reduce the size of LTN SD module while maintaining its feature-representation power.

The notations used in this chapter are summarized in Appendix A.1.
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3.2 Speaker Adaptive Training Localizing Speaker Modules

in DNN for Hybrid DNN-HMM Speech Recognizers

3.2.1 Overview

The SAT-based adaptation scheme consists of the following three stages: 1) initialization, 2)

SAT, and 3) speaker adaptation. All of the training procedures in these stages adopt the criterion

of minimizing the CE error function between the DNN outputs and the senone labels that are

produced by the forced alignment with the baseline GMM-HMM speech recognizer. In the ini-

tialization stage, we train the whole DNN part in the standard SI discriminative training fashion.

In the SAT stage, we localize the SD modules in the DNN part and train the entire DNN while

switching the SD modules along with the speaker change in the training data set. Finally, in

the speaker adaptation stage, we train only a new SD module for a target speaker using his/her

speech data.

3.2.2 Training Procedures

Initialization Stage

We assume that the training samples X = {{Xn,T n}; n = 1, · · · ,N} are available to train the

DNN part, where Xn = {xn
τ; τ = 1, · · · ,T } is the n-th training sample, Tn = {tn

τ; τ = 1, · · · ,T }

is its corresponding target label, and N is the number of such samples. The speech samples of X

are spoken by many speakers.

In Figure 3.1, we illustrate our initialization procedure for a seven-layer example of a DNN

part. For simplicity, we omit the biases in all of the illustrations in this chapter. Given input

feature vector xn
τ of training sample Xn to input layer L0, the DNN part emits network outputs

yn
τ = {yn

τk; k = 1, 2, · · · ,K} at output layer L6. The largest output represents the senone classifi-

cation decision, which is evaluated using the correct class information determined by the forced
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Figure 3.1: DNN structure and SI training procedure for initialization stage.

alignment with the baseline GMM-HMM speech recognizer.

For discussion generality, we consider the initialization of L-layer DNN parametersΛSI = {λSI
l ; l =

1, 2, · · · , L}, where λSI
l = {W SI

l , b
SI
l }. To accelerate the initialization training, we preliminarily

train ΛSI using the Restricted Boltzmann Machine (RBM) [37] in the greedy layer-wise manner

[38]. For later discussions, we denote the RBM-trained state of ΛSI as ΛRBM. Next, we conduct

the following regularization-incorporated CE error minimization:

ΛSI = arg min
ΛSI

{
ECE(ΛSI;X) +

ρSI

2
R(ΛSI)

}
, (3.1)

where ECE is the accumulated CE error defined as

ECE(ΛSI;X) = −

N∑
n=1

T∑
τ=1

K∑
k=1

tn
τk log yn

τk. (3.2)

Here, tn
τk is the teaching signal for yn

τk that indicates 1 when xn
τ belongs to senone class k but

indicates 0 otherwise, R is a regularization term, and ρSI is a non-negative constant regularization

coefficient. In this minimization, ΛRBM works as the initial status of ΛSI.

We adopt the regularization to avoid the over-training problem that is often caused by large-size

DNNs. The regularization procedure will be described in Section 3.2.2. The minimization in

Eq. (3.1) is conducted based on the EBP parameter update rule.

We use the above estimated parameters ΛSI for a baseline SI recognizer and also as an initial

status of the subsequent SAT stage.
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Figure 3.2: DNN structure and SAT training procedure for SAT stage.

Speaker Adaptive Training Stage

In Figure 3.2, we illustrate the procedure of conducting SAT with SD module allocation, where

the blue rectangle represents the SD module layer1. Because of DNN’s multilayer structure, the

SD modules can be allocated to any of the intermediate layers. In the figure, as an example, we

allocate SD modules G2 = {gs
2; s = 1, · · · , S } to L2, where gs

2 = {W s
2 , b

s
2} is the SD module

parameters for training speaker s, S is the number of training speakers, and ΛSAT = {λSAT
l ; l =

1, 3, · · · , L} are the parameters of the network layers other than the SD module layer, where

λSAT
l = {W SAT

l , bSAT
l }. For descriptive purposes, we refer to the network layers other than the SD

module layer as an SI module layer. Note that the network parameters of the SD module layer

are prepared for each training speaker, while those of the SI module layer are shared among all

1This is common in all of the illustrations in this chapter.

19



training speakers.

The figure shows two example cases of the training procedure: one for using the speech data of

Speaker 1 (s = 1) and another for Speaker 2 (s = 2). When using the data of Speaker 1, only

the nodes of the SD module for Speaker 1 are connected with the nodes of the adjacent layers;

the nodes of the other SD modules are disconnected from the nodes in the adjacent layers. The

green line depicts this situation, and the training is executed only along this path. Similarly, the

red line depicts the situation when using the data of Speaker 2. Each SD module is trained only

using its corresponding speaker’s data, but the other part of the network, i.e., ΛSAT, is trained

using the data of all of the S speakers.

Again for discussion generality, we consider the case of using SD module layer LlSD of the L-layer

DNN. The SAT procedure for this general setting is formalized as follows:

(ΛSAT,GlSD) = arg min
(ΛSAT,GlSD )

{
ESAT-CE(ΛSAT,GlSD;X) +

ρSAT

2
R(GlSD)

}
, (3.3)

where

ESAT-CE(ΛSAT,GlSD;X) =

S∑
s=1

ECE(ΛSAT, g
s
lSD

;Xs). (3.4)

Here, ΛSAT = {λSAT
l ; l = 1, · · · , lSD − 1, lSD + 1, · · · , L}, GlSD = {gs

lSD
; s = 1, · · · , S }, gs

lSD
is

the parameters of the SD module for training speaker s, Xs is the speech data spoken by train-

ing speaker s, and ρSAT is a non-negative scalar regularization coefficient. The definition of

ECE(ΛSAT, g
s
lSD

;Xs) is basically the same as the accumulated CE error of Eq. (3.2), except that

SD module gs
lSD

is switched here for every training speaker. The training aims to find the opti-

mal states of both ΛSAT and GlSD that correspond to the minimum CE error situation achieved in

conjunction with the SD module-based regularization. Here, we define the regularization term

only using GlSD , taking into account the limited size of training data for each training speaker.

The regularization details will be explained in Section 3.2.2. The minimization in Eq. (3.3) is

conducted based on the EBP parameter update rule.
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Figure 3.3: DNN structure and adaptation training procedure for speaker adaptation stage.

Speaker Adaptation Stage

In the adaptation stage, all of the adaptation parameter sets in GlSD are removed and replaced

with a new adaptation parameter set gt
lSD

for target speaker t. Then, only gt
lSD

is adapted using

his/her speech data.

In Figure 3.3, we illustrate the speaker adaptation procedure, assuming we set the SD modules to

L2 of the DNN trained in the SAT stage. In the figure, gt
2 = {W t

2, b
t
2} represents the SD module

parameters for target speaker t, and ΛSAT = {λ
SAT
l ; l = 1, 3, · · · , L} represents the SI module

parameters optimized in the SAT stage. The inserted SD module gt
2 is adapted to gt

2 using the

speech data of speaker t. An important point here is that only the inserted SD module is adapted;

the remaining DNN part, i.e., the SI module, is fixed.

In the scenario where the SD module layer is LlSD , the adaptation stage is formalized as follows:

gt
lSD

= arg min
gt

lSD

{
ECE(ΛSAT, g

t
lSD

;Xt) +
ρSA

2
R(gt

lSD
)
}
, (3.5)

where gt
lSD

is the SD module parameters for speaker t, Xt is the speech data spoken by speaker

t for adaptation, and ρSA is a regularization coefficient. The regularized minimization of ECE is

conducted only with respect to gt
lSD

, just using Xt. Similar to the SAT stage, the minimization in

Eq. (3.5) is conducted based on the EBP parameter update rule. The regularization here will be

described in Section 3.2.2.
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The training procedure of Eq. (3.3) optimizes ΛSAT on the premise that only the SD module

(gt
lSD

) is adapted and the SI module (ΛSAT) is fixed in the adaptation stage of Eq. (3.5). Based

on the consistency between the SAT and adaptation stages, ΛSAT works better than ΛSI, which is

optimized with no assumption that the SD module is adapted, as an SI module in the adaptation

stage.

Regularization

To avoid over-training, we adopt regularization-incorporated error minimization in all of our

DNN training procedures. Among various possibilities, we especially use the L2 norm-based

regularization term.

For the initialization stage of the SAT-based adaptation scheme or the standard SI training, we

define the regularization term as follows:

R(ΛSI) =

L∑
l=1

(
||W SI

l ||
2 + || bSI

l ||
2
)
, (3.6)

which is often referred to as weight decay [39, 40] in the neural network research field.

For the SAT stage, we adopt the following regularization term:

R(GlSD) =

S∑
s=1

(
||W s

lSD
−W

SI
lSD
||2 + ||bs

lSD
− b

SI
lSD
||2

)
, (3.7)

which was previously called L2 prior regularization [41]. This regularization softly ties GlSD

to λ
SI
lSD

= {W
SI
lSD
, b

SI
lSD
}. In the SAT stage, each SD module is trained using just one speaker’s

data. On the other hand, the training of the SI module, ΛSAT, can be done using the data of

all of the training speakers. Compared to large size of hundreds hours of training data from all

speakers, the training data from one speaker is often limited with less than a few tens of minutes.

Considering this difference in data size, we define the regularization term only forGlSD .

For the speaker adaptation stage, we also define the L2 prior-based regularization term for the SD
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module of target speaker t, gt
lSD

, as follows:

R(gt
lSD

) = ||W t
lSD
−W anchor

lSD
||2 + ||bt

lSD
− banchor

lSD
||2, (3.8)

where gt
lSD

is softly tied to its anchor state, ganchor
lSD

= {W anchor
lSD

, banchor
lSD
}, such that it does not over-fit

Xt.

ganchor
lSD

can be prepared in several different ways. Simple ways include using a network initialized

by small random numbers and using the SD module of the SI-trained network, λ
SI
lSD

. Compared to

the former, the latter would better fit to the anchor for speaker adaptation (or adaptation-oriented

regularization): The latter module is already trained for speech recognition. However, the SI

training reflects none of the SAT concept. Obviously, the anchor state should import the SAT

concept at least to some extent, since the anchor is used for the adaptation of the SAT-based

network. Taking this into account, we adopt the following three-step method: 1) remove GlSD

from the DNN part trained by Eq. (3.3); 2) insert λ
SI
lSD

into the SD module layer of the DNN

part; 3) re-train (in the SI training sense) the SD module using all the training speech data, while

fixing the remainder of the DNN part, i.e., ΛSAT. The resulting state of the SD module is used as

ganchor
lSD

.

The anchor state produced in the above way is also used as the initial status of the target speaker’s

SD module in the adaptation stage. This initialization is expected to be effective for successive

adaptation, because the anchor state is trained so as to utilize the optimized SAT-based network.

3.2.3 Relation to Previous Works

With the recent advent of a new HMM-based hybrid approach, various speaker adaptation meth-

ods for DNN-HMM recognizers have been extensively studied [41, 42, 43, 44, 45, 46, 47, 48, 49,

50, 51, 52, 53, 54, 55, 56, 57]. A principal adaptation strategy in these methods is to adapt only

the DNN part without changing the pre-trained HMM part. The methods, which also adopt some

restriction mechanisms in DNN training to avoid the over-training problem [58], are categorized
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into the following two main groups: 1) restricting the network’s high feature representation capa-

bility using additional small-size adaptable parameters [43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53],

and 2) restricting the network’s capability by incorporating some regularization terms in the adap-

tation stage [41, 42]. The first group of methods are further subdivided as follows: 1) adapting

only the linear networks inserted into an SI DNN [43, 44, 45, 46, 47], 2) adapting such limited

size augmented features as speaker code [48, 49] or i-vector [50, 51, 59] in SI DNN, and 3)

adapting SD parameters embedded in the node activation function of SI DNN [52, 53]. A com-

mon maneuver by the second group of methods is to secure a large DNN capability and control

it with regularization. Among a number of possibilities of implementing regularization, its effect

was studied using the regularization term based on either the L2 norm of the difference between

an initial SI DNN and an adapted DNN [41] or the Kullback-Leibler divergence between the

outputs of an initial SI DNN and an adapted DNN [42].

The first group of speaker adaptation methods for DNN-HMM recognizers is probably efficient

based on using a limited size of adaptable parameters. However, the intrinsic value of DNN

employment is to fully exploit the DNN’s high feature representation capability. In addition, the

second group of methods simply used SI DNN as an initial condition for adaptation, although

it straightforwardly treated DNN’s potential. In the light of the SI-based initialization, the first

group of methods was also in the same situation as the second group.

In parallel with our proposed scheme, several speaker normalization techniques for DNN-HMM

recognizers have been investigated [54, 55, 56]. These techniques adopted canonical DNN mod-

eling of a virtual representative speaker, which is different from a standard SI-training-based

DNN. The canonical DNN represented one (even a virtual) speaker in a compact form, and this

nature is clearly common to the SAT concept.

The design of the canonical DNN was based in common on the speaker normalization applied

to the input features, although the normalization was done differently. It was conducted using

GMM-HMM recognizers [54, 55] and additionally adopting a speaker normalization network

whose input was i-vector [56]. Compared with these techniques based on input feature level

normalization, our scheme, in which the normalization (or adaptation) is embedded in the deep
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Table 3.1: Corpus information for TED Talks corpus.

TED Talks Hours Speakers

Training 75 300

Development 2.4 10

Evaluation 4 28

layers of DNN, is characterized by a positive use of DNN power.

3.2.4 Experimental Conditions

Data Preparation

We tested our proposed method on the difficult lecture speech data of the TED Talks corpus
2. We collected the speech data from the TED Talks and prepared three data sets: training,

development, and evaluation.

The training data set consisted of the speech data of 300 speakers; the data of each speaker

were about 15 minutes long. The total length of the training data was about 75 hours. The

development data set consisted of the speech data of ten speakers, each of whom was different

from the speakers in the training data set. The total length of the development data was about 2.4

hours. This set was used for finding the optimal values of the hyper-parameters, which produced

high recognition accuracies over the set itself, such as the learning rate and the regularization

coefficient. The evaluation data set consisted of the speech data of 28 speakers, which was used

for the IWSLT2013 evaluation data set [60]. The total length of the evaluation data was about

4 hours. The speakers in this evaluation data were different from those both in the training and

development data sets. Each speaker’s data ranged from 2.6 to 16.5 minutes, and the average

length of the evaluation data was about 8.5 minutes.

2http://www.ted.com
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Table 3.2: Conditions related to feature extraction.

Acoustic feature MFCC + log-power + ∆ + ∆∆ ( 39-dim )

Input to DNN 11 concatenated acoustic feature ( 429-dim )

Sampling frequency 16 kHz

Frame length 20 ms

Frame shift 10 ms

Window function Hamming

Such basic information of the above corpus as the number of hours and speakers is summarized

in Table 3.1.

Feature Representation

Conditions related to feature extraction are briefly summarized in Table 3.2. The input speech

was first converted to a series of acoustic feature vectors, each of which was calculated through

a 20-ms Hamming window that was shifted at 10-ms intervals. The acoustic feature vector

consisted of 12 Mel-scale Frequency Cepstrum Coefficients (MFCCs) [61], logarithmic power

(log-power), 12 ∆MFCCs, ∆log-power, 12 ∆∆MFCCs, and ∆∆log-power, where ∆ and ∆∆ de-

note the first and second derivatives. The acoustic feature vectors had 39 dimensions. Next, the

11 adjacent acoustic feature vectors were concatenated as a 429-dimensional input to the DNN

part. Each element of the input vectors was normalized so that its mean and variance became 0

and 1.

Evaluated Recognizers

To evaluate our proposed SAT-based adaptation scheme, we compared the following four recog-

nizers:

1. SI: the SI-based DNN-HMM recognizer,
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2. SA-SI: the speaker-adapted SI recognizer,

3. SAT: the DNN-HMM recognizer trained in the SAT stage,

4. SA-SAT: the speaker-adapted SAT recognizer.

Here, the SI recognizer works as a baseline case in the experiments, and the SI and SA-SI recog-

nizers are the counterparts to the SAT and SA-SAT recognizers, both of which are based on our

proposed scheme.

We adopted a simple seven-layer DNN as the baseline SI recognizer. The whole network was first

pre-trained by layer-wise RBM training and successively trained using the CE error minimization

over the training data set as in Eq. (3.1).

The SA-SI recognizer was produced by adapting one of the SI recognizer’s intermediate net-

work layers, which corresponded to an SD module, using the speech data of an adaptation-target

speaker selected from the 28 testing speakers. To avoid the over-training problem due to the

limited amount of adaptation data, we applied the regularization term of Eq. (3.8) to the update

of the weights and biases of layer lSD, setting ganchor
lSD

to λ
SI
lSD

, when adapting the SI recognizer to

the SA-SI recognizer.

We built the SAT recognizer by the following procedures, as described in Section 3.2.2. We

adopted the baseline SI recognizer as the initial status of the SAT recognizer and inserted 300

SD modules into the baseline recognizer. Here, the number of SD modules is the same as that

of the training speakers. We next generated a trained network along the SAT-based optimization

course of Eq. (3.3). Finally, we completed the SAT recognizer by replacing the 300 used SD

modules with a new SD module, which was the anchor module described in Section 3.2.2. This

new SD module worked as the initial status for successive adaptations.

The SA-SAT recognizer was produced by adapting only the SD module of the SAT recognizer

in the speaker-by-speaker mode, where an adaptation-target speaker was selected from the 28

testing speakers.

In this experiment, the DNN module in our recognizers had seven layers as described in Fig-
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ure 3.1 and used 429 input nodes, 4909 output nodes, and 512 nodes for all of the intermediate

layers. A sigmoid activation function was used for the intermediate layer nodes; a softmax acti-

vation function was used for the output layer nodes. Here, the number of output nodes was the

same as the senone classes.

In all of our recognizers, the HMM part used the context-dependent acoustic model and used

the 4-gram language model that was trained over the transcriptions of TED Talks, News Com-

mentary, and English Gigaword [62]. The baseline GMM-HMM recognizer was trained on the

Boosted Maximum Mutual Information (BMMI) criterion [63], which was used to obtain the

senone alignment labels for the DNN training and the adaptation. During the DNN training,

HMM’s state transition probability was fixed. In the decoding phase, the DNN-HMM recog-

nizers used the scaled likelihood calculated by DNN in place of the state output probability

calculated using the GMM, as described in Section 2.2.2.

As above, from the five intermediate layers, we selected one as an SD module in the adaptation

stage of either the SA-SI or SA-SAT recognizer and elaborated the layer selection effect in the

speaker adaptation by changing a selected layer from the 1st through the 5th intermediate layers.

This decision was motivated by our research interest to reveal the roles of the intermediate layers

for (speaker) feature representation.

Evaluation Procedures

In terms of the availability of reference word transcriptions, we evaluated our proposed method

in two different experimental procedures: supervised adaptation and unsupervised adaptation. In

the supervised adaptation procedure, we adapted the SD modules using the (correct) reference

transcriptions of the adaptation speech data. In the unsupervised adaptation procedure, we did

the adaptation using transcriptions that were generated by decoding with the SI recognizer in

place of the reference transcriptions. Here, we calculated the word confidence measure values

based on the confusion networks [64] for the decoded transcriptions. Only the speech segments,

whose measure values exceeded a preset threshold, were adopted for the adaptation.
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To circumvent the problem of a closed-form evaluation, we adopted the four-fold cross-validation

(CV) experiment paradigm where the speech data of every testing speaker were divided into four

groups. In this paradigm, the validation of the adaptation result consisted of the SD module

adaptation using three of the four data groups and the evaluation of the adapted SD module using

the remaining data group. We repeated this validation four times by changing the combination of

three groups for adaptation and one group for evaluation. The recognition accuracies, i.e., word

error rates (WERs), in later discussions are the averages obtained by performing this CV-based

evaluation over the speech data of all the adaptation speakers.

Training and Adaptation

DNN training sometimes requires careful control of the learning rate. Therefore we controlled it

at each training epoch, where every sample in the training data set was used once for the network

parameter updates, using the following rule based on the frame-level recognition accuracies over

the development data set. If the recognition accuracy increased over the development data set,

the learning rate was kept the same as in the previous epoch. Otherwise, it was halved, and

the network parameters, i.e., the weights and biases, were replaced with those that produced

the maximum recognition accuracy in the preceding training epochs, and the training for these

replaced weights and biases was restarted using the halved learning rate.

Especially in the SAT stage, we used the average frame-level recognition accuracy obtained from

the trial adaptation using the development data. At every training epoch in this stage, we first

adopted the resultant DNN (the SI module plus the SD modules) of the previous epoch as an

initial network status for adaptation. Using the speech data in the development data set, we

performed a trial adaptation while switching the SD module and its corresponding speaker data.

During the adaptation, the SI module was fixed. After the adaptation, we calculated the frame-

level recognition accuracy in the speaker-by-speaker manner. In the same way as the evaluation

of the trained recognizers, we repeated the trial adaptation and accuracy calculation in the CV

paradigm. The averaged frame-level recognition accuracy we obtained was used to control the

learning rate at every epoch.
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For the SI recognizer, we set the initial value of the learning rate to 0.004 and repeated 20

epochs, where the learning rate was controlled based on the above update rule. When producing

the anchor SD module (for the SAT recognizer) and the speaker adaptive trained network of

Eq. (3.3), we adopted the same settings as in the SI recognizer. For the regularization terms, ρSI

in Eq. (3.1) was set to 0.0 based on preliminary experiments: 0.1 for ρSAT in Eq. (3.3).

In contrast, in the adaptation stage where only the SD module was updated, we simply set the

learning rate to a fixed value that was selected based on the frame-level recognition accuracies

over the development data set. We selected a learning rate of 0.005 for the adaptation of the

SA-SI recognizer and 0.001 for the SA-SAT recognizer. Both of these adaptation procedures

were repeated ten times (ten epochs) with a regularization coefficient of 0.1 for ρSA in Eq. (3.5).

, which was selected again using the frame-level recognition accuracies over the development

data set.

For each allocation of the SD module layer, the above procedures for setting the hyper-parameters

were repeated. Accordingly, regardless of the SD module positioning, all of the training in the

initialization, SAT, and adaptation stages was conducted with the tuned hyper-parameters that

produced the highest frame-level recognition accuracies over the development data set.

Mini-Batch-Based Error Minimization

To accelerate the experiments with GPU’s high computation power, we adopted a mini-batch

mode minimization. Especially in the case of using Eq. (3.3) for the SAT recognizer, because

we had to feed the training speech data to the network while switching the SD module, the mini-

batch of speech data was required to be only composed of the speech data of a single speaker. To

meet the requirements of the speech data preparation, we implemented the SAT procedure in the

following way. For every training epoch, we first made mini-batches, each of which consisted of

the speech data of a single training speaker, over the whole training data. Next we randomized

their order to avoid unexpected convergence to poor local optima in the EBP error minimization

and conducted error calculation and parameter updates while switching the randomized mini-
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Table 3.3: Experimental results (word error rate [%]) in supervised adaptation procedure.

lSD SI SA-SI SAT SA-SAT

1 26.4 20.0 27.2 18.9
2 26.4 19.0 26.9 18.2
3 26.4 18.7 27.0 18.0
4 26.4 19.0 26.6 18.4
5 26.4 19.5 26.5 19.0

batches and the SD modules in the speaker-by-speaker manner. Then we repeated the epochs

Nepoch times, where Nepoch was the number of epoch repetitions.

3.2.5 Experimental Results

Results in Supervised Adaptation

Table 3.3 shows the results in the supervised adaptation procedure. It shows the recognition

performances of the WER of four evaluated recognizers: the SI recognizer, the SA-SI recognizer,

the SAT recognizer, and the SA-SAT recognizer. Each error rate for the SA-SI and SA-SAT

recognizers is the average value obtained by the previously described CV paradigm. In the table,

lSD is the index of the layer to which the SD module was allocated. Because the baseline SI

recognizer did not have an SD module layer, the same error rate value, 26.4%, is shown in all the

corresponding columns.

The SA-SI recognizer results show that the conventional way of adapting the SD module in the

SI recognizer produced clear improvements. Its error reductions from the rates of the baseline

SI recognizer ranged from 6.4 to 7.7 points. However, comparing the SA-SI and SA-SAT rec-

ognizers clearly demonstrates the effect of our SAT-based adaptation scheme for DNN-HMM

recognizers. Regardless of the allocation of the SD module layer, the SA-SAT recognizer out-

performed the SA-SI recognizer. Moreover, the SA-SAT recognizer successfully reduced the
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lowest error rate of the SA-SI recognizer, 18.7%, to 18.0%, which was the best among all of the

obtained error rates.

To prove the effectiveness of our SAT-based adaptation scheme, we conducted a matched pairs

t-test for the difference in WERs between the SA-SAT recognizer and its counterpart SA-SI

recognizer. Here, each WER was observed for one of the 28 testing speakers through the CV

paradigm. From the test results, we found that the error rate reductions between the SA-SAT

recognizer and the SA-SI recognizer were significant with p < 0.01 when lSD was set to 1, 2, 3,

or 4, and with p < 0.05 when lSD was set to 5.

The results of the SAT recognizer were not promising. However, since the SAT scheme aims

to increase the recognition accuracy after the adaptation but not to construct a high-performance

recognizer without the adaptation, these high error rates are not really a problem.

As shown in Table 3.3, the effects of the recognizer training/adaptation methods are often eval-

uated using the average accuracies over multiple testing speakers; such evaluation is obviously

important. However, at the same time, it is desirable that the methods accurately work for all

of the testing speakers or as many testing speakers as possible. Such reliability (or stability)

of the methods is also clearly important. From this viewpoint, we compared the accuracy of

the SA-SAT and SA-SI recognizers in the speaker-by-speaker manner and found that our pro-

posed SA-SAT recognizer outperformed the SA-SI recognizer for 75% to 93% of the 28 testing

speakers3.

The table also shows another quite interesting finding. The adaptation allocating the SD module

to such inner layers as the 2nd or 3rd layer outperformed the allocation of the SD module to

the outer layers near the input or output of the network, such as the 1st and 5th layers. This

phenomenon was commonly observed in both the SA-SI and SA-SAT recognizers. The DNN

part repeated the feature transformation along with the data feed-forwarding from the input layer

to the output layer. Allocating the SD modules to the inner layers allowed a complex feature

transformation in both the lower and upper layers. Such a well balanced transformation is prob-

3The percentage changed according to the selection of the SD module layer.
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Table 3.4: Experimental results (word error rate [%]) in unsupervised adaptation procedure.

lSD SI SA-SI SAT SA-SAT

1 26.4 21.4 27.2 20.4
2 26.4 20.6 26.9 20.0
3 26.4 20.7 27.0 20.1
4 26.4 21.0 26.6 20.3
5 26.4 21.5 26.5 21.0

ably useful for extracting salient information for recognition/adaptation, although its mechanism

remains unclear. Accordingly, we consider the use of DNN more suitable for speaker adaptation

(probably also for other types such as speaking environment and transmission channel adapta-

tions) than conventional shallow neural networks or any simple front-end architecture that has

no deep layer structure.

Results in Unsupervised Adaptation

Table 3.4 shows the results in the unsupervised adaptation procedure. As in Table 3.3, Table 3.4

shows the recognition performances in the WER of the four evaluated recognizers. Each error

rate for the SA-SI and SA-SAT recognizers is also the average value obtained through the CV

paradigm. To select the adaptation data used for the unsupervised adaptation, we set the thresh-

old value for the confidence measure to 0.5 based on the preliminary experimental results. In

the preliminary experiments, we tested several different values for the confidence measure and

found that the confidence measure of 0.5 achieved a reduction in WER of 0.2 (from the rate ob-

tained without the confidence measure) on average for both the SA-SAT recognizer and SA-SI

recognizer. The effects of the confidence measure slightly varied according to the selections of

the SD module layers and the recognizers.

In the unsupervised adaptation results, we identified a trend similar to the supervised adaptation

results. The SA-SAT recognizer outperformed the SA-SI recognizer, regardless of the SD mod-
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ule layer allocation. Moreover, the SA-SAT recognizer achieved the lowest error rate, 20.0%,

which was 0.6 point lower than that of the SA-SI recognizer. Compared to the supervised adap-

tation, the accuracy improvement in the unsupervised adaptation was not large: The reference

transcription was not used in the adaptation training. However, comparing the SA-SI and SA-

SAT recognizers also clearly demonstrates the effect of the SAT-based DNN-HMM recognizer,

even in the unsupervised adaptation procedure.

In the unsupervised adaptation case, we again conducted the matched pairs t-test for the differ-

ences in the WERs between the SA-SAT recognizer and the SA-SI recognizer. Here, each WER

was obtained for one of the 28 testing speakers through the CV paradigm. The test results proved

that the error rate reductions between the SA-SAT recognizer and the SA-SI recognizer were sig-

nificant with p < 0.01 when lSD was set to 1 or 4, and with p < 0.05 when lSD was set to 2, 3, or

5.

In addition, the adaptation allocating the SD module to the inner layers also outperformed the

case of allocating the SD module to the outer layers even in the unsupervised procedure.

Stability Analysis of Adaptation

To deepen our understanding of our SAT-based adaptation, we elaborate the SA-SI and SA-SAT

recognizers produced in the supervised adaptation procedure.

In the above experiments, we set the number of adaptation epoch iterations to ten and gained

higher performances with our SA-SAT recognizer than with SA-SI recognizer. This setting was

done from the viewpoint that fast adaptation was more preferable. However, there is the possibil-

ity that the SA-SAT recognizer’s advantage was gained by selecting a proper length of the epoch

iteration by chance. Actually, as a side effect, a short iteration occasionally increases recognition

accuracies. To scrutinize this point, we ran the adaptation by setting the iteration number to 50.

Here, except for the number of adaptation epoch iterations, we used the same hyper-parameter

settings as described in Section 3.2.4.
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Figure 3.4: Frame-level senone recognition accuracy [%] as a function of supervised adaptation
epoch.

Figure 3.4 illustrates the frame-level senone recognition accuracies (in the vertical axis), each of

which is a function of the epoch (in the horizontal axis), of the SA-SI and SA-SAT recognizers.

This senone recognition accuracy has a close relation with the criterion used in the adaptation

stage. Each accuracy curve in the figure was obtained, for its corresponding recognizer, by

averaging the accuracies over all the experiment runs conducted by changing the SD module

layers in the CV paradigm.

The figure shows that the SA-SAT recognizer stably outperformed the SA-SI recognizer in all

the adaptation epochs. The advantage of our SA-SAT recognizer is probably generated by the

nature of the SAT-based adaptation mechanism.

Comparison with All Layer Adaptation

In the above experiments, we demonstrated the superiority of our proposed SAT-based adapta-

tion scheme to the SI-based adaptation scheme. In the SI-based adaptation, we adapted only the

SD module similarly to the SAT-based adaptation. One may question whether the SAT-based
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Table 3.5: Comparisons among module-based adaptation (SA-SI-L3 and SA-SAT-L3 recogniz-
ers) and non-module-based adaptation (SA-SI-ALL recognizer).

Recognizer # Param. Word error rate [%]

SA-SI-L3 0.26 M 18.7

SA-SI-ALL 2.8 M 18.3

SA-SAT-L3 0.26 M 18.0

(module-based) adaptation is more effective than the simple (non-module-based) adaptation of

the whole DNN of the SI recognizer. To analyze this point, we compared the following three

recognizers in the supervised adaptation procedure: (1) the SA-SAT recognizer allocating the

SD module in the third layer (SA-SAT-L3 recognizer), (2) the SA-SI recognizer allocating the

SD module in the third layer (SA-SI-L3 recognizer), and (3) a new Speaker-Adapted SI recog-

nizer in which all of the trainable DNN parameters, i.e., the connection weights and biases in

all layers, were used for adaptation (SA-SI-ALL recognizer). The SA-SAT-L3 and the SA-SI-L3

recognizers were the best (in terms of SD module layer allocation) SA-SAT and SA-SI rec-

ognizers, as described in Table 3.3. Furthermore, the SA-SI-ALL recognizer was constructed,

adopting the same training/adaptation procedures (e.g., the use of L2 prior regularization and the

CV paradigm) as those for the recognizers in Table 3.3.

Table 3.5 shows the number of adaptation parameters and the WERs for the above three recog-

nizers. In the table, “M” represents million. Using a larger number of adaptation parameters, the

SA-SI-ALL recognizer gained a WER reduction of 0.4 point from that of the SA-SI-L3. How-

ever, the rate by the SA-SI-ALL recognizer did not achieve the lowest WER, which was reached

by the SA-SAT-L3 recognizer at 18.0%. To analyze the effect of the SAT-based (module-based)

adaptation against the non-module-based adaptation, we conducted the matched pairs t-test for

the difference in WERs between the SA-SI-ALL recognizer and the SA-SAT-L3 recognizer. The

test results proved that improvement of the SA-SAT-L3 recognizer over the SA-SI-ALL recog-

nizer was significant with p < 0.05.

Although the t-test proved the statistical difference in WERs between the SA-SAT-L3 and SA-
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SI-ALL recognizers, the difference was not so large. A point to note here is that the SA-SAT-L3

recognizer used only 9% (0.26 M) of the adaptation parameters of the SA-SI-ALL recognizer (2.8

M). This leads to a dramatic reduction in the size of adaptation parameters, which must be stored

and adapted for each target speaker. For example, let us assume that a speech recognition system

runs on some server and tries to increase its discriminative power through speaker adaptation

for a huge number of system users (speakers). The system is expected to handle many different

speakers’ data simultaneously and thus must store on the server many adaptation parameter sets,

each for a different speaker. Obviously, a small size of speaker-dependent adaptation parameters

is favorable in this common scenario. In addition, it is expected that the use of such a small

number of adaptation parameters decreases the risk of the over-training problem, especially in

the cases where speech data available for adaptation training are severely limited.

3.3 Extension with Linear Transformation Networks

3.3.1 Motivations

In the previous section (Section 3.2), we described the basic formalization of our proposed SAT-

based speaker adaptation scheme, where the SAT scheme was implemented by allocating one SD

module for each training speaker to one of the intermediate DNN layers. The method then jointly

optimized the SD modules and the SI module, which was shared by all the training speakers, with

changing a pair comprised of the SD module and its corresponding training speaker in a speaker-

by-speaker manner. The effectiveness of this SAT-based DNN training scheme, which we call the

SAT-DNN-ORG method in the following sections, was clearly demonstrated through systematic

experiments.

However, the SAT-DNN-ORG method still has room for improvement. For example, it used an

SI DNN, which was trained in an SI mode, as an anchorage state in the regularization of the

SAT stage. This might have decreased the adaptability of SAT due to a large restriction from

the SI DNN. In addition, in the speaker adaptation stage, it just empirically initialized the SD
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Figure 3.5: Graphical explanation of LTN insertion.

module using a one-layer network that was extracted from the SI DNN and retrained with the

SAT-optimized SI network over the speech data of all the training speakers. This initialized SD

module represents a certain kind of mean speaker model. Due to the lack of theoretical rationale

in such usage, alternatives to SI DNN and the mean speaker model will probably further improve

the adaptation results.

Motivated by the above viewpoints, we extend the preceding SAT-DNN-ORG method by embed-

ding LTN [43, 44, 45] in DNN and propose a new SAT-based speaker adaptation scheme, referred

to as SAT-DNN-LTN method. In contrast to the SAT-DNN-ORG method, our new method with

LTN dynamically changes the anchorage state of the network weight and bias parameters in the

regularization along the training progress of SAT and automatically provides, in a natural way,

the initial status of an SD module that is used for a new speaker in the speaker adaptation step.

3.3.2 Linear Transformation Network

In our proposed SAT-DNN-LTN method, we insert LTN, which works as an SD module, to one

of the DNN layers. In the adaptation stage, we only train the LTN part using target speaker’s

speech data.

We illustrate the insertion of LTN in Figure 3.5, where based on the fact that the inserted LTN

is SD module, we denote the layer having LTN (i.e., SD module layer), its corresponding DNN
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parameters, and its corresponding LTN parameters by LlSD , λlSD , and g̃lSD , respectively. Note that

λlSD = {WlSD , blSD} and g̃lSD = {AlSD ,alSD}, where AlSD and alSD are the weight matrix and bias

vector of the LTN module, respectively.

Accordingly, a computational procedure for the SD module layer is formulated as follows:

zlSD = φ(WlSD(AlSDzlSD−1 + alSD) + blSD), (3.9)

= φ(ŴlSDzlSD−1 + b̂lSD), (3.10)

ŴlSD = WlSDAlSD , b̂lSD = WlSDalSD + blSD , (3.11)

where zl is the outputs from Ll, and φ is an activation function. Initially, we set LTN parameters

{AlSD ,alSD} to {IlSD ,0lSD}, where IlSD is an identity matrix and 0lSD is a zero vector.

3.3.3 Training Procedures

Except for the difference of the SD modules, the SAT-based adaptation procedures with LTN

SD modules are basically same as the preceding SAT-DNN-ORG method as described in Sec-

tion 3.2.2. Therefore, this subsection focuses on the formalization of the SAT and adaptation

stages with LTN SD modules.

Speaker Adaptive Training Stage

In Figure 3.6, we illustrate the procedure of conducting SAT with LTN SD module insertion.

As an example, we insert LTN SD modules G̃2 = {g̃s
2; s = 1, · · · , S } to L2 in the figure, where

g̃s
2 = {As

2,a
s
2} is the LTN SD module parameters for training speaker s in the training data set, S

is the number of training speakers, Λ̃SAT = {λSAT
l ; l = 1, 2, · · · , L} are the SI module parameters,

and the blue rectangle represents the SD module layer.

When inserting the LTN SD modules into LlSD , the training procedure of the SAT stage is for-
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Figure 3.6: DNN structure and SAT training procedure for SAT stage in SAT-DNN-LTN method.

malized as follows:

(Λ̃SAT, G̃lSD) = arg min
(Λ̃SAT,G̃lSD )

{
ESAT-CE(Λ̃SAT, G̃lSD;X) +

ρSAT

2
R(G̃lSD)

}
, (3.12)

where

ESAT-CE(Λ̃SAT, G̃lSD;X) =

S∑
s=1

ECE(Λ̃SAT, g̃
s
lSD

;Xs), (3.13)

R(G̃lSD) =

S∑
s=1

(
||As

lSD
− IlSD ||

2 + ||as
lSD
− 0lSD ||

2
)
. (3.14)

Here, Λ̃SAT = {λSAT
l ; l = 1, · · · , L}, G̃lSD = {g̃s

lSD
; s = 1, · · · , S }, g̃s

lSD
is the parameters of the LTN

SD module for training speaker s, R(G̃lSD) is the regularization term whose anchors are set to

initial LTN states {IlSD ,0lSD}, and ρSAT is a non-negative scalar regularization coefficient.
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Figure 3.7: DNN structure and adaptation training procedure for speaker adaptation stage in
SAT-DNN-LTN method

Speaker Adaptation Stage

In the adaptation stage, we first remove all of the SD modules in G̃lSD and insert a new LTN SD

module g̃t
lSD

= {At
lSD
,at

lSD
} for target speaker t. Then, only g̃t

lSD
is adapted using his/her speech

data. In Figure 3.7, we illustrate the speaker adaptation procedure, assuming we set the SD

modules to L2 of the DNN trained in the SAT stage.

In the scenario where the SD module layer is LlSD , the adaptation stage is formalized as follows:

g̃
t
lSD

= arg min
g̃t

lSD

{
ECE(Λ̃SAT, g̃

t
lSD

;Xt) +
ρSA

2
R(g̃t

lSD
)
}
, (3.15)

where

R(g̃t
lSD

) = ||At
lSD
− IlSD ||

2 + ||at
lSD
− 0lSD ||

2, (3.16)

R(g̃t
lSD

) is a regularization term whose anchors are {IlSD ,0lSD}, and ρSA is a non-negative regular-

ization coefficient.

3.3.4 Advantage over Preceding SAT-DNN-ORG Method

The preceding SAT-DNN-ORG method adopts such SI-training-based parameters as λSI
lSD

=

{W SI
lSD
, bSI

lSD
} as the anchors for regularization in the SAT stage, as in Eq. (3.7). However, there is
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no rationality to using the SI-based anchors in the SAT-based stages.

On the other hand, as in Eq. (3.14), the SAT-DNN-LTN method adopts the indentity matrix and

the zero vector as the anchors for regularization. Based on the linearity of these LTN parameters

as in Eqs. (3.9)-(3.11), regularization term R(G̃lSD) in Eq. (3.14) can be deemed as follows:

R(G̃lSD) =

S∑
s=1

(
||Ŵ s

lSD
−WlSD ||

2 + ||̂bs
lSD
− blSD ||

2
)
, (3.17)

where Ŵ s
lSD

= WlSDA
s
lSD

and b̂s
lSD

= WlSDa
s
lSD

+ blSD .

Hereat it turns out that although the anchors in Eq. (3.14) are fixed in form to the identity ma-

trix and the zero vector, they virtually change along the course of SAT stage: The anchors in

Eq. (3.17) change along the training progress in the SAT stage. Importantly, the virtual effect of

changing the anchors applies to the successive speaker adaptation stage, where the anchors for

regularization are fixed in the same way as in Eq. (3.14), frees the initial status of the anchors

from the SI-based parameters, and automatically initializes the anchors so that they can be more

SAT-oriented. Moreover, the virtual effect would make the training in the SAT stage more ef-

fective by softening the regularization. Accordingly, the SAT-DNN-LTN method is expected to

further increase the effect of the preceding SAT-DNN-ORG method.

3.3.5 Experimental Conditions

We tested our proposed method on the difficult, lecture speech data of the TED Talks corpus.

The experimental conditions basically follow those described in Section 3.2.4 unless otherwise

stated.

Evaluated recognizers

To evaluate our SAT-DNN-LTN method, we compared the following four recognizers:

1. SI: the SI-based DNN-HMM recognizer that corresponds to the initial status of SAT-LTN
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and SAT-ORG recognizers,

2. SA-SI-ORG: the speaker-adapted SI recognizer developed by adapting the one layer of the

DNN,

3. SA-SAT-ORG: the speaker-adapted SAT-ORG recognizer developed by adapting the one

layer of the DNN,

4. SA-SAT-LTN: the speaker-adapted SAT-LTN recognizer developed by adapting the LTN,

where SAT-ORG represents the DNN-HMM recognizer trained in the SAT stage of the preceding

SAT-DNN-ORG method, and SAT-LTN represents the DNN-HMM recognizer trained in the SAT

stage of the SAT-DNN-LTN method. SA-SI-ORG and SA-SAT-ORG recognizers correspond to

SA-SI and SA-SAT recognizers in Section 3.2.4, respectively.

Here, the SI recognizer works as a reference case in the experiments, and the SA-SI-ORG and

SA-SAT-ORG recognizers are the counterparts to the SA-SAT-LTN recognizer that is based on

our proposed scheme in this section.

Training and Adaptation

In the SAT stage, we set the initial value of the learning rate and the number of training epochs

to 0.004 and 50, respectively. We also set the regularization coefficient to 0.1 (ρSAT = 0.1) when

inserting LTN into L1 and to 10.0 (ρSAT = 10.0) when inserting LTN into L2 through L5.

In the speaker adaptation stage, we selected a learning rate of 0.00001 and a regularization co-

efficient of 0.1 (ρSA = 0.1) for inserting LTN into L1. On the other hand, we selected a learning

rate of 0.00005 and a regularization coefficient of 10.0 (ρSA = 10.0) in the case of inserting LTN

into L2 through L5. In each of these cases, we repeated training epochs ten times.
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Table 3.6: Experimental results (word error rate [%]) in supervised adaptation procedure for
SAT-DNN-LTN method.

lSD SI SA-SI-ORG SA-SAT-ORG SA-SAT-LTN

1 26.4 20.0 18.9 20.5

2 26.4 19.0 18.2 17.2
3 26.4 18.7 18.0 17.5
4 26.4 19.0 18.4 17.5
5 26.4 19.5 19.0 18.0

3.3.6 Experimental Results

Results in Supervised Adaptation

Table 3.6 shows the results in the supervised adaptation procedure. It shows the WERs (recog-

nition performances) for the four evaluated recognizers: the SI recognizer, the SA-SI-ORG rec-

ognizer, the SA-SAT-ORG recognizer, and the SA-SAT-LTN recognizer. Each error rate for the

SA-SI-ORG, SA-SAT-ORG, and SA-SAT-LTN recognizers is the average value obtained by the

CV paradigm as described in Section 3.2.4. In the table, lSD is the index of the layer to which the

SD module was allocated. Because the SI recognizer did not have an SD module layer, the same

error rate value, 26.4%, is shown in all the corresponding columns.

Comparisons of the SA-SI-ORG and SA-SAT recognizers, i.e., SA-SAT-ORG and SA-SAT-LTN

recognizer, clearly demonstrate the effectiveness of the SAT training concept. Regardless of the

layer to which the SD module was allocated or inserted, the SA-SAT recognizers outperformed

the SA-SI-ORG recognizer, except when the LTN SD module was inserted to L1 for SA-SAT-

LTN recognizer.

In addition, a comparison between the SAT-DNN-LTN and SAT-DNN-ORG methods also shows

the effectiveness of the SAT-DNN-LTN method. Our proposed SA-SAT-LTN recognizer stably

outperformed its counterpart SA-SAT-ORG recognizer in all cases except when the SD module

was allocated or inserted to L1. Moreover, the SA-SAT-LTN recognizer successfully reduced the
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Table 3.7: Experimental results (word error rate [%]) in unsupervised adaptation procedure for
SAT-DNN-LTN method.

lSD SI SA-SI-ORG SA-SAT-ORG SA-SAT-LTN

1 26.4 21.4 20.4 21.9

2 26.4 20.6 20.0 19.1
3 26.4 20.7 20.1 19.4
4 26.4 21.0 20.3 19.4
5 26.4 21.5 21.0 20.2

lowest error rate from 18.7% to 17.2%, which was the best among all of the obtained error rates,

against the SA-SI-ORG recognizer; from 18.0% to 17.2% against the SA-SAT-ORG recognizer.

As described in Section 3.3.4, our proposed SAT-DNN-LTN method dynamically estimatesWlS D

and blS D , which are anchorage states of network parameters in the regularization of the SAT step,

and automatically estimates W anchor
lS D

and banchor
lS D

, which are the initial status of an SD module

in the speaker adaptation stage. Based on these properties, we estimate that our SA-SAT-LTN

performed the SAT and speaker adaptation stages using a more appropriate anchorage state of

network parameters in the regularization and it led to the better adaptation performance.

In addition, the adaptation allocating the SD module to the inner layers also outperformed the

case of allocating the SD module to the outer layers in both the SA-SI-ORG, SA-SAT-ORG and

SA-SAT-LTN recognizers.

Results in Unsupervised Adaptation

Table 3.7 shows the results in the unsupervised adaptation procedure. As in Table 3.6, Table 3.7

shows the recognition performances in the WER of the four evaluated recognizers. Each error

rate for the SA-SI and SA-SAT recognizers is also the average value obtained through the CV

paradigm.

To select the adaptation data used for the unsupervised adaptation, we set the threshold value for
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the confidence measure to 0.5 for SA-SI-ORG and SA-SAT-ORG recognizes, 0.6 for SA-SAT-

LTN recognizer, based on the preliminary experiment results.

In the unsupervised adaptation results, we identified a trend similar to the supervised adaptation

results. The SA-SAT-LTN recognizer achieved the lowest error rate, 19.1%, which was 1.5 points

lower than that of the SA-SI-ORG recognizer and 0.9 points lower than that of the SA-SAT-ORG

recognizer. It shows the effectiveness of the SAT-DNN-LTN method even in the unsupervised

adaptation setups.

3.4 Extension with Bottleneck Linear Transformation Networks

3.4.1 Motivations

In the previous section (Section 3.3), by adopting LTN SD module, our SAT-DNN-ORG method

was successfully upgraded to a SAT-based DNN-HMM recognizer whose SD module was de-

fined with LTN, i.e., SAT-DNN-LTN method. Based on the linearity of the LTN SD module,

SAT-DNN-LTN method provided two preferable characteristics: 1) dynamically estimate the

anchorage states of network parameters in the regularization of the SAT step, and 2) automati-

cally estimate the initial status of an SD module in the speaker adaptation step. The experiments

clearly demonstrated the effectiveness of the extended SAT-DNN-LTN method.

In real-world situations where the amount of available data is finite, large-scale networks easily

suffer from the over-training problem. Trained networks generally work for the data in hand

but often fail for unseen data. This problematic phenomenon becomes more serious in such

cases where only a severely limited amount of data is available in the speaker adaptation stage.

In our preceding methods, such as the SAT-DNN-LTN method, this problem was effectively

controlled using the regularization concept. Nevertheless, the size of the used SD module is still

large, and its reduction is obviously desirable because a small SD module further decreases the

risk of over-training and reduces computational load as well as storage cost. Motivated by this
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understanding, we propose in this section a new technique for reducing the size of the DNN front-

end, or more precisely the size of the LTN SD module, in the preceding SAT-DNN-LTN method

without degradation of its classification power. Note that an LTN SD module is prepared for

every training/target speaker and thus its computational and storage costs are high; furthermore,

the size of the SD module should be strictly constrained due to the limited amount of speech data

used in the speaker adaptation stage.

Several techniques for alleviating over-training by reducing the adaptable parameter size of

LTN have been investigated, focusing on the sharing or restriction of the adaptable parameters

[46, 53, 65]. In addition, Singular Value Decomposition (SVD)-based low-rank matrix con-

version has also been investigated to reduce the number of adaptation parameters [47, 66, 67].

However, the best choice among these techniques and, more importantly, the relation between

the size of adaptable parameters and their feature-representation capability in the LTN have not

yet been clarified. Consequently, in this section, we first theoretically analyze this relation and

next propose a new SAT-based adaptation scheme, referred to as SAT-DNN-BTN method, for

reducing the size of LTN while maintaining its feature-representation power by introducing the

bottleneck structure to the SD module layer.

3.4.2 Property Analysis of Linear Transformation Networks

To prepare for matrix/vector manipulation, we re-express the trainable matrices/vectors of DNN

and LTN as follows: ŴlSD = [ŵ1 · · · ŵNlSD−1], WlSD = [w1 · · ·wNlSD−1], AlSD = [α1 · · ·αNlSD−1],

ŵ j = [ŵ1 j · · · ŵNlSD j]T, w j = [w1 j · · ·wNlSD j]T, α j = [α1 j · · ·αNlSD−1 j]T, where NlSD is the number of

nodes in LlSD , T is transpose. Strictly speaking, such column vectors as w j should have an index

that expresses its corresponding insertion layer, as with wlSD
j , but for simplicity, we omit it.

Then, through simple matrix/vector manipulations, we reach the following relation:

ŵ j =

NlSD−1∑
i=1

αi jwi. (3.18)
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Here, we can easily find that the relation ŵ j ∈ S (WlSD) holds, where S (WlSD) is the column

space spanned by the column vectors of WlSD . Similarly, we can obtain the following bias vector

relation: WlSDalSD ∈ S (WlSD). Accordingly, the potential adaptability of LTN, or in other words,

the size of the parameter space searched by LTN, is determined by the dimension of S (WlSD),

that is the real rank of WlSD . A question arising here concerns the effective rank of WlSD . If it is

smaller than the real rank of WlSD , it is fundamentally possible to construct a low-dimensional

parameter space that has the same feature-representation capability as S (WlSD). Then, because

such use of a smaller number of basis vectors reduces the number of adaptable parameters, the

new basis vectors, or the new smaller number of parameters, are expected to stably increase the

effect of speaker adaptation, especially in cases where the available speech data for adaptation

training are severely limited.

3.4.3 Low Rank Approximation of Weight Matrix using Singular Value

Decomposition

To find the above (smaller number of) basis vectors, we consider the application of SVD to

the weight matrix of the SD module layer. For notation simplicity, omitting SD module layer

index lSD, we consider weight matrix W (∈ Rµ×ν) in this subsection. Then, W is decomposed as

W = UΣVT, where Σ (∈ Rµ×ν) is the rectangular diagonal matrix whose diagonal elements are

singular values σi, and U (∈ Rµ×µ) and V (∈ Rν×ν) are the orthogonal matrices produced by SVD.

In the same way, for matrix W̃ whose rank is κ (≤ rank W), we obtain W̃ = ŨΣ̃ṼT, where Σ̃

(∈ Rκ×κ) is the diagonal matrix produced by retaining the κ largest singular value elements (while

removing the remainder) in Σ, Ũ (∈ Rµ×κ) is the matrix produced by retaining only the κ column

vectors of U, each corresponding to the κ largest singular values, and Ṽ (∈ Rν×κ) is the matrix

that is similarly produced from V. Finally, using W̃, we can obtain the following approximation

of W:

W̃ = ŨΣ̃ṼT ≈ UΣVT = W. (3.19)
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Figure 3.8: Adaptation procedure consisting of SVD-based weight matrix-size reduction and
bottleneck LTN insertion.

Eq. (3.19) shows that the space spanned by the column vectors of W can be approximated by the

κ basis vectors of Ũ.

3.4.4 Adaptation Procedure using Bottleneck Linear Transformation Net-

works

From the results of Section 3.4.2 and 3.4.3, we propose a new adaptation scheme, which adopts

a size-reduced LTN SD module, for improving the SAT-DNN-LTN recognizer. The proposed

scheme is illustrated in Figure 3.8 and formalized as follows:

(i) It first conducts the SAT-based training of the entire DNN, based on the procedure as

described in Section 3.3.3.

(ii) It next approximates, with the SVD-based matrix decomposition, the weight matrix of SD

module as WlSD ≈ ŨlSDΣ̃lSDṼT
lSD

. Only the κ basis vectors, which correspond to the κ largest

singular values of WlSD , are selected in Σ̃lSD , and therefore WlSD is approximately replaced

by the bottleneck network ŨlSDΣ̃lSDṼT
lSD

.

(iii) It inserts a new small-sized LTN into the bottleneck SD module layer whose size (number

of nodes) is reduced from ν to κ. This situation is illustrated in the right-side picture in

Figure 3.8. To distinguish this small-sized LTN from the LTN originally used in the SAT-

DNN-LTN method, we refer to this newly inserted LTN as bottleneck LTN, and denote it

49



by weight matrix ABTN
lSD

and bias vector aBTN
lSD

. Accordingly, we also refer to the layer into

which the bottleneck LTN is inserted as bottleneck layer, with bottleneck size for κ. Then,

the outputs from SD module layer LlSD are given as follows:

zlSD = φ
(
ŨlSDΣ̃lSD(ABTN

lSD
ṼT

lSD
zlSD−1 + aBTN

lSD
) + blSD

)
. (3.20)

(iv) It finally adapts only the bottleneck LTN using the speech data of a target speaker.

In the above scheme definition, we inserted the bottleneck LTN between ṼT
lSD

and Σ̃lSD (See

Figure 3.8 and Eq. (3.20)). However, in principle, it can also be inserted between Σ̃lSD and

ŨlSD . We pre-experimentally investigated both ways of insertion and found that the way of (3.20)

worked more stably than its counterpart. Therefore, we adopt it in this section.

3.4.5 Speaker Adaptive Training-based Retraining using Bottleneck Lin-

ear Transformation Networks

Based on the definition of bottleneck LTN, it is expected to fundamentally retain the same degree

of feature-representation capability as the original weight matrix WlSD has, provided its size (i.e.,

bottleneck size) exceeds a certain necessary level. However, removing the basis vectors, which

correspond to small singular values, possibly makes the capability of ŨlSDΣ̃lSDABTN
lSD

ṼT
lSD

lower

than that of WlSDAlSD; this is because if those singular values are not truly zero, their correspond-

ing basis vectors actually contribute to widening the adaptable parameter space. Therefore, the

simple size reduction achieved by letting only the large singular value basis vectors remain may

not necessarily be sufficient for initializing the bottleneck LTN for the successive adaptation;

moreover, if needed, some countermeasures should be added to solve this insufficiency. One

possible solution is to re-conduct the SAT-based training of the entire DNN part between (ii)

and (iii) in our scheme shown above. The SAT-based optimization procedure here is basically

the same as that in the preceding SAT-DNN-LTN method, with the only difference being that

the training here involves the small-sized bottleneck LTNs. Note that, similar to the full-sized
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LTN in the SAT-DNN-LTN method, the bottleneck LTN is switched along with the speech data

selection for every training speaker. This additional SAT procedure will correct the degradation

of the SAT concept caused by the bottleneck LTN insertion that deteriorates the SAT-optimized

SD module.

3.4.6 Experimental Conditions

We tested our proposed method on the difficult, lecture speech data of the TED Talks corpus.

The experimental conditions basically follow those described in Section 3.2.4 unless otherwise

stated.

Evaluated Recognizers

For comparison purposes, following our previous training procedures (Section 3.3.3), we first

developed the baseline SI recognizer and the SAT-LTN recognizer that had no SVD-based bot-

tleneck layer. Then, using the above SI and SAT-LTN recognizers as baselines, we also developed

the following recognizers:

1. SI-BTN: developed by replacing the SD module layer of SI recognizer with an SVD-based

low-rank weight matrix.

2. SI-BTN-RET: developed by reapplying the SI training to SI-BTN.

3. SAT-BTN: developed by replacing the SD module layer of SAT-LTN recognizer with an

SVD-based low-rank weight matrix.

4. SAT-BTN-RESAT: developed by reapplying the SAT-based training to SAT-BTN, as de-

scribed in 3.4.5.

5. SA-SI-BTN, SA-SI-BTN-RET4, SA-SAT-BTN, and SA-SAT-BTN-RESAT: Prefix SA in-

dicates that the corresponding recognizers were speaker-adapted. The adaptation was done

4SA-SI-BTN-RET basically corresponds to the recognizer in [47], although there are such small differences as
the positioning of the SD modules.
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Figure 3.9: Relationship between bottleneck size and recognition performance (word error rate
[%]).

using the bottleneck LTN inserted into the SD module layer.

In this experiment, we adopted the larger-scale DNN module, which had seven layers and used

429 input nodes, 4909 output nodes, and 2048 nodes for all of the intermediate layers. In addi-

tion, we allocated the SD module only to the layer L2 (lSD = 2), which was shown to be the most

effective for the SD module insertion (Section 3.3.6).

3.4.7 Experimental Results

Property Analysis of LTN-based Adaptation

Figure 3.9 shows the WERs of three types of recognizers, i.e., SI-BTN, SA-SI-BTN, and SA-

SAT-BTN. The rates were obtained along with the different bottleneck sizes of 64, 128, 256,

512, 1024, and 2048; each of the rates was the average of the results obtained through the CV

paradigm over the speech data of all 28 testing speakers. The WERs of SA-SI-BTN and SA-SAT-

BTN, at the right-side of the figure, were exactly the same as those of SA-SI-LTN and SA-SAT-
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LTN (for these two, the speaker adaptation was done without SVD-based matrix conversion),

respectively. Note that in these cases, κ was kept to 2048, although W2 was decomposed based

on SVD. As theoretically expected, SVD did not change the feature-representation capability of

the matrix when all of the decomposed basis vectors were maintained. Figure 3.9 also shows

that the original 2048-dimensional SD module matrix W2 can be sufficiently approximated by

such low-rank matrices as the 512-dimensional matrix: The WERs of all three recognizers had

little degradation until their bottleneck sizes were reduced to 512. The results clearly support our

analysis in Section 3.4.2 that the effective rank of W2 is rather low and the bottleneck LTN having

an appropriately selected size can sufficiently retain the adaptation capability of the original high-

dimension matrix. For ease of viewing, we omit the results of the other recognizers shown in the

list of Section 3.4.6 but they showed the same trend as in Figure 3.9.

Adaptation Using Small Amount of Speech Data

As discussed in Section 3.4.2 and 3.4.5, the use of the bottleneck LTN may have a conflict-

ing two-side effect. Its adaptable parameter reduction possibly increases the adaptability of SD

modules, especially over the limited amount of adaptation data, but it also raises the danger of

fundamentally decreasing the adaptability. To clarify this effect, we conducted adaptation ex-

periments using two different sizes of bottleneck LTNs: one with κ = 512 and the other with

κ = 2048. From the above experiment, the bottleneck LTN with κ = 512 was shown to retain the

representation capability of the original 2048-dimensional weight matrix W2, while the bottle-

neck LTN with κ = 2048 was also shown to be equivalent to W2. Note that the bottleneck LTN

with κ = 2048 was produced with SVD but actually its structure was not a bottleneck. The ex-

periment was conducted over the speech data, each longer than 6 minutes, of 18 testing speakers;

for each testing speaker, his/her first 3 minutes of utterances were reserved for adaptation, and

the data of the remaining time were used for testing.

Table 3.8 shows the size conditions and gained WERs of the evaluated recognizers. In the table,

for each recognizer, we show the bottleneck size (BTN size), the number of adaptable parameters

of the SD module (# Param.), and the WERs for 4 different lengths of adaptation speech data,
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Table 3.8: Experimental results (parameter size and word error rate [%]) obtained with super-
vised adaptation using different amounts of adaptation data.

rRcognizer BTN size # Param. 180 s 60 s 30 s 15 s

SI-BTN 2048 4.2 M 24.0 24.0 24.0 24.0

SI-BTN 512 0.26 M 24.1 24.1 24.1 24.1

SA-SI-BTN 2048 4.2 M 18.8 20.3 21.1 21.5

SA-SI-BTN 512 0.26 M 18.9 20.4 21.3 21.7

SA-SAT-BTN 2048 4.2 M 17.8 19.3 20.5 21.3

SA-SAT-BTN 512 0.26 M 18.0 19.5 20.4 21.3

SI-BTN-RET 512 0.26 M 24.0 24.0 24.0 24.0

SA-SI-BTN-RET 512 0.26 M 18.9 20.2 21.3 21.7

SA-SAT-BTN-RESAT 512 0.26 M 17.6 18.9 20.4 20.8

i.e., 180, 60, 30, and 15 seconds. Note that the length of testing speech data was set to the fixed

value described in the above paragraph. Because the SI-BTN and SI-BTN-RET recognizers did

not have the speaker adaptation mechanism, the same WERs gained without the adaptation are

listed in all of the corresponding columns.

From the table, we can make three observations:

(i) The SAT-based recognizer retrained with SAT (SA-SAT-BTN-RESAT with κ = 512)

achieved the best WERs for all of the adaptation speech data lengths, although the num-

ber of the adaptation parameters was only 6.25% of the original 2048-dimensional weight

matrix.

(ii) The SAT-based recognizer (SA-SAT-BTN) constantly outperformed its counterpart SI-

based recognizer (SA-SI-BTN) for all of the settings of adaptation speech data lengths

and bottleneck sizes.

(iii) The SD module size reduction (κ = 2048 → κ = 512) basically decreases the adaptation

capability of its baseline non-reduced module in both the SI- and SAT-based recognizers.
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Similarly to our approach, SVD-based matrix approximation has been studied in recent works

with the aim of reducing the adaptation parameter size [47, 66, 67]. However, it was not fully

clarified whether adaptation incorporating the parameter-size reduction achieved greater adapta-

tion performance compared to adaptation without such size reduction, especially in cases where

the speech data available for adaptation training were severely limited. Our results show that a

simple use of SVD-based size reduction is not sufficient for improving this performance, but our

novel SAT-based reinitialization procedure for the DNN front-end clearly helps the SAT-based

bottleneck LTN to boost its adaptation power. In addition to the SAT-based reinitialization, we

actually examined the SI retraining for the SI-BTN recognizer, but this alternative reinitialization

was not effective for increasing the adaptation performances of the SA-SI-BTN recognizer. The

difference in reinitialization effect probably arises from the training difference that the SAT-based

approach reinitializes the bottleneck LTN together with the other DNN part in order to increase

the adaptation capability of the LTN module but the SI-based approach gives no consideration to

the adaptation.

3.5 Summary

To handle the challenging sample finiteness problem, we studied speaker adaptation techniques

for the hybrid DNN-HMM speech recognizer and proposed new SAT-based speaker adaptation

algorithms that introduce modularity in the DNN part. By utilizing the SAT concept for the DNN

training, the proposed methods allow to increase the adaptability of the DNN, while reducing the

size of adaptable parameters. Our experimental results on a difficult TED Talks corpus show

that the proposed SAT-based recognizer with small-size SD modules outperformed the baseline

SI-based recognizer with large-size SD modules.
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4Multichannel End-to-end Speech

Recognition

4.1 Introduction

In the past five years or so, with the advent of DL techniques in ASR tasks, a hybrid DNN-

HMM framework has significantly improved ASR performances compared to a conventional

GMM-HMM framework [8, 9, 10]. Although such DL-based approaches have replaced several

components of the conventional ASR system, current systems continue to adopt a complicated

module-based architecture that consists of several separate components, such as acoustic, pho-

netic, and language models. To build such a complicated architecture, we require wide and deep

knowledge about each component, which makes it difficult to develop and tune ASR systems for

every applications.

Recently, as an alternative to such complicated architecture, an end-to-end ASR framework has

attracted great research interest because it simplifies the above architecture with a single neural

network-based architecture [13, 14, 16, 68, 69, 70, 71, 72, 73, 74]. One of promising direc-

tions is an attention-based encoder-decoder framework, which integrates all relevant compo-

nents using RNNs and an attention mechanism [13, 14, 68, 69, 70, 71, 72]. Using the attention

mechanism, the framework deals with dynamic time alignment problems within the network and

solves the ASR problem as a sequence-to-sequence mapping problem from acoustic feature to

word/character label sequences. In addition to the simplified system architecture, another impor-

tant motivation of the end-to-end framework is that the entire inference procedure can be consis-
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tently optimized to improve such final ASR objectives as word/character error rate (WER/CER).

However, previous research on end-to-end frameworks mainly focused on the ASR problem in

a single-channel setup without speech enhancement. Considering real world applications, we

must also study such frameworks in a multichannel setup with speech enhancement. Actually,

recent benchmark studies show that multichannel processing with microphone-array speech en-

hancement techniques (especially beamforming methods) produces substantial improvements in

the presence of strong background noise for conventional DNN-HMM hybrid systems [75, 76].

In light of the above trends, we extend the existing attention-based encoder-decoder framework

by integrating multichannel speech enhancement components into the end-to-end framework and

propose an ME2E ASR architecture, which directly converts multichannel speech signal to text

through speech enhancement. As a speech enhancement component of our ME2E ASR system,

we adopt a recently proposed beamforming technique using neural networks, which we call a

neural beamformer. Because a neural beamformer can be formalized as a fully differentiable

network, the beamforming component can be jointly optimized with the end-to-end ASR com-

ponent, based on the backpropagated gradients from the final ASR objective.

Recent studies on neural beamformers can be categorized into two types: 1) beamformers with

a filter estimation network [77, 78, 79] and 2) those with a mask estimation network [80, 81,

82, 83, 84, 85, 86, 87]. Motivated by the successes of the mask-based beamforming approaches

[80, 81, 82, 88] in recent noisy ASR benchmarks (e.g., CHiME 3 and 4 challenges), we mainly

focus on the mask-based neural beamformer.

Our mask-based neural beamformer adopts an MVDR formalization given a reference micro-

phone [89] since computing the derivatives is relatively simple. We also propose an additional

neural network-based attention mechanism for the reference microphone selection. This allows

the entire procedures of the neural beamformer, including the reference selection, to be invari-

ant to microphone geometries including the number of channels, the microphone locations, and

the microphone ordering. Therefore, our proposed ME2E ASR architecture can deal with in-

put signals from various microphone geometries without re-configuration and re-training. Of
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course, because the channel attention mechanism is also formalized as a differentiable network,

the entire procedures of the neural beamformer can be jointly optimized with the end-to-end ASR

component based on the backpropagated gradients from the end-to-end ASR objective.

The notations used in this chapter are summarized in Appendix A.2.

4.2 A Unified Architecture for Multichannel End-to-end Speech

Recognition with Neural Beamforming

4.2.1 Overview

Figure 4.1 illustrates an overview of the proposed ME2E ASR architecture. The architecture

mainly consists of two building blocks: 1) neural beamformers for speech enhancement, and

2) attention-based encoder-decoder networks for speech recognition. Let Xc = {xt,c ∈ C
F |t =

1, · · · ,T } be a short-time Fourier transform (STFT) feature sequence recorded at c-th channel,

where xt,c is a F-dimensional STFT feature vector at input time step t, and T is the input se-

quence length, and let C be the number of channels. Given multichannel input speech sequences

{Xc}
C
c=1, the ME2E ASR architecture directly estimates the posterior probabilities for output label

sequence Y = {yn ∈ V|n = 1, · · · ,N} using the fully neural network-based architecture, where

yn is a label symbol (e.g., character) at output time step n, N is the output sequence length, and

V is a set of labels. First in the neural beamformer stage, the system integrates the multichannel

noisy sequences {Xc}
C
c=1 into a single-channel (hopefully) noise-suppressed sequence X̂ by linear

filtering. Next in the feature extraction stage, it converts the filtered STFT feature sequence X̂

that are output from the front-end neural beamformer to a log Mel filterbank feature sequence Ô

for inputting to the back-end attention-based encoder-decoder network. Finally in the attention-

based encoder-decoder stage, it transforms (decodes) the log Mel filterbank feature sequence Ô

to the output label (e.g., character) sequence Y by the estimation of the posterior probabilities

P(Y |{Xc}
C
c=1).
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Figure 4.1: Overview of the proposed ME2E ASR architecture. The neural beamformer works as
a speech enhancement part and the attention-based encoder-decoder network works as an ASR
part, where feature extraction function connects those components.

The entire procedure of the ME2E ASR system can be represented in the following functional

forms:

X̂ = Beamformer({Xc}
C
c=1), (4.1)

Ô = Feature(X̂), , (4.2)

P(Y |{Xc}
C
c=1) = E2E_ASR(Ô), (4.3)

where, Beamformer(·) is a speech enhancement function realized by the neural beamformer with

the filter estimation network (Section 4.4.2) or the mask estimation network (Section 4.4.3).

Feature(·) is a feature extraction function realized by the log Mel filterbank (Section 4.3), which

bridges the speech enhancement and end-to-end ASR components. E2E_ASR(·) is an end-to-

end speech recognition function realized by the attention-based encoder-decoder networks (Sec-

tion 4.5). The details of each function are described in the following Sections.

Note that because all of the procedures (i.e., speech enhancement, feature extraction, and end-to-
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end speech recognition) are represented as differentiable neural network-based architecture, the

entire recognition process can be optimized only using the training sample pairs, each of which

consists of multichannel noisy speech samples and its corresponding transcription, to satisfy the

end-to-end ASR objective (i.e., generating a correct label sequence) as much as possible.

4.2.2 Training Objective

To learn appropriate time-alignments in the presence of strong background noise, a joint CTC-

attention loss [71] are adopted for our end-to-end ASR objective. It is a kind of a multi-task

learning objective, which utilized two types of loss function: one for encoder-decoder loss and

another for CTC loss. Because CTC loss imposes a left-to-right constraint on the time-alignment,

it helps the encoder network and the attention mechanism learn appropriate time-alignments even

in the presence of strong background noise.

To define the joint CTC-attention loss, a CTC decoder is added to the encoder’s top layer, where

the encoder is shared by the attention-based and CTC decoders. Let PATT(Y |X) be the posteriors

estimated by the attention-based encoder-decoder, PCTC(Y |X) be the posteriors estimated by the

CTC. Then joint CTC-attention loss EJOINT(Y |X) is formalized as follows:

EJOINT(Y |X) = γEATT(Y |X) + (1 − γ)ECTC(Y |X), (4.4)

where

EATT(Y |X) = − log PATT(Y |X), (4.5)

ECTC(Y |X) = − log PCTC(Y |X), (4.6)

X = {Xc}
C
c=1 be a set of multichannel noisy speech inputs, Y is its corresponding target transcrip-

tion, and γ ∈ [0, 1] is an interpolation weight.

Because the computational processes of PATT(Y |X) and PCTC(Y |X) are fully differentiable, the
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optimization process can be conducted based on arbitrary gradient-based optimization algorithms

based on the backpropagation through time method [90].

4.3 Feature Extraction Component : Log Mel Filterbank

This section explains our adopted feature extraction function, which bridges the speech enhance-

ment and end-to-end ASR components. Motivated by the success of (log) Mel filterbank-based

features in previous studies (e.g., a single-channel end-to-end ASR setup [13, 69], a single-

channel joint training setup of speech enhancement and DNN-HMM hybrid system [91], and a

multichannel DNN-HMM hybrid setup [77, 84]), a normalized log Mel filterbank are adopted as

an inner feature representation for the ME2E ASR architecture.

In other words, Feature(·) transforms the enhanced STFT coefficients that are output from the

front-end neural beamformer to the enhanced acoustic feature (i.e., normalized log Mel filter-

bank) for inputting to the back-end attention-based encoder-decoder network. Concretely, en-

hanced acoustic feature ôt ∈ R
DO was obtained from enhanced STFT coefficients x̂t ∈ C

F as

follows:

p̂t = {<(x̂t, f )2 + =(x̂t, f )2}Ff =1, (4.7)

ôt = Norm(log(Mel(p̂t))), (4.8)

where p̂t ∈ R
F is a real-valued vector of the power spectrum of the enhanced signal at time step

t, and x̂t, f ∈ C is an enhanced STFT coefficient at time-frequency bin (t, f ). Mel(·) represents the

operation of DO×F Mel matrix multiplication, and Norm(·) represents the operation of DO×DO

global mean and variance normalization so that the mean and variance of each dimension become

0 and 1. Eqs. (4.7)-(4.8) correspond to Feature(·) in Eq. (4.2).

Note that since computation of the normalized log Mel filterbank is fully differentiable, the gra-

dients from the speech recognition part (i.e., the attention-based encoder-decoder net- work) can
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be backpropagated to the speech enhancement part (i.e., the neural beamformer)

4.4 Speech Enhancement Component : Neural Beamformers

4.4.1 Overview

This section explains neural beamformer techniques, which are integrated with the encoder-

decoder network in the proposed ME2E ASR architecture. In the proposed architecture, frequency-

domain beamformers [77] are adopted rather than time-domain ones [78], because the frequency-

domain beamformers achieve significant computational complexity reduction in multichannel

neural processing [92].

Let xt, f = {xt, f ,c}
C
c=1 ∈ C

C be the spatial vector of the signals obtained from all the microphones

for each time-frequency bin (t, f ), where xt, f ,c ∈ C be an STFT coefficient of c-th channel noisy

signal at time-frequency bin (t, f ). Moreover, let gt, f = {gt, f ,c}
C
c=1 ∈ C

C and g f = {g f ,c}
C
c=1 ∈ C

C be

corresponding time-variant and time-invariant filter coefficients, respectively. In the frequency

domain representation, enhanced STFT coefficient x̂t, f are obtained by linear filtering as follows:

x̂t, f =


g†t, f xt, f (time-variant filter)

g†f xt, f (time-invariant filter),
(4.9)

where † represents the conjugate transpose.

In the proposed architecture, two types of neural beamformers that basically follow Eq. (4.9)

are adopted as the speech enhancement component: 1) with a filter estimation network and 2)

with a mask estimation network. Figure 4.2 illustrates an overview of both approaches. The

main difference between them is how to estimate the filter coefficients: gt, f or g f . The following

subsections describe each approach.

Note that the entire beamforming procedures described in the following subsections correspond
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(a) Beamforming with filter esti-
mation network

(b) Beamforming with mask estimation network

Figure 4.2: Structures of neural beamformers: (a) filter estimation network approach, which
directly estimates the filter coefficients; (b) mask estimation network approach, which estimates
time-frequency masks and gets filter coefficients based on MVDR formalization.

to Beamformer(·) in Eq. (4.1).

4.4.2 Neural Beamforming with Filter Estimation Network

A neural beamformer with a filter estimation network directly estimates time-variant filter coeffi-

cients {gt, f }
T,F
t=1, f =1 as network outputs, where F is the number of dimensions of the STFT signals.

The following Algorithm 1 summarizes the overall procedures to obtain the enhanced features,

and Figure 4.2(a) illustrates an overview of the procedures. The main part of this algorithm is

to predict complex-valued filter coefficients gt, f with a real-valued neural network, Filternet(·),

which is described below.

Filter Estimation Network

This approach uses a single real-valued bidirectional long short-term memory (BLSTM) recur-

rent network [93, 94] to predict the real and imaginary parts of the complex-valued filter coef-
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Algorithm 1 Overall procedures of neural beamformer with filter estimation network
Require: multichannel STFT input sequences {Xc}

C
c=1

1: {gt, f }
T,F
t=1, f =1 = Filternet({Xc}

C
c=1) . Eqs. (4.10)-(4.12)

2: for t = 1 to T do
3: for f = 1 to F do
4: x̂t, f = g†t, f xt, f . Eq. (4.9)
5: end for
6: end for
7: return X̂ = {x̂t, f }

T,F
t=1, f =1

ficients {gt, f }
F
f =1 at every time step. We introduce 2FC-dimensional output layers to separately

compute the real and imaginary parts of the filter coefficients.

Let x̃t = {<(xt, f ),=(xt, f )}Ff =1 ∈ R
2FC be an input feature of a 2FC-dimensional real-valued vector

for the BLSTM network, which is obtained by concatenating the real and imaginary parts of all

STFT coefficients in all channels at time step t. Given input sequence X̃ = {x̃t|t = 1, · · · ,T }, the

network outputs time-variant filter coefficients gt, f as follows:

Z = BLSTM(X̃), (4.10)

<(gt, f ) = tanh(W<
f zt + b<f ), (4.11)

=(gt, f ) = tanh(W=
f zt + b=f ), (4.12)

where Z = {zt ∈ R
DZ |t = 1, · · · ,T } is a sequence of the DZ-dimensional output vectors of the

BLSTM network. <(gt, f ) and =(gt, f ) are the real and imaginary parts of the filter coefficients.

W<
f ∈ R

C×DZ and W=
f ∈ R

C×DZ are the weight matrices that output real and imaginary part of the

filter coefficients for frequency f , and b<f ∈ R
C and b=f ∈ R

C are their corresponding bias vectors.

Eqs. (4.10)-(4.12) correspond to Filternet(·) in Algorithm 1. Using estimated filters {gt, f }
T,F
t=1, f =1,

the enhanced STFT coefficients {x̂t, f }
T,F
t=1, f =1 are obtained based on Eq. (4.9).
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Remarks

This approach has several possible issues due to its formalization. The first issue is the high flex-

ibility of estimated filters {gt, f }
T,F
t=1, f =1, which are composed of a large number of unconstrained

variables (2T FC) estimated from few observations. This causes problems, such as training dif-

ficulties and over-fitting. The second is that the network structure depends on the number and

order of the channels. Therefore, a new filter estimation network has to be trained when we

change microphone configurations.

4.4.3 Neural Beamforming with Mask Estimation Network

The neural beamformer with a mask estimation network first estimates the time-frequency masks.

Then cross-channel power spectral density (PSD) matrices (also known as spatial covariance

matrices) are predicted based on the estimated masks. Finally, they are used to compute the

time-invariant filter coefficients {g f }
F
f =1 based on the well-studied MVDR formalization.

The key point of the mask-based neural beamformer is that it constrains the estimated filters

based on well-founded array signal processing principles, which can solve/suppress the issues

described in Section 4.4.2. This point is the main difference between the mask estimation net-

work approach and the filter estimation network approach described in Section 4.4.2. Also,

mask-based beamforming approaches have achieved great performance in recent noisy ASR

benchmarks [80, 81, 82, 88]. Motivated by this background, we focus on a neural beamformer

with a mask estimation network more than a filter estimation network.

Algorithm 2 summarizes the overall procedures to obtain the enhanced features, and Figure 4.2(b)

illustrates an overview of the procedures1. Each procedure is described below.

1Due to space limitations, the procedures corresponding to State_Feat(·) and Spatial_Feat(·) in Algorithm 2 are
not shown in Figure 4.2(b).
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Algorithm 2 Overall procedures of neural beamformer with mask estimation network
Require: multichannel STFT input sequences {Xc}

C
c=1

1: for c = 1 to C do
2: {mS

t,c}
T
t=1, {z

S
t,c}

T
t=1 = MasknetS(Xc) . Eqs. (4.16)-(4.17)

3: {mN
t,c}

T
t=1, {z

N
t,c}

T
t=1 = MasknetN(Xc) . Eqs. (4.18)-(4.19)

4: end for
5: for t = 1 to T do
6: mS

t = Mean({mS
t,c}

C
c=1) . Eq. (4.20)

7: mN
t = Mean({mN

t,c}
C
c=1) . Eq. (4.21)

8: end for
9: for f = 1 to F do

10: ΦS
f = PSD({mS

t }
T
t=1, {xt, f }

T
t=1) . Eq. (4.14)

11: ΦN
f = PSD({mN

t }
T
t=1, {xt, f }

T
t=1) . Eq. (4.15)

12: end for
13: for c = 1 to C do
14: qc = State_Feat({zS

t,c)}
T
t=1, {z

N
t,c)}

T
t=1) . Eq. (4.24)

15: rc = Spatial_Feat({φS
f ,c,c′}

F,C
f =1,c′=1) . Eq. (4.25)

16: end for
17: u = Attend_Channel({qc}

C
c=1, {rc}

C
c=1) . Eqs. (4.22)-(4.23)

18: for f = 1 to F do
19: g f = MVDR(ΦS

f ,Φ
N
f ,u) . Eq. (4.13)

20: end for
21: for t = 1 to T do
22: for f = 1 to F do
23: x̂t, f = g†f xt, f . Eq. (4.9)
24: end for
25: end for
26: return X̂ = {x̂t, f }

T,F
t=1, f =1
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MVDR formalization given reference microphones

The time-invariant filter coefficients g f in Eq. (4.9) are computed based on the MVDR formal-

ization given the reference microphones [89] as follows:

g f =
(ΦN

f )−1
ΦS

f

Tr((ΦN
f )−1ΦS

f )
u, (4.13)

where ΦS
f ∈ C

C×C and ΦN
f ∈ C

C×C are the PSD matrices for speech and noise signals, respectively.

u ∈ RC is a one-hot vector representing a reference microphone, and Tr(·) represents the matrix

trace operation. Eq. (4.13) corresponds to MVDR(·) in Algorithm 2.

Mask-based estimation for PSD matrices

Let mS
t, f ∈ [0, 1] and mN

t, f ∈ [0, 1] respectively be the time-frequency masks for speech and noise

signals. Based on previous works [80, 88], the PSD matrices can be robustly estimated using the

expectation with respect to time-frequency masks as follows:

ΦS
f =

1∑T
t=1 mS

t, f

T∑
t=1

mS
t, f xt, f x†t, f , (4.14)

ΦN
f =

1∑T
t=1 mN

t, f

T∑
t=1

mN
t, f xt, f x†t, f . (4.15)

Eqs. (4.14) and (4.15) correspond to PSD(·) in Algorithm 2.

Mask estimation network

To estimate the time-frequency masks for every c-th channel (mS
t,c = {mS

t, f ,c}
F
f =1 and mN

t,c =

{mN
t, f ,c}

F
f =1), we use two real-valued BLSTM networks: one for a speech mask and another for

a noise mask. Unlike the filter estimation network, because the masks are estimated separately

for each channel, 2F-dimensional output layers are used to separately compute the real and
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imaginary parts of the time-frequency masks.

Let x̃t,c = {<(xt, f ,c),=(xt, f ,c)}Ff =1 ∈ R
2F be the 2F-dimensional real-valued input features for the

BLSTM networks, which is obtained by concatenating the real and imaginary parts of all the

STFT features at c-th channel. Given input sequence X̃c = {x̃t,c|t = 1, · · · ,T }, each network

outputs the time-frequency masks separately for each channel as follows:

ZS
c = BLSTMS(X̃c), (4.16)

mS
t,c = sigmoid(WSzS

t,c + bS), (4.17)

ZN
c = BLSTMN(X̃c), (4.18)

mN
t,c = sigmoid(WNzN

t,c + bN), (4.19)

where ZS
c = {zS

t,c ∈ R
DZ |t = 1, · · · ,T } is a sequence of DZ-dimensional output vectors of the

BLSTM network for a speech mask over c-th channel’s input sequence X̃c. ZN
c is the BLSTM

output sequence for a noise mask. WS ∈ RF×DZ and WN ∈ RF×DZ are the weight matrices that

output speech and noise masks. bS ∈ RF and bN ∈ RF are their corresponding bias vectors.

Eqs. (4.16) and (4.17) correspond to MasknetS(·), while Eqs. (4.18) and (4.19) correspond to

MasknetN(·) in Algorithm 2.

After computing the speech and noise masks for each channel, mean masks mt = {mt, f }
F
f =1 are

obtained as follows:

mS
t =

1
C

C∑
c=1

mS
t,c, (4.20)

mN
t =

1
C

C∑
c=1

mN
t,c. (4.21)

Eqs. (4.20) and (4.21) correspond to Mean(·) in Algorithm 2. These mean masks are used to

predict PSD matrices (ΦS
f and ΦN

f ) in Eqs. (4.14) and (4.15).

The mask-based MVDR neural beamformer, given reference microphones, was previously pro-

posed in [81, 82], but our neural beamformer further extends it with attention-based reference
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selection, which is described in the next subsection.

Attention-based selection for reference microphones

To incorporate the reference microphone selection in the neural beamformer framework, we

apply the idea of an attention mechanism to estimate reference microphone vector u in Eq. (4.13).

Based on an attention mechanism’s characteristics, this allows the reference selection to work for

arbitrary numbers and orders of channels.

To formalize the attention mechanism, we adopt two types of time-invariant and channel-dependent

features: 1) time-averaged state feature qc ∈ R2DZ and 2) PSD-based spatial feature rc ∈ R
2F .

With these feature vectors, reference microphone vector u is estimated as follows:

kc = wTtanh(VQqc + VRrc + b), (4.22)

uc =
exp(αkc)∑C

c=1 exp(αkc)
, (4.23)

where w ∈ R1×DW , VQ ∈ RDW×2DZ , and VR ∈ RDW×2F are trainable weight parameters, and

b ∈ RDW is a trainable bias vector. α is the sharpening factor. Eqs. (4.22) and (4.23) correspond

to Attend_Channel(·) in Algorithm 2.

Time-averaged state feature qc is extracted from the BLSTM networks for the speech and noise

masks in Eqs. (4.16) and (4.18) as follows:

qc =
1
T

T∑
t=1

{zS
t,c, z

N
t,c}, (4.24)

Eq. (4.24) corresponds to State_Feat(·) in Algorithm 2.

PSD-based spatial feature rc, which incorporates the spatial information into the attention mech-
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anism, is extracted from speech PSD matrix ΦS
f in Eq. (4.14) as follows:

rc =
1

C − 1

C∑
c′=1,c′,c

{<(φS
f ,c,c′),=(φS

f ,c,c′)}
F
f =1, (4.25)

where φS
f ,c,c′ ∈ C is the entry in the c-th row and the c′-th column of speech PSD matrix ΦS

f . To

select a reference microphone, since the spatial correlation related to speech signals is more infor-

mative, we only use speech PSD matrix ΦS
f as a feature. Eq. (4.25) corresponds to Spatial_Feat(·)

in Algorithm 2.

Note that, in this mask-based MVDR neural beamformer, the masks for each channel are com-

puted separately using the same BLSTM network, and thus the mask estimation network is in-

dependent of the channels. Similarly, the reference selection network is also independent of the

channels. Therefore, the neural beamformer deals with input signals with arbitrary numbers and

orders of channels without network re-training or re-configuration.

4.5 Speech Recognition Component : Attention-based Encoder-

decoder Networks

4.5.1 Overview

This section explains a conventional attention-based encoder-decoder framework, which directly

deals with variable length input and output sequences. The framework consists of two RNNs,

an encoder and a decoder, both of which are connected by an attention mechanism. Figure 4.3

illustrates the overall architecture of the framework.

Based on these components, given a T -length sequence of input features O = {ot ∈ R
DO |t =

1, · · · ,T }, the framework directly estimates the posteriors for N-length sequence of output labels
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Figure 4.3: Structure of attention-based encoder-decoder network.

Y as follows:

P(Y |O) =
∏

n

P(yn|O, y1:n−1), (4.26)

H = Encoder(O), (4.27)

cn = Attention(an−1, sn,H), (4.28)

P(yn|O, y1:n−1) = Decoder(cn, sn−1, y1:n−1). (4.29)

where ot is a DO-dimensional acoustic feature vector, and y1:n−1 is a label sequence that consists

of y1 through yn−1. Eqs. (4.26)-(4.29) correspond to E2E_ASR(·) in Eq. (4.3).

In this framework, the entire network including the encoder, attention, and decoder, is modeled

by fully neural network-based architecture, and thus it can be consistently optimized to generate

a correct label sequence. This consistent optimization of all the relevant procedures is the main

motivation of the end-to-end framework. The following subsections describe each component.
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4.5.2 Encoder Network

Given input sequence O, the encoder network transforms it to L-length high-level feature se-

quence H = {hl ∈ R
DH |l = 1, · · · , L}, where hl is a DH-dimensional state vector of the encoder’s

top layer at subsampled time step l. In this work, the encoder network is composed of BLSTM-

based recurrent networks. To reduce the length of the input sequence, we apply a subsampling

technique [14] to several layers. l represents a time step that was subsampled from t, and L is no

more than T . This BLSTM network corresponds to Encoder(·) in Eq. (4.27).

4.5.3 Attention Mechanism

The attention mechanism integrates all encoder outputs H into a DH-dimensional context vector

cn ∈ R
DH based on L-dimensional attention weight vector an ∈ [0, 1]L, which represents a soft

alignment of encoder outputs at output time step n. In this work, we adopt a location-based

attention mechanism [13], and thus an and cn are estimated as follows:

{fn,l}
L
l=1 = F ∗ an−1, (4.30)

kn,l = w̃Ttanh(VSsn + VHhl + VFfn,l + b̃), (4.31)

an,l =
exp(βkn,l)∑L

l=1 exp(βkn,l)
, (4.32)

cn =

L∑
l=1

an,lhl, (4.33)

where w̃ ∈ R1×DV , VH ∈ RDV×DH , VS ∈ RDV×DS , and VF ∈ RDV×DF are trainable weight matrices.

b̃ ∈ RDV is a trainable bias vector. F ∈ RDF×Df is a trainable convolution filter. sn ∈ R
DS is a

DS-dimensional hidden state vector obtained from an upper decoder network at output time step

n. β is a sharpening factor [13], and ∗ represents the convolution operation. Eqs. (4.30)-(4.33)

correspond to Attention(·) in Eq. (4.28).

The convolution operation is performed with a stride of 1 along the time axis, and the filter F

produce DF-dimensional feature vector fn,l at each time step l, where we adopt the zero-padding
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technique for the edge region.

4.5.4 Decoder Network

The decoder network recursively updates the hidden state sn and estimates the posterior proba-

bility for output label yn as follows:

sn = Update(sn−1, cn−1, yn−1), (4.34)

P(yn|O, y1:n−1) = Posterior(sn, cn), (4.35)

where the Update(·) and Posterior(·) functions are respectively composed of an unidirectional

LSTM-based recurrent network and a feed-forward network. Eqs. (4.34) and (4.35) correspond

to Decoder(·) in Eq. (4.29).

Here, special tokens for start-of-sentence (sos) and end-of-sentence (eos) are added to label set

V. The decoder network starts the recurrent computation with the sos label and continues to

estimate the posterior probability P(yn|O, y1:n−1) until the eos label is emitted, based on the RNN

recursiveness.

4.6 Relation to Previous Works

Several related studies exist on neural beamformers based on filter estimation [77, 78, 79] and

mask estimation [80, 81, 82, 83, 84, 85, 86, 87]. The main difference is that these previ-

ous studies used a component-level training objective within conventional hybrid frameworks,

while our work focuses on the entire end-to-end ASR objective. For example, some previ-

ous work [80, 82, 83, 86] used a signal-level objective (binary mask classification or regres-

sion) to train a network given parallel clean and noisy speech data. On the other hand, other

works [77, 78, 79, 81, 84, 85] used ASR objectives (HMM state classification or sequence-

discriminative training), but they remain based on the hybrid approach. Speech recognition with
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raw multichannel waveforms [95, 96] is also classified into neural beamformers, where the filter

coefficients are represented as the network parameters of convolutional neural networks (CNNs),

but again these methods are still based on the hybrid approach. Note that the above learning

based beamforming approaches can be viewed as an extension of likelihood-maximizing (LIMA)

beamformer [97], where beamforming filter coefficients are optimized with HMM/GMM acous-

tic models based on a maximum likelihood criterion.

If we focus on the network architecture design of the beamforming part aside from the end-to-

end framework, our beamformer is based on an MVDR formalization given a reference micro-

phone, which was also previously used in [81, 82]. The difference of our beamformer from those

approaches is that it can automatically select a reference microphone within a neural network

framework. In [81, 82], one channel is fixedly used as a reference microphone for all utter-

ances by considering microphone geometries. However, our method introduces attention-based

reference microphone selection, which allows the beamformer to choose appropriate reference

microphones automatically in terms of the entire end-to-end ASR objective without any prior

information of microphone geometries.

Similarly, if we only focus on the above automatic reference selection function aside from our

entire framework, there exist prior studies [98, 99], which have a function to select dominant

channels for a multichannel ASR. [98] uses an attention mechanism to perform channel selection

from the pool of multichannel feature candidates in the filterbank domain, while [99] hardly

selects dominant features with a max-pooling layer in the hidden state domain. These approaches

mainly differ from ours in a sense that they do not hold the beamforming function. This is

because they perform their enhancement process in the filterbank or hidden state domain rather

than in the STFT domain, and cannot perform beamforming in principle due to the lack of spatial

information.

Regarding end-to-end speech recognition, all existing studies are based on a single channel setup.

For example, most focus on a standard clean ASR setup without speech enhancement [13, 14,

16, 68, 70, 71, 72, 73]. Several research discussed end-to-end ASR in a noisy environment

[69, 74], but these methods deal with noise robustness by preparing various types of simulated
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Table 4.1: Corpus information for CHiME-4 and AMI corpora.

CHiME-4 Hours Speakers

Training 3 (real) + 15 (simu) 4 (real) + 83 (simu)

Development 2.9 (real) + 2.9 (simu) 4 (real) + 4 (simu)

Evaluation 2.2 (real) + 2.2 (simu) 4 (real) + 4 (simu)

AMI Hours Speakers

Training 78 (real) 135 (real)

Development 9 (real) 18 (real)

Evaluation 9 (real) 16 (real)

noisy speech for training data without incorporating multichannel speech enhancement in their

end-to-end frameworks.

4.7 Experimental Conditions

4.7.1 Data Corpora

We compared the effectiveness of the proposed ME2E system to a baseline end-to-end system

with noisy or beamformed speech signals. Even though we had two multichannel ASR bench-

marks, CHiME-4 [100] and AMI [101], we mainly used the CHiME-4 corpus to demonstrate our

experiments.

CHiME-4 is an ASR task in public noisy environments, consisting of speech recorded using

a tablet device with 6-channel microphones in four environments: cafe (CAF), street junction

(STR), public transportation (BUS), and pedestrian area (PED). It consists of real and simulated

data. The training set consists of 3 hours of real speech data uttered by 4 speakers and 15 hours of

simulation speech data uttered by 83 speakers. The development set consists of 2.9 hours of real

and simulation speech data uttered by 4 speakers, respectively. The evaluation set consists of 2.2
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Table 4.2: Conditions related to feature extraction.

Input for neural beamformer STFT + DC offset ( 257-dim )

Input for encoder-decoder Log Mel filterbank ( 40-dim )

Sampling frequency 16 kHz

Frame length 25 ms

Frame shift 10 ms

Window function Hamming

hours of real and simulation speech data uttered by 4 speakers, respectively. From the 6-channel

microphones, we excluded the second channel signals, which were captured by a microphone

under the tablet, and used the rest five channels for the following multichannel experiments

(C = 5).

AMI is an ASR task in meetings, consisting of speech recorded using 8-channel circular micro-

phones (C = 8). It consists of only real data. The training set consists of about 78 hours of

speech data uttered by 135 speakers. The development and evaluation sets consist of about 9

hours of speech data uttered by 18 and 16 speakers, respectively.

ChiME-4 consisted of read speech spoken by native English speakers. while AMI consisted of

highly spontaneous speech spoken by mostly non-native English speakers. Such basic informa-

tion of the above corpora as the number of hours and speakers is summarized in Table 4.1.

4.7.2 Feature Representation

Conditions related to feature extraction are briefly summarized in Table 4.2. The input speech

was first converted to a series of STFT feature vectors, each of which was calculated through a

25-ms Hamming window that was shifted at 10-ms intervals. We used 257-dimensional STFT-

based features (256 STFT coefficients and 1 DC offset) as an input feature vector for the neural

beamformer (F = 257) and 40-dimensional log Mel filterbank coefficients as an input feature
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Table 4.3: Summary of evaluated systems: FILTER_NET and MASK_NET correspond to pro-
posed method.

System
Training
objective

Joint
optimization

Use
neural

network

Use
parallel
speech

BEAMFORMIT [102] signal-level No No No

FILTER_NET 3 ASR-level Yes Yes No

MASK_NET 3 ASR-level Yes Yes No

ERDOGAN’s_MVDR [82] signal-level No Yes Yes

HEYMANN’s_GEV [103] signal-level No Yes Yes

vector for the encoder-decoder network (DO = 40).

4.7.3 Evaluated Systems

We compared the following seven ASR systems: 1) NOISY, 2) BEAMFORMIT, 3) FILTER_NET,

4) MASK_NET (FIX), 5) MASK_NET (ATT), 6) ERDOGAN’s_MVDR, and 7) HEYMANN’s_GEV.

NOISY and BEAMFORMIT are the baseline single-channel end-to-end systems that did not

include the speech enhancement part in the training phase of their frameworks. Their end-to-end

networks were trained only with noisy speech data by following a conventional multi-condition

training strategy [100]. During decoding, NOISY used single-channel noisy speech data from

’isolated 1ch track’ in CHiME-4 as input, while BEAMFORMIT used the enhanced speech data

obtained from the 5-channel signals with BeamformIt [102], which is a well-known weighted

delay-and-sum beamformer, as input.

FILTER_NET, MASK_NET (FIX), and MASK_NET (ATT) are the proposed ME2E systems

described in Section 4.2. To evaluate the validity of the reference channel selection, we prepared

3FILTER_NET and MASK_NET basically follow the formalization in [79] and [82]. However, based on our

ME2E ASR concept, they are jointly optimized with the end-to-end ASR back-end based on the end-to-end ASR

objective.
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MASK_NET (ATT) based on a mask-based beamformer with an attention-based reference selec-

tion described in Section 4.4.3, and MASK_NET (FIX) with the 5-th channel as a fixed reference

microphone, located on the front in the middle of the tablet device. During training, we adopted a

multi-condition training strategy; in addition to optimization with the enhanced features through

the neural beamformers, we also used the noisy multichannel speech data as input of the encoder-

decoder networks without passing through the neural beamformers to improve the robustness of

the encoder-decoder networks.

In addition to the comparison with a conventional delay-and-sum beamformer (BEAMFOR-

MIT), we compared our approach with other state-of-the-art neural beamformer implementa-

tions [82, 103], which achieved great ASR performances for conventional hybrid frameworks in

the recent CHiME-4 challenge. ERDOGAN’s_MVDR and HEYMANN’s_GEV also used the

same baseline system as well as NOISY and BEAMFORMIT. During decoding, the enhanced

speech data produced by the state-of-the-art neural beamformers are used as input to the baseline

system.

ERDOGAN’s_MVDR adopted the MVDR formalization, similar to our approach, but it al-

ways used the 5-th channel as the reference microphone. Therefore, it closely resembles our

MASK_NET (FIX). The main difference between them is the training objective. ERDOGAN’s_MVDR

are separately optimized based on the signal-level objective independent of the ASR component

using parallel clean and noisy speech data. On the other hand, MASK_NET (FIX) is jointly opti-

mized based on the end-to-end ASR objective with the ASR component only using noisy speech

data. In addition, the structure of mask estimation network is also different from our setting [82].

Different from our approach, HEYMANN’s_GEV adopted GEV formalization, which requires

the estimation of a steering vector based on eigenvalue decomposition instead of estimating the

reference microphone vector. In recent studies on neural beamformers, such a GEV-based neu-

ral beamformer is a popular alternative to the MVDR-based neural beamformer. To obtain the

enhanced signals, we utilized the software tools provided in the GitHub repository 1.

1https://github.com/fgnt/nn-gev

79

https://github.com/fgnt/nn-gev


Table 4.4: Network configurations.

Model Layer Units Type Activation

Encoder L1 - L4 320 BLSTM + Projection tanh

Decoder L1 320 LSTM tanh

L2 48 Linear softmax

Filter_net L1 - L3 320 BLSTM + Projection tanh

L4 2570 Linear tanh

Mask_net L1 - L3 320 BLSTM + Projection tanh

L4 514 Linear sigmoid

Table 4.3 briefly summarizes the main differences among each evaluated system. “Training

objective” indicates that the beamformer was trained based on the ASR-level or the signal-level

objective, and “Joint optimization” indicates whether the beamformer was jointly optimized with

the end-to-end ASR back-end. “Use neural network” indicates whether the beamformer used the

neural network-based architecture, and “Use parallel speech” indicates whether clean speech was

used to train the beamformer.

Note that all the evaluated systems basically used the same network structure, which is described

in Section 4.7.4. In addition, the hyperparameters for the training and decoding conditions, which

are described in Section 4.7.5, were set based on the development accuracy of the NOISY system

and shared among all the evaluated systems.

4.7.4 Network Configurations

Network configurations, except the attention mechanisms, are briefly summarized in Table 4.4.

All of the above networks were implemented using Chainer [104].
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Neural beamformers

For the neural beamformers, we used a 3-layer BLSTM with 320 cells (DZ = 320). After every

BLSTM layer, we used a linear projection layer with 320 units to combine the forward and

backward LSTM outputs. For the attention mechanism of the reference selection, we set the

attention inner product dimension to 320 (DW = 320) and the sharpening factor to 2 (α = 2).

Attention-based Encoder-decoder networks

For the attention-based encoder-decoder networks, we used a 4-layer BLSTM with 320 cells in

the encoder (DH = 320) and a 1-layer LSTM with 320 cells in the decoder (DS = 320). In the

encoder, we subsampled the hidden states of the first and second layers and used every second

hidden state for the subsequent layer’s inputs. Therefore, the number of hidden states at the

encoder’s output layer was reduced to L = T/4. After every BLSTM layer, we used a linear

projection layer with 320 units. For the attention mechanism of the time-alignment, we adopted

a location-based attention mechanism, where 10 centered convolution filters of width 100 were

used to extract the location-based features. We also set the attention inner product dimension to

320 (DV = 320) and the sharpening factor to 2 (β = 2).

4.7.5 Training and Decoding

The conditions related to training and decoding are briefly summarized in Table 4.5.

In the training stage, all the parameters were initialized with range [-0.1, 0.1] of a uniform distri-

bution. We used the AdaDelta algorithm [105] with gradient clipping [106] for optimization and

initialized AdaDelta hyperparameters ρ = 0.95 and ε = 1−8. Once the loss over the validation

set was degraded, we decreased AdaDelta hyperparameter ε by multiplying it by 0.01 at each

subsequent epoch. To boost the optimization in a noisy environment, we adopted a joint CTC-

attention multi-task loss function [71], as described in Section 4.2.2. We set the interpolation
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Table 4.5: Conditions related to training and decoding.

Parameter initialization Uniform distribution ( [-0.1, 0.1] )

Optimization technique AdaDelta + gradient clipping

Training objective Joint CTC-attention loss ( γ = 0.9 )

Training epoch 15

Beam size 20

Length penalty 0.3

Allowed hypothesis length 0.3 × L ∼ 0.75 × L ( CHiME-4 )

weight to 0.9 (γ = 0.9). The training procedure was stopped after 15 epochs.

For decoding, we used a beam search algorithm [5] with a beam size of 20 at each output step

to reduce the computation cost. CTC scores were also used to re-score the hypotheses. We

adopted a length penalty term [13] to the decoding objective and set the penalty weight to 0.3.

In the CHiME-4 experiments, we only allowed hypotheses whose lengths were within 0.3 × L

and 0.75 × L during the decoding, while the hypothesis lengths in the AMI experiments were

automatically determined based on the above scores. Note that we pursued a pure end-to-end

setup without external lexicon or language models and used CER as an evaluation metric.

4.8 Experimental Results

4.8.1 Evaluation in ASR-level Measures (Character Error Rate)

CHiME-4

Table 4.6 shows the recognition performance of CHiME-4 with six systems. The result shows

that BEAMFORMIT, FILTER_NET, MASK_NET (FIX), and MASK_NET (ATT) outperformed

NOISY, confirming the effectiveness of combining speech enhancement with the attention-based
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Table 4.6: Experimental results (character error rate [%]) for CHiME-4 corpus.

Model dev simu dev real eval simu eval real

NOISY 25.0 24.5 34.7 35.8

BEAMFORMIT 21.5 19.3 31.2 28.2

FILTER_NET 19.1 20.3 28.2 32.7

MASK_NET (FIX) 15.5 18.6 23.7 28.8

MASK_NET (ATT) 15.3 18.2 23.7 26.8
ERDOGAN’s_MVDR 16.2 18.2 24.3 26.7

encoder-decoder framework. The comparison of MASK_NET (FIX) and MASK_NET (ATT)

validates the using of the attention mechanism for reference channel selection. FILTER_NET

also improved the performance more than NOISY, but not as much as MASK_NET (ATT). This

is because optimizing the filter estimation network is difficult due to a lack of restrictions to esti-

mate filter coefficients, and it needs optimization, as suggested by a previous work [77]. Finally,

MASK_NET (ATT) achieved better recognition performance than BEAMFORMIT, proving the

effectiveness of our unified architecture rather than a pipe-line combination of speech enhance-

ment and (end-to-end) speech recognition.

Table 4.6 also shows that the performance of MASK_NET (ATT) is comparable to ERDO-

GAN’s_MVDR, which is a state-of-the-art neural beamformer implementation. Note that MASK

_NET (ATT) successfully achieved a good performance without requiring parallel clean and

noisy speech data. This result suggests that we can eliminate the requirement of parallel speech

data for training by the end-to-end optimization of the ASR system.

We also evaluated HEYMANN’s_GEV, but the performance is quite poor4. We assume that this

result was caused by the speech distortions produced by the GEV-based beamformer. Although

the MVDR-based beamformer suppressed the speech distortions, the GEV-based beamformer

ignored the speech distortions and only focused on the noise reduction. Such speech distortions

sometimes degrade ASR performance, when we input the beamformed signals to existing ASR

4For example, CER for eval_real is 71.6.
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Table 4.7: Experimental results (character error rate [%]) for AMI corpus.

Model dev eval

NOISY 41.8 45.3

BEAMFORMIT 44.9 51.3

MASK_NET (ATT) 35.7 39.0

systems.

AMI

To further investigate the effectiveness of our proposed ME2E framework, we also experimented

with the AMI corpus. Table 4.7 compares the recognition performance of three systems: NOISY,

BEAMFORMIT, and MASK_NET (ATT). In NOISY, we used noisy speech data from the 1st

channel in AMI as input to the system. Table 4.7 shows that, even in the AMI, our proposed

MASK_NET (ATT) achieved better recognition performance than the baseline systems (NOISY

and BEAMFORMIT), confirming the effectiveness of our proposed ME2E framework. BEAM-

FORMIT was worse than NOISY even with the enhanced signals. This phenomenon is some-

times observed in noisy speech recognition where the distortion caused by the sole speech en-

hancement degrades the performance without re-training. Since our end-to-end system jointly

optimized the speech enhancement part with the ASR objective, it can avoid such degradations.

4.8.2 Influence on Number and Order of Channels

As we discussed in Section 4.4.3, one unique characteristic of our proposed MASK_NET (ATT)

is its robustness/invariance against the number and order of channels without re-training. Ta-

ble 4.8 shows the influence of the CHiME-4 validation accuracies on the number and order of

the channels. The validation accuracy was computed conditioned on ground truth labels y∗1:n−1

in Eq. (4.29) during the decoder’s recursive label prediction, which has a strong correlation with
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Table 4.8: CHiME-4 validation accuracies [%] for MASK_NET (ATT) with different numbers
and orders of channels.

Model channel dev

NOISY isolated_1ch_track 87.9

MASK_NET (ATT) 5_6_4_3_1 91.2

3_4_1_5_6 91.2

5_6_4_1 91.1

6_4_3_1 90.4

5_6_4 90.9

6_4_1 90.1

CER. The second column of the table represents the channel indices, which were used as input

of the same MASK_NET (ATT) network.

Comparison of 5_6_4_3_1 and 3_4_1_5_6 shows that the order of the channels did not affect

the recognition performance of MASK_NET (ATT) at all, as we expected. In addition, even

when we used fewer than three or four channels as input, MASK_NET (ATT) still outperformed

NOISY (single channel). These results confirm that our proposed ME2E system can deal with

input signals with an arbitrary number and order of channels without any re-configuration and

re-training.

In addition to the above analyses, comparing the setups using the same number of channels,

5_6_4_1 and 5_6_4 outperformed 6_4_3_1 and 6_4_1, respectively. The observation is due to

the fact that the 5-th channel is the single best channel in the real dev and eval sets of CHiME-4

task.

4.8.3 Histogram of Selected Reference Microphone

To analyze the behavior of our proposed attention mechanism for reference microphone selec-

tion, Figure 4.4 illustrates a histogram of the selected reference microphone for the development
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Figure 4.4: Histogram of reference microphone selected by BEAMFORMIT and MASK_NET
(ATT).

set with two systems: BEAMFORMIT and MASK_NET (ATT). As described in Eqs. (4.22) and

(4.23), our proposed reference selection mechanism is formalized in a probabilistic way, but in

this figure, the frequency is counted assuming that the channel index with the highest probabil-

ity is selected. BEAMFORMIT selected a reference microphone using a metric based on the

signal-level criterion, i.e., pairwise cross-correlation in time domain [102].

Figure 4.4 shows that both BEAMFORMIT and MASK_NET (ATT) selected the 5-th channel

most frequently. That result seems plausible from the viewpoint of microphone geometries,

because the 5-th channel is located on the front and the center of the tablet device, and therefore,

it is expected to capture relatively clean speech signals. Our preliminary result also shows that

the 5-th channel is the single best performing channel in the array. One interesting finding is that

the trends in the selected reference seem similar, although MASK_NET (ATT) only learned the

reference selection mechanism to improve the end-to-end ASR objective.
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Figure 4.5: Comparison of log-magnitude spectrograms of CHiME-4 utterance with the 5-th
channel noisy signal, enhanced signal with BeamformIt, and enhanced signal with our proposed
MASK_NET (ATT).

4.8.4 Visualization of Beamformed Signals

To analyze the behavior of our developed speech enhancement component with a neural beam-

former, Figure 4.5 visualizes the spectrograms of the same CHiME-4 utterance for three signals:

1) the 5-th channel noisy signal, 2) an enhanced signal with BEAMFORMIT, and 3) an enhanced

signal with MASK_NET (ATT). We confirmed that BEAMFORMIT, and MASK_NET (ATT)

successfully suppressed noise compared to the 5-th channel signal by eliminating the blurred

red areas overall. In addition, by focusing on the black boxes, the harmonic structure, which was

corrupted in the 5-th channel signal, was recovered in BEAMFORMIT, and MASK_NET (ATT).
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This result suggests that our proposed MASK_NET (ATT) successfully learned a noise suppres-

sion function that resembles the conventional beamformer, although it is optimized based on the

end-to-end ASR objective, without explicitly using clean data as a target.

4.8.5 Evaluation in Signal-level Measures (Signal-to-Distortion Ratio and

Perceptual Evaluation of Speech Quality)

To further analyze the behavior of our developed speech enhancement component with a neural

beamformer, we evaluated the speech enhancement quality of the outputs of the beamformer

modules based on two signal-level criteria: 1) a signal-to-distortion ratio (SDR) [107] and 2) a

perceptual evaluation of speech quality (PESQ) [108]. In both criteria, a higher score indicates

that its corresponding estimated signal obtained higher quality.

The score calculation for these two criteria needs a pair of estimated enhanced speech signals and

its corresponding clean speech signals. Therefore, we used the development set of the simulation

data in the CHiME-4 corpus for this evaluation.

Figs. 4.6 and 4.7 respectively show the SDR and PESQ scores for the simulation data in the

CHiME-4 development set for five signals: 1) the noisy signal from ’isolated 1ch track’, 2) an

enhanced signal with BEAMFORMIT, 3) an enhanced signal with MASK_NET (ATT), 4) an en-

hanced signal with ERDOGAN’s_MVDR, and 5) an enhanced signal with HEYMANN’s_GEV.

Because the SDR and PESQ scores are computed for each utterance, we overlaid the standard

deviation value (thin line) on the mean value (blue bar) in the figures. The results in both

of the scores show that MASK_NET (ATT) achieved reasonable speech enhancement and its

enhancement quality is competitive to or better than the cases of BEAMFORMIT and HEY-

MANN’s_GEV, suggesting that the neural beamformer developed in our ME2E ASR framework

successfully learns speech enhancement (noise suppression) ability, although it was optimized

under the end-to-end ASR-oriented criterion.
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Figure 4.6: Signal-to-distortion ratio (SDR) for CHiME-4 simulation data in development set.
Each bar indicates the mean in terms of utterances; a thin line indicates the standard deviation.

Figure 4.7: Perceptual evaluation of speech quality (PESQ) for CHiME-4 simulation data in
development set. Each bar indicates the mean in terms of utterances; a thin line indicates the
standard deviation.
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4.9 Summary

To handle the challenging noisy ASR tasks, we extended an existing attention-based encoder-

decoder framework by integrating a neural beamformer and proposed a unified architecture

of ME2E ASR systems. This architecture allows the overall inference in multichannel speech

recognition (i.e., from speech enhancement to speech recognition) to be optimized based on the

end-to-end ASR objective, and leads to an end-to-end framework that works well in the presence

of strong background noise. In addition, because it is formalized independent of microphone

geometries, it can deal with input signals with an arbitrary number and order of channels with-

out any re-configuration and re-training. Our experimental results on challenging noisy ASR

benchmarks (CHiME-4 and AMI) show that the proposed framework outperformed the end-to-

end baseline with noisy and delay-and-sum beamformed inputs. In addition, evaluation of the

speech enhancement quality for beamformed features shows that our neural beamformer suc-

cessfully learned a noise suppression function, although it is optimized based on the end-to-end

ASR objective, without using parallel clean and noisy speech data.

90



5Conclusion

5.1 Summary of Dissertation

In this dissertation, we studied two frameworks for improving DL-based ASR frameworks, i.e.,

the hybrid DNN-HMM framework and the end-to-end DNN-based framework, and focused on

the issues of speaker and speaking environment variability. Our approaches to the issues were

mainly based on the incorporation of modularity, or in other words, internal structure into the

DNN part of ASR systems.

In Chapter 3, we addressed the problem of mismatch between training and testing speakers. To

solve this problem, we proposed a novel speaker adaptation scheme that incorporated the SAT

concept in the DNN training of the hybrid DNN-HMM framework. The proposed SAT-based

speaker adaptation scheme introduced modularity, more precisely, SD module localization, in the

DNN part and optimized the DNN assuming that the SD module was adapted in the adaptation

stage. The effect of our proposed SAT-based training scheme was experimentally proved in ASR

tasks using a difficult lecture speech corpus, i.e., TED Talks, and it successfully reduced the

number of adaptable parameters and improved the adaptability of the whole hybrid ASR system.

In Chapter 4, we addressed the recognition difficulty caused by the variability of severe back-

ground noises. To solve this problem, we focused on the recent architecture of end-to-end ASR

systems and proposed a novel ME2E ASR architecture that integrated the speech enhancement

and speech recognition components into a single neural network-based ASR system structure.

Incorporating the speech enhancement component into the end-to-end ASR architecture made it

possible to directly develop a mapping function that transferred the multichannel noisy signals
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(system inputs) to transcriptions (system outputs) with the noise suppression function. Note that

these functions were gained only through recognition-oriented optimization (training) using mul-

tichannel speech samples and their corresponding transcriptions. We experimentally proved the

effect of the proposed ME2E architecture in challenging noisy ASR benchmark tasks: CHiME-4

and AMI.

5.2 Future Works

Based on our experiment results, we revealed the fundamental effectiveness of embedding modu-

larity into a DNN for coping with the problems of speaker and environment variability. However,

the following remaining issues must be further investigated:

1. In Chapter 3, we proposed novel speaker adaptation schemes that incorporated the SAT

concept in DNN training and showed their effectiveness for increasing the adaptability

of DNN-based ASR systems while reducing the size of adaptable parameters. However,

as a trade-off with the adaptability improvement, our proposed method requires multiple

optimization steps. For example, the SAT-based optimization procedure with a bottleneck

LTN SD module adopts the following four-step optimization procedures to estimate the

seed model for adaptation: 1) layer-wise RBM pre-training, 2) SI training, 3) SAT-based

training, and 4) SAT-based retraining. Therefore, the simplification (unification) of these

stepwise optimization procedures is critical for increasing the usability of the proposed

method.

2. In Chapter 4, we proposed a novel ME2E ASR architecture that integrated the speech

enhancement and speech recognition components. The experimental results showed that

it simultaneously gained the functions of suppressing noise in input speech signals and

transferring input speech signals to output transcriptions only through recognition-oriented

optimization. In our experiment, although we introduced a mechanism for compensating

the (noise) environment variability into the end-to-end framework, we did not study a

mechanism for compensating the speaker variability. This point is an important research
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topic. Moreover, a speaker adaptation mechanism must be investigated in ME2E ASR

architecture that was originally tuned to the speaking environment variability issue.
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ANotation List

A.1 Speaker Adaptive Training for Deep Neural Networks (Sec-

tion 3)

Basic indices

n training sample index

τ input time step

k senone class index

l network layer index

lSD network layer index, to which the SD module is allocated

s training speaker index

t target speaker index

N number of training samples

T length of input sequence

K number of senone classes

L number of network layers

S number of training speakers

SAT-DNN-ORG method (Section 3.2)

X speech samples spoken by all training speakers

Xn sequence of acoustic features for n-th training sample

xn
τ acoustic feature vector at τ in n-th training sample

Tn sequence of target labels for n-th training sample

tn
τ target label vector at τ in n-th training sample
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yn
τ network output vector given input feature vector xn

τ

Λ network parameters for entire layers

λl network parameters for l-th layer

Wl DNN’s weight matrix for l-th layer

bl DNN’s bias vector for l-th layer

ECE accumulated cross entropy error

R L2 norm-based regularization term

ρSI regularization coefficient in initialization stage

GlSD SD module parameters for all training speakers, assuming SD module layer is

allocated to lSD-th layer

gs
lSD

SD module parameters for s-th training speaker, which consist of DNN’s net-

work parameters

Xs speech samples spoken by training speaker s

ESAT-CE accumulated cross entropy error in SAT stage

ρSAT regularization coefficient in SAT stage

gt
lSD

SD module parameters for t-th target speaker, which consist of DNN’s net-

work parameters

Xt speech samples spoken by target speaker t

ρSA regularization coefficient in speaker adaptation stage

ganchor
lSD

anchor state of SD module parameters for L2 prior-based regularization term

SAT-DNN-LTN method (Section 3.3)

AlSD LTN’s weight matrix, which is inserted to lSD-th layer

alSD LTN’s bias vector, which is inserted to lSD-th layer

IlSD identity matrix

0lSD zero vector

φ activation function

G̃lSD SD module parameters for all training speakers, assuming SD module layer is

allocated to lSD-th layer
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g̃s
lSD

SD module parameters for s-th training speaker, which consist of LTN’s net-

work parameters

g̃t
lSD

SD module parameters for t-th target speaker, which consist of LTN’s network

parameters

SAT-DNN-BTN method (Section 3.4)

σi i-th singular values

Σ rectangular diagonal matrix whose diagonal elements are singular values

U orthogonal matrix produced by SVD

V orthogonal matrix produced by SVD

W̃ low-rank weight matrix approximated by SVD

Σ̃ diagonal matrix produced by retaining the κ largest singular value elements in

Σ

Ũ orthogonal matrix produced by retaining only the κ column vectors of U

Ṽ orthogonal matrix produced by retaining only the κ column vectors of V

ABTN
lSD

bottleneck LTN’s weight matrix, which is inserted to lSD-th layer

aBTN
lSD

bottleneck LTN’s bias vector, which is inserted to lSD-th layer

κ bottleneck size
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A.2 Multichannel End-to-end Speech Recognition (Section 4)

Basic indices

t input time step

n output time step

l subsampled time step

f frequency index

c channel index

T length of input sequence

N length of output sequence

L length of subsampled input sequence

F dimension of STFT feature

C number of channels

Multichannel end-to-end ASR (Section 4.2 and 4.3)

Xc sequence of input STFT feature at c

xt,c STFT feature vector at (t, c)

Y sequence of output label symbol

yn label symbol at n

V set of label symbols

X̂ sequence of enhanced STFT feature

Ô sequence of enhanced acoustic feature

EJOINT joint CTC-attention loss

EATT attention loss

ECTC CTC loss

X set of multichannel STFT feature sequences

PATT(Y |X) posteriors predicted by attention-based encoder-decoder network

PCTC(Y |X) posteriors predicted by CTC

γ interpolation weight

p̂t enhanced power spectrum vector at t
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ôt enhanced acoustic feature vector at t

DO dimension of acoustic feature vector

Neural beamformers (Section 4.4)

xt, f vector of STFT coefficient at (t, f )

xt, f ,c STFT coefficient at (t, f , c)

gt, f vector of time-variant beamforming filter at (t, f )

gt, f ,c time-variant filter coefficient at (t, f , c)

g f vector of time-invariant beamforming filter at f

g f ,c time-invariant filter coefficient at (t, f , c)

x̂t, f enhanced STFT coefficient at (t, f )

Neural Beamforming with Filter Estimation Network (Section 4.4.2)

X̃ sequence of BLSTM network’s input

x̃t input vector of BLSTM network at t

Z sequence of output vector of BLSTM network

zt output vector of BLSTM network at t

W<
f weight matrix to output real part of filters at f

b<f bias vector to output real part of filters at f

W=
f weight matrix to output imaginary part of filters at f

b=f bias vector to output imaginary part of filters at f

DZ dimension of BLTSM network’s output

Neural Beamforming with Mask Estimation Network (Section 4.4.3)

ΦS
f PSD matrix for speech at f

ΦN
f PSD matrix for noise at f

u reference microphone vector

mS
t vector of mean mask for speech at t

mS
t vector of mean mask for noise at t

mS
t, f mean mask for speech at (t, f )

113



mN
t, f mean mask for noise at (t, f )

mS
t,c vector of time-frequency mask for speech at (t, c)

mN
t,c vector of time-frequency mask for noise at (t, c)

mS
t, f ,c time-frequency mask for speech at (t, f , c)

mN
t, f ,c time-frequency mask for noise at (t, f , c)

X̃c sequence of BLSTM network’s input at c

x̃t,c input vector of BLSTM network at (t, c)

ZS
c sequence of BLSTM network’s output for speech mask

zS
t,c output vector of BLSTM network for speech mask at (t, c)

ZN
c sequence of BLSTM network’s output for noise mask

zN
t,c output vector of BLSTM network for noise mask at (t, c)

WS weight matrix to output speech mask

bS bias vector to output speech mask

WN weight matrix to output noise mask

bN bias vector to output noise mask

qc time-averaged state feature

rc PSD-based spatial feature

w weight vector for attention inner product

b bias vector for attention mechanism

VQ weight matrix for time-averaged state feature qc

VR weight matrix for PSD-based spatial feature rc

α sharping factor

φS
f ,c,c′ entry in c-th row and c′-th column of PSD matrix for speech ΦS

f

DW dimension of attention inner product

Attention-based encoder-decoder networks (Section 4.5)

P(Y |O) posteriors predicted by attention-based encoder-decoder network

O sequence of input acoustic feature

ot acoustic feature vector at t
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H sequence of encoder’s output

hl state vector of encoder’s top layer at l

cn context vector at n

an attention weight at n

sn state vector of decoder’s top layer at n

DH dimension of encoder’s state vector

fn,l location-based feature at (n, l)

F convolution filter for attention mechanism

w̃ weight vector for attention inner product

b̃ bias vector for attention mechanism

VS weight matrix for decoder’s state sn

VH weight matrices for encoder’s state hl

VF weight matrix for location-based feature fn,l

β sharping factor

DV dimension of attention inner product

DS dimension of decoder’s state vector

DF number of filters for attention mechanism

Df filter width for attention mechanism
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