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Abstract 

 With the ongoing evolution of automobile technology, human errors have become 

one the most prominent factor of traffic accidents. The primary reason of these errors is 

inadequate cognitive load of drivers, in which the amount of the attention dedicated to 

driving is lower than the attention required by the current traffic situation. The most 

relevant symptom of inadequate cognitive load is the delay in response of a driver. In 

principle, we could infer the inadequate cognitive load by measuring directly the amount 

of delay of a driver’s response to various environmental stimuli during driving, e.g., the 

delay of pressing the brake pedal in emergent situations. Such an approach, however, 

could not be used for early warning of the eventual inadequate cognitive load of drivers. 

 The objective of our research is to detect indirectly the delay of a driver’s response 

as a symptom of inadequate cognitive load. In other words, the main objective of this 

study could be considered as identifying drivers’ distraction and inattention in normal 

driving situation. Also, as an accident-preventive approach, the detection should be done 

in routine driving situations – such as (i) driving on a straight, (ii) entering- and (iii) 

exiting a turn.  

 In the proposed approach, we consider a driver as a controller of a system (car) 

with feedback. In addition to applying the feedback control theory, we imply that 

feedback delay would result in unstable, oscillating behaviour of the system. Focusing on 

steering of the car, we hypothesize that the feedback delay caused by inadequate cognitive 

load of drivers would result in steering oscillations. Detecting these oscillations would be 

crucial for early warning of inadequate cognitive load of drivers. 
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 Moreover, we applied agent-based modelling in which an agent evolved via 

genetic programming, models the steering behaviour of a human driver in accordance 

with the servo-control model of the driver. 

 In our experiments, instead of relying on a real car, we use a car simulated in The 

Open-source Racing Car Simulator (TORCS). TORCS offers the advantages of being (as 

a software system) a crash safe, realistic (by modelling faithfully the laws of vehicle 

dynamics), open-source, and free of charge. 

 To verify our hypothesis that inadequate cognitive load would result in detectable 

steering oscillations, we conducted three different experiments. They were conducted for 

a routine driving (with constant speed of 50km/h) on a straight, entering- and exiting a 

corner: first, we comparatively analysed the steering behaviour of an artificial driving 

agent with instant and with artificially delayed (100ms, 200ms and 400ms) steering. Then, 

we experimented with ten different human drivers with instant steering and with steering, 

that is artificially delayed by 400ms. Finally, we experimented with the same ten human 

drivers subjected to naturally occurring (by texting) cognitive delays. 

 Experimental results suggest that both the artificially introduced and naturally 

occurring delays yield subtle, yet detectable oscillations in steering behaviour of both the 

driving agent and human drivers. These oscillations are manifested in characteristic 

dynamics of steering angle, and the resulting trajectory and lateral acceleration of the car. 

The power spectrum of Fourier transformed lateral acceleration signals indicates a well-

distinguishable (from normal driving) frequencies and amplitudes of the driver-induced 

oscillations.  

 Additionally, we investigated novel approach on detecting these oscillations. First, 

we applied single threshold (based on spectrum analysis) in each situation for detecting 
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steering oscillation. We further optimised our method by evolving the weight coefficients 

of power spectrum, in a way that oscillated signals (due to cognitive load) would naturally 

yield higher power spectrum than non-oscillated signals, via genetic algorithms. We 

further extended our study by examining individually adaptive threshold mechanism 

(based on the absolute value of lateral jerk). Finally, this mechanism was further tuned 

with feature identification and was implemented for real-time detection in fully-fledged 

driving simulator and tested in real-time by developing a smart phone application. 

 As a conclusion, our investigation shows that - well-detectable steering 

oscillations are induced as an effect of cognitive delays in human drivers and these 

oscillated signals could be well detected by our proposed methods. Further, the detection 

of these signs using our approach could be used for early warning of the eventual 

inadequate cognitive load of drivers. 

 We view the obtained outcome as a significant step towards the development of a 

more robust system for early-warning of the inadequate cognitive load of drivers in 

routine driving conditions – well before any urgent reaction to an eventual dangerous 

traffic situation might be needed. 
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Chapter – 1  

Introduction 

1.1. Background 

The innovations in embedded devices in transportation systems has revolutionized 

the world. These advancements have added both luxury and convenience by transforming 

limited space of a vehicle into a kind of mobile office. The advanced technologies in 

today’s vehicles, such as lane detection, adaptive cruise control, navigation systems, 

wireless network connectivity, and real-time systems providing information about the 

traffic, road-conditions, weather, location-dependent points of interests (fuel stations, 

parking areas, restaurants, sightseeing spots, etc.), news, etc. are gradually becoming a 

standard for many of modern automobiles. With over 1 billion vehicles around the world 

[1] integrating these devices and technologies might well result in development of the 

intelligent transportation systems that could save our valuable time and tedious efforts. 

However, using these technologies while driving might prove to be a significant source 

of distraction for the driver, which, in turn might ultimately result in increase of the 

number of traffic accidents caused by driver’s inadequate or slow response to urgent 

hazardous traffic situations [2].  
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1.1.1. Concept of Driver Inattention 

Driver inattention is a prominent factor of traffic hazards. Most often, distraction is 

seen as a main reason for such inattention [3]. Distraction happens when driver shift their 

attention from the primary task of driving to secondary or even tertiary (unrelated to the 

driving) tasks [4]. The driver distraction is usually categorised in the four main types [5] 

[6]. (i) Visual distraction, occurs when driver looks away from the current road situation 

(e.g. looking at the map of navigation system, air-conditioner settings, etc.). (ii) Cognitive 

distraction, occurs when driver take off their concentration from driving to some other 

task (e.g., daydreaming). (iii) Physical or biomechanical distraction, induce because of 

biomechanical requirement of a driver to operate the secondary task, (e.g. operating the 

navigation system, air-conditioner, CD player, etc.). Finally, (iv) auditory distraction, is 

triggered by auditory signals from the external sources (e.g. in-vehicle conversation with 

passengers, hands-free conversation via mobile phone, etc.). Chapter 2 provides more 

detail discussion on models and definition of driver distraction and inattention.  

Different types of distraction could be induced by different, independent sources 

and, therefore, multiple types of distractions could occur simultaneously. In a case of 

texting while driving, all of the above-mentioned distractions (visual, cognitive, physical, 

and auditory) might occur simultaneously. First, when message is received in a cell phone, 

driver might receive an auditory signal, which results in a corresponding auditory 

distraction. Then, driver looks away from the current road situation in order to check the 

contents of the received message, which implies a visual distraction. Driver becomes 

cognitively distracted when trying to comprehend the received message, and when 

thinking about the eventual response to the message. Finally, driver types a reply to the 

message, which results in biomechanical distraction. Therefore, texting while driving 

could be considered as quite dangerous case of inattention because it is usually associated 
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with all types of distraction of the driver. In our work, we consider primarily the visual 

and cognitive aspects of the distraction caused by texting while driving.  

Since, even the mere switch of attention - implying a cognitive multitasking (as in texting 

and driving) that the human usually does not excels at - leads to the disruption of the 

cognitive engagement dedicated to the primary task of driving. In such situations, the 

degree of attention dedicated to driving becomes considerably lower than that actually 

needed by the existing traffic situation. Such phenomena of disruption of cognitive 

engagement is often viewed as inadequate cognitive load (CL) of the driver.  The concept 

is further elaborated in section 1.1.2. 

1.1.2. Cognitive Load and its Impact while Driving 

In cognitive psychology, cognitive load is defined as the total mental effort required 

to process information [7], and it is proportional to the amount of information perceived. 

This proportional relationship exists because higher cognitive load, which is associated 

with extended mental resources, is required to cope with the incoming flow of information. 

In the context of driving, we could rephrase the notion of cognitive load on the driver as 

the amount of attention of the driver, which are allocated for primary task of driving. An 

account on the theoretical model of mental workload could be found in the work of Waard 

in [8], where he discussed about various theoretical models of mental work-load, task 

performance and demand. His work also evaluates different concepts of mental workload, 

which are linked to the mental workload based on applied psychological experiments. 

In this study, we use the phrase, “inadequate cognitive load,” and “cognitive load” 

interchangeably to describe situations (i) in which the driver allocates too little attention 

to driving (i.e., cognitive underload), or (ii) when the cognitive resources required for 

comprehending the current driving situation surpass the natural limits of the mental 
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resources of the driver (i.e., cognitive overload). We have categorized the following two 

cases of inadequate cognitive load while driving: 

1.1.2.1. Cognitive Underload 

Cognitive underload might occur while driving on a deserted or low-traffic highway. 

Normally, in such a situation, the attention required by the current traffic environment is 

much lower than the available cognitive ability of the driver. Often in such circumstances, 

the driver allocates too little cognitive resources to their primary task of driving, with the 

reduced attentiveness often resulting in mind wandering [9] or even micro naps (brief 

naps lasting between 0.5 and 1.5 seconds). The condition could become worse depending 

on the incorporated safety facilities that either assume part of the task of driving the 

vehicle (e.g., lane following or adaptive cruise control) or, at least, induce an inflated 

sense of safety in the driver (e.g., anti-lock braking system, traction control, electronic 

stability program, collision warning, or blind spot warning). 

This results in the inability of the driver to swiftly allocate the required additional 

cognitive resources should an extreme traffic situation present itself (e.g., changing lane 

on a busy expressway or, suddenly slowing down because of the car(s) ahead, 

approaching or leaving tollgates, or joining a busy intersection after leaving the 

expressway). In addition, apportioning the necessary cognitive resources might be more 

severely affected if the spare mental resources of the driver were allotted to tasks that are 

distinct from driving or to secondary tasks such as texting, talking on the mobile phone, 

eating, drinking, using the navigation system, or simply talking to passengers [10]. 
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1.1.2.2. Cognitive Overload 

The case of cognitive overload is triggered while driving in congested traffic or 

uncontrolled intersections. In such a situation, the mental processing ability required by 

the existing surroundings might surpass the cognitive ability of the driver. It might 

temporarily occur when a driver who experiences temporal cognitive underload faces an 

urgent hazardous traffic situation, as we mentioned above. In addition, a longer-term 

cognitive overload might be witnessed in elderly drivers as a result of the natural gradual 

decline in their mental abilities. Moreover, these reduced abilities might even cause 

moderately fast-moving traffic to be subjectively perceived as being much faster or more 

intensive than it actually is which is also termed as cognitive slowing. As a result, the 

prevailing “looked-but-failed-to-see” accidents at busy intersections are often triggered 

by cognitively overloaded (elderly) drivers [11].  

Therefore, an eventual early identification of the above-mentioned two cases of 

inadequate cognitive engagement might prove to be vital for the prevention of traffic 

accidents. 

1.2. Objective of Research 

The core objective of this research could be summarized in following points: 

♦ To verify that cognitive load in human drivers results in the delay of 

response of the driver. 

♦ To verify that the delay of response due to delay in feedback result in 

steering oscillation of the car. 

♦ To propose the method to detect steering oscillation of a car as a 

mechanism to prevent accidents before they actually occur. 
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1.3. Motivation of Research 

This work is motivated by the following two major factors. First, regardless of the 

substantial amount of research available on the consequences of the psychological aspects 

of drivers on road traffic safety [5] [2] [8] [11], such as an inadequate cognitive 

engagement, there is still a very limited amount of work available on the implications of 

these factors on the emergent dynamics of the vehicle. For instance, Waard [8] has 

presented various methods for measuring the mental workload of drivers. However, the 

presented measures are either more subjective (self-reporting measure, TLX, SWAT, or 

physiological measurements) or could not be used for inferring the inadequate cognitive 

engagement, and eventually – alerting the driver in real time because of lack of reliable 

devices and sensors (standard deviation from centre of the line, nonlinearities in steering 

angle etc.). Some work on steering entropy [12] also tries to visualize the effect of 

cognitive load in steering behaviour of the driver. The method is based on analysing the 

time-series of the steering angle of the car, while the practical implementation of the 

sensors that could register this angle is challenging. On the other hand, a sensor placed 

on the steering column that measures the steering wheel angle could be used instead, but 

relatively few models of cars are currently equipped with such. In addition, due to the 

inevitable hysteresis caused by the mechanical plays in the steering system of the road 

cars, the pattern of the steering wheel angle do not necessarily mirror the pattern of the 

actual steering angle of the front wheels of the car. In addition, conversely to our approach, 

which considers the effects of well recognized cognitive delays on vehicle dynamics of 

the car, the entropy-based metrics could not be convincingly explained from the 

biologically plausible point of view.  

Second, despite the existence of well-known related research in aviation on the 

phenomena known as pilot-involved- and pilot-induced oscillations [13](i.e., 
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uncontrollable oscillations in pitch angle or angle of attack of the aircraft), we are not 

aware of any research that considers steering oscillations to be a direct consequence of 

inadequate cognitive engagement in drivers. Conversely, studies on pilot-induced 

oscillations usually consider the cumulative effect of two factors—high sensitivity and 

late responses of digital fly-by-wire aircraft control systems to pilot input. 

Other, important motivation of this research is explained from the perspective of 

real world application. The driver distraction is one of the major problems in the world 

today, which is also an indispensable source of driver inattention. In USA alone, 3,477 

people lost their life and 391,000 were injured in 2015 on various automobile-related 

crashes that involve some form of distracted driving [14]. In addition, this is increasing 

with time and new devices. Therefore, if only we could devise some system (hardware, 

software or both) this numbers could be significantly reduced if not completely eradicate. 

Hence, one of the important motivation of this research is its application in the real world 

situation that could not only help to alert people when distracted but also contributes on 

preventing accidents that incurred due to driver inattention and distraction. 

1.4. Limitation and Challenges 

This work has been performed under the strict laboratory settings. Moreover, the 

initial investigation was accomplished on the experimental data that were recorded on the 

low-end driving simulator. However, towards the end of this study we tried to test the 

robustness of our approach by experimenting (i) on fully fledged driving simulator and, 

(ii) on real-car driving under strict environment (because of safety issue) (more detail in 

Chapter 10). Beside this, since experimenting on real-car within real scenario was literally 

impossible due to legal issue, robustness of this research has not been tested in the real 

environment with multiple human drivers. 



 

8 

In addition, it is very challenging and bit difficult to comprehend the impact of 

subject factor that are often biased during data collection. We tried our best to reduce such 

impact by informing and making our subject aware of various human-related issues. 

However, we could not fully neglect the fact that some form of subjective bias might have 

influenced our dataset. 

1.5. Thesis Outline 

 The Model of Driver Distraction and Inattention (Chapter-2) 

Chapter 2 of this thesis discuss the definitions of inattention and distraction based 

on various literatures. This chapter also discuss the model of human cognitive process 

and various forms as well as sources of distraction.  

 Hypothesis Formulation (Chapter-3) 

Chapter 3 discuss the main idea of our study. This chapter discuss about driver in 

the control feedback loop and highlights some major component with the model of 

system where human driver acts as the controller of the feedback control system. 

Around the last section of this chapter, we have also defined our hypothesis. 

 Research Framework for Hypothesis Testing (Chapter-4) 

This chapter discuss about the framework used in our study. It also include detail 

description about driving simulator, experimental setups and different test conditions. 

Chapter-4 also shades light on evolutionary computation and our in-housed XGP, which 

was designed for implementing Genetic Programming and Genetic Algorithms. It also 

explains the model of our driving agent that was evolved via XGP. 
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 Hypothesis Verified; Steering Oscillation as the Effects of 

Delayed Response of the Driver (Chapter-5) 

Chapter -5 presents multiple experimental results, to verify our hypothesis. The 

experimental result with driving agents and with real human driver has been discussed in 

this section. It shows various results relating to the occurrence of steering oscillation. 

 Proposed Method for Oscillation Detection (Chapter-6) 

Chapter-6 highlights on our proposed model of oscillation detection. It discusses 

the methodologies and result on classifying oscillating (inattentive) and non-oscillating 

(attentive) driving case. Further, it also present some limitation of the proposed model 

and discuss possible solutions. 

 Enhancing Proposed Method via XGP (Chapter-7) 

Chapter-7 presents some experimental results and discussion on enhancing the 

proposed model with XGP. It talks about some limitation on the proposed model and 

highlights how those limitations were resolved using XGP. 

 Individually Adaptive Method for Oscillation Detection 

(Chapter-8) 

Chapter-8 further extend the enhancement of the proposed model by introducing 

mechanism that could adapt with the individual driver and the driving conditions. It 

discuss about the adaptive model and present experimental result for the classification of 

attentive and inattentive driving conditions. 
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 Real-time Implementation of the Method (Chapter-9) 

Chapter-9 will provides new direction to our study, as it propose various feature of 

steering oscillation. This chapter presents details on how those features were detected in 

real time implementation. Here first section presents our real-time detection model and 

some experimental result that were tested on fully fledged driving simulator, while other 

section focus on the mobile application. 

 Summary, Conclusion, and Future Work (Chapter-10) 

Chapter-10 is the last chapter of this thesis. This chapter present the summary of our 

study, some of our achievement and conclusion, and finally ends by discussing possible 

direction of this research. 
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Chapter - 2 

The Model of Driver Distraction and 

Inattention 

2.1. Definition of Driver Distraction and Inattention 

2.1.1. Driver Distraction 

Driver distraction and inattention is one of the most common topic that we can find 

in the literature that deals with the human factor for automobiles, traffic accidents, and 

accident prevention or even in intelligent transportation systems. Often, we find this two 

term used as a substitute of one another to deliver the meaning usually referring driver 

being inattentive, that could in fact mean driver getting distracted but it could also be used 

to refer driver being inattentive due to, for example, mind wandering. Therefore, the 

meaning of these two term varies upon the context and literature. 

Starting with the literal meaning of distraction, the online version of oxford dictionary 

has defined the term distraction as “Prevent (someone) from concentrating on something; 

Divert (attention) from something; Divert one’s attention from something unpleasant by 

doing something different or more pleasurable”. While this definition from the oxford is 
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more diverse in terms of context we put it through, M. Regan and his colleagues in their 

paper [4] tries to formulate a generally accepted definition especially in context of driver 

distraction and referring to the paper of Hedlund et. al [15], they define driver distraction 

as; 

 “a diversion of attention from driving, because the driver is temporarily focusing on 

an object, person, task, or even not related to driving, which reduces the driver’s 

awareness, decision making ability and/or performance, leading to an increased risk of 

corrective actions, near-crash, or crashes”.  

Likewise, more comprehensive definition has been forwarded by Pettit et.al [16] as 

follows; 

“Driver distraction:  

▪ Delay by the driver in the recognition of information necessary to safely 

maintain the lateral and longitudinal control of the vehicle (the driving task) 

(Impact)  

▪ Due to some event, activity, object or person, within or outside the vehicle 

(Agent)  

▪ That compels or tends to induce the driver’s shifting attention away from 

fundamental driving tasks (Mechanism)  

▪ By compromising the driver’s auditory, biomechanical, cognitive or visual 

faculties, or combinations thereof (Type)” 

Moreover, Lee et. al. [17] has rather provided a very simple definition in their work, 

which says, “Driver Distraction is the diversion of attention away from activities critical 

for safe driving towards a competing activity”. However, more different version of 
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definition could be found in the work of Treat and Hoel [18] [19], which are more context 

specific.  

However, for the purpose of this work, we define driver distraction as the shift in 

the attention of the driver, from the primary task of driving to secondary or even tertiary 

(unrelated to the driving) tasks [4]. 

2.1.1.1. Forms of Distraction 

Distraction could be further differentiate in four or five different forms that are discussed 

below; 

2.1.1.1.1. Visual Distraction 

The type of distraction that occurs while looking away from the road for a non-

driving-related task from the current driving task could be considered as visual distraction. 

Visually induced distractions are the common type of distraction that occurs every day 

when we are driving. Distraction from navigation display, text-messages, billboards 

around the road, pedestrian, etc. are some of the common example of visual distraction.  

Additionally, in the literature [20], we could find that visual distraction could be 

further divided into three different types. The first is where the driver’s visual field is 

blocked i.e. where he should be looking while driving for example, the front-side or rear 

of the vehicle. The second he discuss is the visual distraction where the driver neglects to 

look at the critical areas, focusing instead for some period on another visual target, which 

creates safe driving issues. The third is when the driver is distracted and his attention 

wanders from his driving. Any of these three types of problems can impede safe driving 

and have long been restricted by some form of law. 
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2.1.1.1.2. Cognitive Distraction 

The type of distraction that occurs while the driver takes off their mind out of the 

road in the process of attending the conversation with their passengers, talking on the cell 

phone, or simply getting mind off the road due to daydreaming or mind wandering – 

rather than considering the current traffic situation. 

Cognitive distraction seems to have much diverse definition and understanding. 

Literature suggest that studies [21] related to cognitive distraction are much more 

inconsistent in their definition. For instance, some definitions do not include cellular 

conversation, while others do. Some definitions confound cognitive distraction with 

visual distraction, or cognitive distraction with cognitive workload. Other studies define 

cognitive distraction in terms of a state of the driver, and others in terms of tasks that may 

distract the driver. It is little wonder that some studies find that cognitive distraction is a 

negligible factor in causing crashes, while others assert that cognitive distraction causes 

more crashes than drunk driving. Therefore, in this study we consider cognitive 

distraction as the shift in the mental process due to driver’s engagement in various 

secondary or tertiary activities. In addition, this study assumes that with the occurrence 

of every other type of distraction, there is some form of cognitive distraction taking places 

in our mind. This is because every distraction would shift the attention of the driver that 

would ultimately alter the cognitive process of human mind. 

2.1.1.1.3. Physical (Biomechanical) Distraction  

The type of distraction that is induced when the driver physically engage on other 

activities then the primary task of driving is known as physical distraction. The driver is 

said to be in physical distraction when, the driver holds or operate a device rather than 
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steering with both hands, or dialling, on a mobile phone, or leaning over to tune a radio 

to adjust the volume or change the music that may lead to rotating the steering wheel. 

2.1.1.1.4. Auditory Distraction 

The distraction that occurred because of loud sounds are often categorized as the 

auditory distraction. The distraction from the ringing mobile phone or its vibration, loud 

volume of in-vehicle devices like CD players, or even the loud noise of in vehicle 

passengers that would mask other sounds are the example of auditory distraction. 

2.1.1.2. Sources of Distraction 

As the sources of distraction has been briefly mentioned in the previous section 

in terms of examples to various forms of distraction, in this section, those sources of 

distraction are further categorized into two different types. They are (i) Internal distraction 

and (ii) External distraction. 

2.1.1.3. Internal Distraction 

Internal distractions are the distraction that incurred due to various devices or 

persons residing in the car. It is also known as in-vehicle distraction. The few example of 

in vehicle distraction could be a very basic activities like drinking, eating, talking to a 

passenger as well as engaging own self with on-board entertainment systems like CD 

player, Radio player etc. [22] [23]). However, with the miniaturization of new electronic 

components, various electronic devices have now become the most common part of 

automobile system that plays significant role in compromising the road safety. These 

electronic devices are either included in the car or could be separate portable devices like 

smart phones, portable music players, tablets or other information devices like navigation 

system integrated with Global Positioning System (GPS). While the significance of such 
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systems like navigation, systems and intelligent speed adaptation (ISA) systems could not 

be neglected but they are also highly responsible for various in-vehicle distraction. 

Internal sources of distraction also include the growing number of communication 

technologies that are now integrated into vehicles – for example, the Bluetooth, Wi-Fi, or 

infrared technologies and those that allow drivers to access their e-mails and Internet. 

Some studies show that using in-vehicle entertainment systems has detrimental effects on 

driving performance [22]. Indeed, adjusting a radio, CD or cassette player was found to 

be one of the major causes of distraction-related crashes in the United States and while 

information on newer technological sources of distraction is lacking, it is likely that 

negative effects on safety would be expected. Hence, some of the main internal source of 

drive distraction could be as follows [6]: 

 

 

 

 

 

 

2.1.1.4. External Distractions 

External distractions are the distraction that incurred due to various things located 

outside the car. High raised appealing buildings, attractive billboards, people and 

pedestrian are few source included in external distraction. However, with the 

technological advancement, there has been many efforts to design the billboards and 

advertisement on the road. Such design are developed in such a way that it would be 

impossible to avoid looking at, like video advertisements, neon and led based billboards 

● Adjusting temperature controls  

● Adjusting radio, CD  

● Dialling or texting on a mobile 

phone  

● Eating or drinking  

● Moving an object in the vehicle  

● Talking to other vehicle occupants  

● Smoking 

● Using a device or object integral 

to the vehicle (e.g. speed 

adaptation system)  

● Using a device or object brought 

into the vehicle (e.g. Blackberry, 

iPod, laptop computer, etc. [23] 



 

17 

etc., which possess more threat to the driver safety and are the indispensable source of 

driver distraction. Also because a study comparing the distraction to drivers caused by 

static versus video billboard advertising found that video adverts had a more detrimental 

effect on driving performance, suggesting the increased risk of this form of external 

distraction to safe driving [24].  

2.1.2. Driver Inattention 

In literature, inattention has often been defined with the definition of attention. 

Hence, a good step would be to start with the meaning of attention. The online version 

of oxford dictionary has demarcated attention as “Notice taken of someone or something; 

the regarding of someone or something as interesting or important; the mental faculty of 

considering or taking notice of someone or something”, which is again so much 

generalized and more context specific. However, a very nice definition of attention has 

been recorded by the nature.com [25]with the more realistic essence which says, 

“Attention is a cognitive process in which a person or animal concentrates on one thing 

in particular. To attend to something is to focus, heed or take notice of that thing 

irrespective of what else is going on in the surroundings”. 

On the other hand, inattention is defined as “Failure to attend to one’s 

responsibilities; negligence” by the oxford dictionary. However, in context of driving, 

Victor et. al, [26]  has defined it as “improper selection of information, either a lack of 

selection or the selection of irrelevant information”, which is well cited by Regen in their 

paper [4]. The other definition mention in Regan’s paper include that of Craft & 

Preslopsky [27]. They defined driver inattention as event that occurred when the driver’s 

mind has wandered from the driving task for some non-compelling reason which could 

be like, when the driver is focusing on internal thoughts (i.e. daydreaming, problem 
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solving, worrying about family problems etc.), and not focusing attention on the driving 

task”. While, Klauer et. al [28] has defined driver inattention as “ any point in time that 

a driver engages in a secondary task, exhibits symptoms of moderate to severe drowsiness, 

or look away from the forward roadway” which combines both the activity and state of 

the driver.  

2.2. How Different are Driver Distraction and Driver 

Inattention? 

It is a topic of debate when we try to unfold our understanding on if the driver 

distraction is different from driver inattention. However, following the literature, driver 

distraction is generally thought to be different from driver inattention, or poorly allocated 

attention [3] [6]. Distracted driving occurs when some kind of triggering event external 

to the driver results in the driver shifting attention away from the driving task (e.g. a 

ringing mobile phone). Thus, the diversion in attention occurs because the driver is 

performing an additional task or is temporarily focusing on an object, event or person not 

related to primary driving task [15]. Inattention while driving applies to any state or event 

that causes the driver to pay less attention to the task of driving – the inattention can be 

present without necessarily having been triggered by an event, for example, daydreaming 

[5] [29]. The diversion of attention that occurs in distracted driving is also distinct from 

those impacts on driving performance that are attributable to a medical condition, alcohol 

or drug use, and/or fatigue (although these factors may compound the effects of 

distraction). 

However, if we look into the fundamental aspect of distraction and inattention they 

are similar in a sense that both causes the driver to pay less attention to the primary task 

of driving irrespective of the how the event was triggered. And, as the effect is same the 
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things that incurred inside our brain during distraction and inattention is also same. This 

study follows the understanding that distraction is some form of inattention and both of 

the word in this study are used to provide the meaning of driver being inattentive without 

considering if its triggered by some external event or not. The following sub-section give 

brief explanation on what happens inside the inattentive (distracted) brain. 

2.3. Inattentive Driving: What Happens Inside the 

Distracted Mind? 

Human brain is one of the most fascinating organ that evolution has ever gifted to 

the humanity. This makes us cognitively superior among other creatures in the world. 

Being said that, it is also among the most little understood organ. For instance, its 

complexities could be infer from the reference that, our brain contains 100 billion neurons. 

Also, these number are 10 times higher when the count comes to glial cells (non-neuronal 

cells that maintain homeostasis, form myelin, and provide support and protection for 

neurons in the central and peripheral nervous systems [30] [31] [32] [33]). However, we 

must accept the fact that there are no original references about how those number 

emerged in any of the journals available today [34]. Like any other parts of our body, 

human brain is also constantly evolving and is responsible for comprehending various 

cues that we perceive through our senses. But, despite being such a sophisticated organ 

of our body, human brain still lacks the capability of multitasking [35] i.e. instead of 

handling the multiple task in parallel, our brain is evolved to handle them in a sequential 

fashion. Our brain does so by switching between the tasks rapidly and performing only 

one task at a time.  Furthermore, brain also constantly engage in processing the 

information that it receives from different sense organs. It has to receive process, encode 

and execute that information. However, when the brain engage in processing the 
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information received from multiple source it is overloaded with the information that 

would increase the cognitive load, which results in delay of response or say increases 

reaction time. The following Figure 1 shows the information processing chain in general. 

 

Fig-1: Basic architecture of human information processing (decision-making) 

The above figure shows the basic information processing chain in human mind. In 

a very general scenario i.e. without inattention or distraction, human driver perceive 

different cues or information from the environment while driving. These cues could be 

anything from, traffic lights, traffic signals, pedestrian, horns of other vehicle, sound of 

other vehicles, etc. Since, driving is a very complex task, which requires immediate and 

constant feedback from the driver, who has to maintain minimum level of cognitive load 

that could be handled by the human brain so that there is no delay in intermediate 

information processing chain. Moreover, when this visual, verbal, or other cues reached 

to the perception sub-system, different unit of the brain starts processing them. In the 

process some cues are subconsciously mapped to the memory and after information 
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encoding and retrieval, the decision is made. While other has to consciously go to the 

various region of the brain and after information encoding and retrieval decisions are 

made and action is performed.  

However during inattentive driving induced by the distraction or other sources, 

driver has to instantly deal with huge amount of information either from the primary task 

of driving, or from the distracting sources (like texting). Since cognitive resources could 

not be extended nor are capable of multitasking, such overloaded information would 

increase the amount of cognitive load in the perception sub-system, which might 

ultimately create cognitive bottleneck in the perception system as well as increase the 

switching overhead while associating perception signal from multiple task to different 

regions of the brain. In addition to increase in switching overhead, performing a 

secondary task (such as texting or messaging) while driving also results in inattentional 

blindness where the information perceived from the primary task (driving) are not 

mapped to corresponding region of the memory to encode and/or retrieve the information. 

So all these factor would delay the information processing chain in driver’s brain, which 

as a whole increases reaction time of the driver as well as delay their action. In the shown 

in Figure 1, the thick arrow line shows a basic information flow, thin arrow shows the 

possible areas affecting cognitive load (CL) and red thick line from the CL shows the 

effect of cognitive load in various part of information processing chain. 

2.4. Review of Driver Assistant and Monitoring Systems  

Mobility is the important aspect of modern world, in that, vehicles and drivers are 

the two key elements. There has been much research work done to optimise these two 

elements in mobility. These might be the reason why very few accidents happens due to 

the mechanical failure of the vehicle, however, these number are increasing everyday if 
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count the human factor side. Driver Assistant and Monitoring Systems (DAMS) is 

playing important role in reducing the number of traffic accidents around the world. New 

research in the field of automobiles and vehicle have given birth to numerous such 

systems, which is now a necessity of a modern automobile. Reviewing the evolution of 

assistant system, we could divide them into three different phases based on sensors, 

functions and their goals [36], which are further discussed below and are summarized in 

Figure 2: 

2.4.1. First Generation Assistant Systems 

Initially introduced DAS are mainly based on measuring the internal status of the 

vehicles, such measurements included velocity, acceleration, or both and measurements 

were acquired mostly from proprioceptive sensors (sensing internal state). These systems 

focuses much on maintaining stabilization of vehicle dynamics. The development of Anti-

lock Braking System (ABS) in 1978 (Bosch), Traction Control System (TCS) and 

Electronic Stability Control (ESC) marked the first milestone development of Driver 

Assistant Systems. 

2.4.2. Second Generation Assistant Systems 

The assistant systems that are introduce after 1990 are highly based on 

exteroceptive sensors (sensing external state). These systems focuses on providing 

information and warnings to the driver, and on enhancing driving comfort. The 

development of Navigation System, Park Assistant System, Forward Collision Prevention 

System, Adaptive Cruise Control System, and Lane Departure Warning System are few 

of the noted milestone for advanced driver assistant systems. 
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2.4.3. Third Generation Assistant Systems 

The assistant system that are presented or elevated after 2012 are vastly centred on 

complex network of both proprioceptive and exteroceptive sensors. These systems efforts 

on providing automated and cooperated driving services. Some of the partially 

implemented driver assistant system in this category are low-speed automated driving, 

automated highway driving, multisensory platform etc. 

 

 

 

 

 

 

 

Fig-2: Past and Potential Future Evolution in Driver Assistant System [36] 

On the other hand, Driver Monitoring System (DMS) is also one of the dynamic field 

of research. There are different methods that are implemented for DMS. The most 

common method of DMS is biological signal processing where various biological signals 

such as ECG, EEG, EOG etc. are monitored, recorded and analysed using machine 

learning algorithm to determine the driver state [37]. Similarly, various image base 

technique are also used to monitor driver using visible spectrum camera, IR camera, and 

stereo camera [38]. Some system are also based on pupil dilation measurement to 

determine the cognitive overload of the driver [39]. However, these systems are based on 
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sensors where driver has to involve directly for the measurement and small deviation from 

the sensors range might increase the chances of false alert significantly. In addition, 

driving is a subjective behaviour, using the same system without adapting mechanism 

might not yield better result. Conversely, we proposed to use accelerometer as a sensor 

to analyse the effect of cognitive load in steering behaviour of the car, which in no way 

required driver to be in the sensing range. Some other research like steering entropy [12] 

studies the cognitive load based on the signal of steering angles however, it has some 

limitations (mentioned already in motivation section).  Honda’s wobble driving judgment 

algorithm (English Translation) also tries to detection the oscillation of the car [40]. This 

algorithm consider central reference line from the trajectory and lateral deviation to detect 

the wobble of the car with reference to the angular velocity. However, we would be unable 

to detect reliably the inattentive driving from deviation of the central line. Indeed, a fully 

attentive driver might deliberately ”wave” across the lane in cornering (entering from 

outside, moving to the inside at the apex, and exiting from the outside), may 

circumnavigate obstacle, rough road, bicyclist, or, simply, may not mind driving slightly 

off the middle of the lane.  We believe that it would be difficult to discriminate these 

cases of attentive driving from oscillations caused by DoR of the driver without an 

appropriate spectral (frequency-related) analysis of the relevant parameters (deviation 

from centreline, steering angle, lateral acceleration, etc.) of the moving car. 

2.4. Discussion 

 The combination of continuous technological progress of automobile systems, 

ever rising density of the traffic, and increase in the speeds of vehicles has made the 

driving more challenging and more dangerous than ever before. There is no doubt that 

the advancement inside a cockpit with a miniaturization of aided technology and handheld 
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devices has added comfortability but with a price of potentially dangerous distraction of 

the driver. Also, distraction happens due to limited ability of our mental resources to 

process the information. Human brain is not made to process multiple task and switching 

cost between the task are higher, therefore, limited resources get overloaded with the flow 

of information and higher switching cost, that might result in inadequate cognitive load 

of the driver. 

Identifying inadequacy of driver cognitive load could be crucial towards prevention 

of many driving accidents. The common symptom in both aforementioned scenarios of 

inadequate cognitive load is the delayed response of the driver. Therefore, in principle, 

we could infer inadequate cognitive load by directly measuring the amount of delay in 

drivers’ actions to various environmental stimuli during driving – such as the delay in 

pressing the brake pedal in various emergencies. Such an approach, however, would 

suffer from the following two drawbacks: 

 A delay in response during normal driving is a personal trait, and some drivers may 

respond slowly just because they are sure that the current conditions of the road, car, and 

driver do not require an urgent response. According to the risk homeostasis theory [41], 

drivers tend to engage in a riskier driving style when extra safety measures or driving aids 

are incorporated in their cars (e.g., airbags, anti-locking brake system, traction control, 

electronic stability program, tires with better friction coefficient in slippery road 

conditions, etc.).  

A delay in the response could be a meaningful indication of cognitive load only 

when measured directly in situations that really require an urgent response – such as a 

moving obstacle that appears suddenly and within close range of the car. Inadequate 

cognitive load in such a situation could indeed result in a delayed response by the driver, 

which in turn could result in an accident. Therefore, a delay in the response in such 
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situations could not be used to provide crash-preventive early warnings with respect to 

eventual inadequate driver cognitive load. Hence, we need a novel and reliable method 

of detecting inadequate cognitive load of driver. 

The next Chapter discusses the detail about the proposed hypothesis, which 

provides the fundamental assumption regarding our main ideas. 
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Chapter -3 

Hypothesis Formulation 

3.1. The Main Idea of Research 

The brief theoretical review on the concept of cognitive load, and discussion on the 

model of information flow in previous chapters, has provided us the enough background 

on defining our hypothesis. The core concept of this study depends on driver in the control 

feedback loop, which is further elaborated in following subsection. 

3.1.1. Driver in the Control Feedback Loop 

The main idea of our research is based on the consideration of the human driver as 

the controller of a system with feedback. Therefore, assuming the human driver as the 

controller of the system (i.e., car) with a negative (i.e., error-correcting) feedback, we 

could illustrate the architecture controlled system as shown in Figure  3. 
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Fig-3: Human driver in the control feedback system 

Figure 3 shows driver in the feedback loop of control system. The latter consists 

of four major component: (i) Environment, (ii) Perceptions, (iii) Controller/Decision-

making and, (iv) Action. 

3.1.1.1. Environment 

Environment is the external world where driver observes and interacts with their 

actions. 

3.1.1.2. Perceptions 

Driver constantly perceives various cues from the environment. Perception are the 

inputs for the decision-making. There could be lots of perception cues in the environment 

(for example) - state of the car, driving conditions, traffic lights, traffic situations etc., 

which represent, basically, the feedback for the control system (car). 

3.1.1.3. Decision Making 

Human driver who acts as the controller of the system makes the decision regarding 

the actions they have to execute. Decision-making is done based on the perceptions input, 

i.e., the feedback. 
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3.1.1.4. Action 

Action implies the mechanism on how the human driver affects their world 

(environment). Driver constantly receives feedback from the environment as a perception 

signal, makes correction in their decision, and then executes them via action signals. 

Generally, steering angles (control), pressing the accelerator or brake pedals to a certain 

degree, etc. are the actions that driver executes to affects their surroundings. 

3.2. Hypothesis Defined 

We have known from the explanations presented in Chapter 1 and Chapter 2 that 

inadequate cognitive load in human’s cognitive processing chain or information 

processing chain would result in delay of response or increased response time. 

Considering human driver as the controller of the control system (car) with constant 

perception input (feedback) from the environment, such delay in response would result in 

the delay in feedback. Considering Nyquist criterion, we hypothesized that any delay in 

feedback would result in potentially unstable or oscillating system. Nevertheless, the 

question remains on which parameters would oscillate or in other words what would be 

the symptoms of delay of response in the driver in a loop system. The answer could be 

found in the parameters of actions that a driver performed to affect their environment, 

especially – those actions that are pertinent to a tracking behaviour of the controller 

(human driver). The oscillations in systems with feedback occur only if the behaviour of 

their controllers could be as a tracking one. The most common action the driver conveys 

to the car (as a control system) could be (i) dynamics of steering, (ii) dynamics of brake 

pedal (for decelerating) and, (iii) dynamic of accelerator pedal (for accelerating, cruising, 

decelerating), respectively. However, neither accelerating, cruising nor decelerating 

could be seen as tracking behaviours because the parameter, controlled by these 
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behaviours – the speed of the car – is, usually controlled within a quite relaxed range of 

values. Conversely, steering control could be considered as a tracking behaviour where 

driver constantly tries to compensate the negative feedback from the environment in order 

– according to the servo control model of steering – to keep the lateral and angular 

deviation of the car from the canter of the lane minimal. In addition, it is recognized in 

aviation [13] that oscillations usually occur only in tracking behaviour. We can observe 

this in a phenomenon called pilot-induced oscillation where the oscillations of pitch angle 

(and angle of attack of the wing) of airplanes occur due to delayed feedback (rate limits) 

during landing or mid-air refuelling. We focus on the control of steering of the car, 

because it manifests the only tracking behaviour during driving, and hypothesize that any 

delay in the feedback (e.g., caused by inadequate cognitive load of the driver) would 

result in detectable steering oscillations.  

3.3. Summary 

The underlying idea behind this study is that, we consider human driver as the 

controller of the car (system) with negative feedback. In a control system with feedback, 

any delay in such feedback would result in potentially unstable or oscillating system 

(Nyquist criterion). Since we know from neuroscience that cognitive load would result in 

delay of response in information processing inside the human brain (refer to Chapter 2), 

and as human driver act as the controller of the system (car), we hypothesized that any 

delay in the feedback control would result in an oscillating system. In other words, we 

are interested to verify our hypothesis that the cognitive load in human driver would result 

in steering oscillation of the car. Hence, we proposed an original methodology to verify 

our hypothesis. The proposed methodology relies on various tools and software 

frameworks, which are further discussed on chapter 4. 
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Chapter - 4 

Research Framework for Hypothesis 

Testing 

This chapter discuss and explains different research framework, tools, and 

technologies that have been utilized in our research. Brief introduction on all the tools 

that were implemented for validating the research hypothesis has been provided in this 

section. 

4.1. The Simulator 

4.1.1. Software 

We initially used software simulator called The Open Racing Car Simulator 

(TORCS) [42] as the driving environment to accumulate test data and validate our 

hypothesis. Our decision to perform the experiments using a simulated car instead of an 

actual car is justified by a combination of the following advantages of TORCS:  

1) Level of realism of simulation of car dynamics,  

2) Crash-proof (software) implementation of the car,  

3) Computational efficiency, and  
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4) Openness.  

The latter allows us to modify the code, the characteristics of the car, and its 

environment to suit our needs. However, being a software simulator, TORCS still features 

the reality gap compared to actual driving environments. It is also difficult to model 

various physical loads (caused by both longitudinal and lateral accelerations of the car) 

that would have been applied to the driver while driving an actual car in various real-

world conditions. We acknowledge that this might cause some concerns regarding the 

validity of the obtained results. The indication of the credibility of our results could be 

seen, however, in the analogical research in aviation as discussed in previous chapters. 

This suggests that pilot-involved oscillations occur because of delays in the control loop 

(often caused either by rate limits of actuators of the control surfaces, or by the software 

of the fly-by-wire control system) of real planes. It is however regardless of the fact that 

the pilots are, indeed, engaged in piloting the actual plane and are, consequently, 

subjected to actual physical loads. In addition, we consider our current work on simulated 

car just as a first – yet an efficient, inexpensive, and safe – step towards the verification 

of our concept. As a next step, we could also replicate the experiments in real cars driven 

in real-world situations.  

 The Car 

TORCS provides flexibility to use the collection of inbuilt cars what are realistically 

simulated as per the law of physics. Besides that, the custom designed car could also be 

integrated in the TORCS system. We used the CLK DTM car for our entire experiment. 

The design of the car is shown in Figure 4, while its parameters are given in Table 1. For 

the purposes of continuity and comparability, the model of the car used in our experiments 

is kept same throughout our entire experiments in the research. 
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Fig-4: The simulated car in TORCS (i) Backward view (left), (ii) Top-Frontward view 

(middle) and, (iii) Sideward view (right) 

 

Table-1: The feature of simulated car 

Feature Value 

Model CLK DTM 

Length, m 4.76 

Width, m 1.96 

Height, m 1.17 

Mass, kg 1050 

Front/rear weight repartition 0.5 / 0.5 

Height of centre of gravity, m 0.25 

Coefficient of friction of tires 1.2 

Drivetrain front engine, 

rear wheels drive 

 Test Track and Test Case 

Along with the flexibility of various car options, TORCS also provides 

adaptability to use inbuilt and customized track for the driving environment. We use the 

track design as shown in the Figure-5. We also setup three different test cases for 
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validating the hypothesis in the experiment i.e. (i) driving on a straight section of the 

track, (ii) driving on corner entry section, and (iii) driving on corner exit section. 

 

Fig-5: TORCS customized track design used in the experiment with three different test 

cases. 

4.1.2 Hardware 

In addition to the TORCS, we also used the Logitech Driving Force GT [43] gaming 

device as our hardware apparatus for steering wheel and, brake and accelerator pedals, to 

control the car.  This hardware pieces was designed for gaming purpose (especially 

racing) for windows system that also maintains compatibility with PlayStation®3 system, 

and PlayStation®2 system. Its main feature includes advanced force feedback with 900 

degree wheel rotation i.e. turns 2.5 times around lock to lock. The more important feature 

is its custom adjustment of both brake bias and traction controls, as well as steering 

movement for more realistic experience of driving (or racing). The pictures illustrated in 

Figure 6 shows the component of the Logitech’s driving force GT. This device act as play, 

plug in window’s system, and could be simply connect via USB to Windows PC and other 

compatible devices. 
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Fig-6: Logitech Driving Force GT steering wheel with various control buttons (left), and 

brake and accelerator controller pad (right) 

4.1.3 Fully Fledged Driving Simulator 

In addition to the TORCS, we also tested some of our proposed approach in fully-

fledged driving simulator. We used the integrated system developed by FORUM 8 Co. 

Ltd [44].  This simulator comes with the integrated 3D visual and interactive attributes of 

VR-Design Studio. The software allows users to create driving scenarios and re-create 

them with complete control of all environmental conditions, as well as being able to set 

individual vehicle dynamics from either within VR-Design Studio or in collaboration 

with such third party products like CarSim or TruckSim. The picture of driving simulator 

used in our experiment is given in Figure 7. 

 

 

 

 

 

 

Fig-7: Fully fledged driving simulator 
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The simulator shown in Figure 7 supports 180º view of surrounding with its 5 

independent display unit. These units are controlled by the Client PC .Moreover, the multi 

user client version run on each Client PC within a computer cluster is used simultaneously 

with the VR-Design Studio software running on the Master PC of the same computer 

cluster. The coordinate information of each object calculated by the Master PC is reflected 

on the VR-Design Studio environment within each Client PC. The multiple screens being 

synchronized with the Master PC, thereby allowing users on each Client PC to drive at 

the same time within the same environment 

4.2. Customized Driving Condition by Adding Noise 

In order to further enhance the realism of the simulation, we modelled the 

imperfections of the steering system and the effects of those imperfections on the 

trajectory of the car. The steering systems of real cars feature inevitable mechanical play 

(in steering shaft bearings, gearbox, knuckle arms, ball joints and front wheel bearings), 

which, together with even minor road irregularities, would result in small, random 

fluctuations in the steering angle of the front wheels. We modelled these oscillations by 

adding 2% of random value in the range −1°+1° to the steering angle of the front wheels 

of the car at each sampling step (50 times per second) of the simulation. These random 

fluctuations are modelled as high frequency noise and low frequency noise added 

separately based on the test condition. In Fact, we considered high frequency noise as 

those that are generated due to variation in tires or tarmacs. We simulated high frequency 

noise by adding random value of 2% as mentioned previously in time interval of 20ms. 

Likewise, low frequency noise are those generated due to small plays in gearbox, ball 

joints, and knuckle arms etc., which exist due to mechanical breach between the 

components. Such low frequency noise were simulated by adding random noise, which 
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remains constant until every 200ms. Furthermore, while driving in the straight section of 

the road both high and low frequency noise were added, whereas anticipating negligible 

effect of low frequency noise during turn or curving in real driving situation, only high 

frequency noise were added during cornering. 

4.3. Evolutionary Computation 

Evolutionary computation is a biologically inspired algorithmic paradigm that uses 

the principle of evolution in Nature, especially, the survival of fittest. As a nature-inspired 

algorithm, there are several terminologies borrowed from biological world, such as 

selection, individual, mutation, crossover and fitness. The general idea of evolutionary 

computation is in generating a set of individual then checking their fitness to the 

environment. The good ones survive to the next generation, and might have new offspring 

from performing genetic crossover. As the evolution repeat by itself, the fit individuals 

will survive, and the better genes of the individuals to fit the environment will survive. 

In the terms of algorithm, the individual could represent a program or a function, 

determined by a set of terminals that represent genes. The environment and the fitness 

can represent a problem and the solution; the fit individuals to the environment means a 

better program or function to solve the problem towards the solution. To simulate the 

process of evolution and birthing new generations and offspring, a set of operators are 

applied to surviving individuals. There are three basic operator groups: selection, 

crossover, and mutation.  
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 Selection 

The  selection  operator  chooses  which  individuals  of  the  population  at 

generation, say g,  will  survive  to  the  next  generation.  Common selection method is 

by evaluating their fitness to the environment (or problem, or target solution). 

 Crossover 

The crossover operator generates new individual (offspring) by combining the 

genes or parameter of two or more parent (surviving individuals).  There are many ways 

to perform this, e.g. by swapping some parts of the genotypes of both parents. 

 Mutation 

The  mutation  operator  is  applied  directly  on  an  individual  (at  a  gene  or 

parameter),  by  performing  pinpoint  modifications  (that  can  be  random  or  regulated 

according to a rule). Values can be added or subtracted, or bits are flipped. 

 

4.3.1. Genetic Programming (GP) Basic Frameworks 

Genetic Programming (GP) [45] [46]is a domain-independent problem-solving  

algorithmic  paradigm  inspired  by  the  natural  evolution  of  species based  on the 

survival  and  reproduction  of  the fittest.  GP  is  successfully applied for delivering  a  

human-competitive  solutions  of  increasingly  difficult  problems  in  AI such  as  analog  

and  digital  circuits  design,  spatial  and  temporal  information identification and 

prediction, machine learning, etc. 
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4.3.2. XGP Introduced 

XGP [47] is an in-house GP engine that features XML  (Extensible Mark-up  

Language) based  genotype  representations  of  candidate  solutions  (genetic programs), 

XML-schema that determines the allowed syntax of the genotypes, and a UDP  channel  

to  communicate  between  a  fitness  evaluator  and  the  XGP.  XGP manages the 

population of genetic programs and performs the main genetic operations – selection, 

crossover, and mutation. 

The notoriously long execution time of GP is caused by the fact that typically, a 

population  of  many  (hundreds  or  thousands)  potential  solutions  to  the  problem 

(individuals) trying to find the near-optimal solution to the problem in an  enormous 

search  space. They are  evolve  through  many  (hundreds  or  thousands)  generations  

based  on their simulated ability  (fitness) to solve the given task over many (tens or 

hundreds) sampled environmental situations (fitness cases). Inspired by flexibility and 

recently emerged widespread adoption of document object model (DOM) and extensible 

mark-up language (XML), XGP uses an approach of representing genetic program as a 

DOM-parsing tree featuring corresponding flat XML text. XGP‘s  approach implies 

performing genetic operations on DOM-parsing tree  using  off-the  shelf,  platform-  and  

language  neutral  DOM-parsers,  and  using XML-text  representation  as  a  web-

compliant  format,  feasible  for  representation  of genetic programs during their 

migration among the computational nodes  in eventual distributed GP. XGP  gives  an  

advantage  in  the  form  of  a  faster  development  time  due  the versatility of usages: it 

only took a short time to change the XML-schema and adapt the desired syntax of 

genotypes for a program. Evolving  programs  using  XGP  requires  the  engine  as  a  

Microsoft  Windows application running in parallel with another application to evaluate 

the fitness  of each individual sent by XGP. 
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Additionally, being defined through XM-schema, XGP could be use as XGA (XML 

based Genetic Algorithm) framework by merely changing the schema. Unlike GP, which 

evolves programs/functions for a particular problem, GA, on the other hand is very useful 

in evolving the optimised parameters or values. Later in Chapter 7, we have employed 

GA in optimising the weight coefficient (refer to Chapter 7). 

4.4. Evolving Driving Agent via XGP 

Theoretically, it would be possible to verify (or discard) our hypothesis that a delay 

in the steering response of a driver would result in detectable steering oscillations thereby 

representing early warnings of a driver’s inadequate cognitive load for real car(s), driven 

by cognitively inadequate human driver(s) in different traffic situations. Such an eventual 

approach, however, would be too unsafe, too slow, and too expensive. 

Instead of relying on a real car, in our research, we propose the use of a simulated 

car in TORCS to address all of the three above-mentioned drawbacks. Our choice of a 

simulated (rather than a real) car heavily influenced our decision to employ a driving 

agent (rather than a real human) to “drive” it during our experiments, because human 

drivers would psychologically perceive driving a simulated car as a task that is less risky 

than the real one, and, consequently, would (often unconsciously) modify their driving 

behaviour. Therefore, we could not be completely sure about the bias in the results of the 

cognitive load of drivers. Along these lines, even if we had research that confirms the 

correlation between inadequate cognitive load and the delay in the response of a human 

driver, we would be unable to actually measure the actual amount of such delay in normal 

driving situations. Consequently, we would be unable to infer the relationship between 

the eventual delay and the emergent driver-induced steering oscillations (if any). With a 

driving agent, we could model different delays of its response and investigate the 
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corresponding changes in its steering behaviour. In addition, allowing the driving agent 

to control the simulated car adds objectivity to our experiments, because we do not need 

to focus on actually stimulating the inadequate cognitive load (which is both subjective 

and individualized) in the human drivers to induce the investigated delays in their 

responses. 

With regard to the development of such a driving agent, theoretically, it would be 

possible to handcraft its code (applying various top-down, theoretical approaches based 

on vehicle dynamics), which would model a human navigating a car on a given sample 

road. Such a code could be expressed as an algebraic function – a steering angle function 

(SAF) – of parameters, pertinent to the state of the car and the surrounding environment. 

However, such an approach of designing SAF might be practically unfeasible owing to 

the extremely complex, non-linear nature of the dynamics of real cars [48]. Indeed, it 

would be difficult to anticipate the mathematical relationship between the set of relevant 

parameters, pertinent to the state of the car, that influence the steering angle, needed to 

steer the car optimally in various manoeuvres (negotiating corners, changing lanes, 

returning to the centre of the lane following a small deviation, driving on the middle of 

the lane, etc.). Moreover, while a handcrafted code of SAF that involves all these 

parameters might definitely steer the car well on a given sample road, neither the degree 

of optimality of such a code, nor the method to further improve it would be apparent to a 

human developer. Therefore, an automated mechanism (i) to evaluate the quality of SAF, 

and (ii) to improve its intermediate version(s) incrementally, e.g., based on the models of 

natural evolution of species – might be required. 

Hence, the optimal code of SAF is automatically developed via modelled evolution 

through selection, survival, and reproduction of the subset of the best (fittest) SAF in a 

way much similar to the evolution of species in Nature [45]. Such an approach involves 
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the evaluation of the quality of many (thousands) intermediate SAF in due course of 

evolution, which, in turn, additionally vindicates our decision to use a simulated car as 

these evaluations. 

4.4.1. Driving Agent; Architecture and Evolutionary Development of 

its Functionality 

From the viewpoint of software engineering, the intended model, which simulates 

the steering behaviour of a human driver on a given sample road, could be considered as 

a (software) driving agent, that continuously perceives the state of the car and the 

environment. It then judges whether a steering input needs to be applied, and, if yes, acts 

by applying an input that turns the front wheels of the car to an appropriate – calculated 

via SAF – steering angle. The proposed driving agent concept is consistent with the well-

established servo-control models of steering behaviour of human drivers in cognitive 

psychology. According to these models [49], a human driver could be viewed as an error-

correcting entity, acting upon two types of perceived errors (deviations): (i) positional 

and (ii) heading errors. 

Thus, the objective of evolving the driving agent could be rephrased as evolving 

the decision-making functionality of such an agent. This, in turn, implies that we would 

have to solve the following main tasks: When should the steering input be applied? What 

should the architecture of the driving agent and its decision-making mechanism be like? 

How much steering input to apply, i.e., what should be the contents of SAF? We discuss 

the proposed solutions to these tasks in the following subsections. 
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4.4.1.1. When to Apply the Steering Input? 

The solution to this task defines the type of architecture of the driving agent: either 

reactive or proactive. In the latter case, the agent should be able to perceive and anticipate 

road conditions (direction of the approached turn, distance to the turn, its radius, etc., in 

the case of simple lane following) and traffic situations (number, and state of nearby cars, 

in case of lane changing) well ahead – both in time and space. However, such anticipation, 

and consequently – the corresponding anticipatory behaviour of the agent – would be too 

uncertain, and therefore, it would not guarantee a definite or a consistent steering response 

by the agent. Moreover, even if an imminent manoeuvre, say, to the right lane is foreseen, 

the eventual proactively-decided pattern of the applied steering angle would easily 

become outdated as the state of the car and, in particular, the surrounding environment 

(e.g., number, location, and speed of nearby cars) would be dynamic, uncertain, and non-

deterministic. Hence, may require an immediate, prompt steering response. 

Therefore, analogous to the servo-control model of steering behaviour of human 

drivers [49], we assume a purely reactive agent in that the applied steering angle is 

decided via SAF of the current perceptions only. The architecture of the agent is 

illustrated in Figure 8. We introduced a delay subsystem, as shown in Figure 8, in order 

to investigate the effect of cognitive load on the steering behaviour of the agent, as 

elaborated later in Chapter 5. In all our experiments, we consider a simple case of driving 

the car at a constant speed of 50 km/h, which requires trivial actions on both the 

accelerator and brake pedals of the car. Therefore, we excluded these actions from the 

decision-making functionality of the agent. 
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Fig-8: Reactive architecture of the driving agent: the applied steering angle is decided (via 

SAF) from the current perceptions only 

4.4.1.2. How much Steering Input to Apply? 

As previously mentioned, we are initially targeting on investigate the feasibility of 

applying GP to automatically develop a driving agent (as a model of a human driver) that 

can optimally steer a realistically simulated car with instant feedback on a varying 

cruising speed. Within the context of the previously introduced solutions to the task of 

when to apply the SAF-induced steering input, the evolutionary development of the 

driving agent could be considered as the evolution of an algebraic SAF (of parameters 

pertinent to the state of the car and their derivatives). Such SAF defines the optimal 

steering angle for a given steering task on a given sample road. The main features of GP, 

used to evolve such a function are shown in Table 2. Further, we choose the set of such 

terminal symbols (i.e., arguments in the evolved SAF) of GP that could provide the 

adopted error-correcting driving agent with sufficient information. First about positional 

(e.g., lateral deviation from the centre of the lane and its derivative) errors and, second 

about heading (angle between the centre of the lane and longitudinal axis of the car and 

its derivative) errors. 
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Table-2: Main features of GP used to evolve the optimal driving agent SAF. 

Category Value 

Applied GP framework XML-based Genetic Programming (XGP [47]) 

Genetic representation of 

evolved SAF 

Dual: DOM-parse tree and XML-text. DOM-parse tree is used 

for the implementation of genetic operations (crossover and 

mutation) and for fitness evaluation. XML-text is used as a 

format for transmitting (via UDP channel) the SAF from the GP 

framework to the fitness evaluator (TORCS). 

Set of non-terminals 

(functions) 

{ +, -, *, / } 

Set of terminal symbols: 

parameters, pertinent to 

the state of the car and 

environment, and their 

derivatives 

{ lateral acceleration α and its derivative α’, lateral deviation 

from the centre of the lane d and its derivative d’, angle 

between centre line and longitudinal axis of car θ and its 

derivative θ’; and a random constant within the range [0..10] } 

Population size 100 individuals 

Selection Binary tournament, ratio 0.1 

Elitism Best 4 individuals 

Crossover Single point, ratio 0.9 

Mutation Random subtree mutation, ratio 0.05 

Fitness value Weighted sum of (i) the area under the trajectory and (ii) the 

average of the lateral velocity of the car in a return-to-the-

centre-of-the-line manoeuvre. 

Termination criteria (#Generations>100) or (no improvement of fitness for 16 

consecutive generations) 

We define the criterion for optimality from the desired characteristics of the driving 

lane during the trial of evaluating the fitness of the evolved SAFs. The trial is 

implemented as follows: first, the simulated car, initially positioned parallel-, 8 meters 

off the centre of the sample, wide straight road, accelerates slowly to 50 km/h. The speed 

of the car is kept constant during the trial by a simple, handcrafted feedback control 

mechanism that maps the difference between the desired speed (50 km/h) and the actual 
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one into an increment (or decrement) of the position of the accelerator pedal. As the car 

reaches the desired speed of 50 km/h, the steering of the car assumed by the evolved SAF 

that instantly (without any delay) produces the desired steering angle (with a sampling 

interval of 20 ms) of the car’s front wheels for the current values of the perception 

parameters. The intended, optimal, trajectory of the car, steered by the evolved SAF 

should be both quick and smooth and return to the centre of the lane followed by the 

precise drive along it (Figure 9, Case 3). We consider the trajectories shown in Figure 9 

as Case 1, and Case 2 as suboptimal, as they represent either too slow (Case 1), or too 

quick an oscillating return (Case 3), respectively. Indeed, a too slow return would be 

unable to either follow adequately the centre of the lane on cornering or return to it in a 

case of missing it owing to the delays caused by inadequate cognitive load of the driver. 

On the other hand, the too quick return would imply an unnatural (for the cognitively 

adequate human driver), inherently oscillating trajectory of recovery. In addition, such a 

trajectory would be associated with both an uncomfortable (driver and passengers 

subjected to higher lateral accelerations) and unsafe (lateral accelerations might exceed 

the currently available friction of the road) drive. 

To express the defined criterion of optimality of the SAF-induced steering formally, 

we defined the fitness function F as a weighed sum of two components. (i) The area AT 

under the trajectory of the car (as an integral of the lateral deviation) and (ii) the average 

of the lateral velocity VL_AVR (an integral of the lateral acceleration) of the car: 

F = AT + C × VL_AVR … (1) 

The desired trajectory (Figure 9, Case 3) would feature an optimal trade-off 

between the values of these two components that result in a minimal fitness value. Indeed, 

the suboptimal trajectories would be subjected to a detrimental selection pressure either 
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due to the too wide area under the trajectory (Figure 9, Case 1) or too high lateral velocity 

(Figure 9, Case 2). 

In order to achieve a better generality of the evolved SAF, we consider two fitness 

cases: one with the car starting the trial right from the centre of the lane (as illustrated in 

Figure 9), and one - from the left. The overall fitness of the evolved SAF is calculated as 

an average of these two fitness cases. 

 

 

 

 

 

 

Fig-9: Trial of the evolved SAF: the intended trajectory (Case 3) of the car, steered by the 

evolved SAF would feature both a quick (i.e., featuring a narrow area under the trajectory) 

and oscillation-free (with low average lateral velocity) return to the centre of the lane. Case 

1 and Case 2 illustrate a too slow and too quick (oscillating) return to the centre of the lane, 

respectively. 

We experimentally verified that the value 0.5 of the weight coefficient C in 

Equation (1) results in an optimal trade-off between the values of the two additive 

components of the fitness function. 

We would like to note that for different steering tasks, we might need to keep track 

of both the components of the fitness of evolved SAF separately (in a two-objective 

optimization approach [50]) instead of fusing both these components in a single scalar 

value. This would allow us to obtain a set of (Pareto-optimal) SAF that features different 

combinations of the area under the trajectory of the car and the average of its lateral 
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velocity. SAF featuring a wide area under the trajectory might be needed in a slow lane 

change on a low-traffic highway, or in low grip (snowy, icy) road conditions. On the other 

hand, an SAF that results in oscillating trajectories with higher lateral speeds might be 

needed in circumnavigating suddenly appearing obstacles. However, for the given task of 

returning to the centre of the lane in normal driving conditions, the proposed simplified 

evaluation of the fitness of evolved SAF is sufficient 

4.4.2. Evolved SAF of Driving Agent; Experimental Results 

Fitness convergence characteristics of 20 independent runs of GP are shown in 

Figure 10. The fitness of the best-evolved SAF converges to 213 in about 40 generations 

of GP. 

SAF = 
𝛼(8−𝑦)

5(8+𝑑′)
 - 

3𝛼+2𝑑+2𝑑′

16
 … (2) 

Where, α is the angle between the centreline and longitudinal axis of the car, y is 

the lateral acceleration and, d and d’ are the deviation from the centreline and its 

derivative, respectively. 

 

 

 

 

Fig-10: Fitness convergence of 20 independent runs of XGP. The dashed line represents the 

average of these runs. 

It is common that the solutions, obtained via GP are considerably complex for 

humans to interpret [45]. These solutions often lack the logic that a human engineer 
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usually applies in the usual top-down design. The presented best evolved SAF is not an 

exception to this phenomenon – we are unable to explain precisely either why or how this 

SAF works. We could only confirm, however, that the evolved SAF implements a variant 

of proportional-derivative (PD) control of steering in that both (i) the direct values of 

parameters pertinent to the state of the car and the environment and (ii) their derivatives 

are incorporated in its code. 

The dynamics of the steering angle, the resulting trajectory (deviation from the 

centreline) and lateral acceleration of the car, steered by the best-of-generation SAF 

during the initial, intermediate, and final stages of evolution are shown in Figures 11, 

respectively. The best-of-run evolved SAF is shown in Figure 11d. 

 

 

 

 

 

 

 

 

 

 

Fig-11: The dynamics of the steering angle, the resulting trajectory (deviation from the 

centreline), and lateral acceleration of the car, steered by the best-of-generation SAF at the 

initial stages of evolution. Generation #3, Fitness = 1314 (a), Generation #12, Fitness = 399 (b), 

Generation #30, Fitness = 222 (c), and Generation # 42, Fitness = 213 (d). The sampling 

interval is 20 ms. 
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The results shown in Figure 11d indicate that the best evolved SAF of the non-latent 

(with zero delay) driving agent, automatically developed via GP, offers good steering in 

that it exhibits a relatively quick (within 115 sampling periods – from sampling period 

#275 to #390) yet oscillation-free return to the middle of the lane. Moreover, the return is 

followed by a precise drive in the middle of the lane (from sampling periods #390 to 

#1132). The maximum value of the lateral acceleration (at about sampling period #275) 

is also moderate – less than 10 m/s2 (about 1g). 

4.5. Discussion 

We intend to verify our hypothesis using different tools and technology. Initially 

we plan to develop a driving agent that mimics human like steering behaviour. Using GP 

we develop automatically, a driving agent—as a model of a human driver—that optimally 

steers a realistically simulated car with non-latent steering response. This driving agent 

mimics the human like evolutionary development process. The main reason for us to 

initially test our hypothesis with driving agent is because, with real human we would be 

unable to measure the amount of delay of response in normal driving situations, 

consequently, relationship between delay of response and its effect (steering oscillations) 

would be unclear. For example, it would be impossible to see the effect of 400ms delay 

and 800ms delay in human driver as response time is somehow a personal trait.  

However, the result and effect of delay of response in both driving agent and human 

driver has been discussed in detail in the next chapter. 
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Chapter - 5 

Hypothesis Verified; Steering Oscillation 

as the Effects of Delayed Response of the 

Driver 

This chapter deals with different experiments to verify our hypothesis that delayed 

response of the driver due to cognitive load results in steering oscillation. First experiment 

is performed with the driving agent evolved via genetic programming while the other is 

performed with real human driver. The section 5.1 discusses the experiment with driving 

agent while section 5.2 deals with the experiment with human drivers. 

5.1. Experiment with Driving Agent 

We employed driving agent whose steering function was designed using a machine 

learning approach (GP). The foremost reason to employ driving agent for the initial 

verification of our hypothesis is because with real human driver, it would be impossible 

to establish the relationship between delay of response and steering oscillation The details 

of this agent is discussed in the following 5.1.1 subsection of this chapter. 
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5.1.1. Introducing Delay in Driving Agent 

In this section, we present the experimental results of the characteristic changes in 

the steering behaviour of the driving agent when various delays of its response are 

introduced. The agent (steering behaviour evolved via GP), is set to drive the car at a 

constant speed of 50 km/h in the middle of a sample test track. The delays were set to 100 

ms, 200 ms, and 400 ms for different trial. It was set separately in one of the three parts 

of the track according to the given three tests cases (Figure 5):  (i) in the straight section 

of the track (Case #1), (ii) on the entry of the corner (Case #2) and, (iii) on the exit of the 

same corner (Case #3). In all of these three test cases, the delay is introduced briefly for 

a period of 2 s. Such an experimental setup represents “normal” driving conditions in that 

no emergent reaction (e.g., braking or steering) of the driving agent is required. The 

period of the introduced delay reflects our intention to model the delay that is caused by 

typical – brief, transient – inadequacy of the cognitive load of the driver. In addition, the 

chosen duration of 2 s is comparable to the typical duration of extreme – and most 

dangerous case – of cognitive underload – micro sleep. The typical duration of the latter 

is between 0.5 s and 1.5 s. As mentioned in section 4.2, in an attempt to bridge the 

inevitable reality gap that stems from the use of simulated, rather than real cars and drivers, 

we modified the source code of TORCS. This modification allows us to model of two 

types of steering noise: (i) high frequency noise and (ii) low frequency noise. A high 

frequency (50 Hz) random noise of 2% of steering angle within the range (-1°, +1°), 

caused by road irregularities (micro-bumps) and vibrations of the rolling tires. These 

cause instant variations of the rolling radii of all four wheels of the car that, in turn, would 

result in a noisy steering of the car. In addition, on the straight section of the road we 

model lower frequency (10 Hz) variations of the steering angle, by adding random noise 

of 2% as mentioned above. The low frequency noise are caused by plays (and the resulting 
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hysteresis) that normally exist in the joints linking the components (steering shaft, 

gearbox, tie rods, knuckle arms, kingpins, etc.) of the steering system of the road cars 

[51]. However, no low-frequency noise is assumed when cornering, as these plays are 

bridged by the centripetal forces applied to the steering components of the car. 

5.1.2. Effects of the Delay of Agent’s Response on its Steering 

Behaviour 

The experimental results of the effect of delay of 100 ms, 200 ms, and 400 ms of 

steering response, introduced for 2 s on the straight section of the road (test case #1) are 

shown in Figure 12. As Figure 12 indicates, the delay in steering response causes a small 

(and independent of the amount of delay) – yet detectable from noise – oscillation in both 

the steering angle and lateral acceleration. In the second and third test cases (Figure 13 

and Figure 14), the delay of steering response, introduced at the entry and exit of the turn 

causes significant steering oscillations with an amplitude that increases with an increase 

in the amount of the introduced delay. These oscillations are well distinguished from 

noise by both the different main frequency (about 0.5 Hz, much lower than those of the 

steering noise) and amplitude. 

 

 

 

 

 

 

Fig-12: Dynamics of steering angle (left) and lateral acceleration (right) when a steering 

response delay of 100 ms, 200 ms, and 400 ms is introduced for a duration of 2 s on the 

straight section of the road (test case #1). The sampling interval is 20ms 
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Fig-13: Dynamics of steering angle (left) and lateral acceleration (right) when a steering 

response delay of 100 ms, 200 ms, and 400 ms is introduced for a duration of 2 s on the 

entry of the turn (test case #2). The sampling interval is 20ms. 

 

Fig-14: Dynamics of steering angle (left) and lateral acceleration (right) when a steering 

response delay of 100 ms, 200 ms, and 400 ms is introduced for a duration of 2s on the 

exit of the turn (test case #3). The sampling interval is 20ms. 

5.1.3. Effect of Change in Speed and Agent’s Response on its Steering 

Behaviour 

This section presents the results on the steering behaviour due to delay in response 

of the driving agent while driving at a different (yet constant) speed. Initially, we 

experimented with a cruising speed of 50 km/h. The corresponding results (Figure 12, 

Figure 13, and Figure 14) show that well-distinguishable steering oscillations are 

induced as a result of delay in response (due to inadequate cognitive load) of the driver. 
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To further measure the robustness of the evolved driving agent and to observe the effect 

of change in speed in the steering behaviour of the driving agent (due to cognitive delay), 

we further experimented with the driving agent for different cruising speeds. However, 

the delay in response was set constant to 400 ms for all additional cases. Table 3 shows 

the experimented cruising speeds of the car. 

Table-3: Experimented cruising speeds of the car 

Speed (km/h) Delay (ms) 

40 400 

60 400 

70 400 

80 400 

 

We tested the agent for varying (yet constant for each of the experimental cases) 

cruise speeds of 40 km/h, 60 km/h, 70 km/h, and 80 km/h, (note that 50 km/h was initially 

tested as mentioned in Section 4 of this paper). Delay in the steering response is set to 

400 ms and the experiment was performed for three different driving conditions. The 

dynamics of the lateral acceleration for each of these cases while driving on the straight 

section, driving on the entry of corner, and on exit of a corner, with a delay in steering 

response are shown in Figure 15a, Figure 15b and Figure 15c respectively. 
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Fig-15: Dynamics of lateral acceleration when a steering response delay of 400 ms is 

introduced for a duration of 2 s on (a) the straight section of the road, (b) the entry of the 

road, and (c) the exit of corner. The cruising speeds are set to 40 km/h, 60 km/h, 70 km/h, 

and 80 km/h, respectively. The sampling interval is 20ms. 

The experimental results shown in Figure 15 demonstrate that the evolved model 

of driving agent with non-latent steering response could well adapt to the different 

cruising speeds of the car in different driving conditions, such as driving on straight and 

corner sections of the road. In addition, it illustrates the effect of various speeds on the 

steering oscillations of a vehicle driven by cognitively delayed agent. The experiments 

on the straight section and curve entry section (Figure 15a and, 15b and 15c respectively) 

show that oscillation increases in terms of both amplitude and wavelength with the speed. 

In addition, the driving agent has not been able to control the effect of 400 ms delay 

continued for 2 s in the case of 80 km/h speed while the same lack of control could be 

observed for 70 km/h in curve exit case (Figure 15c). This however, highlights the fact 

that, the oscillation could be more severe in the exit of the corner even with limited speed 
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of a vehicle combined with inadequate cognitive engagement of the driver although the 

effect in the other two conditions is also very significant. 

5.1.4. Discussion 

We verified the hypothesis that a simulated delay in the steering response of the 

evolved model of a human driver results in well-expressed steering oscillations. The 

experimental results of the impact of speed on a computationally evolved driving agent 

highlight the robust nature of our approach. Further, it has also been observed that 

increase in speed increases the amplitude of the oscillation, thus underlining the extreme 

consequences of driving with inadequate cognitive engagement. 

The detection of these oscillations could assist in providing early warnings of 

inadequate driver cognitive load in normal driving conditions – and well before an urgent 

response to an imminent hazardous traffic situation is required. However, similar effect 

has to be observe in real human driver to understand and outline methodologies for 

oscillation detection. The following experimental has been done to observe the similar 

effect of oscillation in real human drivers. 

5.2. Experiment with Human Drivers 

 The verification of our hypothesis with the evolved model of a human driver 

naturally motivated us to experiment with human drivers. Therefore, we made another 

experiments with real human drivers, which is discussed in following subsection 5.2.1. 

5.2.1. Introducing Delay via Distraction in Human Drivers Cognition 

Theoretically, we have seen from the Chapter 2 that any inattention including 

distraction induce inadequate cognitive load in driver and as a result, such cognitive load 

would result in delay of response or higher response time. Therefore, we try to observe 
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the effect of cognitive overload in real driver in two separate conditions; (i) by introducing 

cell phone texting while driving and, (ii) by artificially introducing delay in the steering 

control of the car (details in Subsection 5.2.2). We anticipate that there will be the similar 

effect in both of this case. Further, texting while driving is extensively studied, and it is 

recognized as both (i) an effective and (ii) most often seen form of driver distraction [35] 

[52]. Hence, we conducted our experiments on texting while driving in order to provoke 

the naturally occurring DoR in the human driver. 

5.2.2. Additional Experimental Conditions 

In order to verify whether the cognitive load in human drivers would produce 

similar patterns of steering behaviour, we conducted two groups of experiments: first we 

introduced the delay of 400ms (comparable to the typically documented amount of delay 

caused by cognitive inattention) artificially in the steering system of the car. Then we 

induced a cognitive distraction by requesting 10 human drivers either to text or to conduct 

a hands-free phone conversation while driving. In both cases we experimented with 10 

different human drivers. The experimental conditions are summarized in Table 4. 

 

 

 

 

The age of the human drivers was between 23 to 35, and the ratio of female to male 

drivers was 4:6. From 10 drivers. For a better consistence of the results, we conducted the 

experiments with each of the drivers in two consecutive days. In the first day, each driver 

was provided with sufficient time to become familiar with the system and the simulated 

Table-4: Experimental conditions  

Conditions Artificially introduced 

delay  of 400 ms in the 

steering system of the car 

Cognitive distraction while driving, that 

might result in DoR 

Texting while  driving 

Test case 

Straight Straight 

Corner Entry Corner Entry 

Corner Exit Corner Exit 
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driving environment in TORCS (with steering wheel and pedal additionally connected to 

the system) in normal condition without any cognitive distractions or artificially 

introduced steering delays (learning phase). 

Consonant with the recognition that sleep is vital for the learning by contributing 

for the consolidation of memory [53] [54], in order to allow the drivers to learn well how 

to drive the simulated car, we conducted the actual experiment on the following day. 

Subjects were required to drive in simulator in two experimental conditions: first with 

artificially introduced delay of 400ms in the steering system of the car, and then – with 

cognitive distraction (that, ultimately, might result in DoR) induced by either texting or 

hands-free conversation while driving. In all the experimental cases, a constant speed of 

50km/h was maintained by simulated cruise control system of the car. 

5.2.3. Effect of the Delay of Driver’s Response on Steering Behaviours 

The experimental results on the effect of artificial delay and cognitively distracted 

sample driver on the dynamics of lateral acceleration of the car for the three test cases 

(straight, corner entry, and corner exit) are shown in Figures 16, Figure 17, and Figure 

18, respectively. As these figures illustrate the cognitive distraction and artificially 

introduced delays result in similar oscillating patterns of lateral oscillations. These 

oscillations could be distinguished well from the noise occurring from the modelled (i) 

plays in the joint of steering system, and (ii) small irregularities of the road. As the results 

shown in Figures 16, Figure 17, and Figure 18 indicate, for the majority of the drivers the 

introduction of either a cognitive distraction or artificial delay in the steering system of 

the car result in increasing of the amplitude of oscillations of lateral acceleration of the 

car in all three considered test cases. 
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Fig-16: Dynamics of lateral acceleration of the car when driven by sample driver in normal condition 

without delay or cognitive distraction (left), with cognitive distraction (naturally-induced DoR) caused 

by texting while driving (middle) and artificial delay of 400ms introduced for duration of 2s in the 

steering system of the car (right) on the straight section of the road (test case #1). The sampling interval 

in all three cases is 20ms. 
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Fig-17: Dynamics of lateral acceleration of the car when driven by sample driver in normal condition 

without delay or cognitive distraction (left), with cognitive distraction (naturally-induced DoR) caused by 

texting while driving (middle) and artificial delay of 400ms introduced for duration of 2s in the steering 

system of the car (right) on the entry of the corner (test case #2). The sampling interval in all three cases is 

20ms. 
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Fig-18: Dynamic of lateral acceleration of the car when driven by sample driver in normal condition 

without delay or cognitive distraction (left), with cognitively distraction (naturally-induced DoR) caused 

by texting while driving (middle) and artificial delay of 400ms introduced for duration of 2s in the steering 

system of the car (right) on the exit of the corner (test case #3). The sampling interval in all three cases is 

20ms. 
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5.2.4. Discussion 

The result shows that a simulated delay in steering response of the evolved model 

of human driver result in well expressed steering oscillations. In addition, the experiment 

conducted with real human driver verifies same effect of steering oscillation. The 

additional experimental results on the impact of speed on a computationally evolved 

driving agent highlight the robust nature of our approach on verifying the forwarded 

hypothesis. Further, it has also been observed that increase in speed increases the 

amplitude of the oscillation, thus underlining the extreme consequences of driving with 

inadequate cognitive engagement. 

The detection of these oscillations could assist in providing early warnings of 

inadequate driver cognitive load in normal driving conditions – and well before an urgent 

response to an imminent hazardous traffic situation is required. We can observe from the 

experimental result that the wavelength of driver-induced steering oscillations is (i) 

shorter than that of normal cornering, but (ii) longer than that of the noise; therefore, we 

believed that a reliable detection of these oscillations could be achieved by real-time 

spectral analysis of the signal of lateral acceleration of the car. Thus, Chapter 6 provides 

the details on the approach of detecting steering oscillation using spectral analysis. 
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Chapter - 6 

Proposed Method for Oscillation 

Detection 

6.1. Oscillation Detection using Spectral Analysis 

With the successful verification of our hypothesis that, cognitive delay in human 

driver result in steering oscillation, we next aimed for its detection so that accidents that 

occurs due to inattention and/or distraction could be prevented. Therefore, one of the very 

basic approach of detecting steering oscillation of a driver (resulting from a cognitive 

load) would be through the measurement of power spectrum (Spectral density) of the 

oscillated signal. Hence, we implemented (i) Fourier transformation to transform the time 

domain signal into the frequency domain and then (ii) calculated its power spectrum. We 

considered that, the magnitude of signal oscillated due of cognitive delay would be higher 

than the normal signal, and thus the power spectrum would be different, that would allow 

us to distinguish the oscillated and non-oscillated signals. The block diagram of the model 

is shown in Figure 19. 
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Fig-19: Block diagram of proposed detection methodology using static threshold 

The block diagram shown in Figure 19 illustrated the proposed approach for 

oscillation detection based on static threshold. As shown in the model, first the lateral 

acceleration signals of the car are accumulated in a FIFO buffer. Second, Fourier 

transformation is applied to the signal. Finally, power spectrum (PS) value of the 

transformed signal are calculated. Once  based on the maximum PS value of the normal 

driving condition, the static threshold is setup. This method then compares the value of 

PS with the static threshold and identify if the signal was steering oscillation induced due 

to inattentive driving or the normal driving. The model/methodology for the oscillation 

detection is further describe in following sub-section. 
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6.1.1. Methodology of Oscillation Detection 

The proposed approach features three phases: first, we collected the raw signal – 

time series of lateral acceleration of a simulated car, driven by human driving in the 

following two situations: (i) inattentive driving (driving while texting) and (ii) attentive 

driving (normal driving). In the second phase, we apply Fourier transformation on the 

time series of lateral acceleration in order to obtain its spectrum. Finally, in the third phase, 

we calculate the power spectrum (PS) of the transformed signal, which has been divided 

in two stages as (i) acquisition of later acceleration time series and (ii) analysis of power 

spectrum signal of lateral acceleration, and are further elaborated below. 

6.1.1.1 Acquisition of lateral acceleration time series 

 The Apparatus and its Parameters    

As mentioned previously, we adopted an approach for acquiring and analysing the 

signal of the lateral acceleration of the car by modelling in the TORCS environment. The 

various merits and demerits of using TORCS environment is discussed in Section 4.1 of 

Chapter 4. In a real-world scenario, the instant values of the time series of lateral 

acceleration could be easily obtained from a low-cost, non-invasive sensor, such as 

accelerometer. Moreover, many modern vehicles are already equipped with such a sensor. 

The sensor is used to provide information about the current state of the car to the 

electronic stability program and the GPS-based navigation system (used for dead 

reckoning when GPS signal could not be obtained).  

We consider our current work on simulated car just as a first – yet an efficient, 

inexpensive, and safe – step towards the verification of our concept. As a next step, we 

are planning to replicate the experiments in real cars driven in real-world situations. 
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 The Drivers and the Experimental Procedure 

We requested 10 human drivers to drive the above-specified simulated car using 

realistic controls (i.e., steering wheel, accelerator, brake pedals) all between the age group 

of early 20’s to early 30’s. In order to acquire the signal for oscillating lateral acceleration, 

we intentionally distracted the drivers at arbitrary sections of a long road (featuring 

straightaways and corners) by asking them to read, comprehend, and respond to text 

messages that were sent to their mobile phones while driving. We adopted texting as the 

cause of distraction, because it is extensively studied case and a major cause of distracted 

driving. The oscillating lateral acceleration of the moving car would be a natural 

consequence of the delayed steering response, which is caused by the inadequate 

cognitive load of the driver, e.g., due to the experience of above-mentioned distractions 

during driving.  

In addition, in order to guarantee that the cognitive engagement of the drivers is 

shared only between steering (primary task) and texting (secondary task), we freed the 

drivers from any unnecessary cognitive burden that would have been required to maintain 

the desired speed of the car. In other words, we implemented a simulated cruise control 

function that automatically accelerates the car to 51 km/h (14 m/s) and maintains this 

speed through the entire experiment. 

 Considering the findings of neuroscientists, which describe that sleep facilitates 

the consolidation of memory and is therefore crucial for the learning of new abilities, we 

performed the experiments over the course of two days. On the first day, we allowed the 

drivers to familiarize themselves with the software system, the simulated car, and its 

controls, and we conducted the experiments involving actual driving the following day. 
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 Workload Parameters    

As previously mentioned, we measured the steering angle, deviation from the 

centreline, and the lateral acceleration of a vehicle when being driven by the driver with 

both (i) attentive driving and (ii) inattentive driving condition. All these were acquired as 

time series. However, we only analyse the signal of lateral acceleration of the car for the 

detection of steering oscillation. The procedure of analysing the lateral acceleration is 

elaborated in the following subsection. 

6.1.1.2. Analysis of the PS of Lateral Acceleration 

The verification of the assumption that inadequate cognitive load in drivers results 

in steering oscillations motivated our quest for a reliable method to detect these 

oscillations. Therefore, we consider the method of analysing the magnitude of the PS of 

the Fourier-transformed signal of the lateral acceleration of the car, anticipating that such 

a method might allow us to segregate the frequencies pertinent to driver-induced 

oscillations from noise frequencies, and not from the frequencies of normal steering of 

the car around corners. Thus, we first perform a Fourier transformation on the acquired 

time series of the lateral acceleration of the car. The transformation was conducted in 

offline mode, and it does not require any additional driving experiments with human 

drivers. However, in order to model a real-time implementation of the proposed approach, 

we initiate the transformation with an initial window of 100 samples (corresponding to 

the first 2 s of data). Then, we calculated the value of the PS in the frequency range of the 

obtained spectra of the initial 2 s, 1–50 Hz, and associated this PS value with time 

tinitial+2s. Next, we proceeded by repeatedly sliding the 100-sample window by one 

frame (corresponding to the sampling interval of 20 ms) and performed the Fourier 

transformation and the PS calculation until we reached the final 100 samples of the 
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acquired time series. The Fourier transformation and PS from the Fourier-transformed 

signal of lateral acceleration is calculated as follows: 

𝑋(𝑘) =  ∑ 𝑥(𝑛) × 𝑒−𝑖
2𝜋𝑛𝑘

𝑁𝑁−1
𝑛=0 … (3) 

Where, k is used to denote the frequency domain ordinal, n is used to represent the 

time-domain ordinal, N is the length of the sequence to be transformed. 

PS1~50 =  ∑ (𝐴𝑖)
50
𝑖=1

2 …(4) 

Where, PS1~50 is the power spectrum in a frequency range between 1–50 Hz, and Ai 

is the amplitude of frequency i, in the spectrum of the Fourier-transformed signal. Note 

that, power spectrum of signal is calculated every t time interval rather than that of whole 

dataset. Therefore PS = PSt, where t is the time interval. Computationally it is made 

possible by maintaining fixed sized FIFO buffer (dataset of 2 s) and sliding them with one 

frame as mention previously. 

6.1.2. Experimental Result 

For each of1the two driving conditions, we consider two cases of cognitive load as 

mentioned in previous sections: (i) normal load when the driver could focus completely 

on driving (attentive driving) and, (ii) cognitive overload caused by texting on mobile 

phone while driving (inattentive driving). In the second case, we requested each of these 

drivers to respond to a text message (that was sent to the messaging application running 

on their mobile phone) while driving. The texting was intended to induce inadequate 

cognitive engagement and the corresponding DoR in their primary task of driving. We 

registered the raw signal (with sampling interval of 20ms) of the lateral oscillation of the 

car driven by all subjects in all driving conditions. Then we used the raw data to perform 

an offline analysis of the power spectra for all 10 cases. Figures 20a and 20b illustrate the 
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typical forms of the raw signal of lateral acceleration of both attentive and inattentive 

driving on straight (Figure 20a) and curve (Figure 20b) of the road, respectively. The 

corresponding values of the PS are illustrated in Figures 21a and 21b. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As Figures 20a and 20b illustrate, the lateral acceleration for inattentive driving 

(and resulting DoR) due to texting while driving in both driving conditions (i.e. driving 

on a straight and on cornering) feature subtle, yet distinguishable oscillations. No such 

oscillations could be observed in the case of normal (attentive) driving. The 

corresponding PS of the lateral acceleration of inattentive driving is higher than that of 

attentive driving (Figures 21a and 21b). 

      

Fig-20: Typical dynamics of lateral acceleration on straight (a) and curve (b) section of the road. 
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Fig-21: Typical dynamics of PS on straight (a) and curve (b) section of the road. 

0

20000

40000

60000

80000

100000

1

6
3

1
2
5

1
8
7

2
4
9

3
1
1

3
7
3

4
3
5

4
9
7

5
5
9

6
2
1

6
8
3

7
4
5

8
0
7

8
6
9

9
3
1

9
9
3

P
o

w
er

 S
p

ec
tr

u
m

# Time steps

Attentive Inattentive

aa

0

20000

40000

60000

80000

100000

1

8
9

1
7
7

2
6
5

3
5
3

4
4
1

5
2
9

6
1
7

7
0
5

7
9
3

8
8
1

9
6
9

1
0
5

7

1
1
4

5

1
2
3

3

1
3
2

1

P
o

w
er

 S
p

ec
tr

u
m

# Time steps

Attentive Inattentive

bb



 

70 

6.1.3. Classifying Inattentive (oscillating) and Attentive (non-

oscillating) Case 

The above approach was implement to get maximum value of PS of lateral 

acceleration during attentive and inattentive driving of all 10 drivers on straight and 

corner section of the road, respectively, which is illustrated in Figure 22. As shown in the 

figure, considering a fixed, single threshold (shown as dotted horizontal line), would 

result in correct recognition of oscillatory steering behaviour of the car in 80% to 90% of 

the drivers. These results also indicate that different drivers indeed experience different 

level of steering oscillation resulting in varying PS.  

 

 

 

 

 

Fig-22: Maximum value of power spectrum of attentive driving and inattentive driving on 

straight (a) and curve (b) sections of the road 

However, considering the driving as a subjective activity that depends on drivers 

we have to acknowledge the fact that a single average value of the threshold that could 

be successfully applied to all drivers might be non-existent [55]. Therefore, in the next 

subsection, we discuss the limitation of the approach and highlight the possible solutions. 
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6.1.4. Discussion 

6.1.4.1. Limitation of the Proposed Methodology 

Although, with this method (setting up a static threshold) we could achieve at-least 

80% success on our classification task it still holds some limitation. The two very 

common limitation of our approach are further discussed below; 

 Variation in PS with Respect to Driving Conditions 

We hypothesize that, since both the magnitude and the corresponding frequencies of 

the oscillating signal would be different from those of the normal signal, the resulting 

value of the power spectrum would be diverse (presumably – higher) as well. Figure 23a 

illustrates that, for a sample driver (Driver A), the PS of inattentive driving on a straight 

section of the road is, indeed, higher than that of attentive driving through corners. 

 However, the preliminary experimental results also suggest that, due to the 

diversity of driving conditions (straight, corner entry, steady state cornering, and corner 

exit) and the driver-dependent features of the acquired signals, the PS of inattentive 

driving along a straight section of the road could be lower than that of attentive driving 

when negotiating corners. The PS in cornering could be anomalously high due to 

extensive (yet, non-oscillating) movements of the steering wheel when entering and 

exiting corners. Figure 23b illustrates that, indeed, for another driver (Driver C) the PS of 

inattentive driving along a straight section of the road is lower than that of attentive 

driving through corners. 
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Fig-23: PS of lateral acceleration of car driven by (a) Driver A and (b) Driver C, both 

inattentively (on straight section of the road) and attentively (in corners). 

 

Based on the experimental results, as shown in Figures 23a and 23b, we could 

conclude that it would be difficult to devise general robust method to detect the inadequate 

cognitive load of drivers from steering oscillations by merely comparing the values of 

canonically calculated PS (as shown in Equation (4) to a given threshold. 

This make us necessary to find some additional approach that does not varies in 

spite of variable driving conditions. 

 Inexistence of Average Threshold in Human Factor 

Driving is a personal activity and it purely depends on the driver’s personality 

and/or training and experience. Therefore, considering a single threshold for the 

classification would not be natural for all the cases, as it might not address all the driving 

cases. 

Hence, some additional approach is required to address these limitations, which are 

discuss in the following subsection and are further elaborated on Chapter 7 and Chapter 

8. 
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6.1.4.2. Possible Solutions 

 To address the limitation of the current approach, we further extended our research 

in two different direction. (i) Implement the Genetic Algorithm (GA) to optimize the 

coefficient of the PS in such a way that, it would solve the issue of variation in PS while 

driving in different conditions. (ii) Innovate novel approach that would adapt with 

individual driver. As mentioned, each of this approach are further elaborated in chapter 7 

and chapter 8 respectively. 
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Chapter - 7 

Enhancing Proposed Method via XGA  

7.1. Introducing Weight Coefficient to the PS 

To address the limitation of the proposed model to detect steering oscillation by 

comparing PS with static threshold as mentioned in 6.1.4 section of Chapter 6, we 

investigated whether applying different weight coefficients to the components of the sum 

in the equation of the PS (1) would result in improved recognition of the steering 

oscillations. Hence, we divided the equation of power spectrum and introduced weighted 

coefficient as shown in following Equation 5. 

WPS1~50 = w1×A1
2  +  w2×A2

2  + ….  +  w50×A50
2 …(5) 

Where, WPS is the weighed power spectrum in the frequency range 1Hz to 50Hz, 

Ai  is the amplitude of the frequency iHz  (i=1…50) in the spectrum of the Fourier-

transformed signal, and wi is the  weight coefficient of the amplitude Ai. 

The rationale behind the use of such weight coefficients is that the frequencies that 

are pertinent to attentive and inattentive driving might be different, and, therefore, their 

amplitudes should be accounted differently. Therefore, the detection of, e.g., inattentive 

driving could be facilitated by emphasizing the amplitudes of frequencies that are 
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pertinent to this type of driving by means of using larger weight coefficients. The block 

diagram of this approach has been given in Figure 24. 

 

 

 

 

 

 

 

 

 

Fig-24: The block diagram showing the enhancement of GA for optimising weight 

coefficient of PS. 

Figure 24 shows the block diagram of the model proposed for enhancing the weight 

coefficient of PS via GA. This diagram consist of two independent module. The Power 

spectrum module is similar with the previous model describe in chapter 6. However, after 

performing the Fourier transformation of the signal from the buffer, we generate features 

by diving the signals in ten different groups. The more of this is explained in Genetic 

Representation section of this chapter. The next module is the Evolutionary optimisation 

module. The module is responsible for performing genetic operation to uncover the best 

possible coefficients based on fitness evaluation. Once the best-evolved coefficient value 

is determined, these values are used as weight coefficient in PS (eq.5) to identify if the 
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signal is normal (attentive driving) or oscillated (inattentive). The following section 

describe the details of this process. 

7.2. Applying GA for Evolution of Optimal Values of Weight 

Coefficients of WPS 

 We decide to apply a heuristic approach to the “tuning” of the weight coefficients 

of WPS because we are a priori unaware of the exact set of frequencies in the spectrum 

of lateral acceleration that characterize either the attentive or inattentive driving. In 

principle, we could have adopted another – deterministic – approach, such as, for example 

– complete enumeration of the possible combinations of weight coefficients. However, 

because we consider 50 frequencies (1Hz, 2Hz, 3Hz,… , 50Hz) in PS, represented by their 

respective amplitudes A1, A2, A3, … A50, we would need to search for the optimal 

combination(s) of the values of 50 weight coefficients w1, w2, w3, … w50. Assuming that 

each of these weight coefficients is discretized into, say, just 100 possible values, the size 

of the resulting search space would be 10050 (or, 10100), rendering the eventual “brute 

force” approaches, based on complete enumeration of possible combinations of values of 

weight coefficients computationally unfeasible. 

 GA, on the other hand, is a nature-inspired heuristic approach that gradually 

evolves the optimal values of set of parameters in a way much similar to the evolution of 

species in nature. GA is proven efficient for finding optimal solution(s) to combinatorial 

optimization problems featuring large search spaces [56] [57]. Thus, we adopted GA to 

evolve the optimal values of the weight coefficients of WPS. The optimality implies that 

the WPS of the signal of lateral acceleration of the car would allow for the best possible 

discrimination between the attentive- (non-oscillatory) and inattentive driving (with 

steering oscillations, caused by inadequate cognitive load). The main features of the 
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adopted GA – genetic representation, genetic operations and fitness function are 

elaborated in the following subsection. 

7.2.1. Genetic Representation: 

The simulated individuals in GA are represented by their respective chromosomes. 

The latter consist of an array of the real values of the evolved coefficients of WPS. The 

vales of the weight coefficients, are constrained within the range [0…9], and are divided 

into 90 possible discreet values. Such a chromosome, containing an array of all 50 weight 

coefficients w1, w2, w3, … w50, however, would result in the size of 9050 of the search 

space, that would have been computationally intractable not just by “brute force” 

approaches but by any existing heuristic approach as well.  

In order to shrink the potentially huge size of the search space of GA, we reduced the 

number of weight coefficients encoded in chromosome to just 10, by applying the 

following problem-specific knowledge: 

 Experimental results suggest that the frequency spectra of both oscillating and 

non-oscillating driving feature a characteristic “long tail” pattern – the lower 

frequencies are represented by higher (i.e., more influential) amplitudes, while the 

amplitudes decrease with the increase of frequencies; 

 The areas of higher frequencies (presumably, heavily influenced by the modelled 

irregularities of the road and non-ideality of the steering system of the car) of the 

spectrum of both oscillating and non-oscillating driving are quite similar. On the 

other hand, the patterns on the area of lower frequencies are more diverse, 

implying that the important discriminating features are more likely to be encoded 

in lower frequencies- rather than high-frequencies of the spectra; 
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 The frequencies that are above the Nyquist frequency (i.e., 25Hz) would be under-

sampled, and therefore, less-influential 

Therefore, we divide all frequencies in PS into 10 variable-sized groups G1, G2,….., 

G10, and assigned a respective weight coefficient w1, w2, w3, … w10  to each of these 

groups. The size of groups (i.e., the number of included frequencies) increases gradually 

with the increase of the basic (minimum) frequency fb of the group: in our approach, each 

group contains non-overlapping frequencies in the range [fb…1.25×fb]. This approach 

allows us with the increase of basic frequencies fb of the groups G1, G2,…, G10, to 

gradually increase the group size and, consequently, to gradually reduce the precision of 

“tuning” of amplitudes of the individual (less-influential) frequencies within these groups. 

The groups of frequencies of WPS are shown in Table 5. 

Considering the defined groups of frequencies in the spectrum, the resulting WPS 

could be expressed by the following Equation (5): 

WPS1~44 = w1×A1
2+w2×(A2

2 + A3
2)+w3×(A4

2 + A5
2)+w4×(A6

2 +…+ A8
2)  + 

w5×(A9
2 +…+ A11

2) +w6×(A12
2 +…+ A15

2) +w7×(A16
2 +…+ A20

2) + w8×(A21
2 

+…+ A26
2) +w9×(A27

2 +…+ A34
2) +w10×(A35

2 +…+ A44
2)…  (5) 

 

Where, WPS is the weighed power spectrum in a frequency range between 1Hz and 

44Hz, Ai are the amplitudes of frequencies iHz (i=1…44) in the spectrum of Fourier-

transformed signal, and wk (k=1…10) are the evolved (through GA) weight coefficients 

associated with each of the considered 10 groups of frequencies. 
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Table-5: Groups of frequencies of WPS 

 

7.2.2. Genetic Operations 

We employed binary tournament selection – proven to offer a good trade-off between 

the diversity of population and rate of convergence of fitness. In addition to the 

tournament selection, we also adopted elitism in that the two best-performing individuals 

always survive unconditionally into the mating pool of the next generation. In addition, 

we implemented two-point crossover and a single-point mutation. After each crossover 

and mutation operations, the chromosome is “repaired” by normalization so that the sum 

of all coefficients w1+w2+w3+ … +w10 is equal to 100. Notice that the range of the 

weights coefficient [0..9] that is applied during both (i) the creation of initial population 

and (ii) mutation, might be exceeded as a result of normalization of chromosomes that 

Frequency 

group 

Frequencies included in the 

group 

Size of the 

group 

Corresponding weight 

coefficient in WPS 

G1 1Hz 1 w1 

G2 2 Hz, 3 Hz 2 w2 

G3 4 Hz, 5 Hz 2 w3 

G4 6 Hz ~ 8 Hz 3 w4 

G5 9 Hz ~11 Hz 3 w5 

G6 12 Hz ~ 15 Hz 4 w6 

G7 16 Hz ~ 20 Hz 5 w7 

G8 21 Hz  ~ 26 Hz 6 w8 

G9 27 Hz  ~ 34 Hz 8 w9 

G10 35 Hz ~ 44 Hz 10 w10 
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feature heavily fluctuating values of weight coefficients. The main parameters of GA are 

shown in Table 6. 

Table-6: Main parameters of GA 

 

 

 

 

 

 

 

7.2.3. Fitness Function: 

Because our objective is to evolve such WPS that allows for best possible 

discrimination of the signals of lateral acceleration of (i) inattentive (oscillatory) driving 

on straight section of the road from that of (ii) the fully attentive driving on cornering, the 

fitness value F of evolved chromosomes reflects the quality of such discrimination. In 

our approach, we consider the minimum of the ratios (in %) of WPS of these two driving 

cases among all 10 drivers, as described in Figure 25.  The targeted fitness values F are 

the values that are higher than 100% (i.e., indicating that WPS of inattentive driving is, 

indeed, higher than WPS of attentive driving even for the least-convincing driver). Higher 

fitness values would correspond to even better ability of WPS to discriminate the 

inattentive (oscillatory) driving from normal, attentive one.  

Parameter Value 

Genotype 

Ten weight coefficients w1, w2, w3, … w10 of WPS, represented by real  

numbers within the range [0..9]. Each coefficient is discretized into 90 

possible values. 

Population size 100 individuals 

Selection Binary Tournament (10%) 

Elite Best 2 individuals 

Crossover Two-point 

Mutation Single-point (2%) 

Fitness value 
Minimum (among all 10 drivers) of the ratio (in %) of WPS of (i) 

inattentive (oscillatory) and (ii) attentive driving cases 

Termination Criteria 

(#Generations >100)  or 

(Fitness Value >200) or 

(No improvement of fitness for 16 consecutive generations) 
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for each driver d  do  {   // d = [Driver A, Driver B,…,Driver 

J] 

   for each instant t of inattentive driving calculate WPSd_i(t); 

   WPSd_i_max=max(WPSd_i (t)); 

   for each instant t of attentive driving calculate WPSd_a (t); 

   WPSd_a_max=max(WPSd_a (t)); 

   Rd= WPSd_i_max / WPSd_a_max×100; 

  } 

F = min (RDriver_A, RDriver_B,…, RDriver_J);  // F: the fitness value 

Fig-25: Fitness evaluation routine 

7.3. Experimental Results 

The fitness convergence characteristics of 20 independent runs of GA are shown in 

Figure 26. As illustrated, the fitness of the best-of run individuals, in average, increases 

from about 90 to about 121 in 64 generations. The best achieved fitness is 126, indicating 

that, even for the driver featuring most challenging ratio of canonical PS of inattentive 

and attentive driving (e.g., as depicted in Figure 28) the value of WPS of inattentive 

driving would be 26% higher than that of attentive one. 

The values of the weight coefficients of sample evolved best-of-run individual (with 

fitness equal to126) are as follows: 

w1=19, w2=1, w3=9, w14=1, w5=8, w6=3, w7=47, w8=10, w9=1, and w10=1 

The values of WPS, obtained with these weight coefficients for all 10 drivers are 

shown in Figure 27. As Figure 27 depicts, for all of the drivers the WPS of inattentive 

driving on straight is higher than that of attentive driving on corners. 
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Fig-26: Convergence of the best-of-generation fitness of 20 independent runs of GA. The 

dashed line illustrates the average best-of-generation fitness of these 20 runs. 

 

 

 

 

 

 

Fig-27: WPS of sample evolved best-of-run evolved weight coefficients. For all of the 10 

drivers the WPS of inattentive driving on straights is higher than that of attentive driving in 

corners. 

In contrast, as Figure 28 illustrates, with canonical PS, modelled as WPS with all 

weight coefficients w1, w2,…w10 set to 10, for 3 of the 10 drivers (e.g., Drivers C, D 

and E) the values of PS of inattentive driving on straight is anomalously lower than that 

of attentive driving on corners. 

The dynamics of the instant values of WPS of both attentive and inattentive 

driving in the most challenging driving case (i.e., Driver C) are illustrated in Figure 29. 
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Compared to the dynamics of canonical PS (refer to Figure 21b), the evolved WPS 

yields a better discrimination. Indeed, as Figure 27 depicts, the values of WPS during 

inattentive driving on straight is higher (rather than lower, as in the case of canonical 

PS) than that of attentive driving in corners. 

 

 

 

 

 

 

 

 

Fig-28: Canonical PS for 3 of the 10 drivers – Drivers C, D and E – the values of PS of 

inattentive driving on straight is anomalously lower than that of attentive driving in corners 

 

 

 

 

 

 

 

 

Fig-29: WPS of lateral acceleration of car driven by Driver C inattentively (on straight 

section of the road) and attentively (in corners). WPS features sample best-evolved (through 

GA) weight coefficients 
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7.4. Discussion 

The eventual real-world implementation of the proposed approach of detecting the 

inadequate cognitive load from the WPS of oscillating lateral acceleration of the car 

implies that the challenge of variability of patterns of lateral acceleration should be 

addressed. These patterns might vary depending on the speed of the car, road conditions 

(turning radiuses of corners, etc.), personal driving styles, etc.  While the effect of speed 

on lateral acceleration of cars is known and therefore, could be easily factored out by 

variable (depending on the speed of the car) scaling of the values of the obtained WPS, 

dealing with human-related factors could be much more challenging. The features of 

driving style (especially, the way of applying the error-correcting steering input) of the 

drivers are both (i) rather individual and (ii) naturally fluctuating (with time, condition of 

the car, road, and driver). Consonant with the hypothesis that the “average” human-related 

features are virtually non-existent, the experimental results confirm that the obtained 

values of WPS for each of the drivers vary significantly (Figure 27). Consequently, using 

the same threshold for discriminating the WPS that corresponds to different cognitive 

load of all drivers would be unfeasible. Rather, either a (static) threshold that is “learned” 

individually per particular driver, or, a dynamic threshold based on recently sensed state 

of the car or (and) driver might prove to be a better solution. In the latter case, we 

anticipate that the change of the WPS while driving, rather than its absolute value would 

be more symptomatic of the current cognitive load of driver.  

Also, an improved robustness of recognition of inadequate cognitive load could be 

achieved by “learning” of weight coefficients of WPS on wider range of driving situations 

and road conditions. Ultimately, the quality of recognition of learned WPS should be 

verified on unknown set of driving situations and road conditions. This could be the part 

of the work to be done in the future. 
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Finally, an eventual failure to detect inadequate cognitive load from WPS of – 

presumably oscillating – lateral acceleration might not be necessarily associated with the 

inferiority of the proposed approach. Rather, even when distracted by texting, some 

drivers may still be able to control the car adequately, without suffering from any steering 

oscillations. Therefore, compared to other methods (e.g., based on eye tracking) that also 

attempt to infer the distracted driving, the proposed approach could be viewed as a holistic 

one, because it is based on detection of the actual effects of distractions on driving (i.e., 

steering oscillations, if any), rather than underlying reasons for these distractions. 
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Chapter - 8 

Individually Adaptive Method for 

Oscillation Detection   

8.1. Introducing Lateral Jerk 

The other direction that we seized towards addressing the limitation of the initial 

methodology proposed in Chapter 6 is individually adaptive model. This model is based 

on the concept of lateral jerk. Lateral Jerk is defined as the first derivative of lateral 

acceleration. As mentioned previously in multiple occasion, we hypothesize that because 

the magnitude and corresponding frequency of the oscillating signal would differ from 

those of the normal signal, the resulting value of the power spectrum would be diverse 

(presumably higher) as well.  For most of the drivers, the PS of inattentive (oscillating) 

driving even along straights is indeed higher than that of attentive driving around corners. 

However, the preliminary experimental results also suggest that, occasionally, the 

PS of inattentive driving on straightaways could be lower than that of attentive driving 

around corners. This is a result of the diversity of driving conditions (straightaway, corner 

entry, steady-state cornering, and corner exit) and driver-dependent features of the 

acquired signals. The PS of attentive driving when cornering could be anomalously high 

because of extensive (yet, non-oscillating) steering wheel motions at corner entrances and 
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exits. Figure 30 illustrates that for a sample driver, the PS of inattentive driving on a 

straightaway is lower than that of attentive driving around corners. As shown in the figure, 

an eventual fixed threshold set to 5×104 would allow us to detect inattentive driving on 

straightaways (Figure 30, Threshold TF1). However, the PS of attentive driving when 

entering and exiting a corner would surpass this threshold as well, resulting in false 

positive detection of inattentive driving as shown in the Table 7. Setting the threshold to 

2.8×105 (Figure 30, Threshold TF2) would allow us to avoid false positive identifications; 

however, it would result in an inability to detect inattentive driving too (false negative). 

 

 

 

 

 

Fig-30: PS of the lateral acceleration of a car driven inattentively along straightaways and 

attentively around corners. 

Table-7: Classification of driving conditions 

 

 

Table 7 illustrates the conditions for the classification of attentive and inattentive 

driving. It shows the mechanism of classifying the driving cases as True Positive (actual 

– attentive case, predicted – attentive case), False Positive (actual – inattentive case, 

predicted – attentive case), True Negative (actual – inattentive case, predicted – 
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inattentive case), and False Negative (actual – attentive case, predicted – inattentive case). 

Figure 31 shows the block diagram of this approach. 

 

 

 

 

 

 

 

 

Fig-31: The block diagram of adaptive thresholding approach 

The block diagram given in Figure 31 represents the method to identify steering 

oscillation (inattentive driving) based on adaptive threshold value. The model consists of 

two parallel subsystems that calculate the values of (i) the power spectrum and (ii) the 

adaptive threshold, respectively. Power spectrum subsystem comprises three modules: a 

FIFO buffer which stores the most recent 100 frames of the signal of lateral acceleration 

(2 sec), a fast Fourier calculation module, and a power spectrum calculation module. The 

adaptive threshold subsystem consists of a FIFO buffer which stores the most recent 200 

frames of the signal of lateral acceleration (4 sec), a low pass filter (sliding window 

average), jerk value calculation module and adaptive threshold calculation module. The 

detection is done based on comparing the current value of adaptive threshold and PS. 

Both subsystems are synchronized in that they deal with the most recent samples of the 
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row signal of the lateral acceleration of the car. The latency of the described model is 4 

seconds, which corresponds to the real time, required to fill completely the longer of the 

two FIFO buffers – i.e., the buffer of the threshold calculation subsystem. The runtime 

overhead associated with the computation of the average values of lateral acceleration, 

jerk, Fourier transformation, and power spectrum are in order of few hundreds 

milliseconds, and therefore, have very little effect on the overall latency of the 

implemented model. The following subsection discusses the detail of this approach. 

8.2. Adaptive Threshold based on Lateral Jerk. 

In order to automatically adapt the threshold of the PS to different driving situations, 

we consider an approach for maintaining a basic minimal threshold value on straight and 

steady-state cornering, and we elevate this value for corner entrances and exits. An 

elevation of the threshold value could be implemented depending on whether corner 

entrances and exits are currently detected. A corner entrance is characterized by a 

movement of the steering wheel towards the corner, which results in an increase in lateral 

acceleration from approximately zero to some finite value that corresponds to the speed 

of the car and the steady turning radius of the corner. Similarly, at the corner exit, the 

driver returns the steering wheel to the default position, which results in a decrease in 

lateral acceleration from a finite, non-zero value that corresponds to steady-state 

cornering to zero. These changes in the values of lateral acceleration at corner entrances 

and exits can be expressed quantitatively as a derivative of lateral acceleration, or lateral 

jerk. In our approach, we utilize the absolute value of the jerk of smoothed lateral 

acceleration as an indication that the car is entering or exiting a corner. Consequently, the 

absolute value of the jerk is used as a factor that determines the corresponding increase 

in the adaptive threshold of the PS: 
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TA = TB + k × |
𝑑𝐴

𝑑𝑡
| …                  (6) 

Where, TA is the value of the adaptive threshold of the PS, TB is the basic value, k 

is a coefficient, and dA/dt is the lateral jerk obtained as a derivative of the smoothed lateral 

acceleration, A. The mechanisms used to define these parameters are explained below. 

In order to obtain a smoothed value of lateral acceleration, A, we employed low-

pass digital filtering to the lateral acceleration signal of the car. Filtering is implemented 

by means of sliding window averaging of the most recent discrete samples of the lateral 

acceleration signal. The rationale for applying such a simple smoothing technique 

satisfies our intentions to filter out the relatively fast, driver-induced steering oscillations 

(occurred because of eventual inadequate cognitive engagement) while preserving the 

relatively slow steering input from the driver at corner entrances and exits. The 

mechanism for filtering instances #1, #2, #3, and #n-k+1, where k is the averaging factor 

of the time series of the lateral acceleration signal, a, can be expressed by equations (7), 

(8), (9), and (10), respectively. 

 

 

 

 

 

We determined the size of the sliding window, k, by considering the fact that 

insufficiently low values of k would result in ineffective filtering. Ineffective filtering 

would not allow for sufficient dampening of driver-induced steering oscillations (with 

periods between 1–3 s) and noise that results from the imperfections in the steering system 

of the car (periods shorter than 1 s). Conversely, too high value of k would be associated 

with overly strong filtering that may eventually result in loss of the slow (period between 

𝐴1 =
1

𝑘
(𝑎1 + 𝑎2 + 𝑎3 + ⋯ + 𝑎𝑘)  ,                                         (7) 

𝐴2 =
1

𝑘
(𝑎2 + 𝑎3 + 𝑎4 + ⋯ + 𝑎𝑘+1)  ,                                    (8) 

𝐴3 =
1

𝑘
(𝑎3 + 𝑎4 + 𝑎5 + ⋯ + 𝑎𝑘+2)  ,                                    (9) 

… 

𝐴𝑛−𝑘+1 =
1

𝑘
(𝑎𝑛−𝑘+1 + 𝑎𝑛−𝑘+2 + 𝑎𝑛−𝑘+3 + ⋯ + 𝑎𝑛)          (10) 
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5–10 s) steering input pertinent to steady state cornering. In addition, an outsized window 

would be associated with increased latencies in obtaining the average values. Therefore, 

we consider the size of sliding window to be k = 200. This value accommodates discrete 

samples of lateral acceleration from the most recent 4 s of driving as a feasible trade-off 

that results in good filtering of the steering oscillation, noise, and reliability in preserving 

the steering patterns pertinent to the entering and exiting the corners. The mechanism 

used for obtaining the smoothed value of lateral acceleration, A, and lateral jerk from the 

raw lateral acceleration signal from one of the drivers, is illustrated in Figure 32a, 32b, 

and 32c. 

The values of parameters TB and k in Equation (6) are defined as follows. First, we 

define the basic minimal value of the adaptive TB from attentive driving along a 

straightaway. Due to the naturally low values of lateral jerk when driving along 

straightaways, the second additive component in Equation (6) is much less influential 

than TB. We set TB to the minimum value that ensures zero false positive detections of 

cognitive load on straightaways, i.e., the PS of all attentive drivers on straightaways is 

below the value of the adaptive threshold, TA. In our approach, TB =1×104 

After defining the value of TB, we determine the value of the scaling factor, k, in 

Equation (6). The scaling factor is determined to be such that it results in a maximum 

summation of true positives and true negatives in the remaining cases of inattentive 

driving on straightaways, and for inattentive and attentive driving on corners (for all 

drivers). We found that setting the value of k equal to 2×104 satisfies this condition. 

The mechanism used for applying the adaptive threshold for attentive driving on 

straightaways and around corners is illustrated in Figure 32d. As illustrated, the threshold 

increases in sync with the PS increases at corner entrances and exits, and stays well above 

the PS during the entire time trial. Conversely, as Figure 32e demonstrates, the value of 
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PS briefly exceeds the adaptive threshold in several instances in the middle of the corner 

and at its exit, indicating the successful detection of inattentive driving. 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Fig-32: Dynamics of lateral acceleration (a), smoothed lateral acceleration (b), lateral jerk 

(c), PS and adaptive thresholding during attentive (d) and inattentive driving (e), 

respectively. The duration of sampling interval is 20 ms. 

8.3. Experimental Results 

The experimental results for the PS and adaptive threshold of attentive (a) and 

inattentive (b) driving on straightaways is shown in Figure 33 for all drivers. As depicted, 
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the PS does not exceed the threshold in any straightaway driving scenario, resulting in 

zero cases of false positive inattentive driving detection (Figure 33a). However, for 

inattentive driving, the PS is lower than the threshold for three of the drivers (Drivers #3, 

#4, and #7), resulting in false negative detections (Figure 33b). The analogical results for 

corner driving are illustrated in Figure 34. In one of the attentive driving cases involving 

cornering, the PS exceeds the threshold (Driver #2, Figure 34a). For inattentive driving, 

only one of the drivers (Driver #1) features a PS that is lower than threshold (Figure 34b). 

The overall accuracy of the proposed approach is estimated according to the following 

Equation (11): 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
× 100% ,           (11) 

Where, TP, FP, TN, and FN denote true positive, false positive, true negative, and 

false negative, respectively. As shown in Table 8, the accuracy of the proposed approach 

for adaptive thresholding is 88%, which is superior to the optimal accuracy of the 

approach based on fixed PS thresholding.  

 

 

 

 

 

 

 

Fig-33: PS and adaptive threshold of attentive (a) and inattentive (b) driving on 

straightaways 
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Fig-34: PS and adaptive threshold of attentive (a) and inattentive (b) driving around 

corners. 

 

Table-8: Detecting accuracy of the cognitive load on drivers for different values of the 

threshold. FP, TP, FN, and TN denote false positive, true positive, false negative and true 

negative, respectively 

Threshold 

Driving situation 

Accuracy Straight Cornering 

Attentive Inattentive Attentive Inattentive 

FN TP FP TN FN TP FP TN  

F
ix

ed
 

1.5×104 2 8 1 9 10 0 0 10 68% 

2×104 0 10 2 8 8 2 0 10 75% 

3×104 0 10 2 8 6 4 1 9 78% 

4×104 0 10 4 6 3 7 1 9 80% 

5×104 0 10 4 6 2 8 2 8 80% 

6×104 0 10 6 4 0 10 3 7 78% 

Adaptive 0 10 3 7 1 9 1 9 88% 

 

8.4. Discussion 

The experimental results confirm that the obtained PS values for each driver vary 

significantly (Figures 33 and 34). Consequently, using the same mathematical model 

shown in Equation (6) with the same values of TB and k to adjust the threshold for all 

drivers would be unfeasible. Instead, an adaptive threshold that is obtained from a 

mathematical model that is dynamically “tuned” (calibrated) individually per driver might 
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prove to be a better solution. In addition, adopting the same mathematical model for all 

drivers might be unnecessary. Within the context of the non-existent average, the drivers 

use individually adjusted rather than “average” positions of the seat, headrest, steering 

wheel, and mirrors when they drive the car. Therefore, by conducting the experiment with 

just 10 arbitrary drivers, we intended to verify the feasibility of using the PS for the 

detection of inadequate cognitive load. This was conducted mainly for arbitrary drivers 

that attended the experiment. Despite the fact that we consider a single mathematical 

model for threshold adaptation, we still consider the quest for a single, general solution 

that would fit all drivers to be implausible.  

Another concern of our research might be associated with the relatively long latency 

associated with determining the presence (or absence) of steering oscillations. This 

latency is a direct consequence of adopting sliding window averaging with a window 

length that accommodates 4 s of the most recent samples of lateral acceleration. However, 

we believe that faster detection of steering oscillations would be extremely challenging. 

This is because in the first few seconds, when the driver applies steering input, the 

oscillation-detecting system would be unable to determine whether a fully attentive driver 

normally steers into a corner, or is simply being inattentive. In both cases, the driver 

introduces oscillations. These two cases could be identified a few seconds later, 

depending on whether the steering inputs and the corresponding values of lateral 

acceleration remain relatively smooth (corresponding to the steady state cornering) or 

oscillate around some median value. 

Finally, an eventual failure to detect inadequate cognitive load from the PS of lateral 

acceleration (presumably oscillating) might not be necessarily associated with the 

inability to detect inadequate cognitive load in drivers. Rather, even when distracted by 

texting, some drivers may still be able to adequately control the car without suffering 
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from the effects of any steering oscillations. As Figure 33 illustrates, the PS of a car driven 

by Driver #3 is virtually the same, regardless of whether the driver is attentive or not (one 

of the three false negative cases, illustrated in Figure 33b).  

On the other hand, the false positive case observed when driving around corners 

(attentive Driver #2, Figure 34a) could be somehow caused by motion sickness 

experienced by Driver #2. Therefore, compared to other approaches that attempt to 

identify distracted driving (e.g., approaches based on eye tracking, mind wandering, etc.); 

the proposed method could be seen as holistic. This is because it is based on detection of 

the actual effects that distractions have on driving rather than on the underlying reasons 

for these distractions. Moreover, because of its holism, the proposed approach could be 

applied to the detection of inadequate cognitive load that does not exhibit any visible 

symptoms. For example, day dreaming, erratic driving by cognitively impaired drivers, 

or driving under the influence of alcohol or drugs could be detected. 

 Further, different experiments that we performed during the study has reveal that 

oscillation could be detected in real time environment with few selective features. i.e. if 

those feature could be detected, we could identify the case of inattentive (oscillation) 

driving and attentive (non-oscillating) driving.  Therefore, the following chapter discuss 

about the same approach of real-time detection by identifying the selective features.  
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Chapter - 9 

Real-time Implementation of the 

Method 

9.1. Introducing Real-time Detection Model 

We have further tested the robustness of our model by implementing it to the real 

time application. Although we could have implemented the model as is, we further made 

a “tuning” in our previously proposed model so that it could be much faster and easier in 

real time implementation. Real time detection model is based on detecting the relevant 

feature of the signal of absolute value of lateral jerk, which came as the learning from 

different experiments during the process of studying steering oscillation. The main 

difference in this model is that, this model does not rely on Fourier transformed signal 

and PS like in previous approach. Since those process are not involved, this model is 

relative faster in computational process and thus, ideal for real time implementation. 

9.1.1. Features of Steering Oscillations 

The various experimental result provided us the intuition on aggregating the 

features of the steering oscillation; we believe that identifying these features would help 

us identifying the steering oscillation induced due to inadequate cognitive load. Those 

features are further discussed below in section 9.1.1.1: 
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9.1.1.1. Number of Pulses 

We viewed the number of major peaks of lateral jerk during both oscillating and 

non-oscillation case as the pulses. The comparison of pulses in per unit of time in both 

the cases shows that the count of major pulses is higher in oscillating driving cases. The 

Figure 35, shows that during 7 second of non-oscillating cornering at the speed of 40 

km/hr, there are only two pulses of lateral jerk i.e. one at the entry of the corner and 

another at the exit of the corner. The Figure 36, shows oscillating driving case where the 

count of the pulses is six. 

9.1.1.2. Amplitude of Pulses 

As we can clearly visualize in both Figure 35 and Figure 36, that the major pulses 

due to significant movement of steering wheel could be discriminated from minor pulses 

due to smaller adjustments of steering wheel by both amplitude and duration.   

9.1.1.3. Interval between Pulses 

The period between major pulses, pertinent to normal steering behaviour is long. 

As both Figure 35 and Figure 36 illustrate, the period between the two major pulses (one 

pulse at the entry- and another one – at the exit of the corner), pertinent to non-oscillating 

driving is about 5.5 ~ 6 seconds. Conversely, during oscillating driving the interval 

between major pulses is shorter – about 1~1.5 seconds. 

9.1.1.4. High-frequency Oscillation in Pulses 

The major pulses pertinent to non-oscillatory driving at the entry of the corner 

features a high-frequency oscillations. We believe that these oscillation illustrate the 

transition processes in turning and are caused by the elasticity of the sidewall of the tires. 
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These oscillations could be seen other major pulses in both non-oscillating (Figure-35) 

and oscillating (Figure-36) driving. They might not be related to the presence (or 

absence) of steering oscillations, and are of much higher frequency than the latter. 

 

 

 

 

 

 

 

Fig-35: The pattern of lateral acceleration and absolute value of the lateral jerk of the car 

during normal (non-oscillating driving) in a right corner 

 

 

 

 

 

 

 

Fig-36: The pattern of lateral acceleration and absolute value of the lateral jerk of the car 

during oscillating driving in a right corner. 
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9.1.2. Detecting the Features of Steering Oscillation 

We intend to detect steering oscillation in real-time by detecting the relevant 

features. Regarding our first features, we count the number of major pulses for a period 

and once the count reached to a given number, the oscillations is assumed to be detected. 

Similarly, amplitude of the pulses indicates that the counting should be done only of the 

major pulses that exceeds some threshold. The other feature, interval between pulses, 

indicates that the oscillation occurs in a continuous series within a specific time interval. 

Therefore, we try detecting based on detecting window, which prevent detecting 

irrelevant high-frequency oscillation, and signals that are pertinent to normal steering 

during cornering. The basic block diagram of our approach is shown in Figure 37. The 

algorithm and the pseudocode of implementation of the proposed real-time detecting 

mechanism are discussed in the following subsection: 

 

 

 

 

 

 

 

Fig-37: The block diagram of real time detection model 

The Figure 37 shows the block diagram of the model. This approach is relies on 

counting the number of peak of the lateral jerk signal. As seen in the figure, this model 
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has Jerk Sub-system model, which is responsible for performing two operation. (i) 

Calibrating the static threshold from the normal driving signal (or this could be manually 

setup as shown in the pseudo-code in Figure 38) and, (ii) constantly analysing the signal 

to count the number of peaks above the threshold with in a period to alert the driver. The 

details of the algorithm is explain in the following subsection. 

9.1.2.1. Algorithm for Real-time Oscillation Detection 

The algorithm of detecting the steering oscillations that reflects the above-

mentioned three aspects is illustrated in Pascal-like pseudo-code in Figure 38.   

1) The counter of major pulses is denoted as a global variable Jerk_Cnt (Figure 38, 

line #1). The detection of oscillation is assumed when the value of the counter 

reaches 4.  

2) The value used for thresholding of the values of lateral jerk is denoted as a local 

constant Jerk_Threshold = 2.4 (Figure 38, line #5).   

3) The specific time interval “detecting window” of 1.8 seconds is maintained as an 

interval between 1 second (local constant Interval_of_Insensitivity = 1.0, Figure 

38, line #6) and 2.8 seconds (the interval of counter resetting timer 

Resetting_Timer (Figure 38, line #15, and lines #20~#25) after the most recently 

detected major pulse.   

 Only pulses that have higher amplitude than Jerk_Threshold (Figure 38, line #11) and 

are detected within the “detecting window” (Figure 38, line #12) are counted by Jerk_Cnt 

(Figure 38, line #14).   The procedure Display_Jerk_Cnt_on_Dashboard_Indicator 

(Figure 38, lines #18 and #24) displays the value of the Jerk_Cnt in the warning indicator 

as illustrated in Figure 39. Value of the counter equal to 4 is associated with detected 

oscillations. 
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Fig-38:  Algorithm with pseudo-code for detecting steering oscillations. 

 

 

Fig-39: Displaying the number of counted peaks (value of the variable Jerk_Cnt) on the 

dashboard indicator by procedure Display_Jerk_Cnt_on_Dashboard_Indicator. The 

procedure is activated as shown in Figure 38, lines 18 and 24.  
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9.1.3. Experimental Result 

The experimental results that verify the feasibility of the proposed approach to 

detect steering oscillations are illustrated in Figure 40, Figure 41, Figure 42, and Figure 

43. These figures illustrate the detecting and counting (in the global variable Jerk_Cnt, 

Figure 38, line 14) of first, second, third and fourth major pulses during oscillatory 

cornering. The first (Figure 40) and the fourth (Figure 43) pulses correspond to normal 

steering at the entry and exit of corner, respectively. Second (Figure 41) and third (Figure 

42) pulses, however, are a result of steering oscillations, and should not be there in a 

normal (non-oscillatory) cornering. The value of counted pulses equal to four indicates a 

detection of steering oscillations (Figure 43). 

 

Fig-40: Detecting and counting the first major pulse (time 77.4s). The pulse corresponds to 

normal steering at the entry of corner. 
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Fig-41: Detecting and counting the second major pulse (time 78.8 s). The pulse is detected 

and counted because its amplitude is higher than threshold, and because its timing fits 

within the detecting window. The pulse corresponds to steering oscillations during steady 

state cornering 

 

Fig-42: Detecting and counting the third major pulse (time 80.7 s). The pulse is detected 

and counted because its amplitude is higher than threshold, and because its timing fits 

within the detecting window. The pulse corresponds to the steering oscillations during 

steady state cornering 
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Fig-43: Detecting and counting the fourth major pulse (time 83.5 s).  

The pulse is detected and counted because the amplitude is higher than threshold. 

In addition, its timing fits within the detecting window as well. The pulse corresponds to 

normal steering at the exit of the corner. However, due to the accumulation of the counted 

number of detected major pulses, the fourth pulse signals the detection of steering 

oscillations. Notice that the value of the counted pulses in normal, non-oscillatory driving 

would not exceed one in slow turns (when the timer will reset the counter to zero 2.8s 

after the detected first pulse).  Also, it will not exceed two in fast turns (one pulse would 

be counted at the entry of the fast turn and one more pulse – if the interval between pulses 

is shorter than 2.8s – at its exit) 

9.1.4. Robustness of Detection Model with Mobile Application 

After successful implementation of the model in fully-fledged simulator. We further 

wanted to check the robustness of the model; therefore based on the same detection model 
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we further implement it as a mobile application. The snapshot of the application are 

shown in Figure 44. This application requires manual calibration for few second in non-

oscillating driving situation before using it for detecting the steering oscillation. Once, 

the application is calibrated, it setup the general threshold, which is constantly compared 

with the absolute jerk value to detect the steering oscillation. Since, it is possible to 

activate the oscillation detection during oversteering and under steering, as well as during 

lane changing; driver is however only alerted after surpassing the fixed maximum 

frequency of oscillation detection  (refer Figure 43).  

 

     

 

 

 

 

 

 

 

 

 

  

 

 

 

 

Fig-44: Snapshot of oscillation detecting application in real-time testing (a), Detecting the 

oscillating intensity (b), Maximum oscillating intensity triggers alert (sound) to the driver 

(c). 
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After the detection of oscillation (continuous detection of major peak amplitude 

with in the given time), this application also beeps to alert the driver in order to signal 

inadequate cognitive engagement. The Figure 44a, shows the initial run of the application, 

however the calibration part is not shown in the figure. Figure 44b shows the detection of 

oscillation intensity. Likewise, Figure 44c shows that the oscillation intensity has reached 

the peak after which the driver is alerted with the beeping sound. 
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Chapter - 10 

Summary, Conclusion, and Future 

Works 

10.1. Summary 

This study was initiated with the objective to formulate effective methodology to 

identify inattentive and/or distracted driving so that, millions of accidents that occurs 

because of inattentive and/or distracted driving around the world would be prevented. 

Therefore, to address these issues we introduced the concept of steering oscillation. We 

considered that, inadequate cognitive load of the driver will result in delay of response, 

and delay of response would result in delay in the feedback. Considering Nyquist criterion 

in control theory, we hypothesized that; delay in feedback would result in unstable or 

oscillating system. We believe that, once this hypothesis were verified we could further 

proposed the method for its detection. Therefore, we initially did experiments to verify 

the hypothesis that inadequate cognitive load of the driver result in delay in response of 

the driver, which ultimately resulted in steering oscillation. We verified our hypothesis in 

several stages of experiment. First, we verified the concept with driving agent evolved 

via genetic programming where, we deliberately introduce various delay in the steering 

response of the agent. We found out that such delay results in the oscillation of the car. 

After, the successful result with the driving agent, we continue experiment with different 
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human driver by distracting each of them with messaging (texting while driving) to 

increase the cognitive load of the driver. The experiment with human driver also proved 

our hypothesis that increase in the cognitive load of the driver results in the steering 

oscillation. 

The verification of our hypothesis motivated us to formulate method to identify the 

steering oscillation and detect the distracted driving. We devise detection mechanism by 

spectrum analysis. This detection mechanism was further optimized with genetic 

algorithm. We also introduced adaptive method of detection with lateral jerk. A tuned 

with feature identification and was implemented for real-time detection both in fully-

fledged driving simulator and tested in real-time by developing a smart phone application. 

We view the obtained results as a significant step towards the development of a 

system for early warning of the inadequate cognitive load of drivers in routine driving 

conditions – well before any urgent reaction to an eventual dangerous traffic situation 

might be needed. 

10.2. Conclusion 

 We introduced the concept of steering oscillation and verified that it is induced as 

the result of inadequate cognitive load of the driver. To verify the concept we initially 

proposed, an approach that employs GP to develop automatically, a driving agent—as a 

model of a human driver—that optimally steers a realistically simulated car with non-

latent steering response. We verified the hypothesis that a simulated delay in the steering 

response of the evolved model of a human driver results in well-expressed steering 

oscillations. In addition, the experimental results of the impact of speed on a 

computationally evolved driving agent highlight the robust nature of our approach. 

Further, it has also been observed that increase in speed increases the amplitude of the 
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oscillation, thus underlining the extreme consequences of driving with inadequate 

cognitive engagement. 

Additionally, we verified with real human drivers that the delay of response of the 

cognitively inattentive drivers (simulated via texting and driving) result in characteristic 

steering oscillations of the realistically simulated car in all of the considered three test 

cases – driving on straight, on entry and on exit of corner. 

We also investigated an approach of automatically classifying the driver-induced 

steering oscillation of a simulated car driven by a cognitively inadequate human driver. 

The inadequate cognitive engagement of the driver is associated with delay of response, 

which, in turn, according to the control theory applied to the system driver-car, results in 

an oscillating steering behaviour of the car. In order to identify the inadequate cognitive 

load by resulting steering oscillations, we propose an approach of analysing the power 

spectrum of the lateral acceleration of the car. The experimental results suggest that the 

magnitude of the power spectrum could be used to classify the oscillating steering 

behaviour of the car for at least 8 out of 10 drivers by merely setting up the static 

threshold. However, we discovered that the patterns of the signals of lateral acceleration 

(and the values of the corresponding power spectrum of its Fourier transformation) of a 

car controlled by an inattentive driver along a straight road mimics the pattern of a 

cornering car even when driven by a fully attentive driver. Therefore, it would be 

unfeasible to apply thresholding to a canonical power spectrum featuring an equal (flat) 

weight coefficient for identifying inattentive driving from the presence of steering 

oscillations under all driving conditions. We hypothesized that optimization of the weight 

coefficients of the power spectra would enhance the detection of these steering 

oscillations and improve their discrimination from attentive driving when negotiating 

corners. Thus, we applied genetic algorithms to evolve the optimal values of the weight 
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coefficients of the power spectrum. The experimental results verified that an evolved 

weighted power spectrum facilitates improved discrimination between oscillatory and 

non-oscillatory steering behaviour for all 10 tested human drivers even under challenging 

circumstances.  

Further, we proposed additional method based on adaptive thresholding of the 

power spectrum magnitude of a Fourier-transformed time series, which is obtained from 

the lateral acceleration of a car. We utilized the lateral jerking motion of the car as a factor 

that directly determines the instantaneous value of the adaptive threshold. The 

experimental results suggest that adaptive thresholding of the power spectrum of lateral 

acceleration facilitates the detection of driver-induced steering oscillations (caused by 

inattentive driving due to texting on mobile phone) with an overall accuracy of 88%, in 

the test cases of driving of a car, realistically simulated in TORCS, on straightaways and 

around corners.  

Finally, with multiple experiments, we were able to identify various features that 

could be detected in order to identify the oscillation in real time situation. We propose 

feature detection mechanism in real time situation. Also, tested this method in driving 

simulator and in real car with the version of smart phone application. Hence, we were 

able to achieve our three main objective. i.e. (i) to verify our hypothesis that delay in 

cognitive load of human driver result in delay in response, (ii) the delay in response result 

in delay in feedback, that ultimately effects in steering oscillation of the driver and, (iii) 

to find suitable mechanism to detect such oscillation with readily available sensors. 

10.3. Future Work 

Although we have performed substantial amount of experiments to verify our 

proposed approach, there are still multiple directions, which could be taken to further 
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enhance this work. The continuation of this research could be (a) to explore the idea of 

varying the threshold of the weighted power spectrum (in real time) in a way that would 

allow the threshold to adapt dynamically both (i) to the driving style of drivers and (ii) to 

the specifics of driving situations. (b) Another interesting continuation would be, to 

accumulate various features from the model that we devise for the real-time detection, 

and instead of just identifying those feature by human defined logics, rather we could use 

machine learning approach (presumably GP, GA or SVM) to classify ( or identify) the 

oscillating and non-oscillating driving conditions.  

Similarly, for now we have tested our oscillation detection model with smart-phone 

application, however, it might not be practical for everyday use, as mobile phone itself 

act as a part of distraction. Therefore, instead of relying on mobile phone application, we 

could also design our proposed model for smaller embedded system like Arduino, 

raspberry pie, or could implement in more robust devices, so that it could act as a 

complete system that could be ready for any vehicle in order to identify the steering 

oscillation. 

Another direction of this study is to extend it for identifying the drink and drive 

case. Many studies has shown that, drinking alcohol more than a certain limit would 

reduce the response time in the brain [58] [59] [60]. Hence, we believe that drinking and 

driving would also result in similar effects like in steering oscillation, which could be 

detected by using our existing approach; however, detail study and experiments are 

required to verify the results. 
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Appendix 

1. XML Schema for the evolved model of driving agent in XGP 

<?xml version="1.0"?> 
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"> 
 
 
<xs:simpleType name="VAR"> 
  <xs:restriction base="xs:string"> 
    <xs:enumeration value="p_0"/> 
    <xs:enumeration value="p_1"/> 
    <xs:enumeration value="p_2"/> 
    <xs:enumeration value="p_3"/> 
    <xs:enumeration value="p_4"/> 
    <xs:enumeration value="p_5"/> 
  </xs:restriction> 
</xs:simpleType> 
 
<xs:simpleType name="CONST"> 
  <xs:restriction base="xs:integer"> 
    <xs:minInclusive value="0"/> 
    <xs:maxInclusive value="10"/> 
  </xs:restriction> 
</xs:simpleType> 
 
 
<xs:simpleType name="OP"> 
  <xs:restriction base="xs:string"> 
    <xs:enumeration value="+"/> 
    <xs:enumeration value="-"/> 
    <xs:enumeration value="*"/> 
    <xs:enumeration value="/"/> 
  </xs:restriction> 
</xs:simpleType> 
 
 
<xs:complexType name="STM2"> 
   <xs:sequence> 
      <xs:element name="OP" type="OP"/> 
      <xs:element name="STM" type="STM"/> 
      <xs:element name="STM" type="STM"/> 
    </xs:sequence> 
  <xs:attribute name="ind" type="xs:integer" use="optional"/> 
</xs:complexType> 
 
<xs:complexType name="STM"> 
   <xs:choice> 
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      <xs:element name="STM2" type="STM2"/> 
      <xs:element name="VAR" type="VAR"/> 
      <xs:element name="CONST" type="CONST"/> 
    </xs:choice> 
  <xs:attribute name="ind" type="xs:integer" use="optional"/> 
</xs:complexType> 
 
<xs:element name="GP"> 
 <xs:complexType> 
   <xs:sequence> 
     <xs:element name="STM" type="STM"/> 
   </xs:sequence> 
   <xs:attribute name="ind" type="xs:integer" use="optional"/> 
 </xs:complexType> 
</xs:element> 
 
</xs:schema> 

 

2. XML Schema for optimising weight coefficient in XGA 

<?xml version="1.0"?> 
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"> 
 
<xs:simpleType name="k_1"> 
 <xs:restriction base="xs:integer"> 
 <xs:minInclusive value="0"/> 
 <xs:maxInclusive value="90"/> 
 </xs:restriction> 
</xs:simpleType> 
 
<xs:simpleType name="k_2"> 
 <xs:restriction base="xs:integer"> 
 <xs:minInclusive value="0"/> 
 <xs:maxInclusive value="90"/> 
 </xs:restriction> 
</xs:simpleType> 
 
<xs:simpleType name="k_3"> 
 <xs:restriction base="xs:integer"> 
 <xs:minInclusive value="0"/> 
 <xs:maxInclusive value="90"/> 
 </xs:restriction> 
</xs:simpleType> 
 
<xs:simpleType name="k_4"> 
 <xs:restriction base="xs:integer"> 
 <xs:minInclusive value="0"/> 
 <xs:maxInclusive value="90"/> 
 </xs:restriction> 
</xs:simpleType> 
 
<xs:simpleType name="k_5"> 
 <xs:restriction base="xs:integer"> 
 <xs:minInclusive value="0"/> 
 <xs:maxInclusive value="90"/> 
 </xs:restriction> 
</xs:simpleType> 
 
<xs:simpleType name="k_6"> 
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 <xs:restriction base="xs:integer"> 
 <xs:minInclusive value="0"/> 
 <xs:maxInclusive value="90"/> 
 </xs:restriction> 
</xs:simpleType> 
 
<xs:simpleType name="k_7"> 
 <xs:restriction base="xs:integer"> 
 <xs:minInclusive value="0"/> 
 <xs:maxInclusive value="90"/> 
 </xs:restriction> 
</xs:simpleType> 
 
<xs:simpleType name="k_8"> 
 <xs:restriction base="xs:integer"> 
 <xs:minInclusive value="0"/> 
 <xs:maxInclusive value="90"/> 
 </xs:restriction> 
</xs:simpleType> 
 
<xs:simpleType name="k_9"> 
 <xs:restriction base="xs:integer"> 
 <xs:minInclusive value="0"/> 
 <xs:maxInclusive value="90"/> 
 </xs:restriction> 
</xs:simpleType> 
 
<xs:simpleType name="k_10"> 
 <xs:restriction base="xs:integer"> 
 <xs:minInclusive value="0"/> 
 <xs:maxInclusive value="90"/> 
 </xs:restriction> 
</xs:simpleType> 
 
 
<xs:complexType name="STM"> 
   <xs:sequence> 
      <xs:element name="k_1" type="k_1"/> 
      <xs:element name="k_2" type="k_2"/> 
      <xs:element name="k_3" type="k_3"/> 
      <xs:element name="k_4" type="k_4"/> 
      <xs:element name="k_5" type="k_5"/> 
      <xs:element name="k_6" type="k_6"/> 
      <xs:element name="k_7" type="k_7"/> 
      <xs:element name="k_8" type="k_8"/> 
      <xs:element name="k_9" type="k_9"/> 
      <xs:element name="k_10" type="k_10"/> 
    </xs:sequence> 
  <xs:attribute name="ind" type="xs:integer" use="optional"/> 
</xs:complexType> 
 
<xs:element name="GP"> 
 <xs:complexType> 
   <xs:sequence> 
     <xs:element name="STM" type="STM"/> 
   </xs:sequence> 
   <xs:attribute name="ind" type="xs:integer" use="optional"/> 
 </xs:complexType> 
</xs:element> 
 
</xs:schema> 
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3. Program Source Code 

The source code for the programs used in this study are available in the enclosed 

CD.  
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