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Abstract

In multi-rate communication systems, multiple users attempt to communicate simultaneously,

at various transmission rates, with a common receiver through the multiple access channel (MAC),

even in the presence of Gaussian noise. A central problem in multi-rate coding for the multiple

access communication system is to assign K constituent code to K transmitters so that they can

communicate simultaneously, at various transmission rates, with a common receiver through the

Gaussian MAC. However, it is impractical for users to employ different encoders.

In this dissertation, we propose multi-rate coding schemes for Gaussian MAC. In our schemes,

each user employs a same structure of encoder serially concatenated with a spreader and a user-

specific interleaver. Here, the different interleavers are used for user separation, and the spreader

is employed to lower the transmission rate and thus to combat the multi-user interference. The

different rate transmission is realized by adjusting the parameter of the encoder and the length of

spreading. We analyze the decoding performances of our coding schemes, and obtain the optimal

coding parameters and spreading lengths, which gives the maximum sum rates and approach the

theoretical limits of the channel. The proposed coding schemes support multimedia services, and

avoid employing multiple channel encoders to implement the multi-rate transmission.

Our three multi-rate coding schemes, roughly speaking, have almost the same structure with the

same encoder, spreader, and interleaver. We discuss the optimization of the multi-rate coding based

on three decoding algorithms employed in the multiple access communication systems. The three

decoding algorithms are the belief propagation (BP) with the maximum a priori (MAP) detection,

elementary signal estimation (ESE), and successive interference cancellation (SIC).

First, we introduce a multi-rate transmission in two-user multiple access communication sys-
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tems with the MAP detection. Each user employs the same repeat accumulate (RA) encoder but

with different parameters, i.e., the repeat numbers, in the encoder. Here, we perform the coding-

only (without spreading) scheme, since multi-user interference is small for two users. At the

receiver, we perform the BP decoding on a single factor graph, where at sum (two-user superim-

posed signals) node, the MAP detection is carried out. We develop a univariate fixed point analysis

to obtain a system equation array of parameters of RA codes. This makes it possible to represent

the parameters of RA codes explicitly as functions of the fixed point. We find the optimal param-

eters of RA codes that give the maximum sum rate. Numerical results show that our optimized

two-user multi-rate RA code is superior to the conventional equal rate code in maximum sum rate,

and approach the Shannon limit.

Second, we introduce a multi-rate transmission in multi-user multiple access communication

systems with the ESE detection. We equally divide K users into multiple groups, and users in

identical group has a same transmission rate. For each user, we employ a RA code serially con-

catenated with a spreading sequence and a user-specific interleaver pattern to implement various

rates by adjusting both repeat number in RA encoder and length of spreading in spreader. Here,

the interleaver patterns are different for user separation, and the spreading sequence is to lower

the rate and thus to combat the user interference, since an increase in the number of users results

in very serious multi-user interference. At the receiver, we perform a joint iterative BP decoding

(Iterative Joint Decoding, IJD) on a single factor graph, where at sum (multi-user superimposed

signals) node, the ESE detection is carried out. We develop a bivariate fixed point analysis to ob-

tain the optimal parameters (repeat numbers) of RA code and spreading lengths, which give the

maximum sum rate. With the increment of groups, the maximum sum rates of our optimized multi-

rate code increase, and approach the Shannon limit, and exceeds those of conventional equal-rate

transmission.

Instead of global IJD above, in the receiver we perform hybrid interference cancellation (HIC)

decoding, where SIC is employed between the groups, and IJD is employed within the group.

The HIC scheme provides much lower decoding complexity than the global IJD scheme with little

degradation in the maximum sum rate, and outperforms the pure SIC scheme.
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Finally, we also consider the multi-rate transmission in the multi-user systems but with the

SIC decoding. The SIC decoding has lower decoding complexity, compared with IJD and HIC

schemes. We give the optimal rate and power profile and provide the sum rate which also approach

the Shannon limits.
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Chapter 1

Introduction

This chapter introduces the fundament of channel coding and decoding for Gaussian multiple

access channel (MAC). In multiple access communication systems, from practical consideration, it

is required for users to employ the same encoder for supporting multi-rate transmission. We briefly

introduce our basic idea for the multi-rate transmission, and give our contributions.

1.1 Gaussian Multiple Access Channel

There are numerous examples of multiple access communication, such as a set of mobile tele-

phones communicating with a base station and many ground stations transmitting to a satellite. In

this multiple access communication systems, multiple transmitters sends information to a single

receiver simultaneously over a common communication channel. The receiver receives a superim-

posed signal of all the transmitters. This is often modeled as a multi-input single-output channel,

referred to as a multiple access channel (MAC).

A K-user MAC model is depicted in Fig. 1.1. Let X(k) ∈ {+1,−1} denote the transmitted symbol

of user k. Received symbol Y is a superposition of X(k), k = 1, ...,K, and noise Z. When Z is a

Gaussian variable, with mean zero and variance σ2, i.e., Z ∼ N(0, σ2), this channel is referred to

as a Gaussian MAC.

1



2 1.2. Multi-Rate Coding Scheme

Figure 1.1: K-user Gaussian MAC.

1.2 Multi-Rate Coding Scheme

In multiple access communication systems, it is required to support multi-rate transmission to

meet the requirements for various multimedia services such as voice, data, and video. For example,

data message is transmitted at lower rates, and video message is transmitted at higher rates.

Multi-user information theory tells us that multi-rate transmission can provide the sum rate

to approach the capacity of K-user Gaussian MAC [1, 2]. Unfortunately, a practical multi-rate

coding scheme is not provided by the multi-user information theory. This leads communication

researchers to design a practical multi-rate coding scheme for the Gaussian MAC, and optimize it

to approach the Shannon limit.

A central problem in multi-rate coding scheme for the multiple access communication system

is to assign a K-user multi-rate code so that they can communicate simultaneously, at various

transmission rates, with a common receiver through the MAC, even in the presence of Gaussian

noise.

We consider a multi-user multi-rate coding scheme, where the kth user employs a channel code

Ck serially concatenated with a spreading sequence Sk and an interleaver pattern π(k), k = 1, · · · ,K.

Denote by {(C1,S1, π
(1)), (C2,S2, π

(2)), · · · , (CK ,SK , π
(K))} a K-user multi-rate code. The block di-

agram of K-user multi-rate coding scheme is depicted in Fig. 1.2. In this system, K independent

users are attempting to transmit information to a single receiver. For the kth user, a length-Bk in-

formation bit vector of u(k), is encoded by a rate-rk channel encoder k into a length-Bk/rk coded

2



Chapter 1. Introduction 3

Figure 1.2: K-user multi-rate coding scheme.

vector v(k). The employed channel code is an error correction code, such as a repeat accumulate

(RA) code, a convolutional code, a low-density parity-check (LDPC) code, and so on. After that,

a length-Lk spreading sequence Sk and a user-specific chip-level interleaver pattern π(k) are em-

ployed to produce a length-BkLk/rk vector x(k), which is transmitted to the Gaussian MAC. Here,

the spreader is employed to lower the transmission rate and thus to combat the multi-user interfer-

ence, and the different interleaver patterns are used for user separation. For transmission, we will

favor x(k)
j ∈ {+1,−1} over x(k)

j ∈ {0, 1} under the mapping {0 ↔ +1, 1 ↔ −1}. The transmission

rate of the kth user is Rk = rk/Lk. And the different rate transmission is realized by adjusting

the parameter rk of the encoder and the length Lk of spreading sequence. Note that although the

transmission rates of different users vary, it is not difficult to have identical signal length N by an

adjustment of information bit lengths Bk, i.e., BkLk/rk , N, to realize multi-rate transmission with

rate profile (R1, · · · ,RK). The overall transmission rate, i.e., the sum rate, is

Rsum =

K∑
k=1

Rk. (1.1)

The symbol synchronization is assumed. The receiver gets a superimposed signal vector y =

(y1, · · · , yN) with

y j =

K∑
k=1

x(k)
j + z j, j = 1, · · · ,N, (1.2)

where z j is a zero-mean Gaussian variable with a variance of σ2. Based on this received signal

3



4 1.3. Previous Works

vector, a multi-user decoding is performed to recover the transmitted information bit vectors and

output estimations of û(k), k = 1, ...,K.

In Fig. 1.2, a channel code Ck, a spreading sequence Sk, and an interleaver pattern π(k) are em-

ployed by the kth user. The problem of multi-rate coding becomes design of the K-user multi-rate

code {(C1,S1, π
(1)), (C2,S2, π

(2)), · · · , (CK ,SK , π
(K))} to approach the Shannon limit. When each us-

er employs a random interleaver, the problem becomes to design {(C1,S1), (C2,S2), · · · , (CK ,SK)}

to achieve the maximum sum rate, and to approaches the Shannon limit. For convenience, we

abbreviate K-user multi-rate code as {(C1,S1), (C2,S2), · · · , (CK ,SK)}.

1.3 Previous Works

In the section, we review the previous related work on multi-user coding for MAC.

When each user transmit at an equal rate, the optimization of coding for MAC is reduced to

optimize jointly the channel code C and spreading sequence S, where C1 = · · · = CK , C and

S1 = · · · = SK , S. Given C, the length of spreading sequence S is optimized by observing the

extrinsic information transfer (EXIT) chart in [3–5]. However, this EXIT analysis is difficult to be

extended to joint design of identical C and S, since it is required to do a tremendous amount of

observation on the EXIT charts for all various parameters of C and S. Instead of EXIT analysis,

the bivariate point analysis provides a good tool to jointly design C and S, which approaches the

Shannon limits in the equal rate of each user [6–8].

The first attempt to give a multi-rate coding schemes can be found in [9], where the multi-

ple lengths of spreading sequence, i.e., S1, · · · ,SK , are optimized by a linear programming in an

uncoded scenario. Since this work is restricted to no channel code and the all-ones spreading se-

quence, it decoding performance is about 5 dB away from the Shannon limit. The development of

a multi-rate code {(C1,S1), (C2,S2), · · · , (CK ,SK)} is still a challenge work.

4



Chapter 1. Introduction 5

1.4 Our Contributions

We now briefly introduce our K-user multi-rate code {(C1,S1), (C2,S2), · · · , (CK ,SK)} for the

Gaussian MAC.

In our multi-rate coding schemes (Fig. 1.2), the kth user employs a channel code Ck serial-

ly concatenated with a spreading sequence Sk and a user-specific interleave pattern π(k). Here,

the same structure of encoder is employed for each user to implement various channel codes

Ck, k = 1, · · · ,K. The spreading sequence Sk is employed to lower the transmission rate and

thus to combat the multi-user interference. The different interleaver patterns are used for user

separation. The different rate transmissions is realized by adjusting the parameter of the code Ck

and the length of spreading sequence Sk, k = 1, · · · ,K. We analyze the decoding performances

of our coding schemes, and obtain the optimal coding parameters and spreading length, which

gives the maximum sum rates and approach the theoretical limits of the channel. The proposed

coding schemes support multimedia services, and avoid employing multiple channel encoders to

implement the multi-rate transmission.

Our contributions in Chapters 3, 4, and 5 are illustrated as follows:

In Chapter 3, we introduce a multi-rate transmission in two-user multiple access communica-

tion systems with the MAP detection. Each user employs the same RA encoder but with different

parameters, i.e., the repeat numbers, in the encoder. Here, we perform the coding-only (without

spreading) scheme, since multi-user interference is small for two users. At the receiver, we per-

form a BP decoding on a single factor graph, where at sum (two-user superimposed signals) node,

the MAP detection is carried out.

We develop a univariate fixed point analysis to obtain a system equation array of parameters of

RA codes. This makes it possible to represent the parameters of RA codes explicitly as functions

of the fixed point. We obtain a reliable region about repeat numbers of RA codes over which the

decoding error rate is less than a given arbitrary small value. Then in the reliable region, we find

the optimal parameters of RA codes that give the maximum sum rate. Numerical results show

that our optimized two-user multi-rate RA code is superior to the conventional equal rate code in

maximum sum rate, and approach the Shannon limit.

5



6 1.4. Our Contributions

In Chapter 4, we introduce a multi-rate transmission in multi-user multiple access communi-

cation systems with the ESE detection. We equally divide K users into multiple groups, and users

in identical group has a same transmission rate. For each user, we employ a RA code serially con-

catenated with a spreading sequence to implement various rates by adjusting both repeat number

in RA encoder and length of spreading in spreader. Here, the interleaver patterns are different for

user separation, and the spreading sequence is to lower the rate and thus to combat the user inter-

ference, since an increase in the number of users results in very serious multi-user interference. At

the receiver, we perform a joint iterative BP decoding (Iterative Joint Decoding, IJD) on a single

factor graph, where at sum (multi-user superimposed signals) node, the ESE is carried out.

We develop a bivariate fixed point analysis to explicitly represent repeat numbers qm of RA code

and spreading lengths Lm as a function of mutual information outputs, m = 1, · · · ,M. Based on

these basic explicit representations, a united unreliable region is given, where users in at least one

group are undecodable. The complementary set of the united unreliable region gives the optimal

parameters (repeat numbers) of RA code and spreading lengths, corresponding to the optimal rate

profile, that achieves the maximum sum rate. With the increment of groups, the maximum sum

rates of our optimized multi-rate code increase, and approach the Shannon limit, and exceeds those

of conventional equal-rate transmission.

Instead of global IJD above, in the receiver we perform hybrid interference cancellation (HIC)

decoding, where SIC is employed between the groups, and IJD is employed within the group.

The HIC scheme provides much lower decoding complexity than the global IJD scheme with little

degradation in the maximum sum rate, and outperforms the pure SIC scheme.

In Chapter 5, we also consider the multi-rate transmission in the multi-user systems but with

the SIC decoding. The SIC decoding has lower decoding complexity, compared with IJD and HIC

schemes.

We propose a joint rate and power optimization (RPO) to obtain the optimal rate and power

profile, that achieves the optimal sum rate by the assumption of equal-ratio power allocation. Our

RPO employs multiple equal-ratio power, and choose the optimal ratio, which gives the power

profile well matched with the rate profile. It shows that our optimized multi-rate code with joint

6



Chapter 1. Introduction 7

RPO, supporting the multi-rate transmission with the same structure of encoder, approaches the

Shannon limit, and outperforms conventional rate-only optimization and power-only optimization.

Finally, conclusion of the dissertation is given in Chapter 6. We propose the multi-rate coding

schemes for the Gaussian MAC, and analytically give the maximum sum rate which approach

the theoretical limit of the channel. The proposed multi-rate coding schemes support multimedia

services in practical communication systems.

7
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Chapter 2

Preliminary: Repeat Accumulate (RA)

Codes

In this chapter, we introduce coding and decoding of the repeat accumulate (RA) codes. RA

codes are a class of the simplest forms of low density parity check (LDPC ) codes that provide

capacity-approaching performance over point-to-point Gaussian channel. Moreover, RA encoder

can provide various rates by varying its coding parameter, i.e., the repeat number, and thus plays

an important role in our multi-rate transmission.

2.1 Introduction

Repeat accumulate (RA) codes are a specific class of serially concatenated codes in which the

outer code is a rate-1/q repetition code and the inner code is a convolutional code with generator

1/(1+D). A 1/(1+D) convolutional code simply outputs the modulo-2 sum of the current input bit

and the previous output bit, i.e. it provides a running sum of all past inputs and so is often called

an accumulator. These two component codes give RA codes their name. Despite their simple

structure, they were shown to provide good performance and, more importantly, they paved a path

toward the design of efficiently encodable LDPC codes.

9
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Figure 2.1: A repeat accumulate code.

2.2 Encoding and Decoding of RA Code

2.2.1 Encoding of RA Code

In the chapter, we introduce the encoding of RA code, as shown in Fig. 2.1.

The simple component codes of RA codes lead to a particularly straightforward encoding pro-

cess. The message bits are copied q times, interleaved, then passed through a memory-1 convolu-

tional encoder.

More precisely, the encoding process is as follows. The input is the K message bits u =

(u1, · · · , uK). The qK bits at the output of the repetition code are q copies of u, in the form

v = (v1, v2, · · · , vqK). (2.1)

Here, vi = u f (i), f (i) = di/qe, where dxe denotes the smallest integer greater than or equal to x.

The interleaver pattern π = (π1, π2, · · · , πqK) defines a permutation of the bits in v to

d = (d1, d2, · · · , dqK) = (vπ1 , vπ2 , · · · , vπqK ). (2.2)

Finally, the qK bits x = (x1, x2, · · · , xqK) at the output of the accumulator are defined by

xi = xi−1 ⊕ di, i = 1, 2, · · · , qK. (2.3)

The encoder for an accumulator can also be called a differential encoder.

Example 2.1 The message

u = (1, 0, 0, 1) (2.4)

is to be encoded using a length-10 RA code consisting of a q = 3 repetition code, and the interleaver

π = (1, 7, 4, 10, 2, 5, 8, 11, 3, 9, 6, 12).

10



Chapter 2. Preliminary: Repeat Accumulate (RA) Codes 11

Firstly, the message bits are each repeated three times to give

v = (1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1). (2.5)

Secondly, v is interleaved to give

d = (1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1). (2.6)

Lastly, the accumulator produces the running sum of d (from left to right),

x = (1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0). (2.7)

2.2.2 Decoding of RA Code

In this chapter, we represent the RA code by a factor graph and introduce the BP decoding [10–

13] of RA code on the factor graph.

Figure 2.2: Factor graph representation of a repeat accumulate code.

Fig. 2.2 illustrates a factor graph of RA code. There are two kinds of nodes in the graph:

variable and check nodes. Let U, G and V be three node sets that include the nodes below the

11



12 2.2. Encoding and Decoding of RA Code

letters “U”, “G” and “V” in Fig. 2.2, respectively. The variable node in U corresponds to an

information bit. The check node in G denotes a constraint between the variable nodes connected

to it, i.e., the mod-2 addition of the variable nodes connected to the same check node is 0. The

variable node in V corresponds to an RA coded bit.

In BP decoding process, the decoder processes each variable node and each check node with

a posteriori probability (APP) decoding. The iterative information exchange occurs between all of

variable nodes and all of check nodes that are two types of component decoders. In precisely, the

output extrinsic information of all variable (or check) nodes are input into their connected check

(or variable) nodes as a priori information.

Now that we have asserted that, in the limit of infinite block length, factor graph of RA code is

cycle-free, we can proceed with stating the message update rules for BP decoding. Before iterative

update, we initialize each message passing from variable node j to check node i with L(0)
ji = L j.

Here,

L j = log
p(y j|x j = +1)
p(y j|x j = −1)

(2.8)

is the belief message of channel value at the variable node j, where x j and y j are transmitted bit

and received value at the variable node j.

Consider the lth round iteration, l = 1, 2, 3, ..., lmax, where lmax is the maximum iterative round.

The local decoding at a variable node with g (Fig. 2.2, g = q in U or g = 3 in V) connected edges is

same as the decoding for a [g, 1, g] repetition code [6,10,12,14–17] with code length g, information

length 1, and minimum distance g. According to standard BP rules [11–13], the message passing

from the variable node j to check node i in V → G is given by [18]

L(l)
ji = L j +

g−2∑
i′=1,i′ 6=i

L(l)
i′ j, (2.9)

where Li′ j is the a priori information from check node i′ to variable node j. The local decoding at

the check node in G with g (Fig. 2.2, g = 3) connected edges is the same as the decoding for a

[g, g − 1, 2] single-parity-check code [6, 10, 12, 14–17]. According to standard BP rules [11–13],

12



Chapter 2. Preliminary: Repeat Accumulate (RA) Codes 13

the message passing from check node i to variable node j in G → U is given by [18]

L(l)
i j = 2 tanh−1

 g∏
j′=1, j′ 6= j

tanh

L(l−1)
j′i

2


 , (2.10)

where L j′i is the a priori information from variable node j′ to check node i. Similarly, the message

passing from the variable node j to check node i in U → G is given by [18]

L(l)
ji =

g∑
i′=1,i′ 6=i

L(l)
i′ j. (2.11)

From check node i to variable node j in G → V , the message passing is the same with Eq. (2.10).

When l = lmax, the total belief message at each variable node in U is calculated by [18]

Ltotal
j =

g∑
i=1

L(lmax)
i j . (2.12)

From each Ltotal
j , j = 0, 1, 2, ...,K − 1, the decision of each transmitted bit is obtained by

x̂ j =

 0, Ltotal
j > 0,

1, else.

2.3 Extrinsic Information Transfer (EXIT) Functions

The extrinsic information transfer (EXIT) chart technique is a graphical tool for estimating the

decoding thresholds of RA codes via tracking the mutual information (MI) between transmitted

random variable X and passed message L at each iteration. We suppose an infinite code length

and an infinite number of decoding iterations. Moreover, assume that the a priori and the extrinsic

passed messages are Gaussian variables (variance of each variable is twice of its mean).

2.3.1 Mutual Information (MI)

Recall that the mutual information,

I(X; Y) = H(X) − H(X | Y), (2.13)

13



14 2.3. Extrinsic Information Transfer (EXIT) Functions

between two random variables X and Y gives the amount of uncertainty in X that is removed by

knowing Y . In our case, X ∈ +1,−1 is a discrete-valued transmitted random variable and Y is a

continuous received random variable, so the more successful the decoder the more uncertainty is

removed by knowing Y .

The mutual information can be calculated as

I(X; Y) =
∑
x∈±1

∫
p(x, y) log2

p(x, y)
p(x)p(y)

dy, (2.14)

where p(x, y) is the joint probability distribution of X and Y and p(x) and p(y) are the marginal

probability distributions of X and Y , respectively. Using Bayes’ rule,

I(X; Y) =
∑
x∈±1

∫
p(y | x)p(x) log2

p(y | x)p(x)
p(x)

∑
x′∈±1 p(y | x′)p(x′)

dy, (2.15)

and thus

I(X; Y) =
∑
x∈±1

∫
p(y | x)p(x) log2

p(y | x)
p(y | x = +1)p(x = +1) + p(y | x = −1)p(x = −1)

dy, (2.16)

In particular, for

yi = µxi + zi (2.17)

where zi is Gaussian with mean zero and variance σ2 = 2µ, the conditional probability density

function of y is

p(yi | xi = +1) =
1

√
2πσ2

exp
(
−

(yi − µ)2

2σ2

)
, (2.18)

p(yi | xi = −1) =
1

√
2πσ2

exp
(
−

(yi + µ)2

2σ2

)
. (2.19)

Substituting into (2.16), we obtain

I(X; Y) = J(σ) (2.20)

= 1 −
∫

1
√

2πσ
exp

(
−

(y − σ2/2x)2

2σ2

)
log2(1 + e−y)dy (2.21)

14



Chapter 2. Preliminary: Repeat Accumulate (RA) Codes 15

The expression in (2.21) can be solved by integrating numerically, or it can be approximated. Here,

we use the approximation from [19]:

J(σ) ≈


aJ,1σ

3 + bJ,1σ
2 + cJ,1σ, 0 ≤ σ ≤ 1.6363, (2.22a)

1 − exp
(
aJ,2σ

3 + bJ,2σ
2 + cJ,2σ + dJ,2

)
, 1.6363 < σ < 10, (2.22b)

1, σ ≥ 10, (2.22c)

where

aJ,1 = −0.0421061, bJ,1 = 0.2092520, cJ,1 = −0.00640081,

aJ,2 = 0.00181491, bJ,2 = −0.142675, cJ,2 = −0.08220540,

dJ,2 = 0.05496080.

Here, I(X; Y) = J(σ), when yi = µxi + zi and zi is sampled from a Gaussian random variable with

mean zero and variance σ2 = 2µ. The inverse function

σ = J−1(I) (2.23)

can be approximated by the function [19]:

σ = J−1(I) ≈

 aσ,1I2 + bσ,1I + cσ,1
√

I, 0 ≤ I ≤ 0.3646, (2.24a)

−aσ,2 log
(
bσ,2(1 − I)

)
− cσ,2I, 0.3646 < I < 1, (2.24b)

where

aσ,1 = 1.095420, bσ,1 = 0.214217, cσ,1 = 2.33727,

aσ,2 = 0.706692, bσ,2 = 0.386013, cσ,2 = −1.75017.

2.3.2 MI Evolution for RA Codes

Now, substituting the conditional probability density function p(y j | x j) into (2.8), we rewrite

L j =
2
σ2 (x j + z j) (2.25)

with mean µL = 2/σ2 and variance σ2
L = 4/σ2, when conditioned on x j = +1. Thus, mean and

variance of L are connected by

σ2
L = 2µL. (2.26)

15



16 2.3. Extrinsic Information Transfer (EXIT) Functions

Consider the lth round iteration, for a variable node with degree g = 3 in V of Fig. 2.2. Under

the Gaussian Approximation, all messages passing from variable node to check node in V → G,

denoted Lv,g, follow a Gaussian distribution with mean µv,g = µL + (g − 2)µg,v and variance σ2
v,g =

2µv,g = σ2
L + (g − 2)σ2

g,v. The extrinsic MI I(l)
v,g of the variable node from V to G becomes at the lth

iteration [12, 14, 17]

I(l)
v,g

(
I(l−1)
g,v , σ

)
= J

(√
σ2

L + (g − 2)σ2
g,v

)
, (2.27)

= J

√ 4
σ2 +

(
J−1

(
I(l−1)
g,v

))2
 (2.28)

where I(l−1)
g,v is the a priori MI from check node to variable node in G → V at the l − 1th iteration.

Here, we initialize I(0)
g,v = 0.

Subsequently, consider a check node with degree g = 3 in G of Fig. 2.2. Based on the duality

relationship, which has been proven to be accurate for the binary-input AWGN channel [20, 21],

the extrinsic MI for a degree-g check node (i.e., rate-(g− 1)/g single parity check (SPC) code) and

that of a degree-g variable node (i.e., rate-1/g repetition (REP) code) are related as

IE,SPC(g, IA,SPC) = 1 − IE,REP(g, 1 − IA,SPC). (2.29)

We have the extrinsic MI I(l)
g,u of the check node from G to U at the lth iteration

I(l)
g,u

(
I(l)
v,g × (g − 1)

)
= 1 − J


√

(g − 1)
(
J−1

(
1 − I(l)

v,g

))2
 (2.30)

= 1 − J


√

2
(
J−1

(
1 − I(l)

v,g

))2
 (2.31)

where I(l)
v,g is the a priori MI from variable node to check node in V → G at the lth iteration.

Similarly, for a variable node with degree g = q in U, we get the extrinsic MI I(l)
u,g from U to G

at the lth iteration

I(l)
u,g

(
I(l)
g,u × (g − 1)

)
= J


√

(q − 1)
(
J−1

(
I(l)
g,u

))2
 . (2.32)

For a check node with degree g = 3 in G, the extrinsic MI I(l)
g,v from G to V at the lth iteration is

I(l)
g,v

(
I(l)
u,g, I

(l)
v,g

)
= 1 − J

((
J−1

(
1 − I(l)

u,g

))2
+

(
J−1

(
1 − I(l)

v,g

))2
)
. (2.33)

16



Chapter 2. Preliminary: Repeat Accumulate (RA) Codes 17

When l = lmax, the final extrinsic MI I(lmax)
u of variable node in U is

I(lmax)
u

(
I(lmax)
g,u × g

)
= J


√

q
(
J−1

(
I(lmax)
g,u

))2
 . (2.34)

By updating (2.27)-(2.33), we can determine RA code emsembles’ BP threshold

σBP , sup{σ ∈ (0,+∞) : I(Imax)
u

Imax→∞
−−−−−→ 1}. (2.35)

17
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Chapter 3

Rate Optimization in Two-User

Communications

In this chapter, we introduce a multi-rate transmission in two-user multiple access communi-

cation systems. Each user employs the same RA encoder but with different parameters, i.e., the

repeat numbers, in the encoder. At the receiver, we perform a belief propagation (BP) decoding on

a single factor graph, where at sum (two-user superimposed signals) node, the maximum a priori

(MAP) detection is carried out. We develop a univariate fixed point analysis to obtain a system

equation array of parameters of RA codes. This makes it possible to represent the parameters of

RA codes explicitly as functions of the fixed point. We find the optimal parameters of RA codes,

corresponding to the optimal pair-of-rates, that give the maximum sum rate. Numerical results

show that our optimized two-user multi-rate RA code is superior to the conventional equal rate

code in maximum sum rate, and approach the Shannon limit.

3.1 Introduction

In recent years, there are numerous examples of multiple-access communication, where each

transmitter sends information to a single receiver simultaneously over a common communication

channel. The receiver receive a superposed signal of all the transmitters. This is often called a

19



20 3.1. Introduction

multiple access channel (MAC). An important model in the MAC is a Gaussian multiple access

channel (GMAC), where the receiver receives a Gaussian noisy version of the superposition.

A number of works that focus on maximizing the sum rate of the GMAC were studied. Ri-

moldi et al. considered the rate splitting [22], relying on “single-user coding” and “successive

cancellation”. Ahlswede et al. studied the random coding and optimal joint decoding [23, 24].

Unfortunately, these theoretical results don’t directly translate to practical systems maximizing

the sum rate. This leads communication researchers to design practical multi-user code for the

Gaussian MAC.

Declercq et al. considered a suboptimal but practical approach [25, 26]. Linear programming

is used to optimize a two-user low density parity check (LDPC) code by maximizing the sum rate

with iterative decoding. However, each LDPC code was restricted to have the same distribution

of degree. That is, the code rate of each user was allocated to be equal. It is known that in some

practical communication systems, different code rate is required by different user.

Yang et al. developed an unequal rate coding scheme employing iterative decoding [9], where

a modified linear programming method is used to optimize the rate of code for each user. It is

shown that with different rate for each user, the convergence of iterative decoding is facilitated

since low rate user converge earlier than high rate user. However, due to the simple repetition code

employed by each user, the performance is about 5 dB away from the Shannon limit. It is desirable

to optimize the rate of code by employing a more sophisticated code for each user.

In this chapter, we consider a two-user unequal rate repeat accumulate (RA) code for a G-

MAC with binary inputs, equal-power and symbol synchronization. In this system, we employ

a rate-1/qk regular RA code for user k (k = 1, 2) with the sum rate of 1/q1 + 1/q2. For two in-

dependent information bit sequences with different lengths, the corresponding adjustable repeat

numbers qk (k = 1, 2) of RA codes guarantee the same code length and thus realize unequal rate

allocation. At the receiver, two-user message-passing decoding is performed on a single factor

graph. To jointly design the two-user unequal rate RA code for the GMAC, we develop a fixed

point analysis based on message-passing decoding. Thus, we obtain a system equation array of q1

and q2. This permits us to represent q1 and q2 explicitly as functions of the fixed point, respectively.

20
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For a given channel noise level with unitary-power signal transmission, we obtain a reliable region

of (q1, q2) over which the decoding error rate is less than a given arbitrary small value ε. Then in

the reliable region, we find the optimal repeat numbers q∗1 and q∗2 that give the maximum sum rate

of 1/q∗1 + 1/q∗2.

3.2 System Model

In this chapter, we describe the system model with a two-user unequal rate RA code for a MAC.

The block diagram of the system is depicted in Fig. 3.1.

3.2.1 Coding Scheme

In this two-user Gaussian MAC, we consider pair (1/q1, 1/q2) of unequal rates, where q1 and

q2 are positive integers. Two independent information bit vectors u(1) and u(2), being sent to a

single receiver. The length-Kk information bit sequence u(k) = (u(k)
1 , u(k)

2 , . . . , u
(k)
Kk

), u(k)
i ∈ {0, 1},

1 ≤ i ≤ Kk, k = 1, 2, of user k enters a regular RA encoder, which is a serial concatenation of a

rate-1/qk repeater with a 1/(1+D) accumulator linked by the different interleaver πk [27]. The sum

rate is Rsum = 1/q1+1/q2. Note that although the rates of the RA codes for different users are not the

same, it is not difficult to have the same code length N via a adjustment of information bit lengths

K1 and K2, i.e., K1q1 = K2q2 , N. The output coded vector is denoted as x(k) = (x(k)
1 , x

(k)
2 , . . . , x

(k)
N ),

x(k)
t ∈ {0, 1}, 1 ≤ t ≤ N. For transmission, we will favor x(k)

t ∈ {+1,−1} over x(k)
t ∈ {0, 1} under the

mapping {0↔ +1, 1↔ −1}.

After that, x(1) and x(2) are transmitted to the Gaussian MAC. We assume that the average

power of transmitted symbols is unitary, and the codewords and transmitted symbols for each user

are synchronized.

The receiver receives a superimposed signal sequence y = (y1, y2, . . . , yN) with

yt = x(1)
t + x(2)

t + zt, t = 1, 2, . . . ,N (3.1)

where zt is a zero mean AWGN with variance σ2. Two-user decoding is performed to recover

21
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Figure 3.1: System model

information bit vectors u(k), k = 1, 2.

3.2.2 Maximum A Posteriori Decoding

In order to jointly decode information bit vectors of the two users, we consider a factor graph

representation [11] for regular RA codes and superposition of the MAC. Figure 3.2 illustrates the

factor graph of two-user regular RA code and superposition of the MAC. The dotted box parts

are the factor graph of the rate-1/q1 and rate-1/q2 regular RA codes [17], respectively. And the

remaining part corresponds to the superposition of the Gaussian MAC. There are three kinds of

nodes in the graph: variable, check, and sum nodes. Let U,G,V , and Y be four node sets that

include the nodes below letters “U”, “G”, “V” and “Y” in Fig. 3.2, respectively. The variable node

in U corresponds to an information bit. The check node in G denotes a constraint between the

variable nodes connected to it, i.e., the mod-2 addition of the variable nodes connected to the same

check node is 0. The variable node in V corresponds to an RA coded bit. The sum node in Y ,

associated with received symbol yt in (4.1), denotes a superposition constraint between yt and the

two variable nodes from two users. Note that the sum node connects the dotted box parts of factor

graph.

The iterative message-passing decoding is performed on the factor graph of the system and is

accomplished by efficient local decoding at all nodes and interactions. A decoding iteration of the

system starts from the local decoding at the sum nodes in Y . Based on the received superimposed
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Figure 3.2: Factor graph representation of regular RA codes and superposition of two-user Gaus-

sian MAC

signal and the input from the other user (obtained from the previous iteration), a sum node in Y

performs a local decoding and outputs an estimation for the transmitted symbol of user j. This local

decoding is maximum a posteriori probability (MAP) decoding, which minimize the probability

of information-bit error. Based on this estimation, user j performs a single-user decoding on its

own factor graph (see the dotted parts in Fig. 3.2). The decoding subsequently includes the local

decodings at the nodes in V → G → U → G → V . The local decoding at the dashed box part

is belief propagation (BP) decoding [11–13], in which the processing of variable node and check

node is a standardized node processing [28] in the graph-based decoding.

Based on the one output from the sum nodes in Y and the two outputs (obtained from the

previous iteration) from the check nodes in G, a variable node in V performs a local decoding,

similar to the decoding for a repetition code [6, 10, 12, 14–17], and outputs an extrinsic message

to each of its adjacent nodes in G. Based on the two outputs from the variable nodes in V , a

check node in G performs a local decoding, similar to the decoding for a single-parity-check code

[6, 10, 12, 14–17], and outputs an extrinsic message from the check nodes in G, a variable node

in U performs a local decoding and outputs an extrinsic message to each of its adjacent nodes in
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24 3.3. Extrinsic Information Transfer (EXIT) Functions

G. A similar process will be performed on nodes in G and V again to produce the final extrinsic

message output to the sum nodes in Y as a prior message for the next iteration of the other user.

After a large number of iterations, hard decisions can be made at the outputs of variable nodes in

U to recover transmitted vectors u(1) and u(2).

3.3 Extrinsic Information Transfer (EXIT) Functions

Before proceeding, we formulate an extrinsic mutual information transfer (EXIT) function for

the local decoding at each node in Fig. 3.2. We also give monotone properties of EXIT functions.

In our formulation, input and output messages of a decoding are represented by log-likelihood

ratios (LLRs). We suppose an infinite code length and an infinite number of decoding iterations.

Moreover, assume that the input and output LLRs are Gaussian variables (variance of each variable

is twice of its mean). We give the EXIT function, which describes the relation between their mutual

information forms (i.e., mutual information between the out LLR by the node and its associated

message bit) [12, 14–17].

3.3.1 Variable Nodes

Before formulating the EXIT function, function J(∗) is defined as [10, 12, 14, 15, 17].

J(σA) = 1 −
∫ +∞

−∞

e−((x−σ2
A/2)2/(2σ2

A))

√
2πσA

log(1 + e−x)dx. (3.2)

The local decoding at a variable node with d (Fig. 3.2, d = q1 in U for user 1 or d = q2 in U for

user 2 or d = 3 in V) connected edges is same as the decoding for a [d, 1, d] repetition code with

code length d, information length 1, and minimum distance d. The update rule for the LLR output

at the jth edge is

LE, j =

d∑
i=1,i6= j

LA,i, (3.3)
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where LA,i is the input LLR from check node i to variable node j. EXIT function Tv, which

describes the mutual information (MI) output of the variable node, becomes [12, 14, 17]

Tv(IA,1, · · · , IA,d−1) = J


√√

d−1∑
i=1

[
J−1(IA,i)

]2

 , (3.4)

where 0 ≤ IA,i ≤ 1 is the input MI from check node i to variable node j and J−1(∗) is the inverse

function of J(∗). For simplicity, if e input MIs are the same, i.e., IA,i = IA, i = 1, . . . , e, we represent

this EXIT function as Tv(IA × e, IA,e+1, . . . , IA,d−1).

3.3.2 Check Nodes

The local decoding at the check node in G with d (Fig. 3.2, d = 3) connected edges is the same

as the decoding for a [d, d − 1, 2] single-parity-check code. The updata rule at the jth edge is

LE, j = 2 tanh−1

 d∏
i=1,i 6= j

tanh
(

LA,i

2

) , (3.5)

where LA,i is the input LLR from variable node i to check node j. EXIT function Tc, i.e., the MI

output of the check node, is [12, 14, 17]

Tc(IA,1, · · · , IA,d−1) = 1 − Tv(1 − IA,1, · · · , 1 − IA,d−1), (3.6)

where 0 ≤ IA,i ≤ 1 is the input MI from variable node i to check node j. Similarly, for IA,i = IA, i =

1, . . . , e, we represent this EXIT function as Tc(IA × e, IA,e+1, . . . , IA,d−1).

3.3.3 Sum Nodes

During message-passing decoding, MAP decoding at a sum node in Y estimates the transmitted

symbol of each user by using a input LLR about the transmitted symbols of the other user.

Let L(k)
A , k = 1, 2, denote a input LLR about x(k)

t in (4.1). By MAP decoding, the LLR output of

x(k)
t is estimated as [26]

L(k)
E = log

e(2yt−2)/σ2
eL(3−k)

A + 1

eL(3−k)
A + e(−2yt−2)/σ2

. (3.7)
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26 3.4. Code Optimization

Transmitted symbols x(k)
t , k = 1, 2, are independent of each other and uniformly distributed on

set {+1,−1}. Moreover, input LLRs L(k)
A , k = 1, 2, are independent of each other. Since there is a

relationship between the mutual information and the LLR mean, we first obtain the expectation of

the LLR output E[x(k)
t L(k)

E ] with random variables x(k)
t and L(k)

A , and get EXIT function Ts

Ts(IA, σ) = J
(√

2E[x(k)
t L(k)

E ]
)

(3.8)

of MAP decoding at a sum node, where we have used I = J(
√

2m) to transform LLR mean m to

mutual information form I.

3.4 Code Optimization

In this chapter, we give the maximum sum rate of two-user unequal rate RA code by fixed

point analysis. In this theory, we obtain a system equation array of repeat numbers q1 and q2. This

permits us to represent q1 and q2 as functions of fixed point, respectively. For a given channel

noise level with unitary-power signal transmission, we get a reliable region of (q1, q2) over which

the decoding error rate is less than a given arbitrary small value ε. Then in the reliable region, we

find the optimal repeat numbers q∗1 and q∗2 that give the maximum sum rate of 1/q∗1 + 1/q∗2.

3.4.1 Fixed Point Theory

Now we consider the statistical output of each node during the iterative decoding. To see the

flow of MI more explicitly, in Fig. 3.3 we give a protograph representation of the regular RA

code and superposition for user 1. The protograph can be regarded as a simplification of the

original factor graph in Fig. 3.2. Since the distribution of node degree in the original factor graph

is preserved in the protograph, from the view point of MI flow, the protograph is equivalent to

the original factor graph. Due to a regular RA code for each user, Fig. 3.3 is a case of regular

protograph, and the MI outputs on the same side of the same node set are the same. Similar to the

EXIT functions described in Chapter 3.3, the message output is measured by the MI.

At the l-th decoding iteration, l = 0, 1, 2, . . . , each node in the protograph outputs an extrinsic
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Figure 3.3: Protograph representation of regular RA code and superposition for user 1

message on each edge connected to it. Based on the message-passing decoding of the system, the

MI output Il
y,1 on the left side of a sum node in Y can be represented as a function of Il−1

2

Il
y,1 = Ts(Il−1

2 , σ). (3.9)

When message-passing decoding from variable node V to check node G, the MI output Il
a,1 on the

left side of a variable node in V is

Il
a,1 = Tv(Il

y,1, I
l−1
g,v,1) (3.10)

= Tv

(
Ts(Il−1

2 , σ), J
(

1
√

2
J−1(Il−1

1 )
))

where the last equality holds for Il−1
1 = Tv(Il−1

g,v,1 × 2) (see (4.2)). Subsequently, from check node G

to variable node U, the MI output Il
g,u,1 on the left side of a check node in G is written as following

Il
g,u,1 = Tc(Il

a,1 × 2). (3.11)

Afterwards, accoding to the decoding order U → G, we get the MI output Il
u,1 on the right side of

a variable node in U can be represented as function of Il
a,1 and q1

Il
u,1 = Tv(Il

g,u,1 × (q1 − 1))

= Tv

(
Tc(Il

a,1 × 2) × (q1 − 1)
)
. (3.12)
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28 3.4. Code Optimization

In a similar way, about G → V , the MI output Il
g,v,1 on the right side of a check node in G is

obtained by

Il
g,v,1 = Tc(Il

u,1, I
l
a,1) (3.13)

= Tc

(
Tv

(
Tc(Il

a,1 × 2) × (q1 − 1)
)
, Il

a,1

)
Finally, focusing on the MI output Il

1 from variable node V to sum node Y , we have the following

equation

Il
1 = Tv(Il

g,v,1 × 2). (3.14)

Substituting (3.13) into (3.14) and using (3.10), we have

Il
1 = f (Il−1

1 , Il−1
2 , q1, σ) (3.15)

where

f
(
Il−1
1 , Il−1

2 , q1, σ
)

= Tv

(
Tc

(
Tv

(
Tc

(
Tv

(
Ts(Il−1

2 , σ), J
(

1
√

2
J−1(Il−1

1 )
))
×2

)
×(q1−1)

)
,Tv

(
Ts(Il−1

2 , σ), J
(

1
√

2
J−1(Il−1

1 )
)))

× 2
)
.

(3.16)

Similarly, for user 2, we get equation

Il
2 = Tv(Il

g,v,2 × 2)

= f (Il−1
2 , Il−1

1 , q2, σ). (3.17)

We know that with l → ∞, the MI output of each edge converges to a constant [15]. For a

given channel noise level and a pair (1/q1, 1/q2) of rates, it holds that

lim
l→∞

(Il
1, I

l
2) = (I1, I2) (3.18)

where (I1, I2) is the minimum element [6] in solution set I of the equation array
I1 = f (I1, I2, q1, σ)

I2 = f (I2, I1, q2, σ).
(3.19)
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The equation array of (3.19) is referred to as a system equation array. Each solution (I1, I2) ∈ I

of the system equation array is referred to as a fixed point. The minimum fixed point (I1, I2) is the

convergence point of the decoding as the iteration approaches infinity.

Remark 3.1 The fixed point theory can be explained from the viewpoint of an EXIT chart [15].

The protograph in Fig. 3.3 corresponds to an RA code 1, and the omitted graph corresponds to

an RA code 2. If we plot the EXIT charts of the RA decoder 1 and 2 in a two-dimensional

plane, a fixed point, in fact, is an intersection of these two EXIT curves. There may be more

than one intersection for these two EXIT curves, and the minimum intersection nearest the origin

corresponds to the convergence point of the iterative decoding. �

It is well known that as the decoding iteration approaches infinity, each output I on an edge in

a protograph, the corresponding error rate is [16]

Pe(I) =
1
2

erfc
(
J−1(I)

2
√

2

)
(3.20)

where erfc(x) = 2√
π

∫ ∞
x

e−t2dt is a complementary error function. In Fig. 3.3, for the MI outputs

I1 and I2, the corresponding error rates are Pe(I1) and Pe(I2), respectively. By the property of

complementary error function, if pair (I1, I2) of MI outputs satisfies that

(I1, I2) = (1, 1) (3.21)

decoding error rates Pe(I1) and Pe(I2) of the RA coded bits are approach 0, respectively. Let the

average decoding error rate of the RA coded bits be

Pe =
1
2

Pe(I1) +
1
2

Pe(I2). (3.22)

If the condition (3.21) is satisfied, Pe is less than a given arbitrary small value ε for sufficiently

large N, i.e.,

Pe < ε as N → ∞. (3.23)

When Pe approaches 0, the average decoding error rate of the information bits approaches 0 (see

Remark 3.2). This means that the decoding of two-user unequal rate RA code with pair (1/q1, 1/q2)

of rates is error-free.
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30 3.4. Code Optimization

Remark 3.2 In general, the average decoding error rate of a system is the average decoding error

rate of information bits. In our system, it is given by

Pu
e =

K1

K1 + K2
Pe(Iu,1) +

K2

K1 + K2
Pe(Iu,2) (3.24)

where Iu, j = liml→∞ Il
u, j and Pe(Iu, j) is decoding error rate of information bits of user j ( j = 1, 2).

In [6], it is shown that Pe(Iu, j) approaches 0 if and only if Pe(I j) approaches 0. Therefore, when Pe

of (3.22) approaches 0, Pu
e of (3.24) approaches 0. �

3.4.2 Explicit Representations of q1 and q2

In this chapter, by solving the system equation array (3.19), we explicitly represent repeat

numbers q1 and q2 of two-user RA code as functions of the fixed point, respectively.

As stated in Sect. 3.4.1, the decoding of two-user unequal rate unequal rate RA code is error-

free if and only if (I1, I2) = (1, 1). In general, repeat numbers q1 and q2 with which two-user

unequal rate RA code is decodable can be obtained by substituting I1 = I2 = 1 into the functions of

the fixed point, respectively. Unfortunately, for pair (I1, I2) = (1, 1), we can’t obtain the values of q1

and q2 directly with which two-user unequal rate RA code is decodable due to J−1(I1 = I2 = 1) = ∞

contained in function f of (3.19). A possible way is to obtain all values q1 and q2 with which

two-user unequal rate RA code is undecodable firstly, namely an unreliable region (q1, q2). Then

we obtain the reliable region (q1, q2) over which two-user unequal rate RA code is decodable via

complementary set of unreliable region.

For two-user unequal rate RA code is undecodable, we consider three cases. Firstly, both RA

code 1 and 2 are undecodable. Secondly, RA code 1 is undecodable even though RA code 2 is

decodable. Thirdly, RA code 2 is undecodable even though RA code 1 is undecodable. This can

be represented in Table 3.1.

Case 1: Now, we consider the case of the pair (I1, I2) ∈ I1,2. We consider system equation

array (3.19) again. Using the definition of EXIT functions (4.2), (4.3) and (3.8), we solve q1 and
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Table 3.1: Undecodable and decodable

Case Code 1/I1 Code 2/I2 I = I1,2 ∪ I1 ∪ I2 ∪ I0

1 undecodable/[0, 1) undecodable/[0, 1) I1,2 = {(I1, I2) | I1, I2 ∈ [0, 1)}

2 undecodable/[0, 1) decodable/1 I1 = {(I1, I2) | I1 ∈ [0, 1), I2 = 1}

3 decodable/1 undecodable/[0, 1) I2 = {(I1, I2) | I1 = 1, I2 ∈ [0, 1)}

4 decodable/1 decodable/1 I0 = {(I1, I2) | I1 = I2 = 1}

q2 in (3.19) explicitly

q1 =

J−1

1 − J

√[
J−1

(
1 − J

(
J−1(I1)
√

2

))]2
−

[
J−1(1 − Ia,1)

]2
2

[
J−1

(
1 − J

(√
2
[
J−1(1 − Ia,1)

]2
))]2 + 1

q2 =

J−1

1 − J

√[
J−1

(
1 − J

(
J−1(I2)
√

2

))]2
−

[
J−1(1 − Ia,2)

]2
2

[
J−1

(
1 − J

(√
2
[
J−1(1 − Ia,2)

]2
))]2 + 1

(3.25)

(I1, I2) ∈ I1,2

where 
Ia,1 = J


√[

J−1 (Ts(I2, σ))
]2

+
[
J−1(I1)

]2
/2


Ia,2 = J


√[

J−1 (Ts(I1, σ))
]2

+
[
J−1(I2)

]2
/2

 .
To facilitate discussion, we assume temporarily that repeat numbers q1 and q2 in (3.25) are real.

Given a pair of (I1, I2) ∈ I1,2, we can obtain an unique pair of (q1, q2) = (q1(I1, I2), q2(I1, I2)).

Therefore, we can get all possible value of q1 and q2 for the range I1,2 of (I1, I2). The corresponding

unreliable region is Λ1,2 ,
{
(q1(I1, I2), q2(I1, I2)) | (I1, I2) ∈ I1,2

}
.

Case 2: Subsequently, we consider the case of the pair (I1, I2) ∈ I1. Fortunately, the first

equation of equation array (3.25) is still hold on due to not contain J−1(I2 = 1) = ∞. Therefore,
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we can obtain all possible value of q1 of RA code 1 for the range I1 of (I1, I2). Since RA code 2

is decodable (I2 = 1), we don’t have to get the value of q2. The corresponding unreliable region is

Λ1 , {q1(I1, I2) | (I1, I2) ∈ I1}.

In fact, it can be viewed as the single-user case. Obviously, we just need to get the value of q1.

Case 3: For the pair (I1, I2) ∈ I2, in a similar way, we can also get all possible value of q2 of

RA code 2 for the range I2 of (I1, I2) and the corresponding unreliable region Λ2 , {q2(I1, I2) |

(I1, I2) ∈ I2}.

3.4.3 Reliable Region and Maximum Sum Rate

In this chapter, we give the reliable region and the maximum sum rate of two-user unequal rate

RA code where the average decoding error rate approaches zero.

Based on the expressions of q1(I1, I2) and q2(I1, I2) derived above, we get an union unreliable

region

Λ = Λ1 ∪ Λ2 ∪ Λ1,2. (3.26)

Complementary region Λ of Λ

Λ = Λ1 ∩ Λ2 ∩ Λ1,2 (3.27)

corresponds to the reliable region of (q1, q2) with decoding error rate Pe → 0.

Each integer pair of (q1, q2) ∈ (Λ ∩ Z2) guarantees that a sum rate of 1/q1 + 1/q2 is achievable

in the sense of decoding error rate less than ε, where Z2 is the set of all integer pairs. Then we find

the optimal q∗1 and q∗2 over the reliable region that give the maximum sum rate of two-user unequal

rate RA system in the following theorem:

Theorem 3.1 Given a channel noise level σ, the optimal q∗1 and q∗2 are

(q∗1, q
∗
2) = arg max

(q∗1,q
∗
2)∈(Λ∩Z2)

(1/q1 + 1/q2)

which give maximum sum rate Rmax
sum = 1/q∗1 + 1/q∗2. �
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Figure 3.4: Reliable and unreliable regions for the two-user case

From the above analysis, it is clear that for a given channel noise level σ, we obtain the pair

(1/q∗1, 1/q
∗
2) of rates in the sense that the average decoding error rate approaches 0. The threshold

of message-passing decoding is then

EbN0th = 10 · log10
1

(σ)2 · (1/q∗1 + 1/q∗2)
[dB]. (3.28)

3.5 Numerical Results

In this chapter, we present some numerical results of fixed point analysis.

For an arbitrary channel noise level, e.g., σ = 1.1, we first consider the case of the pair (I1, I2) ∈

I1 and I2, then get two unreliable regions Λ1 = {1 ≤ q1 ≤ 2.9} and Λ2 = {1 ≤ q2 ≤ 2.9}. Then

consider the case of the pair (I1, I2) ∈ I1,2, we also obtain an unreliable region Λ1,2 by (3.25).

Subsequently, we get the unreliable region Λ by (3.26). The reliable region is also obtained in

Fig. 3.4 (a). Obviously, the optimal point in the reliable region is (q∗1, q
∗
2) = (4, 3), which gives the
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Figure 3.5: Maximum achievable pair of (equal or unequal) rates in the capacity region of two-user

Gaussian multiple access channel

sum rate of Rmax
sum = 7/12 bit/symbol. Also, we see that point (4,4) is in the reliable region, but gives

a slightly smaller sum rate of 1/2. It means that the two-user unequal rate RA code can achieve

larger sum rates than two-user equal rate RA code.

Similarly, for σ = 1.3 (Fig. 3.4 (b)), we get the reliable region Λ of (q1, q2) over which the

average decoding error rate approaches 0. The optimal point (q∗1, q
∗
2) = (5, 4) gives the maximum

sum rate of 9/20 bit/symbol. For σ = 1.6, the reliable region Λ is shown in Fig. 3.4 (c). The

optimal point (q∗1, q
∗
2) = (7, 6) gives the maximum sum rate of 13/42 bit/symbol.

We also give the maximum achievable pair of rates obtained by EXIT charts in the capacity

region [1, 29] of two-user GMAC. For σ = 1.1, among pairs of rates over the capacity region

(see Fig. 3.5 (a)), we find the optimal pair of unequal rates which has the maximum sum rate is

(1/q∗1, 1/q
∗
2) = (1/4, 1/3). Similarly, for σ = 1.3 and 1.6, (1/q∗1, 1/q

∗
2) = (1/5, 1/4) and (1/7, 1/6),
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Figure 3.6: BER performance of two-user unequal rate RA code

respectively. All these optimal pairs of unequal rates obtained by EXIT charts in Fig. 3.5 coincide

with our fixed point analysis.

The optimal point (q∗1, q
∗
2) of reliable region by fixed point analysis is based on assumptions of

infinite code length and infinite iterations. For finite code length N = 42000 and finite iterations

l = 100, the bit error rate (BER) curves of (1/q∗1, 1/q
∗
2) = (1/4, 1/3), (1/5, 1/4) and (1/7, 1/6) are

given by Monte Carlo simulations, respectively (see Fig. 3.6). The corresponding thresholds of

(3.28) are also plotted in Fig. 3.6. It is shown that the receiver can decode successfully and two-

user unequal rate RA codes converge to their thresholds very well within a gap less than 0.4 dB

at error rate 10−4. This verifies that fixed point analysis is accurate in the joint design of two-user

unequal rate RA code.
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3.6 Conclusions

For a multiple access channel, we proposed a two-user unequal rate RA code with binary inputs,

equal-power and symbol synchronization. In this scheme, a regular RA code whose rate can be

changed freely is employed for each user. Two-user message-passing decoding is performed on

a single factor graph. Based on message-passing decoding, we developed a fixed point analysis

to explicitly obtain a system equation array of q1 and q2. This permits us to represent q1 and q2

explicitly as functions of fixed point, respectively. For a given channel noise level with unitary-

power signal transmission, we obtained a reliable region of (q1, q2) in which the error rate of

detected information bits approaches zero. Then in the reliable region, we found the optimal

repeat numbers q∗1 and q∗2 which achieves the maximum sum rate Rmax
sum = 1/q∗1 + 1/q∗2. Monte

Carlo simulations verified that fixed point analysis is accurate in the jointly design of the two-user

unequal rate RA code.

Works [30] and [31] addressed spatial coupled LDPC code over MAC. Numerical results show

that spatial coupled LDPC code has a noticeable performance over two-user MAC. Our two-user

unequal rate RA code can be considered as a base code before spatial coupling, and the decoding

threshold of our code can also be improved by spatial coupling method.
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Chapter 4

Rate Optimization in Multi-User

Communications

In this chapter, we introduce a multi-rate transmission in multi-user multiple access communi-

cation systems. We equally divide K users into M groups, and users in identical group has a same

transmission rate. For each user, we employ a RA code serially concatenated with a spreading to

implement various rates by adjusting both repeat number in RA encoder and length of spreading

in spreader. Here the spreading is to lower the rate and thus to combat the user interference, since

an increase in the number of users results in very serious multi-user interference. At the receiver,

we perform a joint iterative BP decoding (Iterative Joint Decoding, IJD) on a single factor graph,

where at sum (multi-user superimposed signals) node, the elementary signal estimation (ESE) is

carried out. We develop a bivariate fixed point analysis to explicitly represent repeat numbers qm

of RA code and spreading lengths Lm as a function of mutual information outputs, m = 1, · · · ,M.

Based on these basic explicit representations, a united unreliable region is given, where users in

at least one group are undecodable. The complementary set of the united unreliable region gives

the optimal parameters (repeat numbers) of RA code and spreading lengths, corresponding to the

optimal rate profile, that achieves the maximum sum rate. With the increment of groups, the max-

imum sum rates of our optimized multi-rate code increase, and approach the Shannon limit, and

exceeds those of conventional equal-rate transmission.
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Instead of global IJD above, in the receiver we perform hybrid interference cancellation (HIC)

decoding, where successive interference cancellation (SIC) is employed between the groups, and

IJD is employed within the group. The HIC scheme provides much lower decoding complexity

than the global IJD scheme with little degradation in the maximum sum rate, and outperforms the

pure SIC scheme.

4.1 Introduction

For a K-user multiple access channel (MAC) [3, 4, 6, 32–34], a serial concatenation of error

correction code (ECC) Ck and length-Lk spreading Sk for each user k, 1 ≤ k ≤ K, is shown to

be an effective coding scheme. In this scheme, ECC mainly overcomes the channel noise, and

the spreading mainly overcomes the multi-user interference. K-user coding-spreading schemes

based on this idea are coded code-division multiple-access (CDMA) [32–34] and coded interleave-

division multiple-access (IDMA) [3,4,6], where the challenge is optimizing the ECC and spreading

profile {(C1,S1), · · · , (CK ,SK)} that approaches the Shannon limit of MAC.

The IDMA scheme can provide an even larger load-carrying capability than the CDMA scheme

[35, 36], since the conventional CDMA scheme is regarded as a special case of the IDMA scheme

[37]. For a K-user IDMA system, in general, the same ECC and spreading, i.e., C1 = · · · = CK , C,

S1 = · · · = SK , S, are employed by each user, and user-specific interleavers, πk, 1 ≤ k ≤ K, are

followed for user separation. This is equal rate transmission. In principle, to approach the Shannon

limit, ECC and spreading should be jointly designed, for instance, by extrinsic information transfer

(EXIT) analysis. By employing identical C and S for K users, the K mutual information (MI)

outputs of the decoder-despreader are the same. The decoding error is judged by observing the

EXIT charts of the multi-user detector and the decoder-despreader. However, a tremendous amount

of observation on the EXIT charts for various parameters of C and S prevents us from doing the

joint design. In practice, the previous works [3,4] optimized the spreading length for a given ECC.

Zhang et al. considered a convolutional coded IDMA [3], where the optimal spreading length is

obtained by observing the EXIT chart for a given convolutional code. They gave some examples
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of EXIT charts when repetition code and repeat-accumulate (RA) code were employed [4]. Also,

an optimal non-binary spreading length for a given non-binary low-density parity-check code was

given [5]. Joint design of ECC and spreading can be found in our previous work [6], where we

focused on jointly optimizing regular RA code and the spreading length by bivariate fixed-point

analysis, which is based on the MI transfer function. Related to the serial concatenating scheme of

ECC and spreading stated above, recently the parallel concatenating scheme of ECC and spreading

can be found in [7, 8]. However, these works [3–8] only addressed equal rate transmission.

In practice, multi-rate transmission [38,39] is required in wireless communications, which sup-

port various multimedia services such as voice, data, and video. For example, in the IDMA system,

K users are separated into M groups of transmission rates R1, · · · ,RM, where the data users trans-

mit at lower rates, and the video users transmit at higher rates. From the viewpoint of information

theory, for such systems with equal-power distribution, the Shannon limit can be achieved as long

as M is sufficiently large [2]. It is required to give a practical multi-rate coding-spreading scheme

and optimize it to approach the Shannon limit. Similar to EXIT analysis, we can track M different

MI outputs, each of which represents the same MI outputs of K/M users within the mth group.

However, this optimization’s complexity is prohibitive. To the best of our knowledge, relative-

ly few works have focused on the joint optimization of practical coding-spreading for multi-rate

transmission. Previous work [9] optimized the spreading length profile (L1, · · · , LM) in uncoded

IDMA systems by a linear programming method. This approach is restricted to no ECC and the

all-ones spreading sequence and may be not extended to coded systems. The bit error rate (BER)

performance is about 5 dB away from the Shannon limit.

In this chapter, we propose a multi-rate coding-spreading scheme for the Gaussian MAC with

binary inputs, equal-power, and symbol synchronization. In this multi-rate transmission, we e-

qually divide K users into M groups. For each user in the mth group, we employ code rate-1/qm

regular RA code Cm serially concatenated with length-Lm spreading Sm, where repeat number qm

and spreading length Lm can be changed (1 ≤ m ≤ M). The transmission rate of each user in the mth

group is R(1)
m = R(2)

m = · · · = R(K/M)
m , Rm = 1/(qmLm). For convenience, {(C1,S1), · · · , (CM,SM)} is

called a K-user multi-rate code, which includes spreading. One key advantage of employing RA
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codes is that the encoder structure is simple and the encoding complexity is linear with the code

length [17]. Moreover, the RA codes are a class of the simplest forms of turbo codes that provide

capacity-approaching performance [40]. For M independent information bit sequences with dif-

ferent lengths, the corresponding adjustable qm and Lm guarantee the same length of transmitted

vectors and realize multi-rate transmission. At the receiver, iterative joint decoding (IJD) and hy-

brid interference cancellation (HIC) schemes are performed on a single factor graph with a belief

propagation (BP) decoder.

For the design of our K-user multi-rate code, we applied bivariate fixed-point analysis [6] to our

multi-rate transmission and obtained a system equation array of M different MI outputs I1, · · · , IM,

which has M pairs-of-equations. By solving the mth pair-of-equations, we represent (qm, Lm) ex-

plicitly as a function of I1, · · · , IM, only when 0 ≤ Im < 1 and 0 ≤ Im′ ≤ 1 (m′ 6= m). This

implies that we only obtain all the possible values of (qm, Lm) over which users in the mth group

are undecodable due to Im 6= 1. Based on these basic explicit representations, from T correspond-

ing simultaneous pairs-of-equations, we obtain a combined region of ((q1, L1), · · · , (qM, LM)) over

which the users in any T groups are undecodable (1 ≤ T ≤ M). Then, we have a united (unreliable)

region over which users in at least one group are undecodable. The reliable region, i.e., the com-

plementary set of the united unreliable region, gives the optimal repeat number and the spreading

length profile ((q∗1, L
∗
1), · · · , (q∗M, L

∗
M)) that corresponds to optimal rate profile (R∗1, · · · ,R

∗
M), which

achieves the maximum sum rate.

The remainder of this chapter is organized as follows. Section 4.2 briefly describes the system

model. The design of the K-user multi-rate code is given in Section 4.3. Numerical results are

shown in Section 4.4, and Section 4.5 draws our conclusion.

4.2 System Model

In this chapter, we describe our K-user multi-rate code and two decoding schemes for the

Gaussian MAC.
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Figure 4.1: System model

4.2.1 Coding Scheme

In this chapter, we give our K-user multi-rate code for the Gaussian MAC. A block diagram of

a multi-user multi-rate transmission system is depicted in Fig. 4.1.

In our scheme, we equally divide K users into M groups. The mth group contains K/M users

with identical transmission rates R(1)
m = R(2)

m = · · · = R(K/M)
m , Rm (1 ≤ m ≤ M). Length-Km

information bit vector u(k)
m = (u(k)

m,1, u
(k)
m,2, · · · , u

(k)
m,Km

), u(k)
m,i ∈ {0, 1}, 1 ≤ i ≤ Km, of the kth (1 ≤

k ≤ K/M) user in the mth group, is first encoded by a regular RA code Cm, which is a serial

concatenation of a code rate-1/qm repeater with a 1/(1 + D) accumulator linked by interleaver

π(k)
m [41]. The output coded vector is denoted as v(k)

m = (v(k)
m,1, v

(k)
m,2, · · · , v

(k)
m,Kmqm

), v(k)
m, j ∈ {0, 1}, 1 ≤ j ≤

Kmqm. A block spreading Sm, which consists of bit spreading and chip-level interleaving, is then

performed on v(k)
m . Each bit of v(k)

m is spread by length-Lm sequence s(k)
m into vector (1 − 2v(k)

m, j)s(k)
m .

Here, s(k)
m = (s(k)

1 , s
(k)
2 , · · · , s

(k)
Lm

) with s(k)
2l−1 = +1, s(k)

2l = −1, 1 ≤ l ≤ b Lm+1
2 c, where bpc is the greatest

integer less than or equal to p [37]. The spreader output is a length-KmqmLm sequence, which

is referred to as a chip sequence. After spreading, user-specific chip-level interleaver π̃(k)
m with
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length-KmqmLm is employed to produce transmitted signal vector x(k)
m = (x(k)

m,1, x
(k)
m,2, · · · , x

(k)
m,KmqmLm

),

which is transmitted to the Gaussian MAC. Here, transmitted signal vector x(k)
m is referred to as a

codeword of the kth user in the mth group. The transmission rate of each user in the mth group

is Rm = 1/(qmLm). Denote by {(C1,S1), · · · , (CM,SM)} a K-user multi-rate code, which includes

spreading. Note that although the transmission rates of different groups vary, it is not difficult to

have identical length N by an adjustment of information bit lengths Km, i.e., KmqmLm , N, to

realize multi-rate transmission with rate profile (R1,R2, · · · ,RM). The overall transmission rate,

i.e., the sum rate, is given as

Rsum =
K
M

M∑
m=1

Rm =
K
M

M∑
m=1

1
qmLm

.

The symbols and codeword synchronization are assumed.

Our K-user multi-rate coding scheme can also be described by a factor graph. Since the factor

graph can be obtained by a “copy-and-permute” operation from a protograph [18], it is equivalent

for us to describe the coding scheme using it. Moreover, since each user’s protograph in the mth

group is the same, 1 ≤ m ≤ M, we only give the protograph of the kth user in the mth group

associated with the Gaussian MAC in Fig. 4.2. The graph has three kinds of nodes: variable nodes

in U and V , which correspond to the information bits and the RA coded bits, check nodes in G,

which correspond to a constrain where the mod-2 addition of the variable nodes connected to it is 0,

and sum nodes in Y , which correspond to the received signals. The dashed box part is a protograph

of the rate-1/qm regular RA code, which represents information bits that are repeated qm times in

U → G and passed through an accumulator in G → V . The remaining part in V → Y corresponds

to block spreading by length-Lm. At the sum node in Y , the K users’ signals are superimposed,

among which the K/M users’ signals are from the mth group (left side of the sum node) and the
K
M (M−1) users’ signals are from the remaining M−1 groups (right side of the sum node). Each of

the K edges in the sum node is connected to its corresponding user’s protograph. In Fig. 4.2, only

the protograph of the kth user in the mth group is shown.
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Figure 4.2: Protograph representation of regular RA code and block spreading associated with

Gaussian MAC for kth user in mth group (1≤k≤K/M, 1≤m≤M)

4.2.2 Decoding Scheme

In this section, we briefly give IJD and HIC schemes for our multi-rate transmission. Our

decoding schemes are performed on a factor graph. For convenience, we describe them on the

protograph (Fig. 4.2).

The receiver gets a superimposed signal vector y = (y1, y2, · · · , yN) with

yt =

M∑
m=1

K/M∑
k=1

x(k)
m,t + zt, t = 1, 2, · · · ,N, (4.1)

where zt is a zero-mean Gaussian variable with a variance of σ2, i.e., E [zt] = 0,Var [zt] = σ2. The

IJD and HIC schemes are performed to recover information bit vectors u(k)
m , 1 ≤ m ≤ M, 1 ≤ k ≤
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K/M.

4.2.2.1 Iterative Joint Decoding

The IJD scheme is accomplished by efficient local decoding at all the nodes and interaction-

s. During a decoding iteration, each node acts once to perform local decoding and updates the

message on the edges to each of its adjacent nodes.

A decoding iteration starts from the local decoding at the sum nodes in Y . The local decoding

at a sum node is elementary signal estimation (ESE) [35, 36, 42], in which the sum signal of the

other users is regarded as Gaussian. Then the local decodings are subsequently done at the nodes in

V → G → U → G → V → Y . The local decoding at the dashed box part is BP decoding [11–13],

in which the processing of variable node and check node is a standardized node processing [28]

in the graph-based decoding. After a large number of iterations, hard decisions are made at the

outputs of the variable nodes in U to recover the transmitted vectors. The message update rules at

sum node, variable node and check node will be given later in Section 4.3.1.

4.2.2.2 Hybrid Interference Cancellation

The HIC scheme is accomplished by a local IJD within the groups and successive interference

cancellation (SIC) [1,43,44] among the groups. It provides much lower decoding complexity than

the global IJD described in Section 4.2.2.1, since it does not require global iteration among all the

users.

Without loss of generality, assume that R1 ≤ R2 ≤ · · · ≤ RM. At the receiver in the mth step

of the HIC scheme, 1 ≤ m ≤ M, K/M users’ information in the mth group is decoded by a local

IJD, regarding the signals transmitted from the M − m groups as “noise”. Then the replicas of the

transmitted vectors in the mth groups are generated and cancelled from the received signal. This

process is performed successively until the users’ information in all the groups has been recovered.
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4.3 Code Optimization

The design of the K-user multi-rate code is to find the optimal repeat number and spreading

length profile ((q∗1, L
∗
1), · · · , (q∗m, L

∗
m)), which gives the maximum sum rate. In this section, after

introducing the EXIT function at each node for the local decoding in the protograph, we give a

bivariate fixed-point analysis to explicitly represent (qm, Lm) as a function of MI outputs. Based

on these basic explicit representations, we have a united unreliable region over which users in at

least one group are undecodable. The reliable region, i.e., the complementary set of the united

unreliable region, gives optimal profile ((q∗1, L
∗
1), · · · , (q∗m, L

∗
m)).

4.3.1 Node Processing and EXIT Functions

Generally during decoding, the input or output message of a local decoding is a log-likelihood

ratio (LLR) for its associated bit. The EXIT function describes a statistical property of the decod-

ing, where both the input and output are measured by the MI between the LLR and its associated

message bit [12, 14–17]. Moreover, the EXIT function theory is based on assumptions of infinite

code length, infinite iterations, and the Gaussian approximation, where both the input and output

LLRs are assumed to be Gaussian variables (variance of each variable is twice its mean). In the

following, we introduce the EXIT function for the local decoding at each node.

4.3.1.1 Preliminaries

The update rules of all the LLRs at the variable and check nodes follow from usual BP decod-

ing [14, 17]. For the local decoding at a variable node with degree d (Fig. 4.2, d = qm in U or

Lm + 2 in V for kth user in mth group), the EXIT function Tv, which describes the MI output of the

variable node, becomes

Tv(IA,1, · · · , IA,d−1) = J


√√

d−1∑
i=1

[
J−1(IA,i)

]2

 , (4.2)

where 0 ≤ IA,i ≤ 1 is the input MI from check node i to variable node j. For simplicity, if

e inputs are the same, i.e., IA,i = IA, i = 1, . . . , e, we represent this EXIT function as Tv(IA ×
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e, IA,e+1, . . . , IA,d−1). For the local decoding at a check node in G with degree d (Fig. 4.2, d = 3),

the EXIT function Tc, i.e., the MI output of the check node, is

Tc(IA,1, · · · , IA,d−1) = 1 − Tv(1 − IA,1, · · · , 1 − IA,d−1), (4.3)

where 0 ≤ IA,i ≤ 1 is the input MI from variable node i to check node j. Similarly, for IA,i = IA, i =

1, . . . , e, we represent the EXIT function as Tc(IA × e, IA,e+1, . . . , IA,d−1).

4.3.1.2 Sum Node for IJD

For the IJD and HIC decoding schemes, the EXIT functions, i.e., the MI outputs, at a sum node

are different. For the IJD scheme, since the sum node has K edges, its MI output is a function of

K − 1 input MIs.

We rewrite (4.1) as

yt = x(k)
m,t + ζ(k)

m,t + zt, (4.4)

where

ζ(k)
m,t ,

M∑
m′=1

K/M∑
k′=1

x(k′)
m′,t − x(k)

m,t =

M∑
m′=1

K/M∑
k′=1

(m′ 6=m)&(k′ 6=k)

x(k′)
m′,t (4.5)

is regarded as a Gaussian variable.

The local decoding at the sum node in Y estimates LLR output L(k)
E,m of x(k)

m,t from received signal

yt and input LLRs L(k)
A,m. Since ζ(k)

m,t is a Gaussian variable, we have [35, 36]

L(k)
E,m = log

Pr
(
yt|x

(k)
m,t = +1

)
Pr

(
yt|x

(k)
m,t = −1

) =
2
(
yt − E

[
ζ(k)

m,t

]
− E [zt]

)
Var

[
ζ(k)

m,t

]
+ Var [zt]

, (4.6)

where

E
[
ζ(k)

m,t

]
=

M∑
m′=1

K/M∑
k′=1

(m′ 6=m)&(k′ 6=k)

tanh

L(k′)
A,m′

2

 ,
Var

[
ζ(k)

m,t

]
=

M∑
m′=1

K/M∑
k′=1

(m′ 6=m)&(k′ 6=k)

1 −
tanh

L(k′)
A,m′

2




2
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due to E
[
x(k)

m,t

]
= tanh

(
L(k)

A,m

2

)
, Var

[
x(k)

m,t

]
= 1 −

(
E

[
x(k)

m,t

])2
[35, 36].

Since transmitted signals x(k)
m,t are independent of each other and uniformly distributed on

{+1,−1}, we derive the expectation of the LLR output with random variable x(k)
m,t

EIJD

[
x(k)

m,tL
(k)
E,m

]
= E


2

M∑
m′=1

K/M∑
k′=1

(m′ 6=m)&(k′ 6=k)

1 − (
tanh

(
L(k′)

A,m′

2

))2 + σ2


. (4.7)

The expectation above can be obtained by the Monte Carlo method [18]. Note that the assumption

that the all-ones signals, i.e., x(k)
m,t = 1, were transmitted in the single-user case is not suitable for

the multi-user case.

Figure 4.3: Sum node for IJD scheme

Figure 4.4: Sum node for HIC scheme

Now we are ready to give an EXIT function at the sum node for the IJD scheme. Similar to the
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variable and check nodes, the input and output LLRs are modeled by Gaussian variables with mean

µ and variance 2µ. The MI is I = J(
√

2µ) [18]. We redraw the sum node in Fig. 4.2 as in Fig. 4.3,

where the K edges are connected to the node, one labeled by MI output TIJD
s,m and the others labeled

by input MIs IA,m, 1 ≤ m ≤ M. The input MIs come from the MI outputs of the decoder-despreader

(Fig. 4.2). Within the mth group, users have the same input MI, i.e., I(1)
A,m = · · · = I(K/M)

A,m , IA,m,

since they employ the same RA code and spreading. As a result, we have M kinds of input MIs

(IA,1, · · · , IA,M), which are associated with rate profile (R1, · · · ,RM). In our Monte Carlo simulation,

we set IA,m and randomly generate input LLRs L(k)
A,m to compute the expectation of the LLR output

in (4.7). Therefore, EXIT function TIJD
s,m, i.e., the MI output of the sum node, can be formulated as

TIJD
s,m

(
IA,1 ×

K
M
, · · · , IA,m ×

( K
M
− 1

)
, · · · , IA,M ×

K
M
, σ2

)
= J

(√
2EIJD

[
x(k)

m,tL
(k)
E,m

])
, 1 ≤ m ≤ M. (4.8)

Note that if the equal rate transmission is considered, i.e., M = 1, the EXIT function in (4.8) is

reduced to [6, Eq. (8)].

4.3.1.3 Sum Node for HIC

For the HIC scheme, we employ the local IJD within the groups and the SIC among them.

Assume that R1 ≤ · · · ≤ RM. In the mth step, the replicas of x̂(k)
m−1,t, 1 ≤ k ≤ K/M are generated and

cancelled from ym−1,t, and the remaining received signal is given by

ym,t = x(k)
m,t + ζ′(k)

m,t + z′m,t, (4.9)

where y1,t = yt in (4.1). Here, ζ′(k)
m,t ,

K/M∑
k′=1,k′ 6=k

x(k′)
m,t is a Gaussian variable, and

z′m,t =


M∑

j=m+1

K/M∑
k=1

x(k)
j,t + zt if 1 ≤ m < M,

zt if m = M

is regarded as “noise” for SIC.

For the local IJD within the mth group, similar to the global IJD in (4.7), we obtain the expec-
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tation of the LLR output with x(k)
m,t

EHIC

[
x(k)

m,tL
(k)
E,m

]
= E


2

K/M∑
k′=1,k′ 6=k

1 − (
tanh

(
L(k′)

A,m

2

))2 + K
M (M − m) + σ2

 . (4.10)

Note that the second term in the denominator denotes the interfering signal power of the users in

the remaining M − m groups, which is regarded as “noise”.

Obviously, users within the mth group have identical input MI IA,m. We set IA,m and randomly

generate input LLRs L(k)
A,m to compute the expectation of the LLR output in (4.10), where K

M (M−m)

is the total interfering signal power of the remaining M − m groups. Since the replicas of the

transmitted vectors in the preceding m−1 groups are cancelled from received signal yt of (4.4), the

remaining received signal is ym,t of (4.9) in Fig. 4.4. EXIT function THIC
s,m , i.e., the MI output of the

sum node, is

THIC
s,m

(
IA,m ×

( K
M
− 1

)
,

K
M

(M − m) + σ2
)

= J
(√

2EHIC

[
x(k)

m,tL
(k)
E,m

])
, 1 ≤ m ≤ M. (4.11)

4.3.2 Bivariate Fixed-Point Analysis

In this section, we apply bivariate fixed-point analysis to our multi-rate transmission and rep-

resent each (qm, Lm) as a function of M different MI outputs by solving the mth pair-of-equations

in the system equation array.

Due to the monotone increasing property of the EXIT functions at each node, the MI output on

each edge on the protograph in Fig. 4.2 is increasing and converges to a fixed value as the decoding

iteration approaches infinity [6]. In the following, we directly give the convergence value on the

protograph.

As stated in Section 4.3.1, there are M kinds of input MIs to the sum nodes in Fig. 4.3 for the

IJD scheme, but there is only one in Fig. 4.4 for the HIC scheme. Thus, the MI output of Iy,m at a

sum node in Y on the protograph is

Iy,m =


TIJD

s,m

(
I1 ×

K
M
, · · · , Im ×

( K
M
− 1

)
, · · · , IM ×

K
M
, σ2

)
for the IJD scheme, (4.12a)

THIC
s,m

(
Im ×

( K
M
− 1

)
,

K
M

(M − m) + σ2
)

for the HIC scheme. (4.12b)
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Moreover, for a given pair of (qm, Lm) at a variable node, MI outputs of Iu,m in U and Ia,m, Im in V

are obtained by (4.2). At a check node, MI outputs of Ig,u,m and Ig,v,m in G are obtained by (4.3).

According to the MI evolution Y → V → G → U → G → V → Y in Fig. 4.2, we obtain the mth

pair-of-equations

 Im = Tv

(
Tc

(
Tv

(
Tc

(
(Ia,m × 2) × (qm − 1)

))
, Ia,m

)
× 2, Iy,m × (Lm − 1)

)
(4.13a)

Ia,m = Tv

(
Tc

(
Tv

(
Tc

(
(Ia,m × 2) × (qm − 1)

))
, Ia,m

)
, Iy,m × Lm

)
(4.13b)

m = 1, 2, · · · ,M.

In the mth pair-of-equations, each value (Im, Ia,m) is referred to as a bivariate fixed-point. Min-

imum fixed-point (I∗m, I
∗
a,m) is the convergence point of the decoding as the iteration approaches

infinity [6].

The convergence behavior of the decoding can be predicted by the average bit error rate of the

RA coded bits (variable nodes in V in Fig. 4.2), i.e.,

Pe =

M∑
m=1

Kmqm

M∑
m′=1

Km′qm′

Pe(I∗m), (4.14)

where Pe(I∗m) = erfc(J−1(I∗m)/(2
√

2))/2. By the property of complementary error function erfc(∗),

if I∗m = 1, Pe(I∗m) → 0, thus Pe → 0. Instead of the average bit error rate P
u
e =

M∑
m=1

Km
M∑

m′=1
Km′

Pe(Iu,m) of the

information bits (variable nodes in U in Fig. 4.2), we employ Pe to judge whether the decoding is

successful, since Pe(Iu,m) → 0 if and only if Pe(I∗m) → 0 [6]. Note that if I∗m 6= 1,Pe(I∗m) 6= 0. This

means that K/M users in the mth group are undecodable if I∗m 6= 1. If the users in any one group are

undecodable, the decoding of our K-user multi-rate code is regarded as fail, i.e., ∀m, if Pe(I∗m) 6= 0,

Pe 6= 0.

Next, we consider the mth pair-of-equations (4.13) again. For given I∗1, · · · , I
∗
M and auxiliary

variable I∗a,m, by (4.13b) × 2 − (4.13a) using (4.2), (4.3) and (4.12), we can solve Lm in (4.15b).
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Then, substituting Lm into (4.13a) (or (4.13b)), we also explicitly solve qm in (4.15a):

q̇m(I∗1, · · · , I
∗
m, · · · , I

∗
M, I

∗
a,m)

=

J−1

1−J


√[

J−1
(
1−J

(√[
J−1(Iy,m)

]2
+
[
J−1(I∗m)

]2
−
[
J−1(I∗a,m)

]2
))]2

−
[
J−1(1−I∗a,m)

]2





2

[
J−1

(
1 − J

(√
2[J−1(1 − I∗a,m)]2

))]2 +1(4.15a)

L̇m(I∗1, · · · , I
∗
m, · · · , I

∗
M, I

∗
a,m)

=
2
[
J−1(I∗a,m)

]2
−

[
J−1(I∗m)

]2[
J−1(Iy,m)

]2 − 1 (4.15b)

0 ≤ I∗m, I
∗
a,m < 1, 0 ≤ I∗m′ ≤ 1, m′ 6= m

where

Iy,m =


J
(√

2EIJD

[
x(k)

m,tL
(k)
E,m

])
for the IJD scheme,

J
(√

2EHIC

[
x(k)

m,tL
(k)
E,m

])
for the HIC scheme.

For a given m, (q̇m, L̇m) in (4.15), is calculated over the range 0 ≤ I∗m, I
∗
a,m < 1. It should be

emphasized that 1 is excluded from the range of I∗m and I∗a,m, since function J−1(I = 1) = ∞. As

we stated above, Pe(I∗m) 6= 0, when I∗m 6= 1. This means that the values of (q̇m, L̇m) in (4.15) are

unreliable in the sense that K/M users in the mth group are undecodable, i.e., I∗m 6= 1.

4.3.3 Reliable and United Unreliable Regions

As stated in Section 4.3.2, we can not directly obtain the (reliable) values of (qm, Lm) that

guarantee the error-free decoding, since 1 is excluded from the range of MI output I∗m. Our objec-

tive is to obtain a reliable region, over which our K-user multi-rate code is decodable, by taking

the complement of a union of M combined unreliable regions. Note that the unreliable values

of (q̇m, L̇m) in the unreliable region are calculated from (4.15). Specifically, based on the above

basic explicit representations of (4.15a) and (4.15b), from T corresponding simultaneous pairs-of-

equations (1 ≤ T ≤ M), we first give a combined unreliable region over which users in any T

groups are undecodable. Then we have a united unreliable region over which the users in at least
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52 4.3. Code Optimization

Figure 4.5: Reliable and unreliable regions for our K-user multi-rate code (M = 3)

one group are undecodable. Finally, the reliable region gives the optimal repeat number and the

spreading length profile, which achieves the maximum sum rate.

For a given T , denote by ST = {s1, · · ·, sT } a subset of T -distinct elements ofM = {1, · · ·,M},

which is referred to as a T -combination ofM. Region

ΛST =
{
((q1, L1), · · · , (qM, LM)) | ((qs1 , Ls1), · · · , (qsT , LsT )) = ((bq̇s1c, bL̇s1c)T , · · · , (bq̇sT c, bL̇sT c)T ),

and ∀(qm′ , Lm′) ∈ Z2,m′ ∈ M \ ST
}

(4.16)

is unreliable, in the sense that all the users in ST are undecodable, regardless whether the users in

the remaining groupsM\ST are decodable or undecodable, where Z2 is the set of 2-dimensional in-

tegers. Here, ((q̇s1 , L̇s1)T , · · · , (q̇sT , L̇sT )T ) are obtained simultaneously from T corresponding pairs-

of-equations in (4.15). Note that the values of (q̇m, L̇m)T depend on I∗m and I∗m′ (see (4.15)). Here,

I∗m, m ∈ ST , excludes 1, and I∗m′ , m′ ∈ M \ ST , includes 1. Thus a different T may give different
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Table 4.1: IJD scheme: optimal repeat number and spreading length profiles

K M SNR (dB) ((q∗1, L
∗
1), · · · , (q∗M, L

∗
M)) Rmax

sum Shannon limit SNRth Gap

12

1

2 (4, 6) 0.5000 0.01 1.88 1.87

4 (3, 6) 0.6667 1.82 3.45 1.63

6 (2, 7) 0.8571 3.59 5.41 1.82

2

2

((3, 8), (4, 5))

0.5500 0.59

1.90 1.31

((4, 6), (4, 5)) 1.92 1.33

((3, 8), (5, 4)) 1.95 1.36

4 ((3, 6), (3, 5)) 0.7333 2.47 3.87 1.40

6
((2, 7), (2, 6))

0.9286 4.20
5.67 1.47

((2, 7), (3, 4)) 5.86 1.66

3

2

((3, 8), (4, 5), (4, 5))

0.5667 0.77 1.98 1.21((4, 6), (4, 5), (4, 5))

((3, 8), (4, 5), (5, 4))

4 ((3, 6), (3, 6), (4, 3)) 0.7778 2.88 3.92 1.04

6 ((2, 7), (2, 7), (3, 3)) 1.0159 4.91 5.97 1.06

values of (q̇m, L̇m)T . Moreover, for another distinct T -combination S̃T ofM, since all the values of

the vectors in regions ΛST and ΛS̃T are from T pairs-of-equations in (4.15) with the only difference

in m ∈ S̃T or ST , the vector in region ΛS̃T is a permutation of a corresponding vector in ΛST . Thus,

region ΛS̃T is obtained by setting (q̇m, L̇m)T in region ΛST , m ∈ ST into the corresponding locations

in ΛS̃T in a particular order of S̃T .

Let Sc
T , 1 ≤ c ≤

(
M
T

)
, be a T -combination of M, e.g., S1

T = {1, · · · ,T }. Combined region

ΛT =
(M

T )⋃
c=1

ΛS
c
T is unreliable over which all the users in any T groups are undecodable. Then, we

have a united unreliable region

Λ1 ∪ · · · ∪ ΛM (4.17)
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54 4.3. Code Optimization

Table 4.2: HIC and SIC schemes: optimal repeat number and spreading length profiles

K M SNR (dB) ((q∗1, L
∗
1), · · · , (q∗M, L

∗
M)) Rmax

sum Shannon limit SNRth Gap

HIC 12

2

2
((4, 8), (4, 5))

0.4875 -0.15
1.61 1.76

((4, 8), (5, 4)) 1.89 2.04

4
((3, 9), (3, 5))

0.6222 1.37 3.69 2.32
((3, 9), (5, 4))

6

((4, 6), (3, 4))

0.7500 2.63

4.41 1.78

((4, 6), (4, 3)) 4.75 2.12

((3, 8), (3, 4))
4.99 2.36

((3, 8), (4, 3))

3

2
((5, 7), (4, 7), (4, 5))

0.4571 -0.53 1.65 2.18
((5, 7), (4, 7), (5, 4))

4 ((4, 7), (4, 5), (4, 3)) 0.6762 1.92 3.87 1.95

6 ((4, 6), (3, 6), (3, 3)) 0.8333 3.38 5.96 2.58

12

2

((5, 8), (5, 7), (5, 7), (5, 7),

0.4713 -0.35 1.69 2.04(5, 6), (4, 7), (5, 5), (6, 4),

(6, 4), (5, 4), (6, 3), (4, 4))

4

((5, 7), (5, 6), (5, 6), (4, 7),

0.6182 1.33 3.96 2.63(5, 5), (6, 4), (5, 4), (5, 4),

(6, 3), (5, 3), (6, 2), (5, 2))

6

((5, 6), (4, 7), (5, 5), (6, 4),

0.7984 3.07 5.70 2.63(5, 4), (5, 4), (6, 3), (5, 3),

(7, 2), (5, 2), (9, 1), (7, 1))

SIC 12 12

2

((6, 7), (5, 8), (6, 6), (5, 7),

0.4553 -0.55 1.90 2.45(4, 8), (5, 6), (4, 7), (5, 5),

(6, 4), (5, 4), (6, 3), (4, 4))

4

((5, 7), (4, 8), (5, 6), (4, 7),

0.6138 1.28 3.96 2.68(5, 5), (6, 4), (7, 3), (5, 4),

(6, 3), (5, 3), (6, 2), (5, 2))

6

((5, 6), (4, 7), (9, 3), (5, 5),

0.7576 2.70 5.89 3.19(6, 4), (5, 4), (6, 3), (5, 3),

(7, 2), (4, 3), (5, 2), (7, 1))54
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Figure 4.6: BERs of K-user multi-rate code under IJD scheme for K = 12 and M = 2

over which users in at least one group are undecodable.

Finally, we have a complementary region of (4.17), called a reliable region,

Λ◦ = Λ1 ∪ · · · ∪ ΛM, (4.18)

over which the decoding for our K-user multi-rate code is error-free.

For simplicity, we give an example of reliable and unreliable regions for our K-user multi-rate

code in Fig. 4.5. Let M = 3. Consider T = 2 and S1
2 = {1, 2} for an instance. We have unre-

liable region ΛS
1
2={1,2} =

{
((bq̇1c, bL̇1c)2, (bq̇2c, bL̇2c)2, (q3, L3)) | ∀(q3, L3) ∈ Z2}, where the values

of ((q̇1, L̇1)2, (q̇2, L̇2)2) are obtained simultaneously from two corresponding pairs-of-equations in

(4.15) by setting I∗1, I
∗
2, I
∗
3, I
∗
a,1, I

∗
a,2 over range 0 ≤ I∗1, I

∗
2, I
∗
a,1, I

∗
a,2 < 1 and 0 ≤ I∗3 ≤ 1. In Fig. 4.5,

over unreliable region ΛS
1
2={1,2}, the users in the 1st and 2nd groups are undecodable, regardless

whether the users in the 3rd group are decodable or undecodable. Unreliable regions ΛS
2
2={1,3} and

ΛS
3
2={2,3} are given by permuting ΛS

1
2={1,2}. Combined region Λ2 = ΛS

1
2={1,2} ∪ ΛS

2
2={1,3} ∪ ΛS

3
2={2,3} is
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Figure 4.7: BERs of K-user multi-rate code under IJD scheme for K = 12 and M = 3

also unreliable, where all the users in any two groups are undecodable. Finally, we obtain a reliable

region of Λ◦ = Λ1 ∪ Λ2 ∪ Λ3. Note that we cannot directly obtain Λ◦ in Fig. 4.5, since (q̇m, L̇m)

cannot be obtained when I∗m or I∗a,m = 1.

Next, we find the optimal repeat number and the spreading length profile is

((q∗1, L
∗
1), · · · , (q∗M, L

∗
M)) = arg max

((q1,L1),···,(qM ,LM))∈Λ◦

K
M

M∑
m=1

1
qmLm

, (4.19)

which gives maximum sum rate Rmax
sum = (K/M)

M∑
m=1

1/q∗mL∗m.

For our multi-rate transmission, the threshold of the decoding is the minimum channel signal-

to-noise ratio (SNR) that makes ((q1, L1), · · · , (qM, LM)) in the reliable region Λ◦, i.e.,

SNRth = 10 · log10
K

sup
{
σ2 | ((q1, L1), · · · , (qM, LM)) ∈ Λ◦

} [dB]. (4.20)

We summarize the above optimization of our K-user multi-rate code as follows.

Search algorithm for ((q∗1, L
∗
1), · · · , (q∗M, L

∗
M)):
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Figure 4.8: BERs of K-user multi-rate code under HIC scheme for K = 12 and M = 2

// given number of users K, groups M, and σ

for (T = 1; T <= M; T = T + 1)

obtain ΛS
1
T from T simultaneous pairs-of-equations of (4.15);

for (c = 2; c <=
(

M
T

)
; c = c + 1)

obtain ΛS
c
T by permuting ΛS

1
T ;

end

ΛT =
(M

T )⋃
c=1

ΛS
c
T ;

end

Λ◦ = Λ1 ∪ · · · ∪ ΛM;

give ((q∗1, L
∗
1), · · · , (q∗M, L

∗
M)) in (4.19). �

Remark 4.1 The work in this paper is an extension of code optimization of equal rate transmis-

sion [6] to multi-rate transmission. For HIC scheme, the optimized code Cm and spreading Sm is
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Figure 4.9: BERs of K-user multi-rate code under HIC scheme for K = 12 and M = 3

the same as that obtained in [6], since at the mth step, the replicas of the signals from the users in

the previous m− 1 groups are cancelled (see (4.9)), and the signals from the users in the remaining

M−m groups are regarded as noise (see (4.9) and (4.12b)). In fact, the code optimization of HIC is

proceeded by independently repeating the code optimization of [6] for M different groups of users,

and thus provide us a multi-rate transmission.

For IJD scheme, in the special case of M = 1, i.e., a single-rate transmission, the code opti-

mization is reduced to that of [6]. Setting M > 1 provides us the M-rate transmission. We observe

that in the sum node of Fig. 4.3, there are K edges, each of which is labeled by one of M input

MIs, corresponding to M rates. Thus (qm, Lm) in (4.15a) and (4.15b) is a function of M variables of

I1, I2, · · · IM. As a result, the complement of a union of M combined unreliable regions guarantees

reliable multi-rate transmission. On the other hand, in [6], although the number of edges in the

sum node is still K, the same input MI I labels each of edges due to same rate transmission. Thus
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repeat number q and spreading length L is a function of the single MI, and the complement of an

unreliable region of (q, L) guarantees reliable equal rate transmission.

Note that although our code optimization is slightly more complex than that in [6], we provide

a multi-rate transmission service and improve the maximum sum rate (see Figs. 4.10, 4.11, 4.12

below), compared with [6]. �

4.4 Numerical Results

In this chapter, we present some numerical results of our K-user multi-rate code under both the

IJD and HIC schemes by the above code optimization in Sections 4.3.2 and 4.3.3. In our numerical

computation, the intervals are set to ∆∗m = ∆∗a,m = 0.001. We set the maximum of I∗m = 0.999, and

thus the target BER for each group is 1.3 × 10−4.

4.4.1 Iterative Joint Decoding Scheme

For the IJD scheme, let K = 12, M = 2, and SNR = K/σ2 = 2 dB. In Table 4.1, we give three

optimal profiles, ((q∗1, L
∗
1), (q∗2, L

∗
2)) = ((3, 8), (4, 5)), ((4, 6), (4, 5)), and ((3, 8), (5, 4)), which were

obtained in Sections 4.3.2 and 4.3.3. All have the same rate profile, (R∗1,R
∗
2) = (1/24, 1/20), which

gives a maximum sum rate of Rmax
sum = 0.55. The corresponding thresholds of (4.20) are SNRIJD

th =

1.90, 1.92, and 1.95 dB. We know that the profile ((3, 8), (4, 5)) is optimal since the 1.31-dB gap

between the threshold and the Shannon limit is minimum.

When M = 1, our multi-rate transmission is reduced to a conventional equal rate transmis-

sion [6]. In Table 4.1, when SNR = 2 dB, optimal profile (q∗1, L
∗
1) = (4, 6) gives a maximum sum

rate of Rmax
sum = 0.5. Compared with this conventional equal rate code, our K-user multi-rate code

with M = 2 improves the maximum sum rate by 0.05.

Similarly, for M = 3, we obtain the corresponding results, as shown in Table 4.1. The maxi-

mum sum rate improved from M = 2 to 3. For SNR = 2 dB, (q∗2, L
∗
2) = (q∗3, L

∗
3) = (4, 5). As a result,

eight users are assigned to rate 1/20 and four to rate 1/24. This results in unequal group-division,

although in our analysis the number of users in each group is assumed to be equal.
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Figure 4.10: Maximum sum rate of K-user multi-rate code under IJD, HIC, and SIC schemes for

K = 12 and M = 1, 2, 3, 12

To verify our analysis, we did Monte Carlo simulations to evaluate the BERs of our K-user

multi-rate code obtained in Table 4.1. In the simulation, our K-user multi-rate code with chip

lengths of N = 60480 was used for each user. All the interleavers are random. The number of

iterations was LIJD = 500 for M = 2 and LIJD = 750 for M = 3. In Figs. 4.6 and 4.7, the BERs of

our K-user multi-rate codes converged well to their thresholds. This verifies that the design of our

K-user multi-rate code for the IJD scheme is accurate. For a given SNR, our designed codes have

slightly different BER performances, although these codes have the same sum rate.

4.4.2 Hybrid Interference Cancellation Scheme

For the HIC scheme, we also obtained the optimal repeat number and the spreading length

profile, which gave the maximum sum rate (Table 4.2). The gaps between the thresholds of our
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Figure 4.11: Maximum sum rate of K-user multi-rate code under IJD, HIC, and SIC schemes for

K = 24 and M = 1, 2, 3, 24

optimized K-user multi-rate codes and the Shannon limit are less than 3 dB. In contrast to the IJD

scheme, the maximum sum rate did not improve with M increments.

When M = 12 and SNR = 2 dB, we obtained (q∗2, L
∗
2) = (q∗3, L

∗
3) = (q∗4, L

∗
4) = (5, 7), and

(q∗8, L
∗
8) = (q∗9, L

∗
9) = (6, 4). In fact, this is a 9-group rate profile, i.e., Mtrue = 9, since our HIC

scheme allows R1 ≤ · · · ≤ RM. Our HIC scheme is superior to a pure SIC scheme [1, 44] in the

maximum sum rate and the gap between the threshold and Shannon limit (Table 4.2), since the SIC

scheme is limited to R1 < · · · < RM when the power allocation is equal.

We also give the Monto Carlo simulation of our optimized K-user multi-rate codes in Figs. 4.8

and 4.9. The same parameters were set with the IJD scheme. The total number of iterations was

LHIC = MLG
HIC, where LG

HIC is the number of decoding iterations within the groups in the mth step,

1 ≤ m ≤ M. When LHIC = LIJD, the decoding complexity of the HIC scheme was reduced to 1/M
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Figure 4.12: Maximum sum rate of K-user multi-rate code under IJD, HIC, and SIC schemes for

K = 48 and M = 1, 2, 3, 48

of the IJD scheme’s (see Appendix B). In Figs. 4.8 and 4.9, the BER curves of our optimized codes

still converged well to their thresholds. This means that the design of our K-user multi-rate code

for the HIC scheme is accurate.

4.4.3 Comparison

The maximum sum rates illustrated in Tables 4.1 and 4.2 are only at SNR = 2, 4, 6 dB. We also

give a graphical representation at SNR from 0 to 10 dB with 1-dB intervals for K = 12, 24, and 48

in Figs. 4.10, 4.11, and 4.12.

For the IJD scheme, we observed that with the increment of groups M, the maximum sum rates

increase and approach the Shannon limit. The gap between the curve of the maximum sum rate

and the Shannon limit is within 1 dB in a large SNR range for M = 3. Moreover, the maximum
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sum rates are higher than those of conventional equal rate transmission, i.e., M = 1. For the HIC

scheme, the maximum sum rates are higher than those of the pure SIC scheme and lower than those

of the IJD scheme. However, it provides much lower decoding complexity than the IJD scheme.

4.5 Conclusion

For a Gaussian MAC, we proposed a K-user multi-rate code with binary inputs, equal-power,

and symbol synchronization. In this multi-rate transmission, we equally divided K users into

M groups. For each user in the mth group, a code rate-1/qm regular RA code serially con-

catenated with a length-Lm spreading was employed. The transmission rate of each user was

R(1)
m = · · · = R(K/M)

m , 1/(qmLm). At the receiver, the IJD and HIC schemes were performed

on a single factor graph with a BP decoder. For each decoding scheme, we applied bivariate

fixed-point analysis to explicitly represent (qm, Lm) as a function of MI outputs by solving the mth

pair-of-equations. Based on these basic explicit representations, from T corresponding simultane-

ous pairs-of-equations, we obtained a region of ((q1, L1), · · · , (qM, LM)) over which users in any T

groups are undecodable. Then, a united (unreliable) region is given over which users in at least one

group are undecodable. The reliable region, i.e., the complementary set of the united unreliable

region, gives an optimal profile, ((q∗1, L
∗
1), · · · , (q∗M, L

∗
M)), that corresponds to optimal rate profile

(R∗1, · · · ,R
∗
M), which achieves the maximum sum rate.

Numerical results verified that the design of our K-user multi-rate code is accurate for both

the IJD and HIC schemes. For the IJD scheme, with increments of groups M, the maximum

sum rates of our K-user multi-rate codes increased and approached the Shannon limit, exceeding

those of conventional equal rate transmissions. The HIC scheme provided much lower decoding

complexity than the IJD scheme and outperformed the pure SIC scheme in maximum sum rate.
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Chapter 5

Joint Rate and Power Optimization in

Multi-User Communications

In this chapter, we also consider the multi-rate transmission in the multi-user systems but with

the SIC decoding in the receiver. The SIC decoding has lower decoding complexity, compared with

IJD and HIC schemes. We propose a joint rate and power optimization (RPO) to obtain the optimal

rate and power profile, that achieves the optimal sum rate by the assumption of equal-ratio power

allocation. Our RPO employs multiple equal-ratio power, and choose the optimal ratio, which

gives the power profile well matched with the rate profile. It shows that our optimized multi-rate

code with joint RPO, supporting the multi-rate transmission with the same structure of encoder, is

close to the Shannon limit, and outperforms conventional rate-only optimization and power-only

optimization.

5.1 Introduction

For non-orthogonal multiple access (NOMA) systems with successive interference cancellation

(SIC), the Shannon limit can be achieved by power-only optimization (PO) as long as each user

has an ideal channel code. Previous works [45–47] are mainly based on this assumption of ideal

code. It is intuitively to think that code design for NOMA systems is not necessary, since each user
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Figure 5.1: K-user multi-rate multi-power transmitters with multiple access channel

can employ the conventional well-designed channel codes directly.

However, NOMA systems need to support massive of users and multiple rates to meet the re-

quirements for diverse services. An increase in the number of users will result in very serious

multi-user interference, so that some users need low-rate codes to guarantee the decoding perfor-

mance. Moreover, such systems should support various rates for the various multimedia services.

Employing conventional well-designed low-rate LDPC or Turbo code, is impractical since users

have to employ difference encoders to realize multi-rate transmission. It is required to design a

bank of variable, low-rate channel codes with the same structure of encoder.

In this chapter, for K-user multi-rate multi-power NOMA systems with SIC, we use a repeat

accumulator (RA) code serially concatenated with a spreading for each user to implement a vari-

able, low-rate coding, where the transmission rate can be changed flexibly by varying the repeat

number and spreading length. Here, users employ the identical RA encoder, although their trans-

mission rates are different. Moreover, both RA and repetition (spreading) codes are simple and

computationally efficient. To enhance the system performance, we propose a joint rate and power

optimization (RPO) to maximize the sum rate. Numerical results show that our proposed coding-

spreading scheme with joint RPO, supporting the multi-rate transmission with the same structure

of encoder, approaches the Shannon limit.
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5.2 System Model

In this chapter, we simply introduce K-user multi-rate multi-power NOMA systems in Fig. 5.1.

5.2.1 Coding Scheme

Suppose there are K active users simultaneously transmitted information to a base station.

The length-nk information bit vector u(k) = (u(k)
1 , · · · , u

(k)
nk ), u(k)

i ∈ {0, 1}, 1 ≤ i ≤ Kk, of the kth

(1 ≤ k ≤ K) user, is first encoded by a regular RA code, which is a serial concatenation of

a code rate-1/qk repeater with a 1/(1 + D) accumulator linked by interleaver π(k). The output

coded vector is denoted as v(k) = (v(k)
1 , · · · , v

(k)
Kkqk

), v(k)
t ∈ {0, 1}, 1 ≤ t ≤ Kkqk. A block spreading,

which consists of bit spreading and chip-level interleaving, is then performed on v(k). Each bit

of v(k) is spread by length-lk sequence s(k) into vector (1 − 2v(k)
t )s(k). Here, s(k) = (s(k)

1 , · · · , s
(k)
lk

)

with s(k)
2m−1 = +1, s(k)

2m = −1, 1 ≤ m ≤ b lk+1
2 c, where bpc is the greatest integer less than or equal

to p. The spreader output is a length-Kkqklk sequence, which is referred to as a chip sequence.

After spreading, user-specific chip-level interleaver π̃(k) with length-Kkqklk is employed to produce

transmitted signal vector x(k) = (x(k)
1 , · · · , x

(k)
Kkqklk

). The kth user’s transmission rate is rk = 1/(qklk).

Note that although the transmission rates of different users vary, it is not difficult to have identical

length N by an adjustment of information bit lengths Kk, i.e., Kkqklk , N, to realize multi-rate

transmission. The sum rate is Rsum =
∑K

k=1 rk. The symbols and codeword synchronisation are

assumed. Let pk be the transmission power of the kth user. The total power is Psum =
∑K

k=1 pk. The

receiver gets a superimposed signal vector y = (y1, · · · , yN) at time j is

y j =

K∑
k=1

√
pkx(k)

j + z j, j = 1, · · · ,N. (5.1)

where z j is a zero-mean Gaussian variable with a variance of σ2, i.e., E(z j) = 0,Var(z j) = σ2.

5.2.2 Successive Interference Cancellation Scheme

An SIC receiver decodes the K users’ information successively [1]. Suppose the decoding is in

order of increasing user index. For the kth user, after recovering the information of the first k − 1
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68 5.3. Joint Rate and Power Optimization

users, the corresponding replicas of signals are generated and subtracted from the received signal.

The remaining received signal is given by

y(k)
j =

√
pkx(k)

j + ω(k)
j + z j (5.2)

where y(1)
j = y j in (5.1), and ω(k)

j =
∑K

k′=k+1
√

pk′ x
(k′)
j . From this remaining received signal, the kth

user’s information is decoded by treating the signals of remaining K − k users as interferences with

power ςk =
∑K

k′=k+1 pk′ . Subsequently, BP decoding is performed at the part of block spreading and

RA coding. Then, hard decisions are made to recover the kth user’s information. This process is

performed successively until all the users’ information has been recovered.

5.3 Joint Rate and Power Optimization

In this chapter, for given number of users K, total power Psum, and noise power σ2, we gives the

optimal rate and power profile, which achieves the maximum sum rate of multi-rate multi-power

NOMA system with error free decoding.

5.3.1 EXIT Function for a single-user system

Before proceeding, let us consider a single-user system with a rate-1/q regular RA code serially

concatenated with a length-l spreading under the interference power ς and noise power σ2. For a

given transmission power p, we find an optimal pair of (q∗, l∗) that gives the maximum transmission

rate of 1/(q∗l∗) with error free decoding. Specifically, for the single-user system with a pair of

(q, l) and signal-to-interference-plus-noise ratio (SINR) p/(ς + σ2), we draw an EXIT chart. The

decoding is successful if there is a clear swath between the curves in the chart [34]. Since the

transmission rate must be less the AWGN channel capacity, the successful pair of (q, l) must fall

in 1/(ql) ≤ C(p/(ς + σ2)), where C(x) = 0.5 log2(1 + x) is the channel capacity with SINR x. The

maximum transmission rate of 1/(q∗l∗) gives the optimal pair of (q∗, l∗). Hereafter, for simplicity’s

sake, we still use (q, l) to represent the optimal pair of (q∗, l∗).
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5.3.2 Equal-Ratio Power Allocation

Now, let us turn back to our multi-rate multi-power NOMA system. As stated in Section

5.2, the SIC receiver decodes the K users’ information in the order of increasing user index by

assumption. For the kth user, we assume that the information bits of the first k − 1 users are

error-freely recovered, and their corresponding signals are completely removed from the received

signal. From the remaining received signal, the receiver decodes the kth user’s information bits, by

regarding signals from the remaining K − k users as interference with power ςk =
∑K

k′=k+1 pk′ .

For the joint optimization of rate and power profile, let us first consider the K real powers.

Multi-user information theory tells us that an arbitrary power allocation can provide the sum rate

to approach the capacity of K-user Gaussian multiple access channel [1]

K∑
k=1

C
(

pk∑K
k′=k+1 pk′ + σ2

)
= C

(∑K
k=1 pk

σ2

)
. (5.3)

if K optimal random codes are used. This implies a reasonable assumption of a equal-ratio power

allocation, i.e.,

pk/pk+1 = µ. (5.4)

Since Psum =
∑K

k=1 pk, we have

pk =


µK−k ·

1 − µ
1 − µK Psum, µ 6= 1 (5.5a)

Psum

K
, µ = 1 (5.5b)

with k = 1, · · · ,K.

For the kth user with interference power ςk, given power pk in (5.5), the EXIT chart analysis

(see above) give the optimal (qk, lk) that provides the maximum rate 1/(qklk) in SINRk pk/(ςk +σ2).

Since this optimization is given at the power ratio of µ, hereafter we denote this optimal rate and

power profile by Ωµ , ((qµ1, l
µ
1, pµ1), · · · , (qµK , l

µ
K , pµK)), that provides the corresponding maximum

sum rate Rµ
max =

∑K
k=1 1/(qµk lµk ).
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5.3.3 Optimal Rate and Power Profile and Optimal Sum Rate

The assumption of the equal-ratio power allocation above is based on the optimal random codes

which are theoretically used to approach the channel capacity. The random codes have arbitrary

rates and thus are flexible to their corresponding real powers. In our work, each user employs

RA code concatenated with spreading. The kth user’s transmission rate 1/(qklk) is discrete with

the restriction of integers qk and lk. Therefore, the simple equal-ratio power allocation above may

results in a sum-rate loss. For this reason, we set µ ∈ [µmin, µmax]. Over this range, we obtain the

optimal rate and power profile Ωµ∗ as

Ωµ∗ = ((qµ
∗

1 , l
µ∗

1 , pµ
∗

1 ), · · · , (qµ
∗

K , l
µ∗

K , pµ
∗

K )) = arg max
µ∈[µmin,µmax]

K∑
k=1

1
qµk lµk

(5.6)

which gives the optimal sum rate Rµ∗

sum =
∑K

k=1 1/(qµ
∗

k lµ
∗

k ) with error free decoding.

We determine the values of µmax and µmin. Assume that our multi-rate multi-power NOMA sys-

tem has a minimum transmission rate requirement of rmin for each user. Let µer =
K
√

Psum/σ2 + 1,

where users have the identical SINR, corresponding to the identical transmission rate [1]. For

µ > µer, it holds that SINR1 > · · · > SINRK , i.e., the Kth user has the minimum achievable rate of

C(SINRK). Let rmin +∆r = C(SINRK) = C
(

1−µ
1−µK ·

Psum
σ2

)
. The solution µmax is obtained for given rmin

and ∆r, where ∆r is a given small positive offset between the achievable rate of the RA concate-

nated with spreading scheme and an ideal channel coding scheme. Similarly, for µ < µer, it holds

that SINR1 < · · · < SINRK . Let rmin + ∆r = C (SINR1), the solution µmin is obtained for given rmin

and ∆r.

For our multi-rate multi-power NOMA system, the threshold of the decoding is the minimum

SNR that makes our multi-rate multi-power code with Ωµ∗ is error-free, i.e.,

SNRth = 10 · log10
Psum

sup
{
σ2 | Ωµ∗

} [dB]. (5.7)

In our RPO, there are two special cases. When µ = 1, users have the same power, and only rate

profile is optimised [48]. In the case of each user’s rate being the same, information theory shows

that its optimized power profile satisfies (5.4) with µ = µer [49].
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Table 5.1: Optimal rate and power profiles

SNR Sch. Ωµ =
(
(qµ1, l

µ
1, pµ1), · · · , (qµK , l

µ
K , pµK)

)
Rµ

sum SNRth S. L. Gap

2

RPO

(5, 42, 0.20), (5, 32, 0.25), (5, 25, 0.32), (5, 19, 0.41),

0.4944 2.03 -0.07 2.10(5, 15, 0.51), (5, 11, 0.65), (5, 8, 0.82), (5, 6, 1.04),

(4, 6, 1.32), (5, 3, 1.67), (5, 2, 2.12), (6, 1, 2.68)

RO

(4, 10, 1.00), (4, 10, 1.00), (5, 7, 1.00), (5, 7, 1.00)

0.4540 1.94 -0.57 2.51(5, 6, 1.00), (5, 6, 1.00), (4, 7, 1.00), (6, 4, 1.00)

(4, 6, 1.00), (5, 4, 1.00), (6, 3, 1.00), (6, 3, 1.00)

PO

(5, 5, 1.47), (5, 5, 1.37), (5, 5, 1.26), (5, 5, 1.17),

0.4800 1.86 -0.24 2.30(5, 5, 1.08), (5, 5, 1.00), (5, 5, 0.93), (5, 5, 0.86),

(5, 5, 0.80), (5, 5, 0.74), (5, 5, 0.68), (5, 5, 0.63)

4

RPO

(5, 32, 0.22), (5, 25, 0.28), (5, 19, 0.35), (5, 15, 0.43),

0.6595 3.99 1.75 2.24(4, 15, 0.54), (5, 9, 0.68), (5, 7, 0.84), (5, 5, 1.06),

(6, 3, 1.32), (6, 2, 1.65), (4, 2, 2.06), (4, 1, 2.58)

RO

(5, 7, 1.00), (5, 6, 1.00), (5, 6, 1.00), (4, 7, 1.00),

0.6237 4.03 1.38 2.65(5, 5, 1.00), (4, 6, 1.00), (5, 4, 1.00), (6, 3, 1.00),

(6, 3, 1.00), (5, 3, 1.00), (6, 2, 1.00), (5, 2, 1.00)

PO

(4, 5, 1.68), (4, 5, 1.50), (4, 5, 1.35), (4, 5, 1.22),

0.6000 1.13 3.64 2.51(4, 5, 1.10), (4, 5, 0.99), (4, 5, 0.89), (4, 5, 0.80),

(4, 5, 0.72), (4, 5, 0.65), (4, 5, 0.59), (4, 5, 0.53)
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Figure 5.2: Maximum sum rate Rµ
sum and gap for K = 12, SNR = 2 dB

5.4 Numerical Results

In this section, we present some numerical results by the above joint RPO. In our numerical

computation, we set K = 12, Psum = 12, rmin = 0.01, and ∆r = 0.005.

Let’s set SNR = Psum/σ
2 = 2 dB. Our RPO provides sum rate Rµ

sum for µ ∈ [µmin = 0.79, µmax =

1.42] with intervals ∆µ = 0.01 (see Fig. 5.2). Among Rµ
sum, Rµ∗

sum = 0.4944 is the maximum at

µ∗ = 0.79 and thus is the optimal sum rate with the minimum gap of 2.10 dB. The corresponding

optimal rate and power profile Ωµ∗ and it’s threshold are illustrated in Table 5.1. In Ωµ∗ , the first

user’s transmission rate of 0.0048 is very low, which is implemented by the rate-1/5 RA code and

the length-42 spreading.

Also in Fig. 5.2 and Table 5.1, the rate-only optimization (RO) [48] (µ = 1.00, equal power)

gives sum rate Rµ
sum = 0.4540, the gap of 2.51 dB, and the corresponding optimal profile. On the
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Figure 5.3: Maximum sum rate Rµ
sum and gap for K = 12, SNR = 4 dB

other hand, the power-only optimization (PO) [49] (µ = 1.08, equal rate) also gives these optimal

values. Compared with RO and PO, our RPO improves the maximum sum rate by 0.0404 and

0.0144, and decreases the gap by 0.41 and 0.20 dB, respectively. The reason is that RPO employs

multiple equal-ratio power µ, and choose the optimal ratio µ∗, which gives the power profile well

matched with the rate profile, and compensates the sum-rate loss due to the restriction of discrete

rates of RA code and spreading.

In addition, at SNR = 4 dB, we obtain the optimal profile in Table 5.1. Our optimal sum rate

and gap are superior to those of RO and PO (see Fig. 5.3).

The maximum sum rate illustrated in Table 5.1 are only at SNR = 2 and 4 dB. We also give a

graphical representation of maximum sum rate Rµ
sum at SNR from 0 to 20 dB with 1-dB intervals

in Fig. 5.4. We observed that our RPO outperforms RO and PO.

It is interesting to give a comparison of sum rates between the coding-spreading and coding-
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only in Fig. 5.5. In the coding-only system, user only employ a RA code (l = 1), where the repeti-

tion number q is optimized. Obviously, our coding-spreading scheme outperforms the coding-only

scheme, especially in the lower SINR of p/(ς + σ2). This is the reason why we employ coding-

spreading instead of coding-only in our K-user system. Note that, in the coding-only scheme,

employing some conventional well-designed low-rate LDPC or Turbo codes, may also approach

the Shannon limit, but is impractical since users have to employ difference encoders.

We also give a comparison of maximum sum rates between the IJD, HIC schemes, as stated in

Chapter 4, and our RPO scheme, i.e., SIC/power scheme, for K = 12 in Fig. 5.6. We observed that

the maximum sum rate of our SIC/power scheme superior to that of HIC scheme, and approach

that of IJD scheme.
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5.5 Conclusions

In multi-rate multi-power NOMA system with SIC, we employed an RA code serially concate-

nated with a spreading for each user to implement a variable, low-rate coding. We proposed a joint

RPO to maximize the sum rate with error free decoding. Numerical results show that our proposed

coding-spreading scheme with joint RPO, supporting the multi-rate transmission with the same

structure of encoder, approaches the Shannon limit.

For multi-rate coding scheme with IJD, HIC, and SIC/power schemes, if power control is

considered, the SIC/power is optimal, since it has the lowest decoding complexity. If power control

is not considered, the IJD scheme is optimal in maximum sum rate, while the HIC scheme provides

much lower decoding complexity with little degradation in maximum sum rate.
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Chapter 6

Concluding Remarks

In multi-rate communication systems, a central problem is to assign K constituent code to

K transmitters so that they can communicate simultaneously, at various transmission rates, with

a common receiver through the Gaussian MAC. However, it is impractical for users to employ

different encoders.

In this dissertation, we proposed multi-rate coding schemes for Gaussian MAC. In our schemes,

each user employs a same structure of encoder serially concatenated with a spreader and a user-

specific interleaver. Here, the different interleavers are used for user separation, and the spreader

is employed to lower the transmission rate and thus to combat the multi-user interference. The

different rate transmission is realized by adjusting the parameter of the encoder and the length of

spreading. We analyzed the decoding performances of our coding schemes, and obtained the opti-

mal coding parameters and spreading lengths, which gives the maximum sum rates and approach

the theoretical limits of the channel. The proposed coding schemes support multimedia services,

and avoid employing multiple channel encoders to implement the multi-rate transmission.

Our three multi-rate coding schemes, roughly speaking, have almost the same structure with the

same encoder, spreader, and interleaver. We discuss the optimization of the multi-rate coding based

on three decoding algorithms employed in the multiple access communication systems. The three

decoding algorithms are the belief propagation (BP) with the maximum a priori (MAP) detection,

elementary signal estimation (ESE), and successive interference cancellation (SIC).
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First, for the multi-rate transmission in two-user multiple access communication systems with

the MAP detection, the same RA encoder but with different parameters, i.e., the repeat numbers,

in the encoder, is employed for each user. Here, the coding-only (without spreading) scheme is

performed, since multi-user interference is small for two users. At the receiver, the BP decoding on

a single factor graph is performed, where at sum (two-user superimposed signals) node, the MAP

detection is carried out. A univariate fixed point analysis is developed to obtain a system equation

array of parameters of RA codes. This makes it possible to represent the parameters of RA codes

explicitly as functions of the fixed point. The optimal parameters of RA codes is found to give the

maximum sum rate. Our optimized two-user multi-rate RA code is superior to the conventional

equal rate code in maximum sum rate, and approach the Shannon limit.

Second, for the multi-rate transmission in multi-user multiple access communication systems

with the ESE detection, K users are equally divided into multiple groups, and users in identical

group has a same transmission rate. For each user, a RA code serially concatenated with a spread-

ing sequence and a user-specific interleaver pattern is employed to implement various rates by

adjusting both repeat number in RA encoder and length of spreading in spreader. Here, the inter-

leaver patterns are different for user sepatation, and the spreading sequence is to lower the rate and

thus to combat the user interference, since an increase in the number of users results in very seri-

ous multi-user interference. At the receiver, a joint iterative BP decoding (Iterative Joint Decoding,

IJD) on a single factor graph is performed, where at sum (multi-user superimposed signals) node,

the ESE detection is carried out. A bivariate fixed point analysis is developed to obtain the optimal

parameters (repeat numbers) of RA code and spreading lengths, which give the maximum sum rate.

With the increment of groups, the maximum sum rates of our optimized multi-rate code increase,

and approach the Shannon limit, and exceeds those of conventional equal-rate transmission.

Instead of global IJD above, in the receiver hybrid interference cancellation (HIC) decoding

is also performed, where SIC is employed between the groups, and IJD is employed within the

group. The HIC scheme provides much lower decoding complexity than the global IJD scheme

with little degradation in the maximum sum rate, and outperforms the pure SIC scheme.

Finally, we also consider the multi-rate transmission in the multi-user systems but with the
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SIC decoding. The SIC decoding has lower decoding complexity, compared with IJD and HIC

schemes. The optimal rate and power profile is given and provides the sum rate which approach

the Shannon limits.

We now briefly summarize our contributions. We have proposed the multi-rate coding schemes

for the Gaussian MAC, and analytically gave the maximum sum rate which approach the theoreti-

cal limits of the channel. The proposed multi-rate coding schemes support multimedia services in

practical communication systems.
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Appendix A

Shannon Limit of Binary-Input K-User

Gaussian Multiple Access Channel

The K-user Gaussian multiple access channel with binary input is modeled as

Y =

K∑
k=1

X(k) + Z. (A.1)

Here, binary inputs X(k), k = 1, · · · ,K, are i.i.d variables and uniformly distributed onX = {+1,−1}.

Noise Z is a Gaussian variable with root-mean-square value σ. It is not difficult to get the Shannon

limit of the channel as [1]

C(K, σ) = max
p(x(1)),···,p(x(K))

I(X(1), · · · , X(K); Y) (A.2)

= max
p(x(1)),···,p(x(K))

H(Y) − H(Y |X(1), · · · , X(K)) (A.3)

= max
p(x(1)),···,p(x(K))

{
−

∫ +∞

−∞

p(y) log2 p(y)dy
}
−

1
2

log2(2πeσ2) (A.4)

= −

∫ +∞

−∞

p′(y) log2 p′(y)dy −
1
2

log2(2πeσ2). (A.5)

The last equation is followed when transmitted symbols x(k), k = 1, · · · ,K, are statistically inde-

pendent and equally likely to be +1 and -1, where p′(y) is [6]

p′(y) =

K∑
i=0

Ci
K

2K

1
√

2πσ2
exp

(
−

(y − (K − 2i))2

2σ2

)
. (A.6)
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Appendix B

Computation Complexity for Chapter 4

The decoding complexity of IJD, HIC, and SIC schemes, described in Section 4.2.2, depends

on the node operations at node sets U, G, V , and Y (see Fig. 4.2).

Let ψm be the arithmetic operation complexity performed on variable nodes in U and V and

on check nodes in G per user in the mth group per iteration. The complexity ψm is specified

by numbers of addition/subtraction, multiplication/division, and exponent/logarithm operations in

(3.3) and (3.5). For IJD scheme, let LIJD be the number of iterations in joint decoding. The

decoding complexity at nodes U, V , and G for all the users is

ϕIJD =

M∑
m=1

ψmLIJD
K
M
. (B.1)

For HIC scheme, denoted by LG
HIC the number of iterations in decoding within each group. We

have the decoding complexity

ϕHIC =

M∑
m=1

ψmLG
HIC

K
M
. (B.2)

Let us turn to describe the computation complexity at sum nodes in Y . The operation at sum

nodes depends on the number of edges connected to the nodes (see Fig. 4.3 and Fig. 4.4). For

IJD, the K users are always connected to sum nodes. We denote by φK the arithmetic operation

complexity performed on sum nodes with K users per iteration. The complexity φK can be obtained

by observing (4.6). With number of iterations LIJD, the computation complexity at sum nodes in Y
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is

χIJD = φKLIJD. (B.3)

For the mth step of HIC, only K/M users in the mth group are connected to sum nodes and the sig-

nals from other users are cancelled or considered to be noise. The arithmetic operation complexity

performed on sum nodes, in the mth step of HIC (see Section 4.2.2.2), is thus φK/M = φK/M. With

the number of iterations LG
HIC within group and M-step cancelling, the computation complexity at

sum nodes in Y is

χHIC = φ(K/M)LG
HICM. (B.4)

When LIJD = MLG
HIC, i.e., the total numbers of iterations at sum nodes are same, the overall

complexity of HIC, i.e., the summation of (B.2) and (B.4), is 1/M of that of IJD. In addition, the

overall complexity of SIC is 1/K of that of IJD.
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