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Abstract

Three-mode three-way data exist in various research areas, such as psychology and

marketing research. Three-mode three-way data are defined as using three finite sets of

objects, variables, and conditions. It is not suitable to apply a multivariate data anal-

ysis method to three-mode three-way data, because such a method tends to regard the

same variables under different conditions as different from each other. Hence, some re-

searchers have extended multivariate data analysis for use with three-mode three-way

data. Dimensional reduction methods for three-mode three-way data have been developed

by several researchers within multivariate data analysis, because the numbers of objects

and conditions of three-mode three-way data tend to be large. Well-known dimensional

reduction methods for three-mode three-way data include Tucker 3 and parallel factor

analysis (PARAFAC). Given two data sets, canonical correlation analysis is a famous di-

mensional reduction method within multivariate data analysis. Like multivariate data

analysis, canonical correlation analysis is extended for use with three-mode three-way

data. However, canonical correlation analysis seeks only common factors that maximize

the correlation between factors, making us unable to interpret the factor separately from

each data by these methods. To do so, canonical covariance analysis has been proposed.

However, this method has not been extended for use with three-mode three-way data.

Therefore, we propose new dimensional reduction methods for three-mode three-way data

based on canonical covariance analysis in this study.

We describe a simple extension method for three-mode three-way data, which is called

the basic method. The basic method is defined as maximizing covariance between common

factors. However, the basic method does not distinguish which factor is a common factor.

Moreover, in the basic method, it is assumed that the number of factors, including the

common factor and those for each data, is the same between each data. We address this

problem by introducing a connector matrix. We characterize this method by imposing

some constraints on the connector matrix. A K-means type and spherical K-means type

constrained connector matrix restrict elements of the connector matrix to 0 or 1. From

this, it is easy to distinguish which factor is a common factor. The different points between

the K-means type and spherical K-means type constrained connector matrix leads to the

concept of the update rule for the connector matrix, which corresponds to K-means and

spherical K-means, respectively. Regression analysis for three-mode three-way data is in-

cluded in our proposed method. We propose a tandem analysis for three-mode three-way

regression. Furthermore, we propose canonical covariance analysis for three-mode three-

way data with a quantitative method based on non-metric principal component analysis.



This method overcomes the problem in previous works that it is not suitable for use

with three-mode three-way data that has qualitative value. The parameter estimation

method of our proposed method is the least squares method because the objective func-

tion of canonical covariance analysis for multivariate data corresponds to the least squares

method. For parameter estimation, we provide objective functions, update formulas, par-

tial derivative functions of objective functions, and algorithms. In addition, we include a

simulation study and apply the proposed method to real data.
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Chapter 1

Introduction

With sophisticated observation techniques, it is easy to obtain large-scale and com-

plex data. Three-mode three-way data are one type of large-scale and complex data.

Three-mode three-way data are defined by using three finite sets of objects, variables, and

conditions. Thus, three-mode three-way data are often represented as cubic height, length,

and depth corresponding to the number of objects, variables, and conditions, respectively.

Figure 1.1 shows the image of three-mode three-way data. Three finite sets of objects,

variables, and conditions are called also mode 1, 2, and 3, respectively. Each mode show

the each finite set. The term “three-mode” means the data are described as a function

whose domain is written by all three finite sets. The term “way” shows the number of

domain dimensions of a function, which shows how data are collected.

Figure 1.1: The image of three-mode three-way data

When we are interested in the effect of variables and of conditions, as well as the inter-
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action between variables and conditions, we analyze three-mode three-way data. Why is it

unsuitable to apply multivariate data analysis methods, which are proposed for two-mode

two-way data, to three-mode three-way data? One of the reasons is that multivariate data

analysis methods tend to regard the same variables under different conditions as different

to each other. Therefore, it is difficult to interpret the main effect of variables, because

we obtain several results for the same variables. The same can be said for conditions.

Thus, when we are interested in the effect of variables and conditions, we need to use the

information of the three finite sets. Moreover, although we can apply multivariate data

analysis methods to each condition data decided from three-mode three-way data, it is

difficult to interpret the overall result and to compare each result, because multivariate

data analysis methods seek the best result for each data, not for whole. Therefore, when

we are interested in the relationship between whole variables and conditions, we should

use the three-mode three-way structure.

Three-mode three-way data exist in various research areas. One example of three-

mode three-way data is semantic differential data, which are typical data in the field of

psychology. Another type of three-mode three-way data is multivariate longitudinal data,

because they are described by object × variable × time. Multivariate longitudinal data

exist in many research areas, such as medicine and economics. Point-of-sale data, which

are typical data for marketing research, is another type of three-mode three-way data.

Point-of-sale data are described by item × variable × store. These data are analyzed

by using several three-mode three-way methods. For example, Lundy et al. (1989) apply

three-way factor analysis to the rating data of TV shows. Kroonenberg (1983) shows some

examples of three-way principal component analysis (PCA) for semantic differential data.

Dimensional reduction methods of the multivariate analysis method for three-mode

three-way data have been developed by several researchers, because the numbers of ob-

jects and conditions of three-mode three-way data tend to be large. Well-known dimen-

sional reduction methods for three-mode three-way data include Tucker 3 (Tucker, 1966;

Kroonenberg, 1983), and PARAFAC (Harshman, 1970). These methods are extended to

high-order cases (De Lathauwer et al., 2000; Kolda & Bader, 2009). Given only one data

set, these methods have been proven effective. Given two data sets, we can apply these

methods to each data set individually, but we cannot interpret the relationship between

these data sets.

On the other hand, canonical covariance analysis proposes investigating the relationships

between two variable sets (e.g., Tenenhaus & Tenenhaus (2011)). Canonical covariance

analysis, which is one such dimensional reduction method for two-mode two-way data,

attempts to find a subspace such that the covariance between variables is maximized.

When data sets are converted via Mahalanobis transformation, canonical covariance anal-

ysis is equivalent to canonical correlation analysis (Hotelling, 1936). In the multivariate

data case, Carroll (1968) and Kettenring (1971) extend canonical correlation analysis to a

multi data set. Tenenhaus & Tenenhaus (2011) extend canonical covariance analysis to a

multi data set. However, these extensions assume that extension methods are applied to

multivariate data. In the three-mode three-way case, there are many types of extension
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of canonical correlation analysis. Luo et al. (2015) proposes a tensor canonical correlation

analysis method based on the PARAFAC model. On the other hand, Zhao et al. (2013)

proposes a tensor partial least squares (PLS) method based on the Tucker model. The

PLS method is very similar to the canonical correlation analysis method. When some

assumptions are restricted in the PLS method, it is equivalent to canonical correlation

analysis (Sun et al., 2009). One purpose of these methods is to seek common factors

between data sets. A common factor is represented as a linear combination of variables

and conditions. The concept of this method is the same as that of canonical correlation

analysis. Thus, these methods do not consider the variances of each data set; that is, these

methods do not allow us to interpret the factor separately from each data.

In this study, we propose new dimensional reduction methods for three-mode three-way

data based on canonical covariance analysis. Canonical covariance analysis is the simulta-

neous analysis of PCA and canonical correlation analysis because the objective function

of canonical covariance analysis is described by the sum of the objective function of PCA

for each data and of the canonical correlation analysis. Our proposed methods allow us to

interpret common factors and factors for each data simultaneously. First, we describe a

simple extension method for three-mode three-way data, which is called the basic method.

This method is defined as maximizing covariance between common factors. However, the

basic method does not distinguish which factor is a common factor. Moreover, in the basic

method, it is assumed that the number of factors, including the common factor and those

for each data, is the same between each data. We address this problem by introducing a

connector matrix. The connector matrix indicates how to represent the common factor

by using each factor. Figure 1.2 shows an image of the connector matrix. The red lines

between factors indicate the connections. Figure 1.2(a) shows the case of a one-to-one

relationship between factors. In this case, the connector matrix indicates all factor are

common factors. Moreover, a one-to-one relationship between factors corresponds to the

canonical covariance analysis for the three-mode three-way data when the value of the

connector matrix is 1. Figure 1.2(b) shows that the connector matrix indicates which

factor is a common factor. In this case, the connector matrix indicates that factor 3 of

data X and factor 1 of Y are common factors. Other factors are factors for each data,

that is, factors maximizing variance.

We impose some constraints on the connector matrix in order to interpret it. One of the

constraints is a K-means (MacQueen, 1967) type. A K-means type constrained method

restricts elements of the connector matrix to 0 or 1. By imposing this constraint, it is

easy to distinguish which factor is common. Another constraint is a spherical K-means

(Dhillo & Modha, 2001) type. Elements of the connector matrix are restricted to 0 or

1, like for the K-means type. The different points between spherical K-means and K-

means represent the objective function. In the objective function of the K-means type

constrained method, it is assumed that the variances of factors have similar values. On the

other hand, the objective function of the spherical K-means constrained method evaluates

the differences in the angle between factors. Therefore, when there are large differences

between the variance of each factor, it is suitable to apply the spherical K-means method
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(a) 1 to 1 case

(b) Selecting dimension case

Figure 1.2: Image of connector matrix

to three-mode three-way data. The other constraint is regression type. When we set

an appropriate number of dimensions of parameters and constrained parameters, then

canonical covariance analysis for three-mode three-way data is equivalent to regression for

three-mode three-way data. In this case, the connector matrix corresponds to the coef-

ficient matrix. For easy interpretation, we describe dimensional reduction for regression

analysis. Regression analysis with dimensional reduction has been proposed by many re-

searchers. Zhao et al. (2013) proposes a simultaneous method of dimensional reduction for

response and exploration. Rabusseau & Kadri (2016) proposes a method of dimensional

reduction for exploration. These methods are simultaneous methods between regression

and dimensional reduction. Differentiating our method from those of previous works is

tandem analysis. Tandem analysis is two-step analysis. The first step is a dimensional

reduction step. In the first step, we apply a dimensional reduction method to data sets.

In the second step, we deliberately apply the method to data sets after dimensional re-

duction. In this case, the second step is the application of the regression method to data

sets. We propose tandem analysis using the concept of PLS for the dimensional reduction

for the regression based on Tsuchida & Yadohisa (2017).

In our proposed methods and those of previous works, it is assumed that all values

are quantitative. However, there is a case in which qualitative values exist in three-mode

three-way data. For example, longitudinal survey data sometimes have qualitative values,

such as Japan’s national census. In addition, item-rating data and semantic differential

data are types of qualitative data. When the values do not satisfy the interval scale,

the assumption of our proposed methods and previous works is not satisfied. In other

words, it is not suitable to apply this method to data with qualitative values. In the

multivariate data case, many researchers address this problem by using a quantitative
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method. Multiple corresponding analysis (Greenacre & Blasius, 2006; Gifi, 1990) is one of

the famous dimensional reduction methods for categorical multivariate data. Non-metric

principal component analysis (NPCA) (Young et al., 1978) is one of the dimensional

reduction methods for categorical data. NPCA is one of the special cases of multiple

correspondence analysis (Gifi, 1990). On the other hand, NPCA is simply an extension

of PCA for categorical data. Therefore, we could simply extend the three-mode three-

way canonical covariance analysis for categorical data by using the concept of NPCA.

Extension using the concept of NPCA is based on Tsuchida & Yadohisa (2016b).

We use least squares as the estimation method for all of our proposed methods, because

the objective function of canonical covariance analysis for multivariate data corresponds to

the least squares method. However, explicit update formulas for the parameters of canon-

ical covariance analysis for three-mode three-way data are not obtained simultaneously.

Hence, we adopt an alternative least squares algorithm for the parameter estimation. In

addition, some methods need a partial derivative function of the objective function for

the gradient method proposed by Jennrich (2001). Therefore, we provide the derivative

function of some objective function.

The reminder of this thesis is organized as follows. In Chapter 2, some notations used

in this thesis are defined. In addition, some properties of three-mode three-way data are

described. In Chapter 3, dimensional reduction methods based on the canonical covariance

method are described. First, we define the model and objective function of the basic and

connector matrix methods. These methods are the core of this study. Then, the algorithms

for these methods are introduced. Next, we define the model and objective functions of

the constrained connector matrix and we introduce algorithms for these methods. Finally,

we describe the canonical covariance analysis for three-mode three-way data and provide a

quantification method. Figure 1.3 shows the relationship between previous methods in the

literature and this study’s proposed methods. In Chapter 4, we provide estimation and

prediction accuracy through numerical examples. In Chapter 5, we provide an example

analysis using country investigation data and questionnaire survey data. In Chapter 6, we

provide concluding remarks.
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Chapter 2

Notation

In this chapter, we introduce some notations and properties in preparation for our

analysis. First, we define n-mode m-way data. Then, the three-mode three-way norm is

introduced.

Definition 2.1. n-mode m-way data

U is a set of permutations, whose length is m with repetition of the elements in n finite

index sets, that is, U =
∏m

i=1Nji. Nj (j = 1, 2, · · · , n; n ≤ m) are finite index sets,

and are called mode. ji is the ith element of the set defined as the m combination with

repetition from {1, 2, · · ·n}. Data S is represented as a function of U for a real number.

In other words, data S are described as follows:

S : U −→ R.

In this case, S = S(U) is the n-mode m-way data and is described as S = (su) =

(s(i1, i2,··· , im)) ∈ R
∏m

i=1 |Nji
|, where u is an element of U . |A| refers to the cardinality of A

and i1, i2, · · · , im are elements corresponding to the finite index set u.

Multivariate data are included in n-mode m-way data.

Example 2.1. Two-mode two-way data

We set N1 = {1, 2, · · · , I}, N2 = {1, 2, · · · , J} and U = N1 × N2. Then, two-mode

two-way data S are described as

S = (s(i, j)) ∈ RI×J ,

where i are elements of N1, and j is an element of N2. When N1 and N2 are a set of objects

and a set of variables respectively, the two-mode two-way data are called multivariate data.

Using the concept of mode and way, we summarize the typical data in Table 2.1. We

note that the number of modes and ways shape the data; however, the meaning of a value

depends on the mode and the way. For example, two-mode two-way data include not only

multivariate data but also time-series data. Multivariate data have a set of variables and a

set of objects as the mode. On the other hand, time-series data have a set of time and a set

of objects as the mode. The order of time plays an important role in analyzing time-series
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Table 2.1: Relationship between typical data and the combination of mode and way

One-way Two-way Three-way · · · m-way

One-mode summarized
data

(dis)similarity
data 　

(dis)similarity between
three objects’ data

... 　
(dis)similarities in

m objects’ data

Two-mode undefined multivariate
data 　

individual difference
(dis)similarity data ...

(dis)similarity between
m objects of
two data sets

Three-mode undefined undefined
time-series

multivariate data　
...

(dis)similarity between
m objects of

three data sets
...

...
...

...
. . .

...

n-mode undefined undefined undefined · · ·
sequential data

under many conditions

data. The property of mode is one of the greatest differences between multivariate data

and time-series data.

　

In this study, we focus on three-mode three-way data whose mode has no order. We

introduce the notation of three-mode three-way data from Kiers (2000).

Example 2.2. Three-mode three-way data

When n = m = 3, n-mode m-way data are called three-mode three-way data. three-mode

three-way data are described in bold underlined capitals, such as X. When the cardinalities

of modes of X are I, J , and K, then we denote X = (xijk) ∈ RI×J×K(i = 1, 2, · · · , I; j =
1, 2, · · · , J ; k = 1, 2, · · · , K), respectively.

The shape of three-mode three-way data is cubic; that is, one value of three-mode three-

way data is defined by a three-dimension vector whose elements are i, j, and k. We define

the sum and scalar multiple operator for three-mode three-way data, and the norm of

three-mode three-way data.

Definition 2.2. Summation, scalar multiple of three-mode three-way data

Given two three-mode three-way data X and Y (X,Y ∈ RI×J×K), and constant value

a ∈ R, the sum of X and Y is defined as follows:

X + Y = (xijk + yijk).

Scalar multiple by a is defined as follows:

aX = (axijk).

Definition 2.3. Norm of three-mode three-way data

The norm of three-mode three-way data ∥X∥ is defined as follows:

∥X∥ =

√√√√ I∑
i=1

J∑
j=1

K∑
k=1

x2ijk

8



Definition 2.4. Inner product of three-mode three-way data

The inner product of three-mode three-way data X and Y (X, Y ∈ RI×J×K) is defined

as follows:

< X, Y >=
I∑

i=1

J∑
j=1

K∑
k=1

xijkyijk

For the definition of multiplying the three-mode three-way data with the matrix, we

define the transformation operator of the three-mode three-way data to the matrix.

Definition 2.5. Unfolding mode

Given three-mode three-way data X, we define the unfolding mode 1 X1 as follows:

X1 = (xiIX(j,k)) ∈ RI×JK ,

where xiIX(j,k) = xijk (i = 1, 2, · · · , I; j = 1, 2, · · · , J ; k = 1, 2, · · · , K), and

IX(j, k) = j + (k − 1)J . In addition, we define the unfolding modes 2 X2 and 3 X3 as

follows:

X2 = (xjJX(i, k)) ∈ RJ×IK , X3 = (xkKX(i, j)) ∈ RK×IJ ,

where xjJX(i, k) = xijk (i = 1, 2, · · · , I; j = 1, 2, · · · , J ; k = 1, 2, · · · , K), xkKX(i, j) =

xijk (i = 1, 2, · · · , I; j = 1, 2, · · · , J ; k = 1, 2, · · · , K), JX(i, k) = i + (k − 1)I, and

KX(i, j) = i+ (j − 1)I.

Figure 2.1 depicts the unfolding mode 1, 2 and 3. The most different point in the

matrixes made by unfolding each mode is the arrangement of the row. The row vector

of matrixes made by unfolding each mode corresponds to each mode. The number of

dimensions of the row vector whose matrixes are made by unfolding modes 1, 2, and 3 are

JK, IK, and IJ , respectively.

Figure 2.1: Representation of unfolding mode
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Example 2.3. Example of unfolding mode

X1, X2 and X3 are obtained by unfolding the X ∈ R4×2×3. These matrixes are shown as

follows:

X1 =


x1IX(1,1) x1IX(2,1) x1IX(1,2) x1IX(2,2) x1IX(1,3) x1IX(2,3)

x2IX(1,1) x2IX(2,1) x2IX(1,2) x2IX(2,2) x2IX(2,3) x2IX(2,3)

x3IX(1,1) x3IX(2,1) x3IX(1,2) x3IX(2,2) x3IX(3,3) x3IX(2,3)

x4IX(1,1) x4IX(2,1) x4IX(1,2) x4IX(2,2) x4IX(4,3) x4IX(2,3)



=


x111 x121 x112 x122 x113 x123

x211 x221 x212 x222 x213 x223

x311 x321 x312 x322 x313 x323

x411 x421 x412 x422 x413 x423

 ,

X ′
2 =



x1JX(1,1) x2JX(1,1)

x1JX(2,1) x2JX(2,1)

x1JX(3,1) x2JX(3,1)

x1JX(4,1) x2JX(4,1)

x1JX(1,2) x2JX(1,2)

x1JX(2,2) x2JX(2,2)

x1JX(3,2) x2JX(3,2)

x1JX(4,2) x2JX(4,2)

x1JX(1,3) x2JX(1,3)

x1JX(2,3) x2JX(2,3)

x1JX(3,3) x2JX(3,3)

x1JX(4,3) x2JX(4,3)



=



x111 x121

x211 x221

x311 x321

x411 x421

x112 x122

x212 x222

x312 x322

x412 x422

x113 x422

x113 x123

x213 x223

x313 x323

x413 x423



,

X ′
3 =



x1KX(1, 1) x2KX(1, 1) x3KX(1, 1)

x1KX(2, 1) x2KX(2, 1) x3KX(2, 1)

x1KX(3, 1) x2KX(3, 1) x3KX(3, 1)

x1KX(4, 1) x2KX(4, 1) x3KX(4, 1)

x1KX(1, 2) x2KX(1, 2) x3KX(1, 2)

x1KX(2, 2) x2KX(2, 2) x3KX(2, 2)

x1KX(3, 2) x2KX(3, 2) x3KX(3, 2)

x1KX(4, 2) x2KX(4, 2) x3KX(4, 2)


=



x111 x112 x113

x211 x212 x213

x311 x312 x313

x411 x412 x413

x121 x122 x123

x221 x222 x223

x321 x322 x323

x421 x422 x423


.

Using the unfolding mode, we obtain the relationship between the norm of three-mode

three-way data and the three-mode three-way data unfolding mode.

Proposition 2.1. Given three-mode three-way data X ∈ RI×J×K , the following equation

holds

∥X∥ = ∥X1∥F = ∥X2∥F = ∥X3∥F ,

where ∥ · ∥F is the Frobenius norm; that is, ∥X1∥F =
√

tr(X ′
1X1).
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Proof. From the definition of the norm of three-mode three-way data and the definition

of unfolding mode,

∥X∥ =

√√√√ I∑
i=1

J∑
j=1

K∑
k=1

x2ijk =

√√√√ I∑
i=1

J∑
j=1

K∑
k=1

x2iIX(j,k) =
√

tr(X ′
1X1) = ∥X1∥F

holds. Other equations are proved in the same way.

Hereafter, we denote the norm for matrix ∥X∥ = ∥X∥F .

Proposition 2.2. Given two three-mode three-way data X ∈ RI×J×K and Y ∈ RI×J×K ,

we obtain the following equation:

< X, Y >= tr(X ′
1Y1) = tr(X ′

2Y2) = tr(X ′
3Y3).

Proof. From the definition of the inner product and the definition of unfolding mode,

< X, Y >=

I∑
i=1

J∑
j=1

K∑
k=1

xijkyijk =
I∑

i=1

J∑
j=1

K∑
k=1

xiIX(j,k)yiIY (j,k) = tr(X ′
1Y1)

holds. Other equations are proved in the same way.

Now, we define the transform operator matrix to three-mode three-way data for intro-

ducing the mode product.

Definition 2.6. Folding mode of three-mode three-way data

Given X1 = (xiℓ) ∈ RI×JK , we define the folding operator [·](1)J,K as [X1]
(1)
J,K = X =

(xijk) ∈ RI×J×K , where j = mod(ℓ, J), k = int(ℓ/J), mod(ℓ, o) is ℓ modulo o, and int(ℓ)

is the integer part of ℓ. Given X2 = (xjℓ) ∈ RJ×IK ,X3 = (xkℓ) ∈ RK×IJ , we also define

the folding operator [·](2)I,K as [X2]
(2)
I,K = X = (xijk) ∈ RI×J×K , where i = mode(ℓ, I) and

k = int(ℓ/I), and [·](3)I,J as [X3]
(3)
I,J = X = (xijk) ∈ RI×J×K where i = mode(ℓ, I), and

j = int(ℓ/I).

Figure 2.2 depicts the folding operator. The debate about the folding operator involves

the matrix, which is made on the assumption of the unfolding operator. Thus, we should

indicate the number of dimensions of each mode and the mode corresponding to the row.

Using unfolding mode and folding mode, we define the multiplier between the three-

mode three-way data and matrix.

Definition 2.7. Mode product of three-mode three-way data

Given three-mode three-way data X ∈ RI×J×K and matrixes U ∈ RI×r,V ∈ RJ×r, and

W ∈ RK×r, the mode product of 1, 2, and 3 is defined as follows:

X ×1 U =[U ′X1]
(1)
J,K ∈ Rr×J×K ,

X ×2 V =[V ′X2]
(2)
I,K ∈ RI×r×K ,

X ×3 W =[W ′X3]
(3)
I,J ∈ RI×J×r.
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Figure 2.2: Representation of folding mode

The mode product is defined by using the matrix product. Thus, we obtain the rela-

tionships between the matrix calculation and the mode product.

Lemma 2.1. Given the three-mode three-way data X ∈ RI×J×K , and three matrixes

U ∈ RI×r1, V ∈ RJ×r2, and W ∈ RK×r3, we set Y = X ×1 U . We obtain the following

equations:

Y1 = U ′X1,

Y2 = X2(I ⊗U),

Y3 = X3(I ⊗U).

When we set Z = X ×2 V , we obtain the following equations:

Z1 = X1(I ⊗ V ),

Z2 = V ′X2,

Z3 = X3(V ⊗ I).

When we set Q = X ×3 W , we obtain the following equations:

Q1 = X1(W ⊗ I),

Q2 = X2(W ⊗ I),

Q3 = W ′X3,

where ⊗ shows the Kronecker products and I is an identity matrix.

Proof. Y1 = U ′X1 is the definition of mode product. From the definition of mode product,

the element of Y is obtained as follows:

yijk =
I∑

ℓ=1

uℓixℓIX(j,k).

12



On the other hand, with regard to the element of X2(I ⊗U),

I∑
ℓ=1

xjJX(ℓ,k)uℓi = yjJY (i,k)

holds. Similarly, with regard to the element of X3(I ⊗U),

I∑
ℓ=1

xkKX(ℓ,j)uℓi = ykKX(i,j)

holds.

Next, we consider proofs regarding Z. From the definition of mode product, the element

of Z is obtained as follows:

zijk =

J∑
ℓ=1

vℓjxℓJX(i,k).

On the other hand, with regard to the element of X3(V ⊗ I),

J∑
ℓ=1

xkKX(i,ℓ)vℓj = zkKX(i,j)

holds.

The proofs for the other equations are obtained in the same way as above.

Proposition 2.3. Given the three-mode three-way data X ∈ RI×J×K , and three matrixes

U ∈ RI×r1, V ∈ RJ×r2, and W ∈ RK×r3, we set Y = X ×1 U ×2 V ×3 W . We obtain

the following equations:

Y1 = U ′X1(W ⊗ V ),

Y2 = V ′X2(W ⊗U),

Y3 = W ′X3(V ⊗U).

Proof. From Lemma 2.1, Z = (X1 ×1 U ×2 V ) is obtained as follows:

Z = [V ′X2(I ⊗U)]
(2)
I,K .

In the same way, we set Q = X ×1 U , and then Y = (X1 ×1 U ×2 V ×3 W ) is obtained

as follows:

Y = [W ′Q3(V ⊗ I)]
(3)
I,J

= [W ′X3(I ⊗U)(V ⊗ I)]
(3)
I,J

= [W ′X3(V ⊗U)]
(3)
I,J .

Therefore, we obtain Y3 = W ′X3(V ⊗U). From Lemma 2.1, Y1 and Y2 are obtained as

follows:

Y1 = Z1(W ⊗ I) = Q1(I ⊗ V )(W ⊗ I) = U ′X1(W ⊗ V ),

Y2 = Z2(W ⊗ I) = V ′Q2(W ⊗ I) = V ′X2(W ⊗U).
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Proposition 2.3 shows the relationship between the operator for matrix and mode prod-

uct. Many multivariate data analyses for three-mode three-way data are described as mode

product. Using this proposition, we rewrite the multivariate analysis for the multivariate

data matrix.

Example 2.4. Three-mode three-way regression analysis

Given two three-mode three-way data X ∈ RI×J×K and Y ∈ RI×L×M , the model of three-

mode three-way regression analysis is as follows:

Y ≃X ×2 U ×3 V ,

where U ∈ RJ×L and V ∈ RK×M . This model formula is also described as follows:

Y1 ≃X1(V ⊗U).

Example 2.5. Three-mode three-way principal component analysis

Given three-mode three-way data X ∈ RI×J×K , the model of three-mode three-way prin-

cipal component analysis is described as follows:

X ≃ G×1 A×2 B ×3 C,

where G ∈ Rra×rb×rc , A ∈ Rra×I , B ∈ Rrb×J , and C ∈ Rrc×K . This model formula is

also described as follows:

X1 ≃ A′G1(C ⊗B).

This formulation is proposed by Tucker (1966) and is called the Tucker 3 model.
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Chapter 3

Three-mode three-way canonical

covariance analysis

In this chapter, we describe the models and algorithm of the proposed methods for

three-mode three-way data. In Section 3.1, we explain the basic method for three-mode

three-way data. Because the basic method is simply an extension of two-mode two-way

data to three-mode three-way data, this method has some problems. To address some

of these problems, we introduce the connector matrix. In Section 3.2, we explain some

constrained connector methods, which are broadly divided into clustering- and regression-

based methods. The former is based on K-means and spherical K-means. The latter

corresponds to simultaneous analysis of regression and dimensional reduction. The differ-

ence between the two methods is related to update rules for the connector matrix. The

update rules of K-means and spherical K-means correspond to covariance and correla-

tion, respectively. In section 3.3, we explain the quantification method for three-mode

three-way canonical covariance analysis. The quantification method is based on NPCA.

We could apply canonical covariance analysis to three-mode three-way categorical data by

quantification method.

3.1 Basic method and connector matrix method

In this section, we explain the basic method of the canonical covariance method for

three-mode three-way data. First, we discuss the two-mode two-way canonical covariance

analysis method. Then, we define the model of the basic method. Finally, we describe the

connector matrix method by introducing the connector matrix.

3.1.1 Basic method

In this subsection, we introduce the basic method of three-way three-mode canonical

covariance analysis. For this purpose, we first introduce the two-mode two-way canonical

covariance method based on Tenenhaus & Tenenhaus (2011); Tenenhaus et al. (2017).

Then, we extend this model to three-mode three-way data analysis.
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3.1.1.1 Model and objective function

Given two-mode two-way data X ∈ RI×Jx , Y ∈ RI×Jy , the model of canonical covari-

ance analysis is described as follows:

Y B = XA+E,

where A ∈ RJx×r, B ∈ RJy×r are weight matrixes for X and Y , respectively. E ∈ RI×r

is an error matrix and r is the number of factors. When A and B are column orthogonal,

this model is called a canonical covariance model. On the other hand, when A and B

satisfy A′X ′XA = B′X ′XB = I, this model is called the canonical correlation model.

The objective function f of the canonical covariance model is defined as follows:

f(A, B|X, Y ) = tr(AX ′Y B) (3.1)

subject to A′A = B′B = I

This objective function is also defined as follows:

g(A, B|X, Y ) =∥X −XAA′∥2 + ∥Y − Y BB′∥2

+ ∥XA− Y B∥2 (3.2)

subject to A′A = B′B = I

Proposition 3.1.

Maximizing the objective functions (3.1) is equivalent to minimizing the objective function

(3.2).

Proof. From the constraint of parameters, we obtain the following equation:

g(A,B|X,Y ) =∥X −XAA′∥2 + ∥Y − Y BB′∥2 + ∥XA− Y B∥2

=tr(X ′X)− tr(A′X ′XA) + tr(Y ′Y )− tr(B′Y ′Y B)

+ tr(A′X ′XA) + tr(B′Y ′Y B)− 2tr(A′X ′Y B)

= −2tr(A′X ′Y B) + const. −→ minimize

where const. is constant value independent from parameters. When maximizing

tr(A′X ′Y B), we obtain the estimated parameter. Therefore, the proposition holds.

Proposition 3.1 does not hold in the canonical correlation model.

Proposition 3.2.

Maximizing the objective function f defined as follows:

f(A, B|X, Y ) = tr(AX ′Y B) (3.3)

subject to A′X ′XA = B′Y ′Y B = I

is not equivalent to the objective function defined as follows:

g(A, B|X, Y ) =∥X −XAA′∥2 + ∥Y − Y BB′∥2

+ ∥XA− Y B∥2 (3.4)

subject to A′X ′XA = B′Y ′Y B = I
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Proof. From the constraint of parameters, we obtain the following equation:

g(A, B|X, Y ) =∥X −XAA′∥2 + ∥Y − Y BB′∥2

+ ∥XA− Y B∥2

=− tr(AA′X ′XAA)− tr(BB′Y ′Y BB′)− tr(A′X ′Y B) + const.

=− tr(A′A)− tr(B′B)− tr(A′X ′Y B) + const.

where const. is constant value independent from parameters. Therefore, minimizing the

objective function 3.4 is the same problem of maximizing the objective function f defined

as follows:

f(A, B|X, Y ) = tr(A′X ′Y B) + ∥A∥2 + ∥B∥2

subject to A′X ′XA = B′Y ′Y B = I.

Proposition 3.2 also shows that the objective function of canonical correlation analysis

is equivalent to ∥XA − Y B∥2. Therefore, when X ′X = Y ′Y = I hold, the objective

function of canonical covariance analysis is equivalent to the objective function of canonical

correlation analysis.

We extend the two-mode two-way canonical covariance model to the three-mode three-

way canonical covariance model using the concept of the Tucker model. Given two three-

mode three-way data X ∈ RI×Jx×Kx and Y ∈ RI×Jy×Ky , the model formula of the

three-mode three-way model is defined as follows:

Y1(Cy ⊗By) = X1(Cx ⊗Bx) +E, (3.5)

where Bx ∈ RJx×rb , By ∈ RJy×rb , Cx ∈ RKx×rc , Cy ∈ RKy×rc are weight matrixes

for mode 2 of X and Y , and mode 3 of X and Y . The weight matrixes are a column

orthogonal matrix. Mode 2 and 3 show the variable and conditions, respectively, for

popular cases of data analysis.

The objective function gb of the three-mode three-way data is defined as follows:

gb(Bx, By, Cx, Cy|X,Y ) =∥X1 −X1(CxC
′
x ⊗BxB

′
x)∥2 + ∥Y1 − Y1(CyC

′
y ⊗ByB

′
y)∥2

+ ∥X1(Cx ⊗Bx)− Y1(Cy ⊗By)∥2 (3.6)

subject to B′
xBx = B′

yBy = I,C ′
xCx = C ′

yCy = I.

The objective function (3.6) is equivalent to maximizing the covariance problem. This

proposition is proved in the same way as Proposition 3.1. However, this method has

indeterminate parameters. When we set B
(∗)
x = BxS, B

(∗)
y = ByS, C

(∗)
x = CxT , C

(∗)
y =

CyT by using the orthonormal matrixes S and T , the objective function (3.6) takes the

same value. Therefore, we can use rotation methods for interpretation.

Proposition 3.3. We assume that S and T are orthonormal. When we set

B
(∗)
x = BxS, B

(∗)
y = ByS, C

(∗)
x = CxT , C

(∗)
y = CyT , we obtain the following equation:

gb(B
(∗)
x , B(∗)

y , C(∗)
x , C(∗)

y |X, Y ) = gb(Bx, By, Cx, Cy|X,Y ),

where gb is defined as equation (3.6).
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Proof. From the definition of the objective function,

gb(B
(∗)
x , B(∗)

y , C(∗)
x , C(∗)

y |X, Y ) =∥X1 −X1(C
(∗)
x C(∗)

x
′ ⊗B(∗)

x B(∗)
x

′)∥2

+ ∥Y1 − Y1(C
(∗)
y C(∗)

y
′ ⊗B(∗)

y B(∗)
y

′)∥2

+ ∥X1(C
(∗)
x ⊗B(∗)

x )− Y1(C
(∗)
y ⊗B(∗)

y )∥2 (3.7)

holds. The first term of the right-hand side of equation (3.7) is

∥X1 −X1(C
(∗)
x C(∗)

x
′ ⊗B(∗)

x B(∗)
x

′)∥2 =∥X1 −X1(CxTT ′C ′
x ⊗BxSS

′B′
x)∥2

=∥X1 −X1(CxC
′
x ⊗BxB

′
x)∥2.

The second term of the right-hand side of equation (3.7) is

∥Y1 − Y1(C
(∗)
y C(∗)

y
′ ⊗B(∗)

y B(∗)
y

′)∥2 =∥Y1 − Y1(CyTT ′C ′
y ⊗BySS

′B′
y)∥2

=∥Y1 − Y1(CyC
′
y ⊗ByB

′
y)∥2.

The third term of the right-hand side of equation (3.7) is

∥X1(C
(∗)
x ⊗B(∗)

x )− Y1(C
(∗)
y ⊗B(∗)

y )∥2

=tr((T ⊗ S)′(Cx ⊗Bx)
′X ′

1X1(Cx ⊗Bx)(T ⊗ S))

− 2tr((T ⊗ S)′(Cx ⊗Bx)
′X ′

1Y1(Cy ⊗By)(T ⊗ S))

+ tr((T ⊗ S)′(Cy ⊗By)
′Y ′

1Y1(Cy ⊗By)(T ⊗ S))

=tr((Cx ⊗Bx)
′X ′

1X1(Cx ⊗Bx)(T ⊗ S)(T ⊗ S)′)

− 2tr((Cx ⊗Bx)
′X ′

1Y1(Cy ⊗By)(T ⊗ S)(T ⊗ S)′)

+ tr((Cy ⊗By)
′Y ′

1Y1(Cy ⊗By)(T ⊗ S)(T ⊗ S)′)

=tr((Cx ⊗Bx)
′X ′

1X1(Cx ⊗Bx))

− 2tr((Cx ⊗Bx)
′X ′

1Y1(Cy ⊗By))

+ tr((Cy ⊗By)
′Y ′

1Y1(Cy ⊗By))

=∥X1(Cx ⊗Bx)− Y1(Cy ⊗By)∥2.

When we summarize all terms, the proposition holds.

3.1.1.2 Algorithm

Here, we explain the algorithm of three-mode three-way canonical covariance. It is

difficult to optimize the objective function (3.6) because it is not a convex function of

all parameters. Therefore, we adopt the update algorithm as an alternative least squares

algorithm.

When other parameters are given, we adopt the algorithm proposed by Jennrich (2001)

as an update algorithm ofBx, By,Cx, andCy. Jennrich’s approach requires the derivative

function of the objective function. Given this, the update formula is described by using

singular value decomposition of the derivative function.
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Proposition 3.4. We set gb as the objective function, as defined in equation (3.6). The

partial derivative functions of the objective function with respect to each parameter are

obtained as follows:

∂

∂Bx
gb(Bx, By, Cx, Cy|X,Y ) = −2X2(CxC

′
y ⊗ I)Y ′

2By, (3.8)

∂

∂By
gb(Bx, By, Cx, Cy|X,Y ) = −2Y2(CyC

′
x ⊗ I)X ′

2Bx, (3.9)

∂

∂Cx
gb(Bx, By, Cx, Cy|X,Y ) = −2X3(BxB

′
y ⊗ I)Y ′

3Cy, (3.10)

∂

∂Cy
gb(Bx, By, Cx, Cy|X,Y ) = −2Y3(ByB

′
x ⊗ I)X ′

3Cx, (3.11)

Proof. From the definition of gb and Proposition 2.1 and 2.3, we obtain the following

equations:

gb(Bx, By, Cx, Cy|X,Y )

=∥X1 −X1(CxC
′
x ⊗BxB

′
x)∥2 + ∥Y1 − Y1(CyC

′
y ⊗BxB

′
x)∥2

+ ∥X1(Cx ⊗Bx)− Y1(Cy ⊗By)∥2

=∥X2 −BxB
′
xX2(CxC

′
x ⊗ I)∥2 + ∥Y2 −ByB

′
yY2(CyC

′
y ⊗ I)∥2

+ ∥B′
xX2(Cx ⊗ I)−B′

yY2(Cy ⊗ I)∥2
(3.12)

=∥X3 −CxC
′
xX3(BxB

′
x ⊗ I)∥2 + ∥Y3 −CyC

′
yY3((ByB

′
y ⊗ I))∥2

+ ∥C ′
xX3(Bx ⊗ I)−C ′

yY3(By ⊗ I)∥2.
(3.13)

Then, we calculate the partial derivative function of the objective function with respect

to Bx. First, we obtain the following equation:

∥X2 −BxB
′
xX2(CxC

′
x ⊗ I)∥2 + ∥Y2 −ByB

′
yY2(CyC

′
y ⊗ I)∥2

+ ∥B′
xX2(Cx ⊗ I)−B′

yY2(Cy ⊗ I)∥2

=tr(X ′
2X2)− 2tr(B′

xX2(CxC
′
x ⊗ I)X ′

2Bx) + tr(B′
xX2(CxC

′
x ⊗ I)X ′

2Bx)

+ tr(Y ′
2Y2)− 2tr(B′

yY2(CyC
′
y ⊗ I)Y ′

2By) + tr(B′
yY2(CyC

′
y ⊗ I)Y ′

2By)

+ tr(B′
xX2(CxC

′
x ⊗ I)X ′

2Bx)− 2tr(B′
xX2(CxC

′
y ⊗ I)Y ′

2By)

+ tr(B′
yY2(CyC

′
y ⊗ I)Y ′

2By)

=tr(X ′
2X2) + tr(Y ′

2Y2)− 2tr(B′
xX

′
2(CxC

′
y ⊗ I)Y2By).

Therefore, the partial derivative function of the objective function with respect to Bx

is obtained as follows:

∂

∂Bx
gb(Bx, By, Cx, Cy|X,Y ) =

∂

∂Bx
{tr(X ′

2X2) + tr(Y ′
2Y2)

− 2tr(B′
xX2(CxC

′
y ⊗ I)Y ′

2By)}

=− 2X2(CxC
′
y ⊗ I)Y ′

2By.

The partial derivative function of the objective function with respect toBy is also obtained
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as follows:

∂

∂By
gb(Bx, By, Cx, Cy|X,Y ) =

∂

∂By
{tr(X ′

2X2) + tr(Y ′
2Y2)

− 2tr(B′
xX2(CxCy ⊗ I)Y ′

2By)}

=− 2Y2(CyC
′
x ⊗ I)X ′

2Bx.

Then, we calculate the partial derivative function of the objective function with respect

to Cx. For this purpose, we rewrite equation (3.13) as

∥X3 −CxC
′
xX3(BxB

′
x ⊗ I)∥2 + ∥Y3 −CyC

′
yY3(ByB

′
y ⊗ I)∥2

+ ∥C ′
xX3(Bx ⊗ I)−C ′

yY3(By ⊗ I)∥2

=tr(X ′
3X3)− 2tr(C ′

xX3(BxB
′
x ⊗ I)X ′

3Cx) + tr(C ′
xX3(BxB

′
x ⊗ I)X ′

3Cx)

+ tr(Y ′
3Y3)− 2tr(C ′

yY3(ByB
′
y ⊗ I)Y ′

3Cy) + tr(C ′
yY3(ByB

′
y ⊗ I)Y ′

3Cy)

+ tr(C ′
xX3(BxB

′
x ⊗ I)X ′

3Cx)− 2tr(C ′
xX3(BxB

′
y ⊗ I)Y ′

3Cy)

+ tr(C ′
yY3(ByB

′
y ⊗ I)Y ′

3Cy)

=tr(X ′
3X3) + tr(Y ′

3Y3)− 2tr(C ′
xX

′
3(BxB

′
y ⊗ I)Y3Cy).

Thus, the partial derivative function of the objective function with respect to Cx is

obtained as follows:

∂

∂Cx
gb(Bx, By, Cx, Cy|X,Y ) =

∂

∂Cx
{tr(X ′

3X3) + tr(Y ′
3Y3)

− 2tr(C ′
xX3(BxB

′
y ⊗ I)Y ′

3Cy)}

=− 2X3(BxB
′
y ⊗ I)Y ′

3Cy.

The partial derivative function of the objective function with respect to Cy is also

obtained as follows:

∂

∂Cy
gb(Bx, By, Cx, Cy|X,Y ) =

∂

∂Cy
{tr(X ′

3X3) + tr(Y ′
3Y3)

− 2tr(C ′
xX3(BxB

′
y ⊗ I)Y ′

3Cy)}

=− 2Y3(ByB
′
x ⊗ I)X ′

3Cx.

Given a sufficient big constant α, using Jennrich’s approach, the update formulas of the

parameters are obtained as follows:

B(t+1)
x = UbxV

′
bx,

B(t+1)
y = UbyV

′
by,

C(t+1)
x = UcxV

′
cx,

C(t+1)
y = UcyV

′
cy,

where Ubx and Vbx are the left and right matrixes, respectively, of the singular value

decomposition of the matrix

αB(t)
x −

∂

∂Bx
gb(Bx, By, Cx, Cy|X,Y ),
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Uby and Vby are also the left and right matrixes, respectively, of the singular value

decomposition of the matrix

αB(t)
y −

∂

∂By
gb(Bx, By, Cx, Cy|X,Y ),

Ucx and Vcx are also the left and right matrixes, respectively, of the singular value

decomposition of the matrix

αC(t)
x −

∂

∂Cx
gb(Bx, By, Cx, Cy|X,Y ),

and Ucy and Vcy are also the left and right matrixes, respectively, of the singular value

decomposition of the matrix as follows:

αC(t)
y −

∂

∂Cy
gb(Bx, By, Cx, Cy|X,Y ).

Algorithm 1 shows the algorithm of the three-mode three-way canonical covariance

analysis. The setting of α is important. If α is not sufficiently big, This algorithm does

not ensure a monotonous decrease. Even if α is sufficiently big, the algorithm 1 yields only

a monotonous decrease, not yield global optima. To obtain global optima, we generate

many initial values of parameters.

Algorithm 1 Algorithm of basic method

Set the number of dimension rb, rc, and stop condition ε

Set initial values B
(0)
x , B

(0)
y , C

(0)
x , C

(0)
y , α

t← 0

S(0) ← gb(B
(0)
x , B

(0)
y , C

(0)
x , C

(0)
y |X,Y )

repeat

t← t+ 1

B
(t)
x ← UbxV

′
bx using B

(t−1)
y , C

(t−1)
x , C

(t−1)
y

B
(t)
y ← UbyV

′
by using B

(t)
x , C

(t−1)
x , C

(t−1)
y

C
(t)
x ← UcxV

′
cxusing B

(t)
x , B

(t)
y , C

(t−1)
y

C
(t)
y ← UcyV

′
cyusing B

(t)
x ,B

(t)
y , C

(t)
x

S(t) ← gb(B
(t)
x , B

(t)
y , C

(t)
x , C

(t)
y |X,Y )

until |S(t−1) − S(t)| ≤ ε

3.1.2 Connector matrix method

In the three-mode three-way canonical covariance method, it is assumed that the num-

ber of dimensions of weight matrix for the same mode is the same. This assumption is

not suitable when there is a big difference between the two data sets in the number of

dimensions of the same mode. The canonical covariance method considers the variance

of the data. Thus, when the number of dimensions is large, then the canonical covari-

ance method tends to maximize the variance of the canonical variable. To overcome this

problem, we introduce the connector matrixes.
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3.1.2.1 Model and objective function

Given two three-mode three-way data X ∈ RI×Jx×Kx and Y ∈ RI×Jy×Ky , the model

of connector canonical covariance analysis for three-mode three-way data is defined as

follows:

Y1(Cy ⊗By)Dy = X1(Cx ⊗Bx)Dx +E, (3.14)

where Bx ∈ RJx×rbx , By ∈ RJy×rby , Cx ∈ RKx×rcx , Cy ∈ RKy×rcy are weight matrixes for

mode 2 ofX and Y , and mode 3 ofX and Y . The weight matrixes are column orthogonal.

Dx ∈ Rrcxrbx×cccb and Dy ∈ Rrcxrbx×cccb are connector matrixes for X and Y , respectively.

In this case, Dx and Dy have no structure of three-mode three-way data. Thus, we

assume Dx = Dcx ⊗Dbx, Dy = Dcy ⊗Dby, where Dbx ∈ Rrbx×cb , Dby ∈ Rrby×cb are

connector matrixes of mode 2 X and Y , respectively, and Dcx ∈ Rrcx×cc , Dcy ∈ Rrcy×cc

are connector matrixes of mode 3 X and Y , respectively. rbx, rby, rcx and rcy are the

number of dimensions of the weight matrix for variables of X and Y and for conditions of

X and Y , respectively, and cb and cc are the number of connected factors of variable and

conditions, respectively. We assume elements of connector matrixes are real numbers in

general. However, for our interpretation, we often set the range of elements of connector

matrixes as binary.

Introducing connector matrixes, the numbers of dimensions of the weight matrixes are

different to each other. This characteristic is important for analysis of three-mode three-

way data. In many cases, the numbers of dimensions of two three-mode three-way data are

different. Therefore, the assumption that there is the same optimum number of dimensions

for the PCA term is too strict. Using connector matrixes, we could loosen the assumption.

On the other hand, the number of parameters increases.

The objective function gc of connector canonical covariance analysis for three-mode

three-way data is obtained as follows:

gc(Bx, By, Cx, Cy,Dx, Dy|X,Y )

=∥X1 −X1(CxC
′
x ⊗BxB

′
x)∥2 + ∥Y1 − Y1(CyC

′
y ⊗ByB

′
y)∥2

+ ∥X1(Cx ⊗Bx)Dx − Y1(Cy ⊗By)Dy∥2 (3.15)

subject to B′
xBx = I, B′

yBy = I,C ′
xCx = I, C ′

yCy = I.

This objective function is not equivalent to maximizing covariance in general. If con-

nector matrixes are set as the indicator matrix, the objective function (3.15) equals the

objective function (3.6). From this property, we regard the connector matrix method as

one of the extensions of the basic method. Moreover, this method has rotational indeter-

minacy.

Proposition 3.5. Given two orthonormal matrixes S and T , when we set

B(∗)
x = BxS, B

(∗)
y = ByS, C

(∗)
x = CxT , C(∗)

y = CyT ,

D(∗)
x = (T ⊗ S)′Dx, D

(∗)
y = (T ⊗ S)′Dy,
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we obtain the following equation:

gc(B
(∗)
x , B(∗)

y , C(∗)
x , C(∗)

y ,D(∗)
x , D(∗)

y |X,Y ) = gc(Bx, By, Cx, Cy,Dx, Dy|X,Y ),

where gc is defined as (3.15).

Proof. From the definition of objective function gc,

gc(B
(∗)
x , B(∗)

y , C(∗)
x , C(∗)

y D(∗)
x , D(∗)

x |X,Y )

=∥X1 −X1(C
(∗)
x C(∗)

x
′ ⊗B(∗)

x B(∗)
x

′)∥2

+ ∥Y1 − Y1(C
(∗)
y C(∗)

y
′ ⊗B(∗)

y B(∗)
y

′)∥2

+ ∥X1(C
(∗)
x ⊗B(∗)

x )Dx − Y1(C
(∗)
y ⊗B(∗)

y )Dy∥2 (3.16)

holds. The first and second terms are proved in the same way as Proposition 3.3. The

third term on the right-hand side of equation (3.16) is described as follows:

∥X1(C
(∗)
x ⊗B(∗)

x )Dx − Y1(C
(∗)
y ⊗B(∗)

y )Dy∥2

=tr(D(∗)
x

′(C(∗)
x ⊗B(∗)

x )′X ′
1X1(C

(∗)
x ⊗B(∗)

x )D(∗)
x )

− 2tr(D(∗)
x

′(C(∗)
x ⊗B(∗)

x )′X ′
1Y1(C

(∗)
y ⊗B(∗)

y )D(∗)
y )

+ tr(D(∗)
y

′(C(∗)
y ⊗B(∗)

y )′Y ′
1Y1(C

(∗)
y ⊗B(∗)

y )D(∗)
y )

=tr(D′
x(TT ′ ⊗ SS′)(Cx ⊗Bx)

′X ′
1X1(Cx ⊗Bx)(TT ′ ⊗ SS′)Dx)

− 2tr(D′
x(TT ′ ⊗ SS′)(Cx ⊗B)′X ′

1Y1(Cy ⊗By)(TT ′ ⊗ SS′)Dy)

+ tr(D′
y(TT ′ ⊗ SS′)(Cy ⊗By)

′Y ′
1Y1(Cy ⊗By)(TT ′ ⊗ SS′)Dy)

=tr(D′
x(Cx ⊗Bx)

′X ′
1X1(Cx ⊗Bx)Dx)

− 2tr(D′
x(Cx ⊗B)′X ′

1Y1(Cy ⊗By)Dy)

+ tr(D′
y(Cy ⊗By)

′Y ′
1Y1(Cy ⊗By)Dy) = ∥X1(Cx ⊗Bx)Dx − Y1(Cy ⊗By)Dy∥2.

When we summarize all terms, Proposition 3.5 holds.

There are many points to consider about rotation methods of connector matrix canonical

covariance analysis. One of the purposes of applying the rotation method is “interpreta-

tion.” When connector matrixes are identical, we consider only the weight matrixes for

the interpretation. In this case, it is difficult for rotation matrixes to be the same X and

Y . In other words, the rotation matrix is common between X and Y . We need criteria

for simplicity for both matrixes simultaneously. One of the solutions is the sum of the

criteria, such as Varimax. It is easy to obtain the rotation matrixes by using Jennrich’s

approach.

It is more difficult to make criteria for simplicity for the connector matrixes with simul-

taneous rotation than for those without. Since the rotation matrixes for the connector

matrixes are described as the Kronecker product, we consider simplicities of many ma-

trixes. On the other hand, researchers are often interested in weight matrixes, because a

purpose of this analysis is to seek subspace. Therefore, we suggest use of the same rotation

method as that for the case in which connector matrixes are identical. Another solution

is constraining the connector matrixes. The constrained method is discussed in the next

subsection.
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3.1.2.2 Algorithm

Here, we explain the algorithm of connector matrix canonical covariance analysis for

three-mode three-way data. It is difficult to optimize the objective function (3.15) because

it (3.15) is not convex for all parameters. Therefore, we adopt the update algorithm as an

alternative least squares algorithm.

The update algorithm for Bx, By, Cx, and Cy is the same algorithm as that of the

non-connector case. Thus, we need the partial derivative function of parameters.

Proposition 3.6. We set gc as the objective function as defined in equation (3.15). The

partial derivative function of gc with respect to each parameter is obtained as follows:

∂

∂Bx
gc(Bx, By, Cx, Cy, Dx, Dy|X, Y )

=2X2(CxDcx ⊗ I)

(
(CxDcx ⊗ I)′X ′

2BxDbxD
′
bx − (CyDcy ⊗ I)′Y ′

2ByDbyD
′
bx

)
− 2X2(CxC

′
x ⊗ I)X ′

2Bx

(3.17)

∂

∂By
gc(Bx, By, Cx, Cy, Dx, Dy|X, Y )

=2Y2(CyDcy ⊗ I)

(
(CyDcy ⊗ I)′Y ′

2ByDbyD
′
by − (CxDcx ⊗ I)′X ′

2BxDbxD
′
by

)
− 2Y2(CyC

′
y ⊗ I)Y ′

2By

(3.18)

∂

∂Cx
gc(Bx, By, Cx, Cy, Dx, Dy|X, Y )

=2X3(BxDbx ⊗ I)

(
(BxDbx ⊗ I)′X ′

3CxDcxD
′
cx − (ByDby ⊗ I)′Y ′

3CyDcyD
′
cx

)
− 2X3(BxB

′
x ⊗ I)X ′

3Cx

(3.19)

∂

∂Cy
gc(Bx, By, Cx, Cy, Dx, Dy|X, Y )

=2Y3(ByDby ⊗ I)

(
(ByDby ⊗ I)′Y ′

3CyDcyD
′
cy − (BxDbx ⊗ I)′X ′

3CxDcxD
′
cy

)
− 2Y3(ByB

′
y ⊗ I)Y ′

3Cy

(3.20)

Proof. From the definition of gc and Propositions 2.1 and 2.3, we obtain the following

equation:

gc(Bx, By, Cx, Cy, Dx, Dy |X, Y )

=∥X1 −X1(CxC
′
x ⊗BxB

′
x)∥2 + ∥Y1 − Y1(CyC

′
y ⊗ByB

′
y)∥2

+∥X1(Cx ⊗Bx)Dx − Y1(Cy ⊗By)Dy∥2

=∥X2 −BxB
′
xX2(CxC

′
x ⊗ I)∥2 + ∥Y2 −ByB

′
yY2(CyC

′
y ⊗ I)∥2

+∥D′
bxB

′
xX2(CxDcx ⊗ I)−D′

byB
′
yY2(CyDcy ⊗ I)∥2

(3.21)

=∥X3 −CxC
′
xX3(BxB

′
x ⊗ I)∥2 + ∥Y3 −CyC

′
yY3(ByB

′
y ⊗ I)∥2

+∥D′
cxC

′
xX3(BxDbx ⊗ I)−D′

cyC
′
yY3(ByDby ⊗ I)∥2.

(3.22)

Equations (3.21) and (3.22) are obtained by assuming that Dx = Dcx ⊗Dbx and Dy =

Dcy ⊗Dby.
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First, we derive the partial derivative function of Bx. The first and second terms of

equation (3.21) are the same as the first and second terms of equation (3.12). Thus, we

can rewrite the first and second terms of equation (3.21) as follows:

∥X2 −BxB
′
xX2(CxC

′
x ⊗ I)∥2 + ∥Y2 −ByB

′
yY2(CyC

′
y ⊗ I)∥2

=tr(X ′
2X2)− tr(B′

xX2(Cx ⊗ I)(Cx ⊗ I)′X ′
2Bx)

+ tr(Y ′
2Y2)− tr(B′

yY2(Cy ⊗ I)(Cy ⊗ I)′Y ′
2By).

The third term of equation (3.21) is rewritten as follows:

∥D′
bxB

′
xX2(CxDcx ⊗ I)−D′

byB
′
yY2(CyDcy ⊗ I)∥2

=tr(D′
bxB

′
xX2(CxDcx ⊗ I)(CxDcx ⊗ I)′X ′

2BxDbx)

− 2tr(D′
bxB

′
xX2(CxDcx ⊗ I)(CyDcy ⊗ I)′Y ′

2ByDby)

+ tr(D′
byB

′
yY2(CyDcy ⊗ I)(CyDcy ⊗ I)′Y ′

2ByDby).

Therefore, the partial derivative function of gc with respect to Bx is obtained as follows:

∂

∂Bx
gc(Bx, By, Cx, Cy, Dx, Dy |X, Y )

=
∂

∂Bx
{−tr(B′

xX2(Cx ⊗ I)(Cx ⊗ I)′X ′
2Bx)

+ tr(D′
bxB

′
xX2(CxDcx ⊗ I)(CxDcx ⊗ I)′X ′

2BxDbx)

− 2tr(D′
bxB

′
xX2(CxDcx ⊗ I)(CyDcy ⊗ I)′Y ′

2ByDby)}

=− 2X2(Cx ⊗ I)(Cx ⊗ I)′X ′
2Bx

+ 2X2(CxDcxD
′
cxC

′
x ⊗ I)X ′

2BxDbxD
′
bx

− 2X2(CxDcxD
′
cyC

′
y ⊗ I)Y ′

2ByDbyD
′
bx.

In addition, we obtain the partial derivative function of gc with respect to By as follows:

∂

∂By
gc(Bx, By, Cx, Cy, Dx, Dy |X, Y )

=
∂

∂By
{−tr(B′

yY2(Cy ⊗ I)(Cy ⊗ I)′Y ′
2By)

+ tr(D′
byB

′
yY2(CyDcy ⊗ I)(CyDcy ⊗ I)′Y ′

2ByDby)

− 2tr(D′
byB

′
yY2(CyDcy ⊗ I)(CxDcx ⊗ I)′X ′

2BxDbx)}

=− 2Y2(Cy ⊗ I)(Cy ⊗ I)′Y ′
2By

+ 2Y2(CyDcyD
′
cyC

′
y ⊗ I)Y ′

2ByDbyD
′
by

− 2Y2(CyDcyD
′
cxC

′
x ⊗ I)X ′

2BxDbxD
′
by.

Next, we derive the partial derivative function of Cx. In the same way as the partial
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derivative function of Bx is calculated, equation (3.22) is rewritten as follows:

∥X3 −CxC
′
xX3(BxB

′
x ⊗ I)∥2 + ∥Y3 −CyC

′
yY3(ByB

′
y ⊗ I)∥2

+ ∥D′
cxC

′
xX3(BxDbx ⊗ I)−D′

cyC
′
yY3(ByDby ⊗ I)∥2

=tr(X ′
3X3)− tr(C ′

xX3(Bx ⊗ I)(Bx ⊗ I)′X ′
3Cx)

+ tr(Y ′
3Y3)− tr(C ′

yY3(By ⊗ I)(By ⊗ I)′Y ′
3Cy)

+ tr(D′
cxC

′
xX3(BxDbx ⊗ I)(BxDbx ⊗ I)′X ′

3CxDcx)

− 2tr(D′
cxC

′
xX3(BxDbx ⊗ I)(ByDby ⊗ I)′Y ′

3CyDcy)

+ tr(D′
cyC

′
yY3(ByDby ⊗ I)(ByDby ⊗ I)′Y ′

3CyDcy).

Therefore, we obtain the partial derivative function of gc with respect to Cx as follows:

∂

∂Cx
gc(Bx, By, Cx, Cy, Dx, Dy |X, Y )

=
∂

∂Cx
{−tr(C ′

xX3(Bx ⊗ I)(Bx ⊗ I)′X ′
3Cx)

+ tr(D′
cxC

′
xX3(BxDbx ⊗ I)(BxDbx ⊗ I)′X ′

3CxDcx)

− 2tr(D′
cxC

′
xX3(BxDbx ⊗ I)(ByDby ⊗ I)′Y ′

3CyDcy)}

=− 2X3(Bx ⊗ I)(Bx ⊗ I)′X ′
3Cx

+ 2X3(BxDbxD
′
bxB

′
x ⊗ I)X ′

3CxDcxD
′
cx

− 2X3(BxDbxD
′
byB

′
y ⊗ I)Y ′

3CyDcyD
′
cx.

We also obtain the partial derivative function of gc with respect to Cy as follows:

∂

∂Cy
gc(Bx, By, Cx, Cx, Dx, Dy |X, Y )

=
∂

∂Cy
{−tr(C ′

yY3(By ⊗ I)(By ⊗ I)′Y ′
3Cy)

+ tr(D′
cyC

′
yY3(ByDby ⊗ I)(ByDby ⊗ I)′Y ′

3CyDcy)

− 2tr(D′
cyC

′
yY3(ByDby ⊗ I)(BxDbx ⊗ I)′X ′

3CxDcx)}

=− 2Y3(By ⊗ I)(By ⊗ I)′Y ′
3Cy

+ 2Y3(ByDbyD
′
byB

′
y ⊗ I)Y ′

3CyDcyD
′
cy

− 2Y3(ByDbyD
′
bxB

′
x ⊗ I)X ′

3CxDcxD
′
cy.

The update formula for Dx and Dy is the same as that of the regression model, because

the third terms of equations (3.21) and (3.22) are the same as those of the regression with

given other parameters. Therefore, we obtain Proposition 3.7.

Proposition 3.7. The update formulas of Dbx, Dby, Dcx, Dcy are obtained as follows:

Dbx = (B′
xX2(CxDcxD

′
cxC

′
x ⊗ I)X ′

2Bx)
+B′

xX2(CxDcxD
′
cyC

′
y ⊗ I)Y ′

2ByDby, (3.23)

Dby = (B′
yY2(CyDcyD

′
cyC

′
y ⊗ I)Y ′

2By)
+B′

yY2(CyDcyD
′
cxC

′
x ⊗ I)X ′

2BxD
′
bx, (3.24)

Dcx = (C ′
xX3(BxDbxD

′
bxB

′
x ⊗ I)X ′

3Cx)
+C ′

xX3(BxDbxD
′
byB

′
y ⊗ I)Y ′

3CyDcy, (3.25)

Dcy = (C ′
yY3(ByDbyD

′
byB

′
y ⊗ I)Y ′

3Cy)
+C ′

yY3(ByDbyD
′
bxB

′
x ⊗ I)X ′

3CxDcx, (3.26)
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where A+ is Moore–Penrose pseudo inverse matrix A.

Proof. For the third term of equation (3.21),

∥D′
bxB

′
xX2(CxDcx ⊗ I)−D′

byB
′
yY2(CyDcy ⊗ I)∥2

=∥(CxDcx ⊗ I)′X ′
2BxDbx − (CyDcy ⊗ I)′Y ′

2ByDby∥2

holds. The right-hand side of this equation is the same as that of the regression’s objective

function about Dbx and Dby. Therefore, we obtain the update formula for Dbx and Dby

with given other parameters.

The update formula for Dcx and Dcy is obtained in the same way as Dbx and Dby. For

the third term of equation (3.21),

∥D′
cxC

′
xX3(BxDbx ⊗ I)−D′

cyC
′
yY3(ByDby ⊗ I)∥2

=∥(BxDbx ⊗ I)′X ′
3CxDcx − (ByDby ⊗ I)′Y ′

3CyDcy∥2

holds. The right-hand side of this equation is the same as that of the regression’s objective

function about Dcx and Dcy. Therefore, we obtain the update formula for Dcx and Dcy

with given other parameters.

Using Proposition 3.6 and 3.7, we obtain the update algorithm as algorithm 2.

Ubx, Uby, Ucx, Ucy, Vbx, Vby, Vcx, and Vcy in algorithm 2 are obtained by Jennrich’s

approach. Even if α is sufficiently big, the algorithm 2 yields only a monotonous decrease,

not global optima. To obtain global optima, we generate many initial values of parameters.

3.2 Constrained connector matrix method

In this section, we introduce the constrained connector matrix method. The basic

and connector matrix methods have rotational indeterminacy. One of the solutions for

rotational indeterminacy is to constrain parameters. In this section, we explain the two

types of constraints. The first one is K-means type, in which the elements of the connector

matrix take 0 or 1. The second constraint type is regression, which corresponds to low

rank regression for three-mode three-way data.

3.2.1 K-means based method

In this subsection, we explain the K-means type constrained case. One of the purposes

of this constraint is to divide the factor into two types. The first is a common factor that

shows the maximizing covariance. The second is an independent factor that shows the

maximizing variance of each data.

3.2.1.1 Model and objective function

We set Dx = Dcx⊗Dbx, Dy = Dcy ⊗Dby, and Dbx ∈ {0, 1}rbx×cb , Dby ∈ {0, 1}rby×cb ,

Dcx ∈ {0, 1}rcx×cc , Dcy ∈ {0, 1}rcy×cc . In this case, the estimation method of the connec-

tor matrixes is the same as that of K-means. The model of the K-means type constraint
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Algorithm 2 Algorithm of connector matrix method

Set the number of dimensions rbx, rby, rcx, rcy, cb, cc, and stop condition ε

Set initial values B
(0)
x , B

(0)
y , C

(0)
x , C

(0)
y , Dbx, Dby, Dcx, Dcy, α

t← 0

S(0) ← gc(B
(0)
x , B

(0)
y , C

(0)
x , C

(0)
x , Dx, Dy |X, Y )

repeat

t← t+ 1

Update D
(t)
bx based on (3.23) using

B
(t−1)
x , B

(t−1)
x , B

(t−1)
y , C

(t−1)
x , C

(t−1)
y , D

(t−1)
by , D

(t−1)
cx , D

(t−1)
cy

Update D
(t)
by based on (3.24) using

B
(t−1)
x , B

(t−1)
x , B

(t−1)
y , C

(t−1)
x , C

(t−1)
y , D

(t)
bx , D

(t−1)
cx , D

(t−1)
cy

Update D
(t)
cx based on (3.25) using

B
(t−1)
x , B

(t−1)
x , B

(t−1)
y , C

(t−1)
x , C

(t−1)
y , D

(t)
bx , D

(t)
by , D

(t−1)
cy

Update D
(t)
cy based on (3.26) using

B
(t−1)
x , B

(t−1)
x , B

(t−1)
y , C

(t−1)
x , C

(t−1)
y , D

(t)
bx , D

(t)
by , D

(t)
cx

D
(t)
x ←D

(t)
cx ⊗D

(t)
bx

D
(t)
y ←D

(t)
cy ⊗D

(t)
by

B
(t)
x ← UbxV

′
bx using B

(t−1)
x , B

(t−1)
y , C

(t−1)
x , C

(t−1)
y , D

(t)
x , D

(t)
y , α

B
(t)
y ← UbyV

′
by using B

(t)
x , B

(t−1)
y , C

(t−1)
x , C

(t−1)
y , D

(t)
x , D

(t)
y , α

C
(t)
x ← UcxV

′
cxusing B

(t)
x , B

(t)
y , C

(t−1)
x , C

(t−1)
y , D

(t)
x , D

(t)
y , α

C
(t)
y ← UcyV

′
cyusing B

(t)
x ,B

(t)
y , C

(t)
x ,C

(t−1)
y D

(t)
x , D

(t)
y , α

S(t) ← gc(B
(t)
x , B

(t)
y , C

(t)
x , C

(t)
y , D

(t)
x , D

(t)
y |X, Y )

until |S(t−1) − S(t)| ≤ ε
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method is the same as that of the connector matrix method. In other words, the model

formula is as follows:

Y1(Cy ⊗By)Dy = X1(Cx ⊗Bx)Dy +E.

The objective function of this method is obtained as follows:

gck(Bx, By, Cx, Cy,Dx, Dy|X,Y ) =∥X1 −X1(CxC
′
x ⊗B′

xB
′
x)∥2

+∥Y1 − Y1(CyC
′
y ⊗ByB

′
y)∥2

+∥X1(Cx ⊗Bx)Dx − Y1(Cy ⊗By)Dy∥2 (3.27)

subject to C ′
xCx = I, C ′

yCy = I,B′
xBx = I, B′

yBy = I,

Dbx ∈ {0, 1}rbx×cb , Dby ∈ {0, 1}rcx×cb ,

Dcx ∈ {0, 1}rcx×cc , Dcy ∈ {0, 1}rcy×cc ,

D′
bx1rbx = D′

by1rby = 1cb ,D
′
cx1rcx = D′

cy1rcy = 1cc ,

where 1n is the n-dimension vector whose elements are all 1. The different points between

the connector method and constrained method are the range of the connector matrix. The

K-means type constraint regards the common factor as the object, and the factor as a

cluster. Therefore, the cluster, which has at least one object, is the common factor. On

the other hand, the null cluster, which has no object, indicates an independent factor.

From objective function gck and the constraint of the connector, the independent factor

considers only the first and second terms, because the weights for the third term are 0.

3.2.1.2 Algorithm

Here, we explain the algorithm of K-means type connected connector matrix canonical

covariance analysis for three-mode three-way data. We also adopt an alternative least

squares method. The constrained weight matrixes of objective function (3.27) are the

same as those of (3.15). Thus, we obtain the update formula in the same way as for

the non-constrained connector matrix method. On the other hand, update connector

matrixes are different because the constraints of connector matrixes are different from

objective function 3.27.

Connector matrixes depend on the third term of objective function (3.15), and therefore,

we focus on this term. Given other parameters, the third term is the same as the objective

function of K-means. Thus, the update formula of the connector matrix is the same of

K-means. In other words,

d
(bx)
ℓq =

1

(
ℓ = arg min

ℓ∗

∥∥∥∥[B′
xX2(CxDcx ⊗ In)]ℓ∗ − d

(by)
q

′B′
yY2(CyDcy ⊗ I)

∥∥∥∥)
0 (otherwise)

(q = 1, 2, . . . , cb),

(3.28)
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d
(cx)
ℓq =

1

(
ℓ = arg min

ℓ∗

∥∥∥∥[C ′
xX3(ByDbx ⊗ In)]ℓ∗ − d

(cy)
q

′C ′
yY3(ByDby ⊗ I)

∥∥∥∥)
0 (otherwise)

(q = 1, 2, . . . , cb),

(3.29)

where d
(cx)
ℓq and d

(bx)
ℓq are the (ℓ, q) element ofDbx andDcx, respectively, and d

(by)
q and d

(by)
q

are the q-th column vector of Dby and Dcy, respectively. [A]ℓ∗ shows the ℓ∗-th column

vector of A. In the same way as for Dx, the update Dy is obtained as follows:

d
(by)
ℓq =

1

(
ℓ = arg min

ℓ∗

∥∥∥∥[ByY2(CyDcy ⊗ I)]ℓ∗ − d
(bx)
q

′B′
xX2(CxDcx ⊗ I)

∥∥∥∥)
0 (otherwise)

(q = 1, 2, . . . , cc),

(3.30)

d
(cy)
ℓq =

1

(
ℓ = arg min

ℓ∗

∥∥∥∥[C ′
yY3(ByDby ⊗ In)]ℓ∗ − d

(cx)
q

′C ′
xX2(BxDbx ⊗ In)

∥∥∥∥)
0 (otherwise)

(q = 1, 2, . . . , cc),

(3.31)

where d
(by)
ℓq and d

(cy)
ℓq are the (ℓ, q) element of Dby and Dcy, respectively, and d

(bx)
q and

d
(bx)
q are the q-th column vector of Dbx and Dcx, respectively.

3.2.2 Spherical K-means based method

In this subsection, we describe sphericalK-means constrained connector matrix method.

The common factor of the K-means type constrained connector matrix method maximizes

the covariance between two three-mode three-way data. On the other hand, spherical the

K-means type constrained connector matrix method maximizes the correlation between

two three-mode three-way data.

3.2.2.1 Model and objective function

The K-means type method has a problem when factor variances are different in each

dimension. The K-means type constraint method tends to select the combination of

factors with small correlation, because covariance is represented by the product of each

variance and correlation. This property is a disadvantage when we interpret the common

factor, which maximizes the correlation between two data. To overcome this problem, we

introduce a normalized term, which makes the criteria of connecting correlation. In other
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Algorithm 3 Algorithm of K-means constrained connector matrix method

Set the number of dimensions rbx, rby, rcx, rcy, cb, cc, and stop condition ε

Set initial values B
(0)
x , B

(0)
y , C

(0)
x , C

(0)
y , Dbx, Dby, Dcx, Dcy, α

t← 0

S(0) ← gck(B
(0)
x , B

(0)
y , C

(0)
x , C

(0)
x , Dx, Dy |X, Y )

repeat

t← t+ 1

Update D
(t)
bx based on (3.28)

using B
(t−1)
x , B

(t−1)
x , B

(t−1)
y , C

(t−1)
x , C

(t−1)
y , D

(t−1)
by , D

(t−1)
cx , D

(t−1)
cy

Update D
(t)
by based on (3.30)

using B
(t−1)
x , B

(t−1)
x , B

(t−1)
y , C

(t−1)
x , C

(t−1)
y , D

(t)
bx , D

(t−1)
cx , D

(t−1)
cy

Update D
(t)
cx based on (3.29)

using B
(t−1)
x , B

(t−1)
x , B

(t−1)
y , C

(t−1)
x , C

(t−1)
y , D

(t)
bx , D

(t)
by , D

(t−1)
cy

Update D
(t)
cy based on (3.31)

using B
(t−1)
x , B

(t−1)
x , B

(t−1)
y , C

(t−1)
x , C

(t−1)
y , D

(t)
bx , D

(t)
by , D

(t)
cx

D
(t)
x ←D

(t)
cx ⊗D

(t)
bx

D
(t)
y ←D

(t)
cy ⊗D

(t)
by

B
(t)
x ← UbxV

′
bx using B

(t−1)
x , B

(t−1)
y , C

(t−1)
x , C

(t−1)
y , D

(t)
x , D

(t)
y , α

B
(t)
y ← UbyV

′
by using B

(t)
x , B

(t−1)
y , C

(t−1)
x , C

(t−1)
y , D

(t)
x , D

(t)
y , α

C
(t)
x ← UcxV

′
cxusing B

(t)
x , B

(t)
y , C

(t−1)
x , C

(t−1)
y , D

(t)
x , D

(t)
y , α

C
(t)
y ← UcyV

′
cyusing B

(t)
x ,B

(t)
y , C

(t)
x ,C

(t−1)
y D

(t)
x , D

(t)
y , α

S(t) ← gck(B
(t)
x , B

(t)
y , C

(t)
x , C

(t)
y , D

(t)
x , D

(t)
y |X, Y )

until |S(t−1) − S(t)| ≤ ε
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words, a constrained connector matrix is regarded as spherical K-means (Dhillo & Modha,

2001). The objective function gcs is obtained as follows:

gcs(Bx, By, Cx, Cy,Dx, Dy |X,Y ) (3.32)

=∥X1 −X1(CxC
′
x ⊗B′

xB
′
x)∥2

+∥Y1 − Y1(CyC
′
y ⊗ByB

′
y)∥2

+∥X1(Cx ⊗Bx)NxDx − Y1(Cy ⊗By)NyDy∥2 (3.33)

subject to C ′
xCx = I, C ′

yCy = I,B′
xBx = I, B′

yBy = I,

Dbx ∈ {0, 1}rbx×cb , Dby ∈ {0, 1}rby×cb ,

Dcx ∈ {0, 1}rcx×cc , Dcy ∈ {0, 1}rcy×cc ,

D′
bx1rbx = D′

by1rby = 1cb ,D
′
cx1rcx = D′

cy1rcy = 1cc ,

where Nx, Ny are normalized matrixes. These matrixes are defined as follows:

Nx = diag

(
1

∥X1(cx1 ⊗ bx1)∥
,

1

∥X1(cx2 ⊗ bx1)∥
, · · · 1

∥X1(cxrcx ⊗ bx1)∥
,

1

∥X1(cx1 ⊗ bx2)∥

· · · , 1

∥X1(cxi ⊗ bxj)∥
, · · · , 1

∥X1(cxrcx ⊗ bxrbx)∥

)
,

Ny = diag

(
1

∥Y1(cy1 ⊗ by1)∥
,

1

∥Y1(cy2 ⊗ by1)∥
, · · · 1

∥Y1(cyrcy ⊗ by1)∥
,

1

∥Y1(cy1 ⊗ by2)∥

· · · , 1

∥Y1(cyi ⊗ byj)∥
, · · · , 1

∥Y1(cyrcy ⊗ byrbx)∥

)
,

where bxi, byi, cxi, and cyi are the i-th column vector of Bx, By, Cx, and Cy, respec-

tively.

3.2.2.2 Algorithm

When we use the spherical constrained method, the update formulas for weight matrixes

Bx, Bx, Cx, and Cy are a little different from those of the connector matrix method.

Proposition 3.8. The partial derivative functions of gcswith respect to bxi and byi are
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obtained as follows:

∂

∂bxi
gcs(Bx, By, Cx, Cy,Dx, Dy |X,Y )

=− 2X2(CxC
′
x ⊗ I)X ′

2bxi

− 2

rby∑
j=1

rcx∑
k=1

rcy∑
ℓ=1

cb∑
o=1

cc∑
p=1

{
d
(bx)
io d

(by)
jo d

(cx)
kp d

(cy)
ℓp

1

∥Y1(cyℓ ⊗ byj)∥∥X1(cxk ⊗ bxi)∥2

× {∥X1(cxk ⊗ bxi)∥X2(cxkc
′
yℓ ⊗ I)′Y2byj − (cxk ⊗ bxi)

′X ′
1Y1(cyℓ ⊗ byj)

X2(cxkc
′
xk ⊗ I)X ′

2bxi
∥X1(cxk ⊗ bxi)∥

},

∂

∂byi
gcs(Bx, By, Cx, Cy,Dx, Dy |X,Y )

=− 2Y2(CyC
′
y ⊗ I)Y ′

2byi

− 2

rbx∑
j=1

rcy∑
k=1

rcx∑
ℓ=1

cb∑
o=1

cc∑
p=1

{
d
(by)
io d

(bx)
jo d

(cy)
kp d

(cx)
ℓp

1

∥X1(cxℓ ⊗ bxj)∥∥Y1(cyk ⊗ byi)∥2

× {∥Y1(cyk ⊗ byi)∥Y2(cykc
′
xℓ ⊗ I)′X2bxj − (cyk ⊗ byi)

′Y ′
1X1(cxℓ ⊗ bxj)

Y2(cykc
′
yk ⊗ I)Y ′

2byi

∥Y1(cyk ⊗ byi)∥
}.

The partial derivative functions of gcs with respect to cxi and cyi are obtained as follows:

∂

∂cxi
gcs(Bx, By, Cx, Cy,Dx, Dy |X,Y )

=− 2X3(BxB
′
x ⊗ I)X ′

3cxi

− 2

rcy∑
j=1

rbx∑
k=1

rby∑
ℓ=1

cc∑
o=1

cb∑
p=1

{
d
(cx)
io d

(cy)
jo d

(bx)
kp d

(by)
ℓp

1

∥Y1(cyj ⊗ byℓ)∥∥X1(cxi ⊗ bxk)∥2

× {∥X1(cxi ⊗ bxk)∥X3(cxkc
′
yj ⊗ I)′Y3cyj − (cxi ⊗ bxk)

′X ′
1Y1(cyj ⊗ byℓ)

X3(bxkb
′
xk ⊗ I)X ′

3cxi
∥X1(cxi ⊗ bxk)∥

},

∂

∂cyi
gcs(Bx, By, Cx, Cy,Dx, Dy|X,Y )

=− 2Y3(ByB
′
y ⊗ I)Y ′

3cyi

− 2

rcx∑
j=1

rby∑
k=1

rbx∑
ℓ=1

cc∑
o=1

cb∑
p=1

{
d
(cy)
io d

(cx)
jo d

(by)
kp d

(bx)
ℓp

1

∥X1(cxj ⊗ bxℓ)∥∥Y1(cyi ⊗ byk)∥2

× {∥Y1(cyi ⊗ byk)∥Y3(cykc
′
xj ⊗ I)′X3cxj − (cyi ⊗ byk)

′Y ′
1X1(cxj ⊗ bxℓ)

Y3(bykb
′
yk ⊗ I)Y ′

3cyi

∥Y1(cyi ⊗ byk)∥
}.

Proof. First, we calculate the derivative function of gcs with respect to bxi. From the
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definition gcs, we obtain the equation about bxi as follows:

gcs(Bx, By, Cx, Cy,Dx, Dy|X,Y )

=∥X1 −X1(CxC
′
x ⊗BxB

′
x)∥2

+ ∥Y1 − Y1(CyC
′
y ⊗ByB

′
y)∥2

+ ∥X1(Cx ⊗Bx)NxDx − Y1(Cy ⊗By)NyDy∥2

=− tr(B′
xX2(CxC

′
x ⊗ I)X ′

2Bx)

+ tr(Nx(Bx ⊗Cx)
′X ′

1X1(Bx ⊗Cx)NxDxD
′
x)

− 2tr(Nx(Bx ⊗Cx)
′X ′

1Y1(By ⊗Cy)NyDyD
′
x)

+ const.,

(3.34)

where const. is constant independent from bxi. When the second term of equation (3.34)

is described as element-wise, we obtain the following equation:

tr(Nx(Bx ⊗Cx)
′X ′

1X1(Bx ⊗Cx)NxDxD
′
x)

=

rbx∑
i=1

rcx∑
j=1

cb∑
k=1

cc∑
ℓ=1

d
(bx)
ik d

(cx)
jℓ

(bxi ⊗ cxj)
′X ′

1X1(bxi ⊗ cxj)

∥X1(bxi ⊗ cxj)∥2

=

rbx∑
i=1

rcx∑
j=1

cb∑
k=1

cc∑
ℓ=1

d
(bx)
ik d

(cx)
jℓ = cccb.

Therefore, the second term of equation (3.34) is constant. In the same way as we rewrite

the second term, we can rewrite the third term of equation (3.34) as follows:

− 2tr(Nx(Bx ⊗Cx)
′X ′

1Y1(By ⊗Cy)NyDyD
′
x)

=− 2

rbx∑
i=1

rby∑
j=1

rcx∑
k=1

rcy∑
ℓ=1

bc∑
o=1

cc∑
p=1

d
(bx)
io d

(by)
jo d

(cx)
kp d

(cy)
ℓp

(cxk ⊗ bxi)
′X ′

1Y1(cyℓ ⊗ byj)

∥Y1(cyℓ ⊗ byj)∥∥X1(cxk ⊗ bxi)∥
. (3.35)

Therefore, by the quotient rule, the derivative function gcs with respect to bxi for the third

term of equation (3.34) is obtained as follows:

∂

∂bxi
− 2tr(Nx(Bx ⊗Cx)

′X ′
1Y1(By ⊗Cy)NyDyD

′
x)

=− 2

rby∑
j=1

rcx∑
k=1

rcy∑
ℓ=1

cb∑
o=1

cc∑
p=1

{
d
(bx)
io d

(by)
jo d

(cx)
kp d

(cy)
ℓp

1

∥Y1(cyℓ ⊗ byj)∥

× ∂

∂bxi

(cxk ⊗ bxi)
′X ′

1Y1(cyℓ ⊗ byj)

∥X1(cxk ⊗ bxi)∥

}
=− 2

rby∑
j=1

rcx∑
k=1

rcy∑
ℓ=1

cb∑
o=1

cc∑
p=1

{
d
(bx)
io d

(by)
jo d

(cx)
kp d

(cy)
ℓp

1

∥Y1(cyℓ ⊗ byj)∥∥X1(cxk ⊗ bxi)∥2

{∥X1(cxk ⊗ bxi)∥X2(cxkc
′
yℓ ⊗ I)′Y2byj

−(cxk ⊗ bxi)
′X ′

1Y1(cyℓ ⊗ byj)
X2(cxkc

′
xk ⊗ I)X ′

2bxi
∥X1(cxk ⊗ bxi)∥

}
} (3.36)
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where we use the following equations:

∂

∂bxi
∥X1(cxk ⊗ bxi)∥ =

∂

∂bxi
(∥(cxk ⊗ I)′X ′

2bxi∥2)
1
2

=
X2(cxkc

′
xk ⊗ I)X ′

2bxi
∥(cxk ⊗ I)′X ′

2bxi∥

=
X2(cxkc

′
xk ⊗ I)X ′

2bxi
∥X1(cxk ⊗ bxi)∥

,

∂

∂bxi
(cxk ⊗ bxi)

′X ′
1Y1(cyℓ ⊗ byj) =

∂

∂bxi
tr(b′xiX2(cxkcyℓ ⊗ I)Y ′

2byj)

=X2(cxkc
′
yℓ ⊗ I)Y ′

2byj .

On the other hand, the derivative function of the first term of equation (3.34) is obtained

as follows:

− ∂

∂Bx
tr(B′

xX2(CxC
′
x ⊗ I)X ′

2Bx) = −2X2(CxC
′
x ⊗ I)X ′

2Bx.

Therefore, the i-th column vector of −2X2(CxC
′
x ⊗ I)X ′

2Bx is the derivative function of

the first term of equation (3.34) with respect to bxi. The i-th column of −2X2(CxC
′
x ⊗

I)X ′
2Bx is obtained as follows:

−2[X2(CxC
′
x ⊗ I)X ′

2Bx]i = −2X2(CxC
′
x ⊗ I)X ′

2bxi,

where [A]i is the i-th column vector of A. Thus, by summarizing the equations, we obtain

the derivative function as follows:

∂

∂bxi
gcs(Bx, By, Cx, Cy,Dx, Dy|X,Y )

=− 2X2(CxC
′
x ⊗ I)X ′

2bxi

− 2

rby∑
j=1

rcx∑
k=1

rcy∑
ℓ=1

cb∑
o=1

cc∑
p=1

{
d
(bx)
io d

(by)
jo d

(cx)
kp d

(cy)
ℓp

1

∥Y1(cyℓ ⊗ byj)∥∥X1(cxk ⊗ bxi)∥2

{∥X1(cxk ⊗ bxi)∥X2(cxkcyℓ ⊗ I)′Y2byj

−(cxk ⊗ bxi)
′X ′

1Y1(cyℓ ⊗ byj)
X2(cxkcxk ⊗ I)X ′

2bxi
∥X1(cxk ⊗ bxi)∥

}.

Other derivative functions are obtained in the same way as bxi.

Updating the connector matrix of spherical K-means is the same as that of k-means.

However, the update formulas of Dx and Dy do not minimize the squared loss between

factors but maximize the correlation between factors.

Proposition 3.9. The update formulas of Dbx, Dby, Dcx, and Dcx are obtained as
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follows:

d
(bx)
ℓq =

1

(
ℓ = arg max

ℓ∗

∑rby
j=1

∑rcx
k=1

∑rcy
o=1

∑cc
p=1 d

(by)
jq d

(cx)
kp d

(cy)
op

(cxk⊗bxℓ∗ )
′X′

1Y1(cyo⊗byj)
∥Y1(cyo⊗byj)∥∥X1(cxk⊗bxℓ∗ )∥

)
0 (otherwise)

(q = 1, 2, . . . , cb),

(3.37)

d
(by)
ℓq =

1

(
ℓ = arg max

ℓ∗

∑rbx
j=1

∑rcy
k=1

∑rcx
o=1

∑cc
p=1 d

(by)
jq d

(cx)
kp d

(cy)
op

(cyk⊗byℓ∗ )
′Y ′

1X1(cxo⊗bxj)

∥X1(cxo⊗bxj)∥∥Y1(cyk⊗byℓ∗ )∥

)
0 (otherwise)

(q = 1, 2, . . . , cb),

(3.38)

d
(cx)
ℓq =

1

(
ℓ = arg max

ℓ∗

∑rcy
j=1

∑rbx
k=1

∑rby
o=1

∑cb
p=1 d

(cy)
jq d

(bx)
kp d

(by)
op

(cxℓ∗⊗bxk)
′X′

1Y1(cyj⊗byo)
∥Y1(cyj⊗byo)∥∥X1(cxℓ∗⊗bxk)∥

)
0 (otherwise)

(q = 1, 2, . . . , cc),

(3.39)

d
(cy)
ℓq =

1

(
ℓ = arg max

ℓ∗

∑rcx
j=1

∑rby
k=1

∑rbx
o=1

∑cb
p=1 d

(cx)
jq d

(by)
kp d

(bx)
op

(cyℓ∗⊗byk)
′Y ′

1X1(cxj⊗bxo)

∥X1(cxj⊗bxo)∥∥Y1(cyℓ∗⊗byk)∥

)
0 (otherwise)

(q = 1, 2, . . . , cc),

(3.40)

where d
(bx)
ℓq , d

(by)
ℓq , d

(cx)
ℓq and d

(cy)
ℓq are the (ℓ, q) element of Dbx, Dby, Dcx, and Dcy, respectively.

[A]ℓ is the ℓ-th column vector of A.

Proof. From equations (3.34) and (3.35), minimizing the objective function gcs is equiva-

lent to maximizing the objective function as follows:

tr(Nx(Bx ⊗Cx)
′X ′

1Y1(By ⊗Cy)NyDyD
′
x)

=

rbx∑
i=1

rby∑
j=1

rcx∑
k=1

rcy∑
ℓ=1

cb∑
o=1

cc∑
p=1

d
(bx)
io d

(by)
jo d

(cx)
kp d

(cy)
ℓp

(cxk ⊗ bxi)
′X ′

1Y1(cyℓ ⊗ byj)

∥Y1(cyℓ ⊗ byj)∥∥X1(cxk ⊗ bxi)∥
.

From the constraint of Dbx, Dby, Dcx, and Dcy, we choose the maximizing term cor-

responding to the dimension when other parameters are given. Thus, the element takes

the value of 1 when the row dimension of the element is the maximum dimension of the

correlation between the canonical vector in the same column. Therefore, we obtain the

update rules as (3.37), (3.38), (3.39), and (3.40).

We obtain Algorithm 4 by summarizing the update formula. Algorithm 4 ensure a

monotonically decreasing. However, algorithm 4 does not yield the global optima of gcs,

because gcs is not convex. Therefore, we need many initial values to obtain the global

optima of gcs.

3.2.3 Regression-based method

When we set Dy = I,Cy = I, By = I, the model is the same as regression. However,

Dx also have rotational indeterminacy. For this problem, we use tandem analysis. First,
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Algorithm 4 Algorithm of spherical K-means constrained connector matrix method

Set the number of dimensions rbx, rby, rcx, rcy, cb, cc, and stop condition ε

Set initial values B
(0)
x , B

(0)
y , C

(0)
x , C

(0)
y , Dbx, Dby, Dcx, Dcy, α

t← 0

S(0) ← gcs(B
(0)
x , B

(0)
y , C

(0)
x , C

(0)
y , Dx, Dy |X, Y )

repeat

t← t+ 1

Update D
(t)
bx based on 3.37 using

B
(t−1)
x , B

(t−1)
x , B

(t−1)
y , C

(t−1)
x , C

(t−1)
y , D

(t−1)
by , D

(t−1)
cx , D

(t−1)
cy

Update D
(t)
by based on 3.38 using

B
(t−1)
x , B

(t−1)
x , B

(t−1)
y , C

(t−1)
x , C

(t−1)
y , D

(t)
bx , D

(t−1)
cx , D

(t−1)
cy

Update D
(t)
cx based on 3.39 using

B
(t−1)
x , B

(t−1)
x , B

(t−1)
y , C

(t−1)
x , C

(t−1)
y , D

(t)
bx , D

(t)
by , D

(t−1)
cy

Update D
(t)
cy based on 3.40 using

B
(t−1)
x , B

(t−1)
x , B

(t−1)
y , C

(t−1)
x , C

(t−1)
y , D

(t)
bx , D

(t)
by , D

(t)
cx

D
(t)
x ←D

(t)
cx ⊗D

(t)
bx

D
(t)
y ←D

(t)
cy ⊗D

(t)
by

B
(t)
x ← UbxV

′
bx using B

(t−1)
x , B

(t−1)
y , C

(t−1)
x , C

(t−1)
y , D

(t)
x , D

(t)
y , α

B
(t)
y ← UbyV

′
by using B

(t)
x , B

(t−1)
y , C

(t−1)
x , C

(t−1)
y , D

(t)
x , D

(t)
y , α

C
(t)
x ← UcxV

′
cxusing B

(t)
x , B

(t)
y , C

(t−1)
x , C

(t−1)
y , D

(t)
x , D

(t)
y , α

C
(t)
y ← UcyV

′
cyusing B

(t)
x ,B

(t)
y , C

(t)
x ,C

(t−1)
y D

(t)
x , D

(t)
y , α

S(t) ← gcs(B
(t)
x , B

(t)
y , C

(t)
x , C

(t)
y , D

(t)
x , D

(t)
y |X, Y )

until |S(t−1) − S(t)| ≤ ε
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we apply canonical covariance analysis to three-mode three-way data. Then, we apply

regression to three-mode three-way data.

3.2.3.1 Model and objective function

When we set Dy = I,Cy = I, By = I, the model of the connector canonical covariance

method is obtained as follows:

Y1 = X1(Cx ⊗Bx)Dx +E. (3.41)

This model formula is the same as the regression model, and thus, we call this method the

regression constrained connector method. We set Wc = CxDcx and Wb = BxDbx, then

we rewrite the model formula (3.41) as

Y1 =X1(CxDcx ⊗BxDbx) +E

=X1(Wc ⊗Wb) +E (3.42)

=X ×2 Wb ×3 Wc +E.

Model formula (3.42) is the same as constrained regression, such as low-rank regression,

such as the PLS method. When we set Fx1 = X1(Cx ⊗ Bx), we obtain another model

formula as follows:

Y1 =X1(CxDcx ⊗BxDbx) +E

=Fx1(Dcx ⊗Dbx) +E. (3.43)

Model formula (3.43) is the same as principal component regression (PCR). The model

formulas of partial least squares (PLS), low-rank regression, and PCR are the same. These

methods restrict the weight matrixes from being column orthogonal. Using the least

squares method as the estimation method, objective function gr is obtained as follows:

gr(Bx, Cx, Dbx, Dcx|Y , X) = ∥Y1 −X1(CxDcx ⊗BxDbx)∥2 (3.44)

subject to B′
xBx = I, C ′

xCx = I.

This objective function has rotational indeterminacy.

Proposition 3.10. Given orthogonal rotation S and T , when we set B∗
x = BxS, C∗

x =

CxT , D∗
cx = S′Dbx, D

∗
cx = T ′Dcx,

gr(B
∗
x, C

∗
x, D

∗
bx, D

∗
cx|Y , X) = gr(Bx, Cx, Dbx, Dcx|Y , X)

holds, where gr is the objective function (3.44).

Proof.

gr(B
∗
x, C

∗
x, D

∗
bx, D

∗
cx|X, Y ) =∥Y1 −X1(C

∗
xD

∗
cx ⊗B∗

xD
∗
bx)∥2

=∥Y1 −X1(CxTT ′Dcx ⊗BxSS
′Dbx)∥2

=∥Y1 −X1(CxDcx ⊗BxDbx)∥2

=gr(Bx, Cx, Dbx, Dcx|Y , X)
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It is difficult to develop the criteria for the rotation because the simultaneous method

has parameters with different purposes. One approach to the solution for rotation is tan-

dem analysis, because the parameters for rotation are fixed by the two-step approach.

Tandem analysis is a two-step approach. The first step is dimensional reduction of the

data. The second step is multivariate analysis. In this case, the second step corresponds

to regression analysis. One of the popular methods of tandem analysis for regression is

principal component regression (PCR). The first step of PCR is to apply principal com-

ponent analysis to three-mode three-way data. In other words, Cx, and Bx are obtained

by optimizing the objective function gp as follows:

gp(Bx, Cx|X) = ∥X1(Cx ⊗Bx)∥2 −→ maximize

subject to C ′
xCx = I,B′

xBx = I.

PCR does not consider the relationship between independent data X and dependent

data Y . To overcome this problem, we adopt the criteria of partial least squares regression

(PLSR) for dimensional reduction method. The criteria of PLSR for dimensional reduc-

tion are to maximize covariance between data. The objective function of the regression

constrained connector matrix of the first step is obtained as follows:

gpl(Bx, Cx|X, Y ) = ∥Y ′
1X1(Cx ⊗Bx)∥2 −→ maximize (3.45)

subject to C ′
xCx = I,B′

xBx = I.

Objective function (3.45) is regarded as maximizing the squared covariance between X

and Y . In this sense, PLSR is very similar to the canonical covariance method. The

second step is regression using estimated values in first step.

3.2.3.2 Algorithm

Here, we explain the algorithm of the regression constrained connector matrix method.

The regression constraint method is a type of tandem analysis. Therefore, the algorithm

has two loops, that is, a dimensional reduction loop and a regression loop.

First, we explain the dimensional reduction loop. The update formula of Bx and Cx

are obtained by eigenvalue decomposition

Proposition 3.11. The update formula of Bx and Cx in the regression constrained con-

nector matrix method are obtained as follows:

Bx = Pbx, (3.46)

Cx = Pcx, (3.47)

where Pbx and Pbx are eigenvector matrixes of

X2(Cx ⊗ Y1)(Cx ⊗ Y1)
′X ′

2, and X3(Bx ⊗ Y1)(Bx ⊗ Y1)
′X ′

3,

respectively.
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Proof. From the definition of gpl, we obtain the following equation:

gpl(Bx, Cx|X, Y ) =∥Y ′
1X1(Cx ⊗Bx)∥2

=∥B′
xX2(Cx ⊗ Y1)∥2 (3.48)

=∥C ′
xX3(Bx ⊗ Y1)∥2. (3.49)

From orthogonal constraint B′
xBx = I and equation (3.48), we obtain the update formula

by using the Lagrange multiplier. The derivative function of gpl with respect to Bx is

obtained as follows:

∂

∂Bx
{∥B′

xX2(Cx ⊗ Y1)∥2 − tr(Λ(B′
xBx − I))}

=
∂

∂Bx
{tr(B′

xX2(CxC
′
x ⊗ Y1Y

′
1 )X

′
2Bx)− tr(Λ(B′

xBx − I))}

=2(X2(CxC
′
x ⊗ Y1Y

′
1 )X

′
2Bx −BxΛ).

When we set the value of the derivative function as 0, we obtain the following equation:

2(X2(CxC
′
x ⊗ Y1Y

′
1 )X

′
2Bx −BxΛ) =0

⇐⇒X2(CxC
′
x ⊗ Y1Y

′
1 )X

′
2Bx =BxΛ.

This equation indicates that Bx are an eigenvector of X2(CxC
′
x ⊗ Y1Y

′
1 )X2. We obtain

the update formula of Cx in the same way as Bx. From orthogonal constraint C ′
xCx = I

and equation (3.49), we obtain the update formula by using the Lagrange multiplier. The

derivative function of gpl with respect to Cx is obtained as follows:

∂

∂Cx
{∥C ′

xX3(Bx ⊗ Y1)∥2 − tr(Λ(C ′
xCx − I))}

=
∂

∂Cx
{tr(C ′

xX3(BxB
′
x ⊗ Y1Y

′
1 )X

′
3Cx)− tr(Λ(C ′

xCx − I))}

=2(X3(BxB
′
x ⊗ Y1Y

′
1 )X

′
3Cx −CxΛ).

When we set the value of the derivative function as 0, we obtain the following equation:

2(X3(BxB
′
x ⊗ Y1Y

′
1 )X

′
3Cx −CxΛ) =0

⇐⇒X3(BxB
′
x ⊗ Y1Y

′
1 )X

′
3Cx =CxΛ. (3.50)

Equation (3.50)indicates that Cx are an eigenvector of X3(BxB
′
x ⊗ Y1Y

′
1 )X3.

Given the estimated value of Cx and Bx, we explain the regression step. This step is

the same as the estimation step of the non-constrained connector matrix. Thus, we obtain

the update formulas of Dcx and Dbx as an explicit function when other parameters are

given.

Proposition 3.12. Given B̂x and Ĉx, which are the estimated value of Bx and Cx,

respectively, the update formula of Dbx and Dcx are obtained as follows:

Dbx = (B̂′
xX2(ĈxDcxD

′
cxĈ

′
x ⊗ I)X2B̂x)

+(B̂′
xX2(ĈxDcx ⊗ I)Y ′

2 ) (3.51)

Dcx = (Ĉ ′
xX3(B̂xDbxD

′
bxB̂

′
x ⊗ I)X3Ĉx)

+(Ĉ ′
xX3(B̂xDbx ⊗ I)Y ′

3 ) (3.52)
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Proof. From the definition of objective function gr,

gr(Bx, Cx, DbxDcx|X, Y ) = ∥Y1 −X1(CxDcx ⊗BxDbx)∥2 (3.53)

= ∥Y2 −D′
bxB

′
xX2(CxDcx ⊗ I)∥2 (3.54)

= ∥Y3 −D′
bxC

′
xX3(BxDbx ⊗ I)∥2 (3.55)

holds. Equations (3.53), (3.54), and (3.55) are the same as Proposition 3.7 when we set

Dcy = I, Dby = I, Cy = I, By = I. Therefore, we obtain the update formulas of Dbx

and Dcx by the special case of Proposition 3.7.

Algorithm 5 Algorithm of regression constraint connector matrix method

Set the number of dimensions rbx, rcx, and stop condition ε

Set initial values B
(0)
x , C

(0)
x

t← 0

S(0) ← gpl(B
(0)
x , C

(0)
x , |X, Y )

repeat

t← t+ 1

Update Bx using C
(t−1)
x

Update Cx using B
(t)
x

S(t) ← gpl(B
(t)
x , C

(t)
x , |X, Y )

until |S(t−1) − S(t)| ≤ ε

Set initial values D
(0)
bx , D

(0)
cx

Ĉx ← C
(t)
x

B̂x ← B
(t)
x

t← 0

S(0) ← gr(B̂x, Ĉx,D
(0)
bx ,D

(0)
cx |X, Y )

repeat

t← t+ 1

Update Dbx using D
(t−1)
cx

Update Dcx using D
(t)
bx

S(t) ← gr(B̂x, Ĉx,D
(t)
bx ,D

(t)
cx |X, Y )

until |S(t−1) − S(t)| ≤ ε

3.3 Category quantification method

In this section, we explain three-mode three-way canonical covariance analysis for cat-

egorical data. First, we introduce the method based on non-metric principal component

analysis (NPCA) (e.g., Gifi (1990); Young et al. (1978)).

3.3.1 NPCA-based method

NPCA has been proposed for categorical data by Young et al. (1978). This method is

a special case of Hayashi’s quantification method. One of its advantages is that it is easy
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to interpret the qualification parameter.

3.3.1.1 Model and objective function

In the three-mode three-way canonical covariance method, it is assumed that the data

are numerical. When the data are categorical data, we should not apply the three-mode

three-way canonical covariance method to three-mode three-way data, because there is

arbitrariness in the values of qualitative data. For example, for a gender variable, we can

choose 1 or 0 to reflect male or female. However, the results of the three-mode three-

way canonical covariance method are different from this case. Moreover, the variance

of variable and covariance between qualitative data is changed when we change 0 to 1

and 1 to 0. To overcome these problems, we extend three-mode three-way canonical

covariance to categorical data by using the concept of NPCA. The difference between

NPCA and using the dummies variable is that NPCA adjusts the variance of the whole of

the qualitative variable to 1. This property of NPCA makes interpretation easy because

we can understand the weight matrix for the qualitative variable, rather than each item

of the qualitative variable.

Given two three-mode three-way categorical data X,Y , the objective function of the

NPCA-based method is obtained as follows:

gnpc(F x, F y, Bx, By, Cx, Cy, Q, W , |X†, Y †) =∥X†
1Q− F

(x)
1 (Cx ⊗Bx)

′∥2

+ ∥Y †
1 W − F

(y)
1 (Cy ⊗By)

′∥2

+ ∥Fx − Fy∥2 (3.56)

subject to B′
xBx = B′

yBy = I, C ′
xCx = C ′

yCy = I,

X†
kxjx

qkxjx = JX†
kxjx

qkxjx ,
1

I
q′kxjxX

†
kxjx

′
X†

kxjx
qkxjx = 1

(jx = 1, 2, . . . Jx; kx = 1, 2, . . . , Kx),

Y †
kyjy

wkyjy = JY †
kyjy

wkyjy , and
1

I
w′

kyjyY
†
kyjy

′
Y †
kyjy

wkyjy = 1

(jy = 1, 2, . . . , Jy; ky = 1, 2, . . . , Ky),

where X†, Y † are made by changing the categorical variable to a dummy variable. X†
jx, kx

and Y †
jy , ky

are the dummy matrix of jx-th categorical variable under condition kx of X

and jy-th categorical variable under condition ky of Y , respectively. J is a centering

matrix, and qkxjx and wkyjy are a qualification vector of jx-th categorical variable under

condition kx of X and jy-th categorical variable under condition ky of Y , respectively.

Q = B-diag(q11, q12, · · · , q1Jx , q21, q22, · · · , qkxjx , · · · , qKx1, qKx2, · · · , qKxJx),

W = B-diag(w11, w12, · · · , w1Jy , w21, w22, · · · , wkyjy , · · · , wKy1, wKy2, · · · , wKyJy).

B-diag(A) is a block diagonal matrix defined as follows:

B-diag(A) =


a1 0 · · · 0

0 a2 · · · 0
...

...
. . .

...

0 0 · · · ap

 ,
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where A = (a1, a2, · · · , ap). The constraint of the qualification vector corresponds to

z-standardized variable. Therefore, NPCA is regarded as changing the categorical variable

to z-standardized variable.

However, this method has two problems. First, we must set the number of dimensions of

Bx, By, and Cx, Cy to be the same. In other words, we must assume that the number of

unique factors is the same, an assumption that is not suitable for real-world data analysis.

The second problem is that the third term of objective function (3.56) considers all the

factors; that is, it is difficult to determine which are the common factors. To overcome

this problem, we introduce the K-means type connector matrix.

gccca(F x, F y, Bx, By, Cx, Cy, Q, W , Dx, Dy |X†, Y †)

=∥X†Q− F
(x)
1 (Cx ⊗Bx)

′∥2 + ∥Y †W − F (y)(Cy ⊗By)
′∥2

+∥F (x)
1 Dx − F

(y)
1 Dy∥2,

(3.57)

subject to B′
xBx = I, B′

yBy = I, C ′
xCx = I, C ′

yCy = I,

X†
kxjx

qkxjx = JIX
†
kxjx

qkxjx ,
1

I
q′kxjxX

†
kxjx

′
X†

kxjx
qkxjx = 1

(jx = 1, 2, . . . , Jx; kx = 1, 2, . . . , Kx),

Y †
kyjy

wkyjy = JIY
†
kyjy

wkyjy ,
1

I
w′

kyjyY
†
kyjy

′
Y †
kyjy

wkyjy = 1

(jy = 1, 2, . . . , Jy; ky = 1, 2, . . . , Ky),

Dx = Dcx ⊗Dbx, Dy = Dcy ⊗Dby,

Dbx ∈ {0, 1}rbx×cb , Dby ∈ {0, 1}rby×cb ,

Dcx ∈ {0, 1}rcx×cc , Dcy ∈ {0, 1}rcy×cc ,

D′
bx1rbx = D′

by1rby = 1cb ,D
′
cx1rcx = D′

cy1rcy = 1cc .

When we set rbx = rby, rcx = rcy, cb = rbx, cc = rcx, Dx = I, and Dy = I, the objective

function gccca is equal to the objective function gnpc.

3.3.1.2 Algorithm

Here, we explain the algorithm of the NPCA-based method using the K-means type

constraint connector matrix. When we set rbx = rby, rcx = rcy, cb = rbx, cc = rcx, Dx =

I, and Dy = I, objective function gccca equals objective function gnpc. Therefore, the

NPCA-based method is a special case of using the K-means type constrained connector

matrix method.

Proposition 3.13. When we set Z(x) = [X†
1Q]

(1)
Jx,Kx

and Z(y) = [Y †
1 W ]

(1)
Jy ,Ky

. The update
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formula of Bx, By, Cx, and Cy is obtained as follows:

Bx = UbxV
′
bx (3.58)

By = UbyV
′
by (3.59)

Cx = UcxV
′
cx (3.60)

Cy = UcyV
′
cy (3.61)

where Ubx and Vbx are left and right singular matrixes of

Z
(x)
2 (Cx ⊗ I)′F

(x)
2

′.

Uby and Vby are left and right singular matrixes of

Z
(y)
2 (Cy ⊗ I)F

(y)
2

′.

Ucx and Vcx are left and right singular matrixes of

Z
(x)
3 (Bx ⊗ I)F

(x)
3

′.

Ucy and Vcy are left and right singular matrixes of

Z
(y)
2 (By ⊗ I)F

(y)
3

′.

Proof. First, we explain the update formula of Bx. The term related to Bx is the first

term. The first term of objective function gccca is rewritten as follows:

∥X1Q− F
(x)
1 (Cx ⊗Bx)

′∥2 =∥Z(x)
1 − F

(x)
1 (Cx ⊗Bx)

′∥2

=∥Z(x)
2 −BxF

(x)
2 (Cx ⊗ I)′∥2

=tr(Z
(x)
2

′Z
(x)
2 )− 2tr(Z

(x)
2

′BxF
(x)
2 (Cx ⊗ I)′)

+ tr((Cx ⊗ I)F
(x)
2 B′

xBxF
(x)
2 (Cx ⊗ I)′)

=tr(Z
(x)
2

′Z
(x)
2 )− 2tr(BxF

(x)
2 (Cx ⊗ I)′Z

(x)
2

′)

+ tr((Cx ⊗ I)F
(x)
2

′F
(x)
2 (Cx ⊗ I)′).

Given parameters except Bx, we obtain the update formula of Bx by maximizing

tr(BxF
(x)
2 (Cx⊗I)′Z(x)

2
′). From the TenBerge theorem (ten Berge, 1993), tr(BxF

(x)
2 (Cx⊗

I)′Z
(x)
2

′) ≤ tr(D)holds. D is the diagonal matrix whose elements are singular values of

V DU ′ = F
(x)
2 (Cx ⊗ I)′Z ′

2. When we set Bx = UV ′, the equation holds. Therefore, we

obtain the update formula. The update formula of By is obtained in the same way as Bx.

Next, we explain the update formula of Cx, which is obtained in a very similar way to

Bx. The term related to Cx is the first term. The first term of objective function gccca is

rewritten as follows:

∥X1Q− F
(x)
1 (Cx ⊗Bx)

′∥2 =∥Z(x)
1 − F

(x)
1 (Cx ⊗Bx)

′∥2

=∥Z(x)
3 −CxF

(x)
3 (Bx ⊗ I)′∥2

=tr(Z
(x)
3

′Z
(x)
3 )− 2tr(Z

(x)
3

′CxF
(x)
3 (Bx ⊗ I)′)

+ tr((Bx ⊗ I)F
(x)
3 C ′

xCxF
(x)
3 (Bx ⊗ I)′)

=tr(Z
(x)
3

′Z
(x)
3 )− 2tr(BxF

(x)
3 (Cx ⊗ I)′Z

(x)
3

′)

+ tr((Bx ⊗ I)F
(x)
3

′F
(x)
3 (Bx ⊗ I)′).
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Given another parameter except Cx, we obtain the update formula of Cx by maximizing

tr(CxF
(x)
3 (Bx⊗I)′Z(x)

3
′). From the TenBerge theorem, tr(CxF

(x)
3 (Bx⊗I)′Z(x)

3
′) ≤ tr(D)

holds. D is a diagonal matrix whose elements are singular values of V DU ′ = F
(x)
3 (Bx ⊗

I)′Z ′
3. When we set Cx = UV ′, the equation holds. Therefore, we obtain the update

formula. The update formula of Cy is obtained in the same way as Cx.

Proposition 3.14. The update formulas of F (x) and F (y) are obtained as follows:

F
(x)
1 =(X†

1Q(Cx ⊗Bx) + F
(y)
1 DyD

′
x)(I +DxD

′
x)

−1, (3.62)

F
(y)
1 =(Y †

1 W (Cy ⊗By) + F
(x)
1 DxD

′
y)(I +DyD

′
y)

−1. (3.63)

Proof. First, we explain about the update formula of F
(x)
1 .

∥X†
1Q− F

(x)
1 (Cx ⊗Bx)

′∥2 + ∥F (x)
1 Dx − F

(y)
1 Dy∥2

=− 2tr(F
(x)
1 (Cx ⊗Bx)

′Q′X†
1
′)− 2tr(F

(x)
1

′F
(y)
1 DyD

′
x)

+ tr(F
(x)
1 DxD

′
xF

(x)
1

′) + tr(F
(x)
1 (C ′

xCx ⊗B′
xBx)F

(x)
1 ) + const.,

where const. is constant independence from F
(x)
1 . Thus, the partial derivative function of

gccca with respect to F
(x)
1 is obtained as follows:

∂

∂F
(x)
1

{∥X†
1Q− F

(x)
1 (Cx ⊗Bx)

′∥2 + ∥F (x)
1 Dx − F

(y)
1 Dy∥2}

=− 2X†
1Q(Cx ⊗Bx)− 2F

(y)
1 DyD

′
x + 2F

(x)
1 DxD

′
x + 2F

(x)
1 .

When we set the partial derivative function of gccca with respect to F
(x)
1 as 0, we obtain

the following equation:

− 2X†
1Q(Cx ⊗Bx)− 2F

(y)
1 DyD

′
x + 2F

(x)
1 DxD

′
x + 2F

(x)
1 = 0

⇐⇒F
(x)
1 DxD

′
x + F

(x)
1 = X†

1Q(Cx ⊗Bx) + F
(y)
1 DyD

′
x

⇐⇒F
(x)
1 = (X†

1Q(Cx ⊗Bx) + F
(y)
1 DyD

′
x)(I +DxD

′
x)

−1.

The update formula of F
(y)
1 is obtained in the same way as F

(x)
1 .

∥Y †
1 W − F

(y)
1 (Cy ⊗By)

′∥2 + ∥F (x)
1 Dx − F

(y)
1 Dy∥2

=− 2tr(F
(y)
1 (Cy ⊗By)

′W ′Y †
1
′)− 2tr(F

(y)
1

′F
(x)
1 DxD

′
y)

+ tr(F
(y)
1 DyD

′
yF

(y)
1

′) + tr(F
(y)
1 (C ′

yCy ⊗B′
yBy)F

(y)
1 ) + const.,

where const. is constant independence from F
(y)
1 . Thus, the partial derivative function of

gccca with respect to F
(y)
1 is obtained as follows:

∂

∂F
(y)
1

{∥Y †
1 W − F

(y)
1 (Cy ⊗By)

′∥2 + ∥F (x)
1 Dx − F

(y)
1 Dy∥2}

=− 2Y †
1 W (Cy ⊗By)− 2F

(x)
1 DxD

′
y + 2F

(y)
1 DyD

′
y + 2F

(y)
1 .
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When we set the partial derivative function of F
(y)
1 as 0, we obtain the Following equation:

− 2Y †
1 W (Cy ⊗By)− 2F

(x)
1 DxD

′
y + 2F

(y)
1 DyD

′
y + 2F

(y)
1 = 0

⇐⇒F
(y)
1 DyD

′
y + F

(y)
1 = Y †

1 W (Cy ⊗By) + F
(y)
1 DxD

′
y

⇐⇒F
(y)
1 = (Y †

1 W (Cy ⊗By) + F
(x)
1 DxD

′
y)(I +DyD

′
y)

−1.

Proposition 3.15. The update formula of qkxjx is obtained as follows:

qkxjx =
√
I(X†

kxjx
′X†

kxjx
)−

1
2u

(qx)
1 , (3.64)

where u
(qx)
1 is the first dimension left singular vector of

(X†
kxjx

′
X†

kxjx
)−

1
2X†

kxjx

′
Jn(
∑rcx

ℓ c
(x)
kxℓ

F
(x)
(ℓ) b

(x)
jx

). c
(x)
kxℓ

is (kx, ℓ) element of Cx. b
(x)
jx

is the

jx-th row vector of Bx. F
(x)
(ℓ) is the matrix corresponding to dimension ℓ of Cx.

The update formula of wkyjy is obtained as follows:

wkyjy =
√
I(Y †

kyjy
′Y †

kyjy
)−

1
2u

(wy)
1 , (3.65)

where u
(wx)
1 is the first dimension left singular vector of

(Y †
kyjy

′
Y †
kyjy

)−
1
2Y †

kyjy

′
Jn(
∑rcy

ℓ c
(y)
kyℓ

F
(y)
(ℓ) b

(y)
jy

). c
(y)
kyℓ

is (ky, ℓ) element of Cy. b
(y)
jy

is the jx-th

row vector of By. F
(y)
(ℓ) is the matrix corresponding to dimension ℓ of Cy

Proof. First, we explain about the update formula of qkxjx . From definition Q, qkxjx
are independent from each other. Thus, the update formula of qkxjx can be calculated

individually. The term that is related to qkxjx is the first term of gccca. The first term of

gccca is rewritten as follows:

∥X†
1Q− F

(x)
1 (Cx ⊗Bx)

′∥2 = −2tr(Q′X†′
1F

(x)
1 (Cx ⊗Bx)

′) + const. (3.66)

From equation (3.66), we consider the minimization problem as the Q that maximizes

tr(Q′X†′
1F

(x)
1 (Cx⊗Bx)

′). From the definition ofQ, in order to maximize tr(Q′X†′
1F

(x)
1 (Cx⊗

Bx)
′), we consider each value of qkxjx . Objective function g∗ for qkxjx is obtained as fol-

lows:

g∗(qkxjx | Cx, Bx, Fx, X
†) = tr(q′kxjxX

†
kxjx

′
rcx∑
ℓ

c
(x)
kxℓ

F
(x)
(ℓ) b

(x)
jx

),

From the constraint on qkxjx , this objective function g∗ is very similar to the objective

function of canonical correlation analysis. From the constraint X†
jxkx

qjxkx = JX†
jxkx

qjxkx ,

X†
jxkx

qjxkx is the element of complementary space of 1. Therefore, first, the X†
jxkx

is

projected J space. Then, we search the parameters maximizing g∗. Thus, we change the

objective function g∗ to g∗1 as follows:

g∗1(qkxjx | Cx, Bx, Fx, X
†) = tr(q′kxjxX

†
kxjx

′J

rcx∑
ℓ

c
(x)
kxℓ

F
(x)
(ℓ) b

(x)
jx

).
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When we set q∗kxjx = 1√
I
(X†

kxjx
′X†

kxjx
)1/2qkxjx , equation q∗kxjx

′q∗kxjx = 1 holds from the

constraint case of gccca. Therefore, we can rewrite g∗1 as follows:

g∗1(qkxjx | Cx, Bx, Fx, X
†) =

√
Itr(q∗kxjx

′(X†
kxjx

′X†
kxjx

)−
1
2X†

kxjx
′J

rcx∑
ℓ

c
(x)
kxℓ

F
(x)
(ℓ) b

(x)
jx

).

g∗1 is the same as the objective function of the weight matrix in the categorical canonical

covariance case. Therefore, we obtain the update formula of q∗kxjx as

q∗kxjx = u
(qx)
1 ,

where u
(qx)
1 is the first dimension left singular vector of

(X†
kxjx

′X†
kxjx

)−
1
2X†

kxjx
′J
∑rcx

ℓ c
(x)
kxℓ

F
(x)
(ℓ) b

(x)
jx

. From the definition of q∗kxjx , the update for-

mula of qkxjx is obtained as follows:

qkxjx =
√
I(X†

kxjx
′X†

kxjx
)−

1
2u

(qx)
1 .

The update formula of wkyjy is obtained in the same way as qkxjx .

The update formulas of Dx and Dy are the same as the K-means algorithm.

Proposition 3.16. The update formulas of Dbx, Dby, Dcx, and Dcy are obtained as

follows:

d
(bx)
ℓq =

1

(
ℓ = arg min

ℓ∗

∥∥∥∥[F (x)
2 (Dcx ⊗ I)]ℓ∗ − d

(by)
q

′F
(y)
2 (Dcy ⊗ I)

∥∥∥∥)
0 (otherwise)

(q = 1, 2, . . . , cb),

(3.67)

d
(by)
ℓq =

1

(
ℓ = arg min

ℓ∗

∥∥∥∥[F (y)
2 (Dcy ⊗ I)]ℓ∗ − d

(bx)
q

′F
(x)
2 (Dcx ⊗ I)

∥∥∥∥)
0 (otherwise)

(q = 1, 2, . . . , cb),

(3.68)

d
(cx)
ℓq =

1

(
ℓ = arg min

ℓ∗

∥∥∥∥[F (x)
3 (Dbx ⊗ I)]ℓ∗ − d

(cy)
q

′F
(y)
3 (Dby ⊗ In)

∥∥∥∥)
0 (otherwise)

(q = 1, 2, . . . , cc),

(3.69)

d
(cy)
ℓq =

1

(
ℓ = arg min

ℓ∗

∥∥∥∥[F (y)
3 (Dby ⊗ I)]ℓ∗ − d

(cx)
q

′F
(x)
3 (Dbx ⊗ In)

∥∥∥∥)
0 (otherwise)

(q = 1, 2, . . . , cc),

(3.70)

where d
(bx)
ℓq , d

(by)
ℓq , d

(cx)
ℓq and d

(cy)
ℓq are the (ℓ, q) element of Dbx, Dby, Dcx, and Dcy,

respectively. [A]ℓ is the ℓ-th column vector of A.
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Proof. From the definition of gccca, the third term depends on Dbx, Dby, Dcx, and Dcy.

We rewrite the third term of gccca as follows:

∥F (x)
1 Dx − F

(y)
1 Dy∥2 = ∥F (x)

1 (Dcx ⊗Dbx)− F
(y)
1 (Dcy ⊗Dby)∥2

= ∥D′
bxF

(x)
2 (Dcx ⊗ I)−D′

byF
(y)
2 (Dcx ⊗ I)∥2 (3.71)

= ∥D′
cxF

(x)
3 (Dbx ⊗ I)−D′

cyF
(y)
3 (Dby ⊗ I)∥2 (3.72)

From the constraint of Dbx, Dby, equation (3.71) is equivalent to K-means given other

parameters. Thus, the update formulas of Dbx, Dby are obtained in the same way as

K-means.

From the constraint of Dcx, Dcy, equation (3.72) is equivalent to K-means given other

parameters. Thus, the update formulas of Dcx, Dcy are obtained in the same way as

K-means.

Summarizing the update formulas, we obtain the algorithm of categorical canonical

covariance analysis for three-mode three-way data as algorithm 6.

Algorithm 6 Algorithm of the NPCA-based method

Set the number of dimensions rbx, rby, rcx, rcy, cb, cc, and stop condition ε

Set initial values B
(0)
x , C

(0)
x , B

(0)
y , C

(0)
y , F

(0)
x , F

(0)
y , D

(0)
bx , D

(0)
by ,D

(0)
cx , and D

(0)
cy ,

t← 0

S(0) ← gccca(F
(0)
x , F

(0)
y , B

(0)
x , B

(0)
y , C

(0)
x , C

(0)
y , Q(0), W (0), D

(0)
x , D

(0)
y |X†, Y †)

repeat

t← t+ 1

Update Bx and By using C
(t−1)
x , F

(t−1)
x ,C

(t−1)
y , F

(t−1)
y

Update Cx and Cy using B
(t)
x , F

(t−1)
x ,B

(t)
y , F

(t−1)
y

Update F x using B
(t)
x , B

(t)
y ,C

(t)
x , C

(t)
y , F

(t−1)
y ,D

(t−1)
x , D

(t−1)
y

Update F y using B
(t)
x , B

(t)
y ,C

(t)
x , C

(t)
y , F

(t)
x ,D

(t−1)
x , D

(t−1)
y

Update Dbx using B
(t)
x , B

(t)
y ,C

(t)
x , C

(t)
y , F

(t)
x ,F

(t)
y , D

(t−1)
cx , D

(t−1)
y

Update Dcx using B
(t)
x , B

(t)
y ,C

(t)
x , C

(t)
y , F

(t)
x ,F

(t)
y , D

(t)
bx , D

(t−1)
y

Update Dby using B
(t)
x , B

(t)
y ,C

(t)
x , C

(t)
y , F

(t)
x ,F

(t)
y , D

(t)
x , D

(t−1)
cy

Update Dby using B
(t)
x , B

(t)
y ,C

(t)
x , C

(t)
y , F

(t)
x ,F

(t)
y , D

(t)
x , D

(t)
by

S(t) ← gccca(F
(t)
x , F

(t)
y , B

(t)
x , B

(t)
y , C

(t)
x , C

(t)
y , Q(t), W (t), D

(t)
x , D

(t)
y |X†, Y †)

until |S(t−1) − S(t)| ≤ ε
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Chapter 4

Simulation studies

In this chapter, we compare canonical covariance analysis for three-mode three-way

data with that for two-mode two-way data using several evaluations. In the K-means

based method case, we compare our proposed method with two-mode two-way canonical

covariance analysis and no connector matrixes with the mean squared loss between the

true and estimated weight matrixes. In the regression-based method case, we compare our

proposed method with two-mode two-way methods and three-mode three-way regression

using mean squared loss of prediction. In the quantification method case, we compare

our proposed method with two-mode two-way canonical covariance analysis, no connector

matrixes, and no quantification method using the mean squared loss between the true and

estimated weight matrixes.

4.1 Constrained connector method

In this section, we describe a numerical example for the contained connector method.

The purpose of introducing the constraint for parameters is different between the K-means

type and the regression type. Therefore, we separate these two types. In theK-means type

situation, we evaluate the squared error of parameters. In the regression type situation,

we focus on the prediction error.

4.1.1 K-means type

In this subsection, we explain a numerical example for the K-means type. In this exam-

ple, we consider that some canonical vectors are highly correlated in the low-dimensional

space, and some canonical vectors are not correlated with other canonical vectors. In this

case, we show that the connector matrix K-means type constrained case is better than

the non-constrained case.

4.1.1.1 Data generation

We set the number of objects I = 300, the numbers of variables Jx = 15, Jy = 16, and

the numbers of conditions Kx = 16, Ky = 12. We also set the numbers of dimensions for
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factor rbx = rby = rcx = rcy = 3. X1, Y1 is generated as follows:

X1 = U(Cx ⊗Bx)
′ +Ex, Y1 = V (Cy ⊗By)

′ +Ey, (4.1)

where the i-th row vector of U and V simultaneously follow multivariate normal distri-

bution with mean vector 0 and covariance matrix Σ. In other words,

(ui,vi)
i.i.d.∼ N(0,Σ), Σ =

(
I Σ′

uv

Σuv I

)
, Σuv = (σij),

σij =

0.8 (i, j) ∈ {(1, 9), (3, 7), (4, 6), (6, 4)}

0 otherwise
.

The reason that part of σij is set as 0.8 and the other part as 0 is that we set Dbx, Dby,

Dcx, and Dcy as follows:

Dbx =

1 0

0 0

0 1

 , Dby =

0 1

0 0

1 0

 ,

Dcx =

0 0

1 0

0 1

 , Dcy =

0 1

1 0

0 0

 .

Figure 4.1 shows the heat map of the covariance matrix, which shows the true covariance

matrix after dimensional reduction. Therefore, the red block on the bottom left shows

the covariance between X1 and Y1 after dimensional reduction. From Figure 4.1, the

connector matrix is set to satisfy connecting between bx1 and by3, bx3 and by1, cx2 and

cy2, and cx3 and cy1 in this condition. Therefore, there are four common factors in this

setting while the other factors apply to each dataset. Because this covariance setting is a

two-factor type of mixed setting, we expect the K-means based method to have the best

result. The main contribution of this numerical study is that we confirm it is suitable for

applying our proposed methods to datasets with similar assumed settings.

The elements of Ex and Ey follow normal distribution with mean 0 and variance σ2 =

0.12. We set parameters Bx, By, Cx, and Cy as follows:

Bx = (bx1, bx2, bx3), By = (by1, by2, by3),

Cx = (cx1, cx2, cx3), Cy = (cy1, cy2, cy3),

where bxi, byi, cxi and cyi are the i-th column vector of Bx,By, Cx, and Cy, respectively.

the column vectors of Bx,By, Cx, and Cy are set as follows:

bx1 = (1′5, 0
′
10)

′, bx2 = (0′5, 1
′
5, 0

′
5)

′, bx3 = (0′10, 1
′
5)

′,

by1 = (1′5, 0
′
11)

′, by2 = (0′5, 1
′
5, 0

′
6)

′, by3 = (0′10, 1
′
6)

′,

cx1 = (1′5, 0
′
11)

′, cx2 = (0′5, 1
′
6, 0

′
5)

′, cx3 = (0′11, 1
′
5)

′,

cy1 = (1′4, 0
′
8)

′, cy2 = (0′4, 1
′
3, 0

′
5)

′, cy3 = (0′7, 1
′
5)

′,
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Figure 4.1: Heatmap of covariance matrix for (u,v)

where 0d and 1d is the d dimensional vector whose elements are all 0 and 1, respectively.

We compare K-means type connector canonical covariance analysis for three-mode

three-way data with non-connector canonical covariance analysis for three-mode three-

way data and canonical covariance analysis for multivariate data. For each estimator, we

calculate the mean of squared error, defined as follows:

1

R

∑(
∥Ĉx ⊗ B̂x −Cx ⊗Bx∥2 + ∥Ĉy ⊗ B̂y −Cy ⊗By∥2

)
,

where R is iteration time. We set the iteration time R as 100. When we evaluate the mean

squared error for the two-mode two-way method, we set Ĉx ⊗ B̂x = Â and Ĉy ⊗ B̂y =

B̂. Moreover, we set the number of dimensions as the same number of parameters. In

other words, Â ∈ R15∗12×9, B̂ ∈ R16∗12×9, D̂bx ∈ {0, 1}3×2, D̂by ∈ {0, 1}3×2, D̂cx ∈
{0, 1}3×2, D̂cy ∈ {0, 1}3×2.

We evaluate the following four cases. The first case has no noise variable. In other words,

X1 and Y1 are generated by equation 4.1. The second and third cases use data with five

additional variables and conditions, respectively. The five variables and conditions are not

correlated other parameters. The fourth case uses data with the five additional variables

and conditions. The noise that is not correlated with other parameters follows the same

distribution as that of Ex and Ey. Figure 4.2 depicts these cases.
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Figure 4.2: Representation of unfolding mode

4.1.1.2 Result

Figure 4.3 shows the boxplots of all cases. The boxplots show, from the left, the K-

means type constrained connector matrix set as I, and the two-way canonical covariance

method. From Figure 4.3, applying the K-means type constrained case to these data is

the better of the two methods, because the squared error of parameters is smaller than

that of other methods. The reason for the difference between the three-way methods is the

covariance structure of the simulation study. The covariance matrix between the canonical

vectors is very sparse. However, the assumption of connector matrix set as I shows that

the canonical vector is highly correlated with at least one other canonical vector.

Table 4.1 shows the simulation result of the mean of squared error and the standard

deviation of squared error. The K-means based method has the best result among them

because the setting is the same of the assumed K-means based method. The differ-

ence between the K-means based method and constrained connector matrix set as I is

smaller than the difference between the K-means based method and the two-mode two-

way method. We guess this explains why the numerical study is in a three-mode three-way

setting. From this fact, when we assume that data have a three-mode three-way structure,

it is suitable to apply multivariate data analysis to a dataset. The standard deviation of

the two-way method is smallest among the methods because the solution of the two-way

method is obtained by singular value decomposition. Therefore, it tends to yield a stabler

estimator than the other method does. This is the drawback of the three-way three-mode

methods.

4.1.2 Regression type

In this subsection, we explain the numerical example for the regression type connector

matrix. One of the purposes of applying PLS to data is prediction. Thus, we compare

the PLS method with three-mode three-way regression, the two-way PLS method, and

two-way regression by prediction error. The main purpose of this numerical study is to
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Figure 4.3: Boxplots of all case results

Table 4.1: Mean squared error of parameters under all cases

Connect Non-connect Two-way

Case 1 7.048(3.207) 12.373(3.925) 35.937(2.613)

Case 2 7.077(3.743) 11.961(3.664) 33.574(2.985)

Case 3 7.774(3.437) 12.339(3.472) 34.056(2.280)

Case 4 7.115(3.286) 11.746(3.097) 32.255(2.334)
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confirm that the regression-based method is better than two-mode two-way regression and

two-mode two-way PLS in the sense of prediction. The result of the numerical example

shows that the three-way PLS method is a little better than the other methods are.

4.1.2.1 Data generation

We generate the PLS scores T1 ∈ RI×3∗3. The row vectors of T1 follow an identical

and independent multivariate normal distribution with the mean vector 0 and covariance

matrix I. In the first case, the weight matrixes of Cx ∈ R16×3 and Bx ∈ R15×3 generate

uniform distributions with min = −1 and max = 1. However, these matrixes are not

orthogonal. By using singular value decomposition, we obtain the orthogonal matrixes.

In the second case, the weight matrixes of Cx ∈ R16×3 andBx ∈ R15×3 are generated as

follows:

Bx = (bx1, bx2, bx3), Cx = (cx1, cx2, cx3),

bx1 = (1′5, 0
′
10)

′, bx2 = (0′5, 1
′
5, 0

′
5)

′, bx3 = (0′10, 1
′
5)

′,

cx1 = (1′5, 0
′
11)

′, cx2 = (0′5, 1
′
6, 0

′
5)

′, cx3 = (0′11, 1
′
5)

′,

The independent variables X1 ∈ RI×15∗16 are defined as X1 = T1(Cx ⊗ Bx)
′ + E,

where E is a noise matrix with elements following an identical and independent normal

distribution with a mean of 0 and standard deviation is set by sd. The response variables

Y1 ∈ RI×12∗10 are generated as T1(Cx⊗Bx)
′A+Ey. Ey is generated in the same manner

as E. A is the regression coefficient matrix whose elements follow independently and

identically uniform distributions with a minimum value of -1 and a maximum value of 1.

We set the number of training samples I = (300, 500) and the standard deviation of the

noise sd = (0.1, 0.5, 1). We use the following evaluation criterion for the mean squared

prediction error:

1

R

∑
(

1

(Ip ∗ 12 ∗ 10)
∥Y1p − Ŷ1p∥2),

where Ip is the number of test data sets. We set Ip as the same number of Y1 in all cases.

Y1p is generated in the same manner as Y1, and Y1p is the predictor when using the esti-

mated parameters. The following methods are compared: the combination of three-mode

three-way PLS and two-mode two-way linear regression, three-mode three-way regression,

two-mode two-way PLS, and two-mode two-way linear regression. The combined method

of three-mode three-way PLS and two-mode two-way linear regression uses the PLS score

estimated for the three-mode three-way data set as independent variables. R is iteration

time. We set R as 100.

4.1.2.2 Result

Figures 4.4 and 4.5 show the boxplots of the prediction error. The boxplot shows,

from the left, the combination of three-mode three-way PLS and three-mode three-way
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linear regression, and the combination of three-mode three-way PLS and two-mode two-

way linear regression, three-mode three-way regression, two-mode two-way PLS, and two-

mode two-way linear regression. From Figures 4.4 and 4.5, prediction error depends not on

dimensional reduction but on whether the data are three-way or not. The reason for this

result is based on whether the predictor has a three-way structure or not. The three-mode

three-way method has a three-way structure. In this case, the predictor generates the

same structure as the data. In other words, the data are described as the mode product.

Therefore, the difference between the three-way methods is small.

Tables 4.2 and 4.3 show the mean squared prediction error. The table shows, from

the left, the combination of three-mode three-way PLS and three-mode three-way linear

regression, and the combination of three-mode three-way PLS and two-mode two-way lin-

ear regression, three-mode three-way regression, two-mode two-way PLS, and two-mode

two-way linear regression. From Tables 4.2 and 4.3, under all settings, the combination of

three-mode three-way PLS and three-way regression has the best result among the meth-

ods. Except for the combination of three-mode three-way PLS and three-way regression,

three-way regression has the best result under all settings. There are few differences be-

tween the combined methods of three-mode three-way PLS and three-way regression. The

reason for this result is that it is possible to estimate the regression coefficient without

dimensional reduction.

Table 4.2: Mean prediction error under setting 1: Simple weight case

Three-Three Three-Two Three-way reg Two-Two Two-way reg

n = 300, sd = 0.1 0.120(0.005) 0.123(0.005) 0.121(0.005) 2.326(0.629) 0.616(0.031)

n = 300, sd = 0.5 0.598(0.022) 0.615(0.023) 0.606(0.023) 2.693(0.543) 3.071(0.151)

n = 300, sd = 1.0 1.171(0.041) 1.204(0.041) 1.185(0.042) 2.970(0.496) 6.000(0.303)

n = 500, sd = 0.1 0.121(0.005) 0.123(0.005) 0.122(0.005) 2.485(0.610) 0.234(0.009)

n = 500, sd = 0.5 0.596(0.025) 0.606(0.025) 0.601(0.025) 2.804(0.743) 1.151(0.050)

n = 500, sd = 1.0 1.177(0.038) 1.197(0.038) 1.185(0.039) 3.056(0.493) 2.270(0.075)

Table 4.3: Mean prediction error of setting 2: Random weight case

Three-Three Three-Two Three-way reg Two-Two Two-way reg

n = 300, sd = 0.1 0.121(0.005) 0.124(0.005) 0.122(0.006) 2.321(0.631) 0.616(0.032)

n = 300, sd = 0.5 0.598(0.027) 0.615(0.027) 0.606(0.027) 2.608(0.603) 3.073(0.163)

n = 300, sd = 1.0 1.177(0.043) 1.211(0.044) 1.190(0.043) 2.916(0.534) 6.030(0.275)

n = 500, sd = 0.1 0.120(0.005) 0.122(0.005) 0.121(0.005) 2.153(0.525) 0.231(0.010)

n = 500, sd = 0.5 0.597(0.025) 0.607(0.025) 0.602(0.025) 2.606(0.570) 1.150(0.048)

n = 500, sd = 1.0 1.169(0.042) 1.189(0.043) 1.177(0.043) 2.903(0.527) 2.254(0.083)
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Figure 4.4: Boxplots of the prediction error in setting 1
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Figure 4.5: Boxplots of the prediction error in setting 2
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4.2 Category quantification method

4.2.1 NPCA-based method

In this subsection, we consider the situation in which all values are categorical. In

other words, all the variables are categorical variables under all conditions of data. In this

numerical example, we consider two types of setting. In the first, the variable has order.

In the second setting, the variable has no order. The main purpose of this numerical

study is to confirm that the category quantification method has a better result than the

non-quantification method does under the case of categorical variables. In both settings,

the NPCA-based method has the best result among the compared methods.

4.2.1.1 Data generation

We compare categorical canonical covariance analysis for three-mode thee-way data with

canonical covariance analysis for three-mode three-way and for two-mode two-way data.

We set the true parameters Bx, By, Cx, and Cy as follows:

Bx = (bx1, bx2, bx3), By = (by1, by2, by3),

Cx = (cx1, cx2, cx3), Cy = (cy1, cy2, cy3),

bx1 = (1′5, 0
′
10)

′, bx2 = (0′5, 1
′
5, 0

′
5)

′, bx3 = (0′10, 1
′
5)

′,

by1 = (1′5, 0
′
11)

′, by2 = (0′5, 1
′
5, 0

′
6)

′, by3 = (0′11, 1
′
6)

′,

cx1 = (1′5, 0
′
11)

′, cx2 = (0′5, 1
′
6, 0

′
5)

′, cx3 = (0′11, 1
′
5)

′,

cy1 = (1′4, 0
′
8)

′, cy2 = (0′4, 1
′
3, 0

′
5)

′, cy3 = (0′7, 1
′
5)

′.

Then, to satisfy the constraint, we normalize the loading matrixes. F
(x)
1 and F

(y)
1 are

generated as follows:

(f
(x)
i , f

(y)
i )

i.i.d.∼ N(0, Σ), Σ =

(
I Σ′

fxfy

Σfxfy I

)
, Σfxfy = (σij),

σij =


1 (i = j)

0.8 ((i, j) ∈ {(1, 9), (3, 7), (4, 6), (6, 4)})

0 (otherwise)

.

This setting represents the case in which there are two common factor loadings for variables

and conditions. Thus, there are four common factors in these data. This covariance matrix

setting is the same as that of the K-means type. To generate data sets X and Y , we first

set the score data sets X∗ and Y ∗ as follows:

X∗
1 = F

(x)
1 (C ′

x ⊗B′
x) +Ex, Y

∗
1 = F

(y)
1 (C ′

y ⊗B′
y) +Ey

Ex = (ε
(x)
ij ), Ey = (ε

(y)
ij ), ε

(x)
ij

i.i.d.∼ N(0, sd2), ε
(y)
ij

i.i.d.∼ N(0, sd2).
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We set X and X under two conditions. Under the first condition, we generate X and

Y as follows:

xijxkx =



1 (xijxkx ≤ Quantile(xjxkx , 0.25))

2 (Quantile(xjxkx , 0.25) < xijxkx ≤ Quantile(xjxkx , 0.45))

3 (Quantile(xjxkx , 0.45) < xijxkx ≤ Quantile(xjxkx , 0.85))

4 (Quantile(xjxkx , 0.85) < xijxkx)

(i = 1, 2, . . . , n; jx = 1, 2, . . . , 15; kx = 1, 2, . . . , 16),

yijyky =



1 (yijyky ≤ Quantile(yjyky , 0.2))

2 (Quantile(yjyky , 0.2) < yijyky ≤ Quantile(yjyky , 0.4))

3 (Quantile(yjyky , 0.4) < yijyky ≤ Quantile(yjyky , 0.6))

4 (Quantile(yjyky , 0.6) < yijyky ≤ Quantile(yjyky , 0.8))

5 (Quantile(yjyky , 0.8) < yijyky)

(i = 1, 2, . . . , n; jy = 1, 2, . . . , 16; ky = 1, 2, . . . , 12),

where xjxkx is the I-dimensional vector of variable jx under condition kx of X, yjyky is

the I-dimensional vector of variable jy under condition ky of Y , and quantile (x, h) is the

function returning the h-quantile of x. We set the number of objects as 300 and 500, and

the standard deviation sd of noise as 0.1 and 0.3.

Under the second case, the dividing rule by using the quantile is the same. However,

we set the value as random. Therefore, the variable does not retain the order of score.

We set the number of dimensions of Bx, By, Cx, and Cy as 3. For two-mode two-way

analysis, we set the number of dimensions Ax and Ay as nine, because there are nine

dimensions of Cx ⊗Bx and Cy ⊗By.

For each estimator, we calculate the mean of squared error, defined as follows:

1

R

∑(
∥Ĉx ⊗ B̂x −Cx ⊗Bx∥2 + ∥Ĉy ⊗ B̂y −Cy ⊗By∥2

)
,

where R is iteration times. We set the reputation time R as 50. When we evaluate

the mean squared error for the two-mode two-way method, we set Ĉx ⊗ B̂x = Âx and

Ĉy ⊗ B̂y = Ây.

4.2.1.2 Result

Figures 4.6 and 4.7 show boxplots of settings 1 and 2, respectively. The boxplots show,

from the left, three-mode three-way categorical canonical covariance using the K-means

type constrained connector, three-mode three-way categorical canonical covariance set-

ting with the connector matrix as I, two-mode two-way categorical canonical covariance

analysis, three-mode three-way canonical covariance using the K-means type constrained

connector matrix, three-mode three-way canonical covariance setting with the connec-

tor matrix as I, and two-mode two-way categorical canonical covariance analysis. From

Figures 4.6 and 4.7, the categorical canonical covariance method constrained K-means

connector matrix has the best result under all conditions and all settings. On the other
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hand, except for the categorical canonical covariance method constrained K-means con-

nector matrix method, the results of the three-mode three-way method are not different.

Moreover, the method, assuming all values are numerical, is better than that based on the

NPCA method. The reason for this result is that the number of categories is the same

and the cutting rule is the same. Therefore, the metric canonical covariance method could

complete the variances.

Tables 4.4 and 4.5 show the mean squared error under settings 1 and 2, respectively. Ta-

bles 4.4 and 4.5 show, from the top, three-mode three-way categorical canonical covariance

using K-means type constrained connector, three-mode three-way categorical canonical

covariance setting with the connector matrix as I, two-mode two-way categorical canon-

ical covariance analysis, three-mode three-way canonical covariance using K-means type

constrained connector matrix, three-mode three-way canonical covariance setting with the

connector matrix as I, and two-mode two-way categorical canonical covariance analysis.

From Tables 4.4 and 4.5, standard deviation of the two-way method is smaller than that

of the other method, because the solution of the two-mode two-way method is simple.

On the other hand, the standard deviation of the qualification method for three-mode

three-way data is bigger than that for the other method. One reason for this result is

that the qualification method has many local minimums. The qualification method for

three-mode three-way data considers many relationships between interactions of variable

and conditions. Moreover, the qualification method has many parameters. This is the

drawback of qualification method for three-mode three-way data.

From the above results, when data have three-mode three-way structure and categorical

variables, the quantification method is more suitable for analysis than the two-mode two-

way and non-quantification methods are.

Table 4.4: Mean squared error of setting 1: Transform the order variable

n = 300 n = 500

sd = 0.1 sd = 0.3 sd = 0.1 sd = 0.3

Non-metric connect three-way 7.507(3.322) 7.548(3.162) 8.294(3.941) 7.629(3.532)

Non-metric three-way 11.459(3.446) 11.428(3.374) 12.167(3.509) 11.328(3.249)

Non-metric two-way 26.388(1.593) 26.351(1.672) 26.402(1.291) 26.281(1.435)

Metric connect three-way 11.388(2.987) 11.540(2.960) 12.036(2.470) 11.302(2.358)

Metric three-way 11.841(2.890) 11.247(3.092) 10.796(3.071) 11.443(2.844)

Two-way 26.725(1.044) 26.395(0.977) 26.302(0.974) 26.072(0.768)
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Figure 4.6: Squared error of parameters under setting 1

Table 4.5: Mean squared error of setting 2: Transform the categorical variable

n = 300 n = 500

sd = 0.1 sd = 0.3 sd = 0.1 sd = 0.3

Non-metric connect three-way 7.482(3.263) 7.613(3.078) 7.031(3.548) 8.038(4.007)

Non-metric three-way 11.303(3.299) 10.919(3.048) 11.482(2.992) 11.823(3.020)

Non-metric two-way 26.238(1.775) 26.108(1.389) 26.307(1.568) 26.001(1.297)

Metric connect three-way 11.431(2.594) 12.781(3.137) 11.866(2.751) 12.758(2.911)

Metric three-way 11.282(2.901) 14.582(4.117) 12.355(2.950) 14.448(3.282)

Two-way 26.300(1.136) 26.102(0.724) 26.695(1.010) 26.224(0.628)
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Figure 4.7: Squared error of parameters under setting 2
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Chapter 5

Real data examples

5.1 UNESCO and World Bank data

In this section, we describe applications of the three-mode three-way canonical covari-

ance constrained connector method. We use the same data for the real data example of

the K-means type and the regression type constrained methods. First, we explain the

data abstraction. Then, we describe the results of the K-means type and regression type

constrained methods. We propose some hypotheses about these data. First, education

and economic indexes are related to each other. Second, some factors exist for each data,

such as expenditure for the education factor. Applying the proposed method and the

Tucker 3 method to these data sets, we can compare the proposed method with Tucker 3

method.

5.1.1 Data description

In this subsection, we describe the abstraction of data used for the real data example.

We use two data sets from different sources. The first source is the United Nations

Educational, Scientific and Cultural Organization (UNESCO) (http://data.uis.unesco

.org/). UNESCO data are survey data of an education index of developing countries. The

other source is economic data from World Bank open data (https://data.worldbank

.org/).

Objects correspond to countries. There are 42 countries, because we select the countries

that have no missing values. The data from UNESCO and World Bank open data have 14

and 4 conditions, respectively. Conditions correspond to the survey periods. The survey

period of UNESCO data is from 2000 to 2013. The survey period of World Bank open

data is 1990, 2000, 2010, and 2012. Variables of these data sets are shown in Tables 5.1

and 5.2, respectively. UNESCO and World Bank open data have six and four variables,

respectively.

Before applying the method to the data sets, we make model 1 column-wise standardized
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Table 5.1: Variables of UNESCO data

Variable Description For shortn

GDP rate on education Government expenditure on

education, total GDP

GDPoE

Years of education Mean of years schooling in

population 25+ years

YoE

Government expenditure rate

on education

Ratio of education expendi-

ture and total government ex-

penditure

GERoE

Literacy Literacy rate of population

15–24 years

Lit

Rate of out-of-school adoles-

cents of secondary school age

Rate of out-of-school people

(aged 13̶18 years) in sec-

ondary school age

RoOAoS

Rate of out-of-school children

of primary school age

Rate of out-of-school children

in primary school days

RoOCoP

Table 5.2: Variables of World Bank open data

Variable Description For short

Access electricity Access to electricity % of population AE

GDP per capita GDP per capita (current US $) GDPpC

Child mortality rate Mortality rate under 5 years (per 1000 live births) CMR

Average life span Life expectancy at birth (years) ALS
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data. In other words,

I∑
i=1

xijk = 0,
1

I

I∑
i=1

x2ijk = 1

(j = 1, 2, · · · , J ; k = 1, 2, · · · , K)

is satisfied. This standardized method is the same as the two-mode two-way case. The

objective functions of theK-means type and regression constrained type constrained meth-

ods are defined by using the matrix unfolding model. This is the reason we choose this

standardized method.

5.1.2 Result of K-means type constrained

We set the numbers of dimensions for parameters as follows: for UNESCO variables

rbx = 3, for UNESCO conditions rcx = 4, for World Bank variables rby = 2, for World

Bank conditions rcy = 2, the number of connections for variables cb = 1, and the number

of connections for conditions cc = 1. The numbers of dimensions for UNESCO variables

rbx = 3 because we hypothesize the existence of three factors, one of which is a common

factor, and the others are expenditure and education factors. The World Bank variables

rby = 2, because we hypothesize the existence of two factors, one of which is a common

factor, and the other a general factor. Hence, we choose the number of connections for

variables cb = 1. The numbers of dimensions for UNESCO conditions rcx = 4, because we

hypothesize that there is one common factor as well as three factors for UNESCO data.

One of these three factors is a general factor. The others are before and after the 2008

financial crisis. The numbers of dimensions for World Bank conditions rcy = 2, because

we hypothesize that there are two factors, one of which is a common factor and the other

a general factor.

Tables 5.3 and 5.4 show the weight matrixes for variables of each data set. We interpret

low dimensional space by the weight matrix of variables. First, we describe UNESCO

data. GDPoE and GERoE are higher values among Dim1. Thus, we refer to Dim1 as

expenditure for the education factor. GERoE and RoOCoP take higher absolute values

among Dim2. The value of RoOCoP is negative. However, higher RoOCoP means that

many children of primary school age do not attend school. Thus, when the score of Dim2 is

higher, the country has large expenditure on education and many primary school children

attend school. On the other hand, RoOAoS takes a small absolute value. Thus, we refer

to Dim2 as government expenditure on the primary school factor. Absolute values of all

variables are higher among Dim3. Lit and YoE are positive values. On the other hand,

other variables have negative values. Thus, when the score of Dim3 takes a higher value,

the country shows a good value for its education index. On the other hand, the country

spends less money on education than it does on other requirements. Thus, we refer to

Dim 3 as the schooling education factor.

Then, we interpret the weight matrixes for World Bank open data. All variables take

high absolute values in Dim1. AE, GDPpC, and ALS have negative values. On the other

hand, CMR has a positive value. CMR is the ratio of child mortality. A high CMR
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indicates that the country has poor child mortality. Therefore, Dim1 is referred to as a

general index. GDPpC takes the highest absolute value among Dim2. Therefore, Dim2 is

referred to as the GDP factor.

Tables 5.5 and 5.6 show the connector matrixes of the UNESCO and World Bank open

data, respectively. From Tables 5.5 and 5.6, we understand that government expenditure

on the primary school factor and the GDP factor is connected. This result shows that

GDP and government expenditure are correlated. This result is self-evident because GDP

includes government expenditure.

The goodness of fit for the K-means based method is now defined as follows:

∥X1(Ĉx ⊗ B̂x)∥2 + ∥Y1(Ĉy ⊗ B̂y)∥2 + 2tr(D̂′
x(Ĉx ⊗ B̂x)

′X ′
1Y1(Ĉy ⊗ B̂y)D̂y)

2(∥X1∥2 + ∥Y1∥2)

This goodness of fit is taken in the range from 0 to 1 from the facts that ∥X1(Ĉx⊗B̂x)∥2 ≤
∥X1∥2, ∥Y1(Ĉy ⊗ B̂y)∥2 ≤ ∥Y1∥2, and 2tr(D̂′

x(Ĉx ⊗ B̂x)
′X ′

1Y1(Ĉy ⊗ B̂y)D̂y) ≤ ∥X1∥2 +
∥Y1∥2 hold when cc = cb = 1. Therefore, this goodness of fit is not a general index but a

special case index. In this result, the goodness of fit is very good at 0.995.

Tables 5.7 and 5.8 show the weight matrixes for conditions of the UNESCO data and

World Bank open data, respectively. Table 5.7 shows that Dim1, Dim2, and Dim4 are

the factors between 2005 and 2008, between 2009 and 2013, and between 2000 and 2002,

respectively, because these years take higher absolute values in each dim. Table 5.7 shows

that Dim2 displays general factors of the survey years because all years take high values.

From Tables 5.9 and 5.10, which show the connector matrixes for conditions of the

UNESCO data and World Bank open data, Dim3 of the UNESCO data and Dim1 of the

World bank open data are connected. 2000, 2003, 2004, and 2008 have higher absolute

values in Dim3 of the UNESCO data. On the other hand, 2000 has higher value in Dim1

of the World Bank open data. It is easy to interpret this as the same survey year taking

the higher value. On the other hand, 2003 and 2004 take negative values in the UNESCO

data. We guess that the reason for this result is the Iraq War of 2003. This data set

includes 42 developing countries in East and South Asia, Africa, and Central and South

America. Therefore, we guess these countries had unstable political situations in these

years.

Figures 5.1 and 5.2 show the network representation of weight matrixes for variables

and conditions, respectively. Positive and negative are represented as blue and red, re-

spectively. The width of lines and alpha value show the absolute value. A deep wide

line shows that the absolute value is higher. When the variable and dimension are not

connected by any lines, the absolute value is smaller than 0.2. From these figures, we

distinguish which factors are common factors at a glance.
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Table 5.3: Weight matrix for variables of UNESCO data

Variable Dim1 Dim2 Dim3

GDPoE 0.618 −0.459 −0.391
YoE 0.254 −0.342 0.435

GERoE 0.513 0.534 −0.440
Lit 0.321 −0.068 0.406

RoOAoS −0.371 0.051 −0.366
RoOCoP −0.223 −0.616 −0.408

Table 5.4: Weight matrix for variables of World Bank open data

Dim1 Dim2

AE −0.498 −0.329
GDPpC −0.475 −0.878
CMR 0.512 −0.238
ALS −0.514 −0.254

Table 5.5: Connector matrix for variables of

UNESCO data

Connect

Dim1 0

Dim2 1

Dim3 0

Table 5.6: Connector matrix for variables of

World Bank open data

Connect

Dim1 0

Dim2 1

Table 5.7: Weight matrix for conditions of UNESCO data

Year Dim1 Dim2 Dim3 Dim4

2000 0.054 −0.245 0.554 0.442

2001 0.018 −0.177 0.173 0.511

2002 −0.008 −0.167 −0.071 0.438

2003 −0.156 −0.112 −0.455 0.297

2004 −0.201 −0.121 −0.450 0.197

2005 −0.328 −0.108 −0.172 0.153

2006 −0.451 −0.113 −0.035 −0.012
2007 −0.461 −0.147 0.049 −0.117
2008 −0.420 −0.223 0.411 −0.211
2009 −0.132 −0.301 −0.034 −0.207
2010 −0.056 −0.341 −0.034 −0.246
2011 0.205 −0.429 0.026 −0.145
2012 0.359 −0.468 −0.203 −0.132
2013 0.200 −0.385 −0.050 −0.025
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Table 5.8: Weight matrix for conditions of World Bank open data

Year Dim1 Dim2

1990 −0.071 0.499

2000 0.786 0.561

2010 −0.419 0.469

2012 −0.450 0.465

Table 5.9: Connector matrix for variables of

UNESCO data

Connect

Dim1 0

Dim2 0

Dim3 1

Dim4 0

Table 5.10: Connector matrix for variables of

World Bank open data

Connect

Dim1 1

Dim2 0

Figure 5.1: The network representation of weight matrixes for variables
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Figure 5.2: The network representation of weight matrixes for conditions
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We also apply the Tucker 3 method to these data sets for comparison with our proposed

method. The number of dimensions are the same as for theK-means type. Tables 5.11 and

5.12 show the weight matrixes for variables of UNESCO and the World Bank, respectively.

From Table 5.11, YoE, Lit, RoOAoS, and RoOCoS have higher absolute values among Dim

1. On the other hand, GDPoE and GERoE have higher absolute values among Dim 2.

Therefore, we obtain education and expenditure factors from the Tucker 3 method. Dim

3 is similar to Dim 2 of the K-means based method. From Table 5.12, we obtain general

and expenditure factors. These results are very similar to the K-means based method.

However, we cannot determine which factors are related to other factors. In this regard,

the K-means based method is better.

Tables 5.14 and 5.13 show the condition matrixes for variables of the UNESCO and

World Bank, respectively. We interpret the results from Table 5.14 to mean that Dim 1

is a general factor. However, the other factors are not clearly divided. Although Tucker

3 obtains a general factor, interpretation of the other factor is more difficult than in the

K-means based method. From Table 5.13, we obtain similar factors to the K-means based

method.

Figures 5.3 and 5.4 show the network representation of weight matrixes for variables

and conditions, respectively. Positive and negative are represented as blue and red, re-

spectively. The width of lines and alpha values show the absolute values. A deep wide line

shows that absolute value is higher. When the variable and dimension are not connected

by any lines, the absolute value is smaller than 0.2. From these figures, we obtain which

factors are similar to those of the K-means based method at a glance.

The Tucker 3 method is one of the dimensional reduction methods for a data set. There-

fore, it is difficult to interpret which is a common factor. On the other hand, by using

the K-means based method, it is easy to interpret which is common factor. This is the

advantage of the K-means based method.

Table 5.11: Weight matrix for variables of UNESCO data (Tucker 3)

Variable Dim1 Dim2 Dim3

GDPoE −0.036 −0.721 0.489

YoE 0.499 0.010 0.346

GERoE −0.110 −0.676 −0.534
Lit 0.514 −0.072 0.067

RoOAoS −0.500 0.134 −0.061
RoOCoS −0.473 0.002 0.590
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Table 5.12: Weight matrix for variables of World Bank open data (Tucker 3)

Dim1 Dim2

AE −0.517 0.286

GDPpC −0.422 −0.905
CMR 0.525 −0.219
ALS −0.528 0.226

Table 5.13: Weight matrix for conditions of World Bank open data (Tucker 3)

Year Dim1 Dim2

1990 −0.503 0.053

2000 −0.493 −0.837
2010 −0.503 0.367

2012 −0.501 0.403

Table 5.14: Weight matrix for conditions of UNESCO data (Tucker 3)

Year Dim1 Dim2 Dim3 Dim4

2000 −0.261 −0.525 −0.116 −0.453
2001 −0.264 −0.487 −0.243 −0.083
2002 −0.266 −0.371 0.013 0.357

2003 −0.269 −0.139 0.316 0.393

2004 −0.270 0.021 −0.158 0.019

2005 −0.271 −0.018 0.332 0.225

2006 −0.269 0.114 0.348 0.070

2007 −0.270 0.179 0.286 −0.296
2008 −0.270 0.164 0.283 −0.538
2009 −0.269 0.261 −0.171 −0.046
2010 −0.266 0.332 −0.229 −0.009
2011 −0.266 0.153 −0.037 0.243

2012 −0.265 0.224 −0.565 0.110

2013 −0.265 0.073 −0.084 0.001
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Figure 5.3: The network representation of weight matrixes for variables (Tucker3)
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Figure 5.4: The network representation of weight matrixes for conditions (Tucker3)
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5.1.3 Result of regression type constrained case

We set the response data sets as World Bank open data, and the explanatory data sets

as UNESCO data. We set the numbers of dimensions for parameters as for UNESCO

variables rbx = 2, and as for UNESCO conditions rcx = 2. The numbers of dimensions for

UNESCO variables rbx = 2 and for UNESCO conditions rcx = 2, because we hypothesize

that there is one general factor and one characteristic factor. GDPoE and GERoE are

variables corresponding to expenditure. Therefore, we guess that the expenditure variables

of UNESCO are strong in relation to GDPpC. the survey years of UNESCO are the same

as those of the World Bank. Therefore, we guess that there are general factors as well as

a common year factor.

Tables 5.15 and 5.16 show the weight matrixes for variables and conditions of the UN-

ESCO data. From Table 5.15, we regard Dim1 as the education factor, because YoE and

Lit take positive and higher absolute values, and RoOAoS and RoOAos take negative and

higher absolute values. On the other hand, Dim2 is referred to as expenditure for the

education factor, because GDPoE and GERoE take higher absolute values.

From Table 5.16, Dim1 is referred to as the general factor, because all years take similar

values. On the other hand, it is difficult to interpret Dim2. The years from 2000 to 2002

take negative and higher absolute values. However, The years from 2006 to 2008 take

positive and higher absolute values. We guess that Dim2 shows that policy of countries

changed until the Iraq war began. Moreover, 2008 began with the Gaza War, and we guess

this is the reason the years 2006 to 2008 take positive and higher absolute values.

Table 5.15: Weight matrix for variables of UNESCO data

Variable Dim1 Dim2

GDPoE −0.03 −0.72
YoE 0.50 0.01

GERoE −0.11 −0.68
Lit 0.51 −0.07

RoOAoS −0.50 0.13

RoOCoP −0.47 0.00

Tables 5.17 and 5.18 show the coefficient matrixes for variables and conditions of the UN-

ESCO data. The rows of Tables 5.17 and 5.18 correspond to the variables and conditions

of the World Bank data, respectively. From Table 5.17, the education factor corresponds

to all variables except CMR. However, AE and GDPpC take negative values. Expendi-

ture is smaller when the education score is larger. This result is similar to the K-means

type constrained case. The coefficient vector for the expenditure factor is in contrast to

that of the education factor. When the score of the expenditure factor is larger, then AE

and GDPpC tend to take higher values. This result shows that a country that spends

substantial money on education has enough to developing its economy among the objects.

From Table 5.18, the coefficient matrixes of Dim1 and Dim2 have the same tendency.
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Table 5.16: Weight matrix for conditions of UNESCO data

Year Dim1 Dim2

2000 −0.26 −0.39
2001 −0.26 −0.48
2002 −0.27 −0.41
2003 −0.27 −0.13
2004 −0.27 −0.10
2005 −0.27 0.13

2006 −0.27 0.23

2007 −0.27 0.34

2008 −0.27 0.39

2009 −0.27 0.18

2010 −0.27 0.21

2011 −0.27 0.03

2012 −0.26 −0.03
2013 −0.26 0.00

However, the scale of the coefficient vector for Dim1 and Dim2 is different. It is difficult to

interpret this difference as corresponding to important of exploration because the scales

of the scores of Dim1 and Dim2 are different. Thus, now, we interpret this result as lack

of interaction between the years of the UNESCO and World Bank data. In other words,

there are no specific years in which the absolute value is large.

Figures 5.5 and 5.6 show the network representation. Red and blue show negative and

positive value, respectively. The width of lines and arrows show the absolute values of

the weight and coefficient matrixes, respectively. When the variable and dimension are

not connected by any line, the absolute value is smaller than 0.2. On the other hand, the

width of the arrows is relatively evaluated. From Figures 5.5 and 5.6, it is easy to interpret

the same results as shown in from the tables.

Table 5.17: Coefficient matrix for variables

Dim1 Dim2

AE −0.03 0.04

GDPpC −0.02 0.04

CMR 0.00 0.01

ALS 0.02 −0.04

Now, we compare this result with that of the Tucker 3 method. The PLS’ Dim 1 and

Dim 2 for variables is similar to the Tucker’s Dim 1 and Dim 2. On the other hand,

PLS’ Dim 2 for conditions is unlike any Dim of Tucker’s, although the PLS’ Dim 1 for

conditions is similar to Tucker’s Dim 1. The reason for this result is that PLS maximizes
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Table 5.18: Coefficient matrix for conditions

Year Dim1 Dim2

1990 1.47 −8.03
2000 1.19 −7.18
2010 1.35 −7.29
2012 1.26 −7.26

Figure 5.5: The network representation of weight and coefficients matrixes for variables
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Figure 5.6: The network representation of weight and coefficients matrixes for conditions
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the covariance between data sets.

5.2 Cognitive and purchase survey for beer and malt-free

beer-like alcoholic beverage

In this section, we describe the result of applying the NPCA-based method to a cognitive

and purchase survey for beer and beer-like drinks surveyed by Nomura Research Institute,

Ltd. These data are provided by Nomura Research Institute, Ltd. for the Marketing

Analysis Contest 2017 (https://www.is.nri.co.jp/contest/). First, we explain the

data abstraction. Then, we describe the result by the NPCA-based method. We propose

some hypotheses for these data. The first is that cognitive and purchase behavior are

related to each other. The second is that some factors exist for each data, such as a beer

factor and a malt-free beer-like alcoholic beverage factor. Applying the proposed method

and the Tucker 3 method with the quantification method to these data sets, we compare

the proposed method by the results.

5.2.1 Data description

In this subsection, we describe the data abstraction used as the real data example. These

data are questionnaire survey data about cognitive attitude and purchase behavior. Each

survey investigates the same participants twice using the same questionnaire. Pre- and

post-surveys are conducted in February and March 2017. There are 3000 survey partici-

pants. Before applying the NPCA-based method, we delete participants who have missing

values. Then, the number of objects declines to 2639. The question in the questionnaire

related to cognitive attitude is “Do you want to purchase item x?” This question is mea-

sured on a 5-point scale. On the other hand, the questions related to purchase behavior

are “Do you know item x? How often do you drink item x in one month?” This question

is measured on a 5-point scale. Table 5.19 shows the list of 11 items of this survey.

5.2.2 Result of NPCA-based method

In this subsection, we describe the result applying the NPCA-based method. We set

the numbers of dimensions for the parameters as follows: for cognitive attitude of item

rbx = 3, for cognitive attitude of item of conditions rcx = 2, for purchase behavior of item

rby = 3, for purchase behavior of item of conditions rcy = 2, the number of connections

for variables cb = 1, and the number of connections for conditions cc = 1. The number of

dimensions for variables is set to 3, because we hypothesize that there are three factors,

one of which is a common factor. The others are beer and malt-free beer that tastes

like an alcoholic beverage. Hence, we choose the number of connectors for the variable

as 1. The reason the number of dimensions for conditions is set as 2 is that we are not

interested in the difference between conditions. The reason that the number of connections

for conditions is set as 1 is that the number of conditions as 2.
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Table 5.19: Item list of beer and malt-free beer-like alcoholic beverages

Name Category

Super Dry Beer

The Premium Malts Beer

KIRIN ICHIBAN Beer

YEBISU Beer Beer

The MALT’S Beer

LAGER BEER Beer

Sapporo Black Label Beer

Mugi To Hop the Gold Malt-free beer-like alcoholic beverage

Kin Mugi Malt-free beer-like alcoholic beverage

Nodo Goshi Nama Malt-free beer-like alcoholic beverage

Clear Asahi Malt-free beer-like alcoholic beverage

The goodness of fit for the NPCA-based method is now not defined, because the score

F(x) and F is not constrained. Moreover, we do not have an explicit optimal estimator.

Although we could use goodness of fit for the method without quantification like we do for

the quantification method when we set X1 as Z
(x)
1 , we do not determine that the range

of the value is from 0 to 1. This is left for future work.

Tables 5.20 and 5.21 show the weight matrixes for cognitive attitude and purchase

behavior of an item, respectively. From Table 5.20, Dim1 of cognitive attitude is called

the beer factor, because the items belonging to beer take large absolute values. On the

other hand, Dim2 of cognitive attitude is called the malt-free beer-like alcoholic beverage

factor, because the items belonging to malt-free beer-like alcoholic beverages take large

absolute values. From Table 5.21, Dim2 of purchase behavior is called the beer factor,

because the items belonging to beer take large absolute values. On the other hand, Dim3

of purchase behavior is called the malt-free beer-like alcoholic beverage factor, because

the items belonging to malt-free beer-like alcoholic beverages take large absolute values.

Tables 5.22 and 5.23 show the connector matrixes of cognitive attitude and purchase

behavior, respectively. From Tables 5.22 and 5.23, we could interpret there being a con-

nection between Dim3 of cognitive attitude and Dim1 of purchase behavior. The MALT’S

and The Premium Malts take large absolute values in Dim3 of cognitive attitude. On the

other hand, The MALT’S, Super Dry, and the malt-free beer-like alcoholic beverages have

large absolute values in the Dim1 of purchase behavior. Super Dry is a famous beer and

The MALT’S is cheaper than other beer brands. Moreover, malt-free beer-like alcoholic

beverages tend to have lower prices than do beer drinks. On the other hand, The Pre-

mium Malts is one of the most expensive beer brands in Japan. Therefore, we interpret

this result as a good cognitive attitude toward cheaper and higher priced beer, although

the purchase behavior tends to favor malt-free beer-like alcoholic beverages.

Tables 5.24 and 5.25 show the weight matrixes for conditions. In both data sets, Dim

1 and Dim2 correspond to the pre- and post-survey, respectively. Tables 5.26 and 5.27
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Table 5.20: Weight matrix for cognitive attitude of item

Item Dim1 Dim2 Dim3

Super Dry −0.242 0.358 0.266

The Premium Malts 0.046 −0.262 0.559

KIRIN ICHIBAN −0.217 0.372 0.113

YEBISU Beer 0.127 −0.312 0.256

The MALT’S −0.021 0.244 −0.636
LAGER BEER −0.253 0.390 0.282

Sapporo Black Label −0.231 0.369 0.174

Mugi To Hop the Gold 0.435 0.232 0.055

Kin Mugi −0.433 −0.237 −0.099
Nodo Goshi Nama 0.431 0.234 0.090

Clear Asahi 0.442 0.234 0.054

Table 5.21: Weight matrix for purchase behavior of item

Item Dim1 Dim2 Dim3

Super Dry −0.309 −0.441 0.080

The Premium Malts 0.060 −0.392 −0.018
KIRIN ICHIBAN −0.019 −0.453 0.052

YEBISU Beer −0.082 0.421 −0.001
The MALT’S 0.696 −0.122 −0.209
LAGER BEER 0.176 −0.331 −0.062

Sapporo Black Label −0.123 0.333 0.103

Mugi To Hop the Gold −0.335 −0.161 0.553

Kin Mugi −0.254 −0.054 −0.441
Nodo Goshi Nama 0.379 0.072 0.440

Clear Asahi −0.208 −0.010 −0.489

Table 5.22: Connector matrix for cognition

attitude of item

Connect

Dim1 0

Dim2 0

Dim3 1

Table 5.23: Connector matrix for purchase

behavior of item

Connect

Dim1 1

Dim2 0

Dim3 0
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show the connector matrixes for conditions. From Tables 5.26 and 5.27, the post-survey

is connected.

Therefore, the relationship between Dim3 of cognitive attitude and Dim1 of purchase

behavior exists in the post-survey research. We cannot say whether the same relationship

exists in the pre-survey research.

Figure 5.7 shows the weight matrixes and connection matrixes for variables. Positive

and negative are represented as blue and red, respectively. The width of lines and alpha

values show the absolute values. Therefore, a deep wide line shows a higher absolute

value. When the variable and dimension are not connected by any line, the absolute value

is smaller than 0.2. From this figure, we distinguish which factors are common factors at

a glance.

Table 5.24: Weight matrix for conditions of

cognition attitude of item

Dim1 Dim2

Pre −0.967 −0.254
Post 0.254 −0.967

Table 5.25: Weight matrix for conditions of

purchase behavior of item

Dim1 Dim2

Pre −0.947 0.320

Post 0.320 0.947

Table 5.26: Connector matrix for conditions

of cognitive attitude of item

Connect

Dim1 0

Dim2 1

Table 5.27: Connector matrix for conditions

of purchase behavior of item

Connect

Dim1 0

Dim2 1

We also apply the Tucker 3 method with the quantification method proposed by Naka-

mura (2015). We set the number of dimensions as the same as those of the NPCA-based

method. Tables 5.28 and 5.29 how the result of the weight matrix for cognitive attitude

and purchase behavior of item, respectively. From Table 5.28, we interpret Dim 2 and

Dim 3 as beer and malt-free beer-like alcoholic beverage factors, respectively. Super Dry

has the highest absolute value among Dim 1. Hence, we interpret Dim 1 as the Super

Dry factor. These factors are the difference with the NPCA-based method, except for

the malt-free beer-like alcoholic beverage factor. The cause of this result is that NPCA

has two factors for each data; that is, we set the number of dimensions as 2. From Table

5.29, we interpret that Dim1 and Dim2 are Beer and Malt-free beer-like alcoholic beverage

factors, respectively. The Premium Malts and The MALT’S have bigger absolute values

among Dim 3. Therefore, we consider Dim 3 a malts factor.

Figure 5.8 shows the weight matrixes and connection matrixes for variables. Positive

and negative are represented as blue and red, respectively. The width of lines and alpha

values show the absolute values. Therefore, a deep wide line shows that absolute values

are higher. When the variable and dimension are not connected by any line, the absolute

value is smaller than 0.2. From this figure, it is easy to interpret the same factors from
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Figure 5.7: The network representation of weight matrixes for variables
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the table.

The cause of the difference between the NPCA-based method and Nakamura’s method

is the malts factor. The NPCA-based method has no malts factor but instead has a

cheaper bear and beverage factor. The cheaper bear and beverage factor is a common

factor between cognitive attitude and purchase behavior that maximizes the covariance of

the data. On the other hand, the malts factor maximizes the variance of the data.

Table 5.28: Weight matrix for cognitive attitude of item (Nakamrua)

Item Dim1 Dim2 Dim3

Super Dry 0.654 −0.230 −0.323
The Premium Malts −0.321 −0.208 0.140

KIRIN ICHIBAN −0.227 −0.320 0.063

YEBISU Beer −0.333 −0.235 0.198

The MALT’S −0.222 −0.275 0.024

LAGER BEER 0.077 0.456 0.064

Sapporo Black Label 0.058 −0.609 −0.143
Mugi To Hop the Gold −0.238 0.063 −0.389

Kin Mugi −0.045 −0.113 −0.577
Nodo Goshi Nama −0.216 0.089 −0.457

Clear Asahi −0.379 0.261 −0.338

Table 5.29: Weight matrix for purchase behavior of item (Nakamrua)

Item Dim1 Dim2 Dim3

Super Dry -0.003 -0.372 0.337

The Premium Malts 0.017 0.319 -0.517

KIRIN ICHIBAN -0.065 -0.447 -0.210

YEBISU Beer 0.076 0.402 -0.313

The MALT’S -0.061 0.248 -0.528

LAGER BEER 0.019 0.402 0.236

Sapporo Black Label -0.019 -0.406 -0.209

Mugi To Hop the Gold 0.505 0.021 0.224

Kin Mugi -0.485 0.048 -0.008

Nodo Goshi Nama -0.478 0.074 0.209

Clear Asahi -0.516 0.031 0.074
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Table 5.30: Weight matrix for conditions of

cognition attitude of item (Nakamrua)

Dim1 Dim2

Pre −0.183 −0.983
Post −0.983 0.183

Table 5.31: Weight matrix for conditions of

purchase behavior of item (Nakamrua)

Dim1 Dim2

Pre −0.688 −0.726
Post −0.726 0.688

Figure 5.8: The network representation of weight matrixes for variables (Nakamura)
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Chapter 6

Conclusion

In this study, we describe the dimensional reduction method for three-mode three-way

data based on canonical covariance analysis. Canonical covariance analysis is regarded

as simultaneous principal component analysis (PCA) and canonical correlation analysis.

Therefore, canonical covariance analysis is a dimensional reduction technique. However,

when we apply canonical covariance analysis to three-mode three-way data, we should in-

terpret the same variable under different conditions as a different variable, because canon-

ical covariance analysis has been proposed for two-mode two-way data. We address this

problem by extending canonical covariance analysis to three-mode three-way data using

the concept of the Tucker model (Tucker, 1966). Since the weight matrixes are represented

as the Kronecker product, three-mode three-way canonical covariance considers the same

variables under different conditions as the same variable. In general, the numbers of

variables and conditions are different between data sets. Thus, the assumption that the

number of factors corresponding to the principal component and common factor are the

same between data sets is too strict for analyzing three-mode three-way data. Introducing

the connector matrix, three-mode three-way canonical covariance could choose a differ-

ent number of principal components. We describe several constrained connector methods

in this paper. When we impose the connector matrix on the K-means type constraint,

the update formula of the connector matrix is the same as that of the K-means. This

method has no rotational invariant. On the other hand, the connector matrix depends

on initial values. This point is one of the drawbacks of K-means. The regression type

constrained method is one of the tandem analysis methods. The first step of the regression

type constrained case is to seek the subspace maximizing the covariance. The second step

is the regression step using the subspace that is obtained by the first step. Using this

constraint, the prediction error is developed a little. These models assume that the data

set has no categorical variable. To address this problem, we use the concept of NPCA.

The NPCA-based method is one of the quantification methods for categorical data. When

we choose squared loss as the loss function, the NPCA-based method maximizes the co-

variance between data and score. Given two three-mode three-way categorical data, the

estimator of the NPCA-based method gives a better result than does the two-way method.

Although these methods overcome some problems of two-mode two-way data, they have
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several drawbacks, as follows.

First, we do not have infallible criteria for how to decide the number of dimensions. One

criteria is the information criteria, such as the Akaike information criterion (AIC)(Akaike,

1992), and Bayesian information criterion (BIC) (Schwarz, 1978). These criteria need a

statistical model, which our models do not represent. While it is true that squared loss

corresponds to maximum likelihood under independently normal distribution assumption,

our models do not satisfy the AIC and BIC assumptions about nested models and iden-

tification. Therefore, we do not know whether the bias term is the same as the number

of parameters. On the other hand, one of the criteria for a decision about the number

of dimensions is scree plot. The scree plot is extended to three-mode three-way PCA

by Timmerman & Kiers (2000). However, this method has been proposed for three-mode

three-way PCA. Thus, we investigate whether this method could be applied to our method.

Moreover, we need to extend the quantification method.

Second, the algorithms of our method are time consuming, because we use Jennrich’s

approach, which is iterative and needs singular value decomposition at each step. In ad-

dition, the quantification method needs an inverse matrix. Therefore, our algorithm takes

much time when the numbers of objects, variables, and conditions are larger. One solution

is the acceleration method for alternative least square algorithm (Kuroda et al., 2011).

This acceleration method is a general method for an alternative least square algorithm.

Therefore, we might apply this acceleration method to our algorithm. However, we do

not investigate the fact that this algorithm does not satisfy the K-means type constrained

case. Thus, we need to confirm that our method satisfies the assumption of the acceleration

method.

Third, our methods are sensitive to initial values because the objective functions of the

three-mode three-way method are not convex. In particular, the K-means type is very

sensitive, because elements of connector matrixes take 0 or 1.One solution to this problem is

that the connector matrix is fixed. For example, Tenenhaus & Tenenhaus (2011)estimated

the canonical vector fixed connector matrix. Another solution to this problem is the

use of a Bayesian technique. When there is prior knowledge of the connection and low-

dimensional space, this knowledge is represented as prior distribution. Although our

methods are based on canonical covariance analysis, we guess that the Bayesian PCA

(Tipping & Bishop, 1999; Bishop, 1999) is helpful for introducing Bayesian estimation.

Fourth, it is difficult to interpret the parameters of three-mode three-way data analysis,

because the number of kinds of parameters is bigger than the two-mode two-way case.

One solution to this problem is sparse estimation. For example, sparse PCA (e.g., Zou et

al. (2006)) estimates the sparse weight matrix. A sparse estimation dimensional reduction

method for three-mode three-way data has been developed by many researchers. For

example, Ikemoto & Adachi (2016) proposed a sparse estimation method for a core array

of the Tucker 2 model. Tenenhaus & Tenenhaus (2011); Tenenhaus et al. (2017) proposed

sparse canonical correlation analysis by using a regularization method. These methods are

helpful for extending our model to the sparse estimation by regularization or constrained

non-zero elements method. Moreover, the simultaneous network representation of weight
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matrixes for variables and conditions does not exist. Hence, we need to interpret the

marginal values. For interpretation at a glance, we need to develop a representation

method for simultaneous weight matrixes.

Fifth, three-mode three-way data are a special case of n-mode m-way data. In other

words, we could extend our method to the n-modem-way case. One direction for extension

to the n-mode m-way is an extension to tensor decomposition (Kolda & Bader, 2009;

De Lathauwer et al., 2000). However, in the context of tensor decomposition, it is often

assumed that the number of modes and ways as n = m. Under this assumption, we

cannot extend our method to an n-mode m-way method in the true sense. In the research

area of multidimensional scaling, the n-mode m-way method was proposed by Carroll

& Chang (1970). Tsuchida & Yadohisa (2016a) proposed n-mode m-way asymmetric

multidimensional scaling. When we combine the concepts of tensor decomposition and

multidimensional scaling, we can transform our method to an n-mode m-way method.

Finally, there is no guarantee that our method can estimate the true parameters. For

example, we do not prove an asymptotic property, such as consistency. One future research

direction for analyzing asymptotic properties is the use of the array variate random vari-

able. Akdemir & Guota (2011) proposed a tensor normal distribution, which is a natural

extension from multivariate normal distribution. Therefore, it is probably for extension

theory of multivariate data to tensor data by using tensor normal distribution.
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