

Oxygen	Oxygenated Fuels Examined		
Oxygenates (Code name)	Molecular equation	Oxygen content [% by mass]	
Methanol (MeOH)	CH ₃ OH	50	
Dimethoxy methane (DMM)	CH ₃ OCH ₂ OCH ₃	42.1	
Dimethyl ether (DME)	CH ₃ OCH ₃	34.8	
Methyl butanoate (MB)	CH ₃ (CH ₂) ₂ (<u>CO)O</u> CH ₃	31.4	

	Property	of test fue	I	
軽油 ── Fuel:	すす生成量が多過ぎる. ↓ N-heptane	レーザ光の減衰 でのすすにより,	が著しく,またシ- LIIシグナルも大「	ート光とカメラま 幅に減衰する.
	Density at 298K	[kg/m ³]	680	
	Boiling point	[K]	372	
	Kinematic viscosity	[mm ² /s]	0.584	
	Lower calorific value	[MJ/kg]	47.8	
	Cetane number		56	
	Stoichiometric A/F	[kg/kg]	15.1	
😽 Doshisha Uni	<i>iversity</i> – Energy Conversion Researc	:h Center & Spray a	nd Combustion Scie	ence Laboratory –

			Experimental condition		
Ambier	nt gas temperature	T _{amb} [K]		900	
Ambier	nt gas density	$ ho_{amb}[{ m kg/m^3}]$	16.2		
Ambier	nt oxygen concentra	tion X ₀₂ [%]		17, 21	
Nozzle	orifice diameter	<i>d</i> [mm]		0.2	
Injection pressure drop		⊿P _{inj} [MPa]	40	70	100
Set injection duration		⊿t _{inj} [ms]	3.2	2.65	2.1
Injectio	n quantity	Q _{inj} [mg]		18.3	

Experime	ental condition	ons		
Fuel		n-	Heptar	ıe
Ambient gas temperature	T _{amb} [K]	800	900	1200
Ambient gas density	$ ho_{amb}[{ m kg/m^3}]$		16.2	
Ambient oxygen concentra	ation X ₀₂ [%]	13	17	21
Nozzle orifice diameter	<i>d</i> [mm]		0.2	
Injection pressure drop	⊿P _{inj} [MPa]		70	
Injection duration	⊿t _{inj} [ms]		2.5	
Injection quantity	Q _{inj} [mg]		18.3	
Dochicha University – Energy Conversity	on Posearch Center & S	pray and Combu	stion Scie	nco Laboratory -

	Conclusions
(1) 予 燃 縁	・混合的燃焼期間の終盤に生成した微小なすす粒子は 、焼の進行とともに噴霧下流部へ拡がり,噴霧先端・外 と部で大粒子径のすすが高濃度で分布する.
(2) 雰 子 る	開気温度の低下に伴い,大幅にすす濃度が減少し,粒 径もLIIシグナルが検出される全期間において微小とな
(3) 雰 と と	開気酸素濃度が低下すると,噴霧火炎が肥大化するこ により,すす生成領域が拡大する.また,雰囲気酸素濃 の低下に伴い,すす粒子の生成・成長が緩慢となるこ で,粒子径およびすす濃度はともに減少する.
😽 Doshisha U	niversity – Energy Conversion Research Center & Spray and Combustion Science Laboratory –

