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Chapter 1 

Introduction 

1.1 Affective Computing and Emotion Recognition 

1.1.1 Concept of Affective Computing 

A computer agent is software to help a user in operating computers. It works by 

improving the communications between a computer and the user, thus reducing the 

difficulties in using computers. It is common knowledge that computers and humans 

are different, and it is also common knowledge that not every human is capable or 

comfortable in operating computers.  

There is an approach in a user interface that is called Affective computing [1]. 

Affective computing implements emotions into human computer interactions, whether 

in the form of emotion recognition or in the form of emotion expressions. It is also 

said that improving the emotion recognition will also improve the agent’s accuracy in 

predicting user’s intention.  

For example, a user might tell a computer to open the e-mail and open an empty 

spreadsheet. Based on the emphasis on user’s voice or accent, as well as by user’s 

gestures, the computer can determine whether the user wants the e-mail primarily or 

the spreadsheet primarily, or want to compare both of them. Without emotion 



 2 

recognition capability, without affective computing, the computer would only assume 

the task as the plain command demanded.  

This is just one example of the use of affective computing. Researches can be 

done to explore fully about interactions between humans and computers, and it might 

also contributes in another branch of science. Similar situation occurred between 

psychology and brain science. It has been a long time since emotion is said to be 

irrelevant to the brain, cognition, and thinking. However, the brain is also the organ 

that processes emotion, along with thinking and cognition. It is then safe to assume 

that by learning about emotion, we can also learn about brain.  

There are also several applications that can reap benefits from intelligent agent 

capable of emotion. The elderly can receive helps in operating the computer, and the 

computer with affective computing will be able to understand the elderly’s intention, 

as well as expressing proper words to support them in learning to operate the 

computer.  

Another application that can benefit from intelligent agent capable of emotion is 

a mediator agent. In the case of communications between people from different 

culture, there are high chances of misunderstanding. The agent can be used as a 

mediator (since the agent will have known about its user’s unique features) to avoid 

misunderstandings because of different way in expression or gestures. Both agents 

might be able to communicate between themselves, or even might provide direct 

translations between the two people.  

Because of these reasons and dreams, we could summarize that the research 

about intelligent agent capable of emotions is necessary. 
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1.1.2 Several Emotions Recognition Models 

The field of emotion recognition is related to affective computing, for which 

emotion recognition systems have been developed. Most of these studies have 

implemented similar methods such as using still-image data, generalization of human 

expressions, or the non-pervasive sensors such as electrocardiography (ECG) or 

electroencephalography (EEG) [2]. Meanwhile, there are several gestures that usually 

relate to human emotion, such as nodding or head movements, and the stillness or the 

rapid movements of a whole body might relate to anticipation or anxiety. Still images 

have failed to capture these gestures, since temporal information is not stored in a 

single image. One of the scientists who use temporal information is Alex Pentland. He 

stated that the activity level of persons is related to their emotions [3]. 

Using non-pervasive sensors also might make a user uncomfortable and may 

influence the user’s actual emotion. In addition to this issue, a non-pervasive sensor is 

often not practical for real-world applications due to the special setup of the 

environment that might be needed. 

  A survey paper on affect recognition models [4] covered much recent research 

on affect and emotion recognition methods. It stated that there are no available 

benchmark data to compare the various methods fairly and also surveyed many 

researches that focus on emotion recognition based on photographs of actors or 

detecting images of a video by focusing on images in each frame. Further, it also 

stated that, in many of the studies, the available training data often consisted of actors 

making exaggerated expressions.  

Another book proposes the paradigm that there are several matters in the world 

that cannot be averaged, and that individuals are unique. Thus when we design 

anything to fit the average data, then it will fit into no one, since no one is average [5]. 
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It is then a common sense that individuals might express emotions quite differently 

too, and designing an emotion recognition model based on generic data might be not a 

good idea. 

1.1.3 Limitations and Challenges 

To sum up, there are several limitations and challenges on emotion recognition 

model. 

Temporal Information 

Current researches that analyze facial expressions tend to rely on still images. 

The researches sometime able to analyze facial expressions of a video but relying on 

frame per frame analysis, thus the temporal information (such as relative movements 

and gestures) might have been lost. 

Pervasiveness 

There are several researches that analyze the temporal information, however 

they use special sensors that are not pervasive, or using an environment that are not 

pervasive. Many of the researches are performed on a special setting of environment, 

or attaching special sensors to the subjects. 

General and Not Unique 

There have been several issues with benchmark data for emotion recognition, 

even if they are available [6] [4]. First, the data gathered from subjects who 

specifically requested to express specific emotion, one at a time. Therefore, they tend 

to be exaggerated, and the subjects might be actors tasked to express emotions. 

Second, there have not been a good benchmark data that have good temporal 

information and being natural as well. Third, the benchmark data relies on many 

people to be averaged, and each has only few data; thus it is usable only to recognize 
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a set of emotion of people, to be tested on a set of emotion of people. From the 

paradigm mentioned at Rose’ book [5], it is possibly not a good idea to use average 

information, and it is better to make a customized, user-specific approach instead. 

Learning / Training 

There have been several methods in artificial intelligence to develop a classifier, 

such as neural networks or support vector machine. However, they are similar to a 

black box, and analyzing the functions might be relatively difficult, if not impossible. 

1.2 Motivations of Research 

Based on the limitations and challenges of current research, we would like to 

approach from another direction and propose a model of a user-specific (not average) 

emotion recognition that is relying on pervasive sensors, incorporating temporal 

information as important feature, with classifiers or recognition programs can be 

analyzed by third party such as the user or psychologist. 

1.3 Objectives of Research 

We aim to design an emotion recognition model that is: (1) incorporating 

temporal information as an important feature for emotion analysis; (2) using pervasive 

and ubiquitous sensor, not a specific or non-pervasive sensors, on a pervasive 

environment; (3) avoid using many people data but instead focuses on a unique user 

specific features through repeated interactions, therefore the model should be able to 

implement new user’s data; (4) with the programming code that can be analyzed if 

necessary, rather than a black-box system. 
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1.4 Thesis Overview 

Emotion, Tree Structure, XGP, and Proposed Model (Chapter 3) 

In this thesis, the proposed model of user-specific emotion recognition is 

presented. The environment for experiments and data acquisition, as well as 

preliminary results and preparations for simulated evolution are elaborated. 

Enhancing the Model: Implementation of Voting (Chapter 4) 

This thesis presents an approach to enhance the model, by implementing 

collaborative filtering in the form of majority voting. 

Exploring Evolutionary Computation: Adaptive Voting (Chapter 5) 

This thesis aims to explore evolutionary computation to see whether adaptive 

voting of weighted trust can emerge naturally, by implementing genetic algorithm, in 

an attempt to facilitate the required ability of the model to accept new data of users. 

Exploring Evolutionary Computation: Incremental Genetic Programming 

(Chapter 6) 

This thesis aims to explore evolutionary computation towards another direction, 

which is by implementing incremental genetic programming. The incremental genetic 

programming is an effort to enhance the result from adaptive voting, with the same 

goals.  

Miscellaneous Emotion Analysis (Chapter 7) 

This thesis aims to analyze several emotions using the model proposed, such as 

the optimal timing of acquiring the data or which emotion is the easiest to recognize. 

We also show that the proposed model is not a black-box model, that the programs 

evolved by XGP can be analyzed and comprehended. 
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1.5 Thesis Organization 

This thesis is organized as follows: In Chapter 2, the background of the research 

is described. Chapter 3 provides explanations about our initial experiments and 

environments, as well as our proposed model. Enhancing the model using 

collaborative filtering is proposed at Chapter 4. Explorations on evolutionary 

computation are performed and then reported at Chapter 5, about the implementation 

of adaptive voters, and at Chapter 6, about the use of incremental genetic 

programming. Miscellaneous analysis on emotions using our proposed model is 

presented at Chapter 7. Finally, Chapter 8 concludes this thesis. 
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Chapter 2 

Research Framework for Emotion 

Recognition 

This chapter presents the concepts and definitions that lay the foundation for 

this thesis. First, a brief description on fundamental knowledge for the current 

research is introduced. Then, the evolutionary computation and the system used on 

this research are presented. 

2.1 Affective Computing  

Affective computing is the study and development of systems and devices that 

can recognize, interpret, process, and simulate human affects. It is an interdisciplinary 

field spanning computer science, psychology, and cognitive science [7]. 

An important aspect in affective computing [1] is emotion recognition for a user. 

One of the implementations of affective computing consists of an affective agent that 

is not only logical but also compassionate; this agent can help the user better, based 

on the current emotion. 

One of the main areas of affective computing is recognition of user’s emotion. 

There have been many methods with different results, but many of them are not 

natural enough, thus might not be usable for real life applications. 
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2.2 Honest Signals 

Although many of the research on emotion recognition that uses facial 

expression relies on still images, or the peak of facial expressions only, there are 

evidences that some signals are more important at recognizing user’s emotion [3], 

such as the variation of activity or repetitive motions. 

Pentland in his book showed that variation of activity correlates to human’s 

behavior. In example, nervous people would either suddenly become still and not 

moving, or they might also move too much. So it can be said that a change of the 

variations (either suddenly dropping or increasing) might means that there is a change 

of emotional state. 

2.3 Facial Action Coding System 

Facial Action Coding System (FACS) is a system to taxonomize human facial 

movements by their appearance on the face, based on a system originally developed 

by a Swedish anatomist Carl-Herman Hjortsjö. It was later adopted by Paul Ekman 

and Wallace V. Friesen [8]. 

The system categorized facial muscles movements (contraction or relaxation) 

into Action Units (AU), and by analyzing the AU, an analysis to guess the emotion 

expressed can be performed. 

One of the face model that implemented FACS is the CANDIDE [9]. A face 

model of CANDIDE is shown on Fig. 1 below. 
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Figure 1. CANDIDE-3 Face Model 

2.3 The End of Average: General and Uniqueness 

The End of Average [5] proposed a paradigm where the idea of average actually 

never fits any. An excerpt from the book is shown below: 

“In 1950, researchers at Wright Air Force Base in Ohio measured more than 

4,000 pilots on 140 dimensions of size, including thumb length, crotch height, and the 

distance from a pilot’s eye to his ear, and then calculated the average for each of 

these dimensions.  

Everyone believed this improved calculation of the average pilot would lead to 

a better-fitting cockpit and reduce the number of crashes — or almost everyone. 

Out of 4,063 pilots, not a single airman fit within the average range on all ten 

dimensions (height, shoulders, chest, waist, hips, legs, reach, torso, neck, thigh). 

One pilot might have a longer-than-average arm length, but a shorter-than-

average leg length. Another pilot might have a big chest but small hips. If you picked 

out just three of the ten dimensions of size--- say, neck circumference, thigh 

circumference, and wrist circumference---less than 3.5 percent of pilots would be 

averaged sized on all three dimensions. 

There was no such thing as an average pilot.” 
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The paradigm suggested that, for a complex and multi-dimensional system such 

as human, it is not safe to simply use data of many people to calculate a fit-for-all 

method. 

2.4 Emotion Classifications 

Emotions emerged in complicated species to meet the need for high degrees of 

response flexibility to the often complex and subtle conditions of life that could 

generate harms and benefits [10]. How a given individual reacts emotionally to an 

encounter depends on an evaluation of what the encounter implies for that individual 

[11].  

Another major theory of emotions is Component Process Model that regards 

emotion as the synchronization of many different cognitive and physiological 

components. Emotions are identified with the overall process where low level 

cognitive appraisals trigger bodily reactions [12]. 

Other than behavioral psychology, there is also evolutionary psychology. 

Evolutionary psychology (EP) is a theoretical approach in the social and natural 

sciences that examines psychological structure from a modern evolutionary 

perspective. It seeks to identify which human psychological traits are evolved 

adaptations – that is, the functional products of natural selection or sexual selection in 

human evolution. Adaptationist thinking about physiological mechanisms, such as the 

heart, lungs, and immune system, is common in evolutionary biology. Some 

evolutionary psychologists apply the same thinking to psychology, arguing that the 

modularity of mind is similar to that of the body and with different modular 

adaptations serving different functions. Evolutionary psychologists argue that much 
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of human behavior is the output of psychological adaptations that evolved to solve 

recurrent problems in human ancestral environment [13]. 

There are many emotion classifications, and psychologists often propose 

different classifications. It is a contested issue in emotion research and affective 

science. Several examples of emotion classifications are described at subsequent 

subchapters. 

 

2.4.1 Circumplex Model 

This model is developed by James Russel, and shows a circular model of two 

axes: valence and arousal. The valence axis represents the pleasantness of emotion, 

while the arousal axis represents the arousal level of emotion [14]. Fig. 2 below 

illustrates this model.  

 

Figure 2. Illustration of Circumplex model 
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2.4.2 Plutchik’s Model 

Robert Plutchik arranges emotions in concentric circles where inner circles are 

more basic and outer circles more complex. Illustration of Plutchik’s Model can be 

found at Fig. 3 below. 

 

Figure 3. Plutchik Model (or Plutchik’s Wheel) 
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2.4.3 Lövheim’s Cube 

Lövheim proposed a direct relation between specific combinations of the levels 

of the signal substances dopamine, noradrenaline and serotonin and eight basic 

emotions. For example, according to the model, anger is produced by the combination 

of low serotonin, high dopamine and high noradrenaline. Lövheim wrote that as 

neither the serotonin nor the dopamine axis is identical to the "pleasantness" (i.e. 

valence) dimension in earlier theories, the cube seems somewhat rotated when 

compared to these models [15]. 

The cube is illustrated at Fig. 4 below. 

 

Figure 4. Lovheim’s Cube 
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2.5 Evolutionary Computation 

Evolutionary computation is a biologically inspired algorithmic paradigm that 

uses the principle of evolution in Nature, especially, the survival of fittest. As a 

nature-inspired algorithm, there are several terminologies borrowed from biological 

world, such as selection, individual, mutation, crossover and fitness. 

Originally, evolutionary computation consisted of three evolution-based 

paradigms: evolution strategies [16] that focus on building systems capable of solving 

real-valued parameter optimization problems, evolutionary programming [17] on 

which early work centered on automatization of evolving finite state machines 

capable of responding to environmental stimuli, and genetic algorithm [18] was 

originally applied to combinatorial optimization.  

Other machine learning research like neural network have issues such as it is 

almost impossible for human to reverse engineer the system. Other than that, the 

processing power needed to effectively handle large neural networks is too high [19]. 

The general idea of evolutionary computation is in generating a set of individual 

then checking their fitness to the environment. The good ones survive to the next 

generation, and might have new offspring from performing genetic crossover. As the 

evolutions repeat by itself, the fit individuals will survive, and the better genes of the 

individuals to fit the environment will survive. 

In the terms of algorithm, the individual could represent a program or a function, 

determined by a set of terminals that represent genes. The environment and the fitness 

can represent a problem and the solution; the fit individuals to the environment means 

a better program or function to solve the problem towards the solution. 



 17 

To simulate the process of evolution and birthing new generations and offspring, 

a set of operators are applied to surviving individuals. There are three basic operator 

groups: selection, crossover, and mutation. 

Selection 

The selection operator chooses which individuals of the population at 

generation t will survive to the next generation. Common selection method is by 

evaluating their fitness to the environment (or problem, or target solution). 

Crossover 

The crossover operator generates new individual (offspring) by combining the 

genes or parameter of two or more parent (surviving individuals). There are many 

ways to perform this, e.g. by swapping some parts of the genotypes of both parents. 

Mutation 

The mutation operator is applied directly on an individual (at a gene or 

parameter), by performing pinpoint modifications (that can be random or regulated 

according to a rule). Values can be added or subtracted, or bits are flipped. 

2.5.1 Genetic Programming (GP) Basic Frameworks 

Genetic Programming (GP) [20] [21] is a domain-independent problem-solving 

algorithmic paradigm inspired by the natural evolution of species based on the 

survival and reproduction of the fittest. GP and natural inspired computing are 

successfully applied for delivering a human-competitive solutions of increasingly 

difficult problems in AI such as analog and digital circuits design, spatial and 

temporal information identification and prediction, machine learning, cyberterrorism 

prevention [22], financial [23], etc. 
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2.5.2 XGP Introduced 

XGP [24] is an in-house GP engine that features XML (Extensible Markup 

Language)-based genotype representations of candidate solutions (genetic programs), 

XML-schema that determines the allowed syntax of the genotypes, and a UDP 

channel to communicate between a fitness evaluator and the XGP. XGP manages the 

population of genetic programs and performs the main genetic operations – selection, 

crossover, and mutation. 

The notoriously long execution time of GP is caused by the fact that typically, a 

population of many (hundreds or thousands) potential solutions to the problem 

(individuals) trying to find the near-optimal solution to the problem in an enormous 

search space, evolve through many (hundreds or thousands) generations based on 

their simulated ability (fitness) to solve the given task over many (tens or hundreds) 

sampled environmental situations (fitness cases). 

Inspired by flexibility and recently emerged widespread adoption of document 

object model (DOM) and extensible markup language (XML), XGP uses an approach 

of representing genetic program as a DOM-parsing tree featuring corresponding flat 

XML text. XGP’s approach implies performing genetic operations on DOM-parsing 

tree using off-the shelf, platform- and language neutral DOM-parsers, and using 

XML-text representation as a Web-compliant format, feasible for representation of 

genetic programs during their migration among the computational nodes in eventual 

distributed GP. 

XGP gives an advantage in the form of a faster development time due the 

versatility of usages: it only took a short time to change the XML-schema and adapt 

the desired syntax of genotypes for a program. 
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Evolving programs using XGP requires the engine as a Microsoft Windows 

application running in parallel with another application to evaluate the fitness of each 

individual sent by XGP. 
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Chapter 3 

Proposed Model with XGP 

This chapter aims to investigate the classifications of emotions, and how to 

represent them in the form of tree structure. This tree structure is used by the XGP to 

evolve the program that will be used as classifiers. This chapter also proposes a user-

specific emotion recognition model, using pervasive sensors, as well as casual (not 

over-specific) environmental setup. [25] 

3.1 Emotion Classifications 

In our research, we employ the circumplex model [14] that uses both Valence 

(pleasantness or general mood) and Arousal (which is similar to activity level) to 

represent emotions.  Fig. 5 illustrates the classification of emotions based on Valence 

and Arousal of the circumplex model. 
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Figure 5. Circumplex mode showing Valence and Arousal 

 

Compared to other models, the circumplex model is very basic and existing in 

other models, and should be representative enough of most basic emotions. Our 

research also avoids giving users difficult choices (e.g. choosing between feeling 

disgusted or annoyed), therefore we opted for an easier to understand emotions to be 

used.  If we opted for another model, there is a high chance that the user would find 

difficulties in selecting their own current emotions, which might inhibit the natural 

interactions between the system and the user. 

The four emotion categories that we use in our research can be described as 

follows: 

 Happiness (positive valence, positive arousal), 

 Relaxed (positive valence, negative arousal) , 

 Sadness (negative valence, negative arousal) , and 

 Anger (negative valence, positive arousal) 
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3.1.1 Data to be used 

Due to the lack of benchmark data that we can use in our approach and model 

[4], our research uses our own experimental data, while emphasizing the variety of 

such data (e.g., using different seating positions and lighting conditions to simulate 

real-world conditions, and not setting the environment for gaining specific kinds of 

data, and different subjects of varied demographics) in order to improve the validity 

of data and experiments, as well as to investigate the robustness of our system. 

However, our research is still limited by the minimum and maximum lighting 

conditions required by the sensor, as well as subject’s subjectivity. 

3.1.2 User’s Features to be used 

Our research uses the Facial Action Coding System [26] as representation of 

facial expression, selecting several action units (AU) from the system. To model the 

user’s facial expression, we use the CANDIDE-3 face model [9], a 3D face model 

shown at Fig. 6 below. 

 

Figure 6. CANDIDE-3 Face Model 

 

We selected several features from a user’s facial expressions based on the 

CANDIDE-3 face model used by Microsoft Kinect. On the basis of this model, we 

selected nine Action Units (AU) that correspond to the detected facial movements:  
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1. upper lip raiser, 

2. jaw lowerer, 

3. lip stretcher, 

4. brow lowerer, 

5. lip corner depressor, 

6. outer brow raiser, 

7. head tilt pose: yaw, 

8. head tilt pose: pitch, and 

9. head tilt pose: roll. 

 

The raw data is obtained from Kinect in the form of stream of video frames, 

which can be processed immediately to extract these nine features. The stream of raw 

data is fed into the system with a sampling period of 33ms. 

Each AU is also normalized to a scale between -1,000 (no trace) and 1,000 

(clear existence). 

As the extracted AUs only represent facial expressions, further feature 

extraction is needed. Other research that recognize emotion using AU in real-time 

performs by analyzing each individual frame [27], thus removing the temporal 

information. To extract activity level and temporal information, we need to know the 

changes of the AUs as well. Therefore, we put the extracted AUs into a buffer, and for 

every 100 rows (time-series data) of AUs, we extract three features for each AU:  

 average value, 

 standard deviation, and 

 power 
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Average value and standard deviation represent the general level and activity 

level of each AU, respectively. An integration or power of the signals is used as well 

as one of the extracted features. The total number of extracted features is 27 (9x3) for 

every 100 frames of AU extracted from Microsoft Kinect. These features are coded as 

v_0 ~ v_26, where v_0 ~ v_8 represent the average of the 9 AUs in order above, v_9 

~ v_17 represent the standard deviation, and v_18 ~ v_26 represent the power. 

3.2 XGP and Tree Structure 

We use the in-house XGP engine explained at previous chapter to simulate 

evolutions for the experiments and in evolving classifiers for the emotion recognition. 

[25]. 

Since we use the circumplex model to represent emotions used in the research, 

we represent the emotion in the form of a tree structure, which are Valence and 

Arousal. This tree structure will be used by XGP to evolve program that will take 

user’s extracted features into account, along with several other functions that will be 

explained in the following subsections. 

3.2.1 XGP 

Here we will focus on evolution of the Emotion Recognition Module using 

XGP. The XGP is an in-house engine of Genetic Programming that uses XML-based 

genotypic representations of candidate solutions (genetic programs), XML-schema to 

determining the allowed syntax of the genotypes, and UDP channel to communicate 

between fitness evaluator and the XGP manager (which manages the population of 

genetic programs and performs the genetic operations – selection, crossover and 

mutation - on them) to perform evolution on the individuals. Fig. 7 below illustrates 
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the configuration of the system that consists of XGP and the fitness evaluator module 

used for simulated evolutions. 

 

Figure 7. Integration of XGP (left) with the fitness evaluator (right) into a system that 

performs the simulated evolution of emotion recognition formulas. 

 

3.2.2 Genes 

There are 9 basic AU values gathered from Microsoft Kinect sensor, and each 

of them is normalized into a scale of -1000 to 1000. The system then extracts 3 values 

(average, standard deviation, power) from each AU for a specific time frame, which 

results into 27 extracted features. These features, together with random constant 

within the range (1..10) comprise the set of terminal symbols in XGP. The set of non-

terminal (functional) symbols consist of arithmetical operations (+, -, *, /) and 

threshold evaluator at the root of tree-representation of candidate solution. This 

evaluator determines the condition of each Valence and Arousal of the inputs. 
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Table 1. XGP Features 

Feature Name Values 

27 Extracted Features (terminal) -1,000 – 1,000 

Random Constants (terminal) 1 – 10 

Arithmetical Operators (non-terminal) +, - , * , / 

Comparison Operators (non-terminal) < , > 

 

 

3.2.3 Fitness Function 

In order to evaluate the fitness of an individual, a fitness function is needed. 

This research uses a variant of accuracy and precision: Matthew’s Correlation 

Coefficient (MCC) [28]. It considers True Positive, True Negative, False Positive, and 

False Negative to represent the ‘truth-ness’ of a result.  

We opted for this value instead of a simple accuracy calculation, because our 

system should to consider both precision and recall as a single value, and MCC offers 

this possibility. 

MCC can be expressed as the following equation. 

 

𝑀𝐶𝐶 =
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃) × (𝑇𝑃 + 𝐹𝑁) × (𝑇𝑁 + 𝐹𝑃) × (𝑇𝑁 + 𝐹𝑁)
 

 

where: 

   TP = True Positive 

   TN = True Negative 

   FP = False Positive 

   FN = False Negative 
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MCC results in a value between -1 (exact opposite) to 1 (perfect match). The 

value of zero means total randomness. Our system scaled this MCC to fit within the 

range between 1 (perfect match) and 9,999 (exact opposite). The value of 5,000 

indicates a total randomness. 

3.2.4 XGP Tree Structure 

The XGP would produce a schema in the form of XML, to represent a tree 

structure of the ‘program’. The tree structure consisted of multiple nodes, each nodes 

is a multiple variety of genes. Each gene (or node or branch) can be used by XGP for 

crossover, mutations, and anything else deemed needed for evolution. The root of the 

tree is separated into two distinct subtrees. One of them is the Valence subtree; the 

other is the Arousal subtree. Each subtree branched into a comparison between two of 

the branches below them. The value of the subtree (also the Valence and Arousal, 

respective to their subtrees) is set according to the condition of the comparison (to 

True or False). The branches below them are a combination between arithmetical 

genes, constant genes, and variable genes. 

Our mathematical models (functions) represent the two axis of emotion, which 

are Valence (represented by the Valence tree) and Arousal (represented by the 

Arousal tree), as represented in Fig. 5. 

Fig. 8 below illustrates the tree structure of our mathematical model. 
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Figure 8. Tree Structure of Mathematical Model 

 

The positive or negative of each Arousal and Valence is determined on the basis 

of the result of the comparison of the sub-trees using comparison operators. A 'true' 

result is considered 'positive', while a 'false' result is considered 'negative'. 

Each parse tree is represented using the following Backus–Naur Form (BNF), 

along with the syntaxes, terminal sets, and functions: 

 

IF “F” “Comp” “F” THEN True 

Comp::= “<”|“>” 

F::= “Const”|“Var”|“F”,”Op”,”Const”|”Var”|”F” 

Const::= “1”..”10” 

Var::= “v_0”..”v_26” 

Op::= “+”|”-“|”*”|”/”   
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3.4 Preliminary Experiments and Results 

3.4.1 Users might express differently 

Our first experiment is intended to test the Kinect to acquire the AUs of two 

separate users, each expressing happy emotions. The graphical representations of the 

signals of all of the AUs along the time for both users are shown in Fig. 9 below. 

As Fig. 9 illustrates, the facial expressions of two different persons showing 

same emotions can be different. Using this information as one of the basis of our 

research, along with the concept written at the book “End of Average” [5], we 

proposed user-specific emotion recognition model. 

 

 

 

 

 

 

 

 

 

 

 

 



 31 

 

 

Figure 9. Signals of all AUs from two different persons showing same emotion on a 

similar time period 

 

3.4.2 Analogy of Approach: Expert versus Close Relative/Family 

The model that we propose has a novel approach in shifting the paradigm of 

emotion recognition. Most researches focus on developing and designing an expert 

agent, capable of recognizing many users’ emotions, by extensive learning and 
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accumulating massive training data. This is quite similar to training a person to be an 

expert psychologist who learns a lot about everyone. 

However, our approach tries to shift emotion recognition towards different 

paradigm: by interacting with a single unique user through time, accumulating data 

through time, and evolving through time. This is quite similar to a close relative of 

ours, who often knows about our emotions, albeit they are not psychologists 

themselves (and they might be unable to understand strangers’ emotions too).  

3.3 Proposed Model 

3.3.1 Overview 

User-Specific Model 

The aim of our research is to develop a user-specific emotion recognition model 

that can recognize the emotions of a unique user and can self-evolve. Our study is 

based on our preliminary findings that show that people may express their emotions 

differently as shown at Section 3.4.1, and that a generalized method may not be better 

than a specialized unique recognition method using a specially crafted classifier.  

As an analogy, sometimes, someone close to us knows our emotions better than 

a psychologist, even if they are not psychologists themselves, e.g., our mother or 

spouse or another family member tend to know us better although they may not have 

special training in psychology. 

This is also inline with the paradigm presented in the book “The End of 

Average” [5], that individuals might be unique and when designing something to fit 

the average, then it will fit to none, because there is no one who really fits the 

‘average’. 
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Pervasive Model 

Acquiring subject’s data outside their natural context will not be applicable for 

real-life applications. Meanwhile, the uses of non-pervasive sensors or environment 

would result the subject to be taken out from their natural context, and might 

influence the data acquired. 

Our model uses a pervasive sensor from Microsoft Kinect. Microsoft Kinect 

acts similarly to a webcam and can be used as a source of perceptions for the system. 

Fig. 10 illustrates the structure of the proposed system of the intelligent agent [29]. 

 

 

Figure 10. Illustration of Proposed Model 

 

There are several reasons for choosing Microsoft Kinect as a sensor. The first is 

because it can be categorized as pervasive sensor. A non-pervasive sensor might 

influence a user's actual emotion, making the user more anxious or uneasy. Thus, 

using a pervasive sensor such as Microsoft Kinect might reduce the influence of an 

alien sensor on the user. 
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Another reason is that Microsoft Kinect is an off-the-shelf commodity, widely 

available as a practical tool for home personal computers (PC). It is not dedicated to a 

computer agent but is a general device that can be used as a webcam and a gaming 

device. 

Further, Microsoft Kinect can operate under normal room situations, and do not 

need special attachments on the users, or special setups on the background. The 

working range of the sensor has similar condition with a simple webcam, which are 

normally illuminated room (not too bright or too dark), and that the user is located in 

the camera’s point of view. 

In short, we chose Microsoft Kinect because of the pervasiveness and multi-

usability, along the capability of both red-green-blue (RGB) camera and infra-red (IR) 

camera for better face-tracking capabilities. 

3.3.2 Components and Features of Proposed Model 

Our model has several important components (as shown on Fig. 10 above), as 

well as several features that can be explained according to Table 2 and Table 3 below. 

[30]. 
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Table 2. Components of the Proposed Model 

Component Details 

User A single user who interacts with 

the system 

Kinect  The main sensor of the system, 

consisting of several cameras and 

microphones 

Emotion 

Recognition 

Module 

The main module to manage and 

synchronize flows of data, 

including the module for machine 

learning 

Evolution 

Module 

Performing simulated evolutions 

to evolve classifiers 

User Interface To interact with the user 

 

 

 

Table 3. Main Features of the Proposed Model 

Category Descriptions 

Perceptions Features extracted 

Collected features from database 

Actions Features to be stored in database 

Features to be deleted in database 

Proper response 

Behaviors Recognition (classifier) 

Self-evolution 

Analyze 
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3.4 Initial Experiments 

The initial experiments are conducted to test the XGP, as well as exploring the 

evolutionary computation to obtain more efficient values for the XGP settings [25]. 

3.4.1 Experiment Environment 

Many researches concerning facial expressions-based emotion recognition 

conducted experiments or acquiring training data (and test data) from people (or even 

actors) who are asked to express a single emotion, despite this method of acquiring 

data is often criticized [6]. 

Our proposed model avoid asking subjects to express their emotion; instead we 

let the subjects to be with their own, watching videos or performing other activities in 

front of a computer, while selecting appropriate emotions during the data acquisition; 

one of the options is [standby], which means to let the system not taking any data. 

Fig. 11 below shows the common experiment environment of our proposed 

model. 

 

Figure 11. Common environment for experiments and data acquisitions 
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As it can be seen at Fig. 11 above, the subject uses the PC with a pervasive 

sensor of Microsoft Kinect (located on top of the monitor), under normal working 

environment. The subject is free to watch videos or perform other activities, and even 

to adjust his seating or moves around a bit, as long as he did not go out of Microsoft 

Kinect view or working condition; the headphone was not mandatory, but the subject 

shown at the Fig. 11 was watching a video while selecting some emotions related to 

his current situation (subject to his subjectivity). For the experiments, we also use 

another setup to test the robustness of the Kinect that we also use in gathering data, as 

shown at Fig. 12 below. 

 

Figure 12. Alternative Experiment Environment 
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The environment above was set for alternative data acquisition that we use for 

our research. 

The screenshot (cropped) of User Interface of the system we use in our 

proposed model is shown at Fig. 13 below. 

 

 

Figure 13. User Interface of the system of the proposed model; it is a small window 

resizable and can be minimized, so it is still pervasive. 

 

The subjects are free to select and express their emotions, while using PC as 

usual. Afterwards, the subjects can save the acquired data into a file, to be used as 

training data for simulated evolution, or for test data for off-line simulated tests. 

3.4.2 Feature Extraction Experiment 

One of the first experiments conducted is comparing the data of two persons 

who express the same emotion for around 30 seconds. The persons then express 

another emotion for around 1 minute. 
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The extracted features then compared and analyzed. The result was that each 

person does not have a similar graph. These data then put into an evolution of several 

runs.  The result was by separating the person into a different classifier (customized) 

would improve the accuracy of the classifier, compared with putting both data on a 

single evolution. 

The graph of extracted raw features between two persons expressing the same 

emotion can be seen in Fig. 9 at Section 3.4.1. The graph shows that, the lip stretcher 

(LS) is one of the positive factors for the first person in expressing one emotion, while 

it is a quite negative factor for the second person in expressing the same emotion. In 

the data acquisition for emotions, there are cases where a person does not smile a lot 

while happy (despite popular belief), and not all person frowns when they are sad. 

3.4.3 Time Frame 

The features extracted also included an Activity, which is dependent on the 

changes of value in one time frame. An experiment is performed to test which time 

frame is feasible.  

The experiment uses a single person data, expressing two kinds of emotion. The 

data is separated into training set and test set. A same number of 48 independent XGP 

session runs were performed for two training events, first for 30 frames data (around 1 

second) of time frame and then for 100 frames data (around 3 seconds) of time frame. 

The settings for the XGP are shown at Table 4 below: 
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Table 4. XGP Settings for Experiments on Time Frame 

XGP Setting Value 

Termination Generation > 200 | Fitness Value < 2 | Stagnation 

# of Individuals 100 

Elite Individuals 2 

Selection Rate 10% 

Mutation Rate 2% 

 

The experiments then yielded result as follows: 

Table 5. Time Frame Experiment, comparing 30 frames and 100 frames 

Category 30 frames 100 frames 

Average Fitness (training) 85.60% 86.84% 

Average Fitness (test) 61.25% 82.10% 

Best Fitness (training) 93.18% 92.10% 

Best Fitness (test) 84.18% 97.49% 

Best Individual (average) 85.23% 86.13% 

Average Generations 81 127 

Average Nodes 202 405 

 

Average Fitness is the average of all result. Best Fitness is the best result from 

the whole sessions. Best Individual is the individual with good enough result for both 

training set and test set (by averaging them). Average Generations is the average 

generations needed to have the result. Average Nodes is the average number of Nodes 

of the best individuals from the whole sessions. 

From the result shown in Table 5 above, it is safe to conclude that using 100 

frames instead of 30 frames would give better result. 
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3.4.4 Bloat Penalty 

As a common sense, a smaller tree would represent a better and faster operation. 

However, when the system is complex, sometimes it is better to have a bit larger tree, 

to put into considerations multiple variables/features at once. 

An experiment is set to test this hypothesis. The controlled environment is 

achieved by setting a similar setup for data and XGP settings. The differences are just 

Bloat Penalty, maximum stagnation, and initial depth of the tree. 

The experiment resulted in an increase of accuracy, but also increasing the 

number of generations needed to achieve the result. 

3.4.5 Different Test Data 

During different days, people might change their behavior. Environmental 

conditions during the different day of data acquisition might also changes, in example 

the position of seating, the lightings of the room, etc. 

An experiment was performed to test the effect of environmental changes on the 

recognition. This experiment uses a data set from one day for training, and two test 

sets: one of the same day and the other from a totally different day (with different 

environmental setting to add noise). None of the test data set is used for training. 

The training set consisted of 120 rows of data, while each test sets consisted of 

20 rows of data. 

The settings for the XGP are shown below: 
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Table 6. XGP Settings for Experiment on Different Test Data 

XGP Setting Value 

Termination Generation > 300 | Fitness Value < 2 | Stagnation 

# of Individuals 100 

Elite Individuals 2 

Selection Rate 10% 

Mutation Rate 3% 

 

 

The results are as follows: 

Table 7. Comparison between same-day data and different-day data 

Category Same-day Different-day 

Average Fitness 82.10% 66.24% 

Standard Deviation Fitness 1.74% 7.17% 

Best Fitness 97.49% 80.02% 

 

It is also worth to notice that the average fitness of the training sets was 86.84% 

with a standard deviation of 2.98%. The best fitness for the training sets was 92.10%. 

From the results shown on Table 7 above we can safely conclude that the 

change of environment condition significantly lowers the accuracy. 

3.4.6 Calculating Time Needed For Evolutions 

The time needed for evolution was calculated by putting a time-stamp on each 

generation. The result was more or less homogenous, despite other changes in XGP 

setting or the evaluator setting. The number of individuals per generation stays at 100 

individuals. 
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The time for each generation needed using XGP and evaluator is around 36 

seconds. 

However it should be noted that the time also includes the UDP transfer. 

3.4.7 Separating Valence and Arousal Tree 

Previous experiments were using a single tree to be evolved using XGP. 

However, upon short analysis on the tree results, it can be seen that there were cases 

where the GP would evolve the ‘wrong’ tree.  

This is the result of the fitness function that calculates both tree at once, thus the 

XGP does not receive information about which tree needs improvement. The XGP 

only receives information regarding the general accuracy of both trees. 

An experiment was then prepared to investigate the possibility of splitting trees, 

and the comparing the computational effectiveness and computational efficiency. 

Computational effectiveness can be seen by the fitness result, while computational 

efficiency can be seen from the time and generations needed to achieve result. 

In order to perform the experiments, two instances of XGP are prepared, as the 

tree schema must be changed. One XGP is similar to the XGP used on previous 

experiments, while the other XGP is using a different schema. The schema is edited 

by removing one branch altogether, and run separate sessions for Valence tree and 

Arousal tree. 

The training data used for all session runs are the same. The other settings for 

XGP are using the settings shown on Table 6. The result of the experiments can be 

seen from the Table 8, below: 
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Table 8. Raw Comparisons of Valence, Arousal, and Both Tree 

Category Valence Arousal Both 

Average Fitness 88.51% 87.89% 84.46% 

Stdev Fitness 2.72% 2.99% 4.09% 

Best Fitness 93.69% 92.18% 89.32% 

Worst Fitness 82.31% 81.93% 77.99% 

Average Generation 90.75 92.8 150.45 

Stdev Generation 32.49 35.79 63.68 

Average Node 307.1 334.75 463.09 

Stdev Node 263.29 244.76 276.37 

Average Total Minute 58.25 62.85 99.27 

Stdev Total Minute 20.96 30.44 43.63 

Average Second/Generation 38.59 39.8 39.49 

Stdev Second/Generation 2.05 3.73 0.90 

 

From Table 8, it can be seen that the computational effectiveness increases 

when separating the trees and evolve them on their own. Not only the average fitness 

is increased, the best fitness also increased and the worst fitness value also decreased 

quite significantly. 

Unfortunately, the generations and time needed to evolve separately is higher 

than to evolve them using a single XGP. Therefore it can be said that separating the 

tree will reduce the computational efficiency of the system. 

Another interesting point is the standard deviation of the result. The variance of 

fitness value and number of generations from separated tree is much lower than the 

single tree. Meanwhile, the standard deviation of average time needed to evaluate a 

single generations is lower when processing a single tree. 
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3.5 Conclusions 

In this chapter, we investigated the emotions classification to be used in our 

research, and chose a variant of Circumplex model for the simplicity for the user in 

selecting emotions subjectively. Further, we designed the tree to represent the 

emotions so XGP can evolve programs. We also selected the model to represent facial 

expressions and the emotions, which are CANDIDE 3 and Facial Action Coding 

System. The pervasive sensor Kinect has been chosen as well, and we have stated the 

reasons in selecting the sensor. We then conducted preliminary experiment to test the 

sensor and the model, as well as to clarify our novel approach is feasible and 

reasonable to be implemented, supported with the theory from The End of Average 

[5]. Then, we proposed the model, represented by a system block diagram, and 

performed initial experiments to set several crucial values in evolving the programs or 

classifiers. 

We also have shown the pervasiveness of the system of the model we proposed, 

and that there is no special setting needed for the experiment environment. The user 

interface also can be minimized in order to maintain the pervasiveness of the system. 

Our initial experiment results also suggested that evolving a classifier using data 

of two persons would result to a classifier performing less than the one evolved using 

data of single person, because not everyone express their emotions the same way. 

Another findings that we found was that separating simulated evolution for 

Valence and Arousal give better computational performance on test, compared to 

running the simulated evolution using both trees (of Valence and Arousal) at once, 

due to possibility of unnecessary crossover between the trees. The computational 

efforts are reduced due to the longer time needed to evolve and to combine the tree. 
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Regardless of the results, the end results still have several problems such as the 

possibility of over-fitting and the lack of generality of genetic programming due to its 

non-determinism. These issues will be discussed on the next chapter. 
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Chapter 4 

Enhancing the Model: Implementation 

of Voting 

This chapter aims to tackle the problems of genetic programming (GP), namely 

generality. To overcome with the problem and improve the accuracy of the classifier, 

we select several classifiers to act as voters. The guesses are based on the majority 

vote of these several classifiers. We use XGP to evolve the programs at this 

experiment. [31] 

4.1 GP Limitations: Generality and Over-fitting 

The lack of generality (non-determinism) has been a problem for GP due to the 

random factor persisting in most of GP operation such as generating initial population, 

performing crossover, or applying mutation. Further, as mentioned at previous chapter, 

several simulated evolutions are needed to select ‘best of the best’ program evolved 

by the GP. 

However, there is no guarantee that the ‘best of the best’ program can 

understand the generality of the problem, due to various reasons, two of which are: 
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 The training data used to evolve are not diverse enough, thus several 

situations that might occur on test data are not represented at the training 

data. 

 Over-fitting (the evolution worked how to tackle the problem represented at 

the training data only). 

Since our proposed model does not work on theoretical or ideal data, but works 

on practical data gathered from user, the first situation above (lack of diversity) has a 

high chance of appearing (especially with the user selecting their own emotion). 

Therefore, in order to improve the accuracy, the model should be able to at least 

handle over-fitting problem. 

Fig. 14 below shows the sample of a fitness convergence of a simulated 

evolutions consisted of several independent XGP runs. 

 

 

Figure 14. Fitness convergence sample of several independent XGP runs (y-

axis=fitness value, x-axis=number of generation) 
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4.2 Collaborative Filtering: Voting by Majority 

One method to overcome this problem is by having several programs evolved to 

act as voters instead of a single voter. The intention of this is to reduce the chance of 

selecting an over-fitted program and having more chance of selecting good enough 

programs. 

The voting by majority can be done by selecting 5 best-evolved programs 

(based on fitness value) to act as voters. The final guess is selected by taking what the 

majority of the programs guess. 

4.3 Experiments and Results 

The objective of this experiment is to investigate the effectiveness of Genetic 

Programming (GP) to evolve emotion recognition module, and to verify the feasibility 

of using a voting among several evolved agents in order to address the well-

documented drawback of the non-determinism of GP. 

The evolutions were simulated using XGP, with the same fitness function 

explained at previous chapter. 

4.3.1 General setup 

For the experiments we have prepared a setup standard for data acquisition and 

evolution of mathematical function for emotion recognition via XGP. In our research 

we used two mutually exclusive sets of features - training set and test set, respectively. 

We experimented with the recognition of emotions of two subjects, labeled as 

R1 and D1, respectively. For each of these two subjects, we used both training- and 

test sets of data, as follows: 

 R1 training set, 
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 R1 test set, 

 D1 training set, and 

 D1 test set 

The results of our previous experiment indicated that the system performed 

relatively poorly when the test set is sampled in an environment that is totally 

different from the environment used in the training set (e.g., different ambient lighting 

schema). In order to improve the generality of the evolved emotion recognition, in the 

current experiments, we added data, sampled in a poor lighting, into the training set of 

R1. 

The main parameters of XGP are shown in Table 9 below. 

 

Table 9. Main Parameters of XGP 

XGP setting Value 

Termination criteria Generations = 300, or 

Fitness < 2, or 

Stagnation for 32 generations 

Population Size 100 

Elite 2 individuals 

Selection rate 10% 

Mutation rate 3% 

 

4.3.2. XGP independent sessions 

Each of the training sets (D1 train sets, R1 train sets) are used for two batches of 

XGP run, with each batch consisted of 20independent sessions. 
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On previous chapter we have described the overall results and convergence of 

each independent run, and current experiments also showed similar results. As we 

focus on effectiveness (accuracy) of our current system, it is sufficient to state that the 

time needed for current experiments are very similar to our previous reports. 

Current experiments also use two methods on evolving classifiers. First, by 

evolving valence classifier and arousal classifier as a single program, thus the 

branches from valence can crossover to branches at arousal, and vice versa. Second, 

by evolving the valence as a separate tree, and arousal as separate tree, then combines 

them as a single tree, thus avoiding crossover between valence and arousal. 

4.3.3. Evolution results 

To evaluate the effectiveness of the classifiers, we use average value and 

standard deviations, as well as minimum and maximum value, of a single batch 

(consisted of best individuals from each sessions) of tree. 

Average value represents the general performance of the classifier, while 

standard deviations represent the general stability of the classifier. A minimum and 

maximum value can represent the best and worst performance of the classifier. 

The values are the fitness values, scaling from 1 (perfect match) to 9999 (exact 

opposite). The value of 5000 means total randomness. 

The evolution results (fitness value) of R1 from the 1
st
 batch and 2

nd
 batch are 

shown in Table 10 and Table 11, respectively: 
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Table 10. Training result for 1
st
 batch of R1 

Category Average Std dev Min Max 

Both trees:     

- Fitness 1403 253 1004 2092 

- #Generations 146 34 93 200 

 

Arousal only: 

    

- Fitness 1242 402 746 1877 

- #Generations 74 29 40 139 

 

Valence only: 

    

- Fitness 1421 303 983 2161 

- #Generations 94 39 40 174 

 

 

Table 11. Training results for 2
nd

 batch of R1 

Category Average Std dev Min Max 

Both tree:     

- Fitness 1350 269 956 1830 

- #Generations 152 58 93 286 

 

Arousal only: 

    

- Fitness 1249 450 507 2092 

- #Generations 90 43 41 211 

 

Valence only: 

    

- Fitness 1250 270 810 1971 

- #Generations 91 35 39 188 

 

The evolution results (fitness value) of D1 from the 1
st
 batch and 2

nd
 batch are 

shown in the Table 12 and Table 13, respectively: 
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Table 12. Training results for 1
st
 batch of D1 

Category Average Std dev Min Max 

Both tree:     

- Fitness 900 285 471 1320 

- #Generations 87 25 50 141 

 

Arousal only: 

    

- Fitness 628 397 1 1525 

- #Generations 67 22 41 128 

 

Valence only: 

    

- Fitness 752 406 191 1710 

- #Generations 66 20 40 106 

 

 

Table 13. Training results for 2
nd

 batch of D1 

Category Average Stdev Min Max 

Both tree:     

- Fitness 787 322 275 1534 

- #Generations 94 27 55 143 

 

Arousal only: 

    

- Fitness 664 416 1 1790 

- #Generations 68 16 34 100 

 

Valence only: 

    

- Fitness 856 443 191 1702 

- #Generations 67 22 33 118 
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4.3.4 Evaluation on accuracy and Voting 

To perform an evaluation on the programs created by XGP, the experiments use 

a different test set, namely D1 test sets and R1 test sets. 

In the experiments we chose the evolved 5 best-of-run recognition functions and 

test them, comparing between without Voting and with Voting, as well as by testing 

them using a test sets from different subject. Voting means using majority decisions 

to give predictions. 

Experimental results of the evaluations are shown in Table 14 below. Train 

denotes the accuracy of emotion category guessed by the classifier on the training sets, 

while Test refers to the appropriate Test sets. Cross indicates the test sets of another 

subjects. 

Table 14. Evaluation on best-of-run test results 

Evolved best-of-run  

test results 

R1 bests, % D1 bests, % 

Train Test Cross Train Test Cross 

Combine1 80 70 20 96 79 25 

Combine2 80 55 35 94 76 20 

Combine3 79 50 45 94 72 50 

Combine4 79 55 57 92 76 40 

Combine5 79 70 27 94 88 35 

Separate1 87 70 47 98 76 35 

Separate2 84 60 44 98 82 40 

Separate3 83 55 35 96 85 35 

Separate4 83 75 17 96 86 55 

Separate5 84 70 35 94 80 35 

Avg Combi 79.4 60 36.8 94 78.2 32 

Avg separate 84.2 66 35.6 96.4 81.8 40 

Vote combi 84 60 38 98 85 35 

Vote separate 87 65 39 100 85 45 
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Table 14 above suggests that Voting will almost always giving a better result 

than the average, unless on one occasion where the vote result is not better than the 

average. 

 

Figure 15. The graphic showing accuracy on test result (%) using several methods: 

Average C (averaging, combined tree), Vote C (voting, combined tree), Average S 

(averaging, separated tree), Vote S (voting, separated tree); and also several 

situations: R1 and D1 (subjects), Train (on training data set), Test (on test data set), 

Cross (on other subject’s data set) 

 

We can also observe the uniqueness of each subject in expressing emotions by 

the low accuracy of the cross-testing (using other’s data for testing) results, despite 

the achieved good accuracy of the normal (using own’s test data for testing) test 

results; this includes already in adding several new data to the subject for different 

seating arrangements and lighting conditions. 
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4.5 Conclusions 

The results from the experiments suggest that people tend to express emotions 

differently, and by focusing on a single (user-specific) subject a better classifier can 

be evolved.  

Genetic programming is also proven to be able to evolve classifiers with good 

enough results. In order to reduce the effect of GP’s non-determinism (and lack of 

generality), we implemented collaborative filtering in the form of voting by majority 

to further improve the accuracy of our model, and the results show that the voting by 

majority improved the accuracy. 

However, further improvements and enhancements can be performed. 

For improvements of the classifiers, the next chapters will discuss about our 

effort in exploration of evolutionary computing, by conducting a second evolution 

(basically by giving weights or credibility to the voters) and evolve them using a 

separate training sets; and then about exploring the use of incremental genetic 

programming (incremental GP). 
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Chapter 5 

Exploring Evolutionary Computation: 

Adaptive Voting 

Previous chapter explained about the implementation of collaborative filtering 

in the form of voting. This chapter aims at improving the performance of the emotion 

recognition model, by exploring evolutionary computation namely the genetic 

algorithm (GA). [32] 

5.1 Concept of Weighted Trust 

On previous Chapter 4, our experiments showed that implementing 

collaborative filtering in the form of majority voting improves the result on test 

subjects. They also showed that the ‘best-of-the-best’ evolved program sometimes did 

not perform well on test subjects, due to chance of over-fitting and GP’s non-

determinism. Therefore, by selecting an elite group, we reduced the effect of over-

fitting. The voting by majority also performed better than the average of individual 

performers. 

However, we would like to explore the evolutionary computation a bit further, 

by evolving the weighted trust. 
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The concept of weighted trust is an adaptation of common voting by majority. In 

voting by majority, each voter has equal value in decision-making. However, there are 

several conditions when the voters might be not that good at decision-making; 

therefore we would like to explore the use of evolutionary computation in making 

adaptive system. 

5.2 Problem Statement 

The adaptive system of weighted trust is necessary to tackle the problem our 

model faces: ‘how to adapt to a new data without forfeiting the old data’. Our model 

requires the system developed to be able to adapt to a new user data, since the idea is 

to learn the user through interactions. This means that there will always be newer data, 

while the method previously explained (even with the collaborative filtering of 

majority voting) will have a lot of difficulties in using new data for training. 

There are several methods, first by simply piling up the whole data to the old 

one, and perform the evolution again from zero. However, this would costs too much 

time in the evolution as the number of data would keep on piling up. 

If we only use a specific data (e.g. the latest one), then the classifier might not 

be prepared well for data similar to the old one. We would like to have a model that 

can adapt itself to new data (or new user), and therefore we conducted an exploration 

experiment in adaptive weighted trust. 

This chapter then will report the experimental results in our attempt in 

developing weighted trust. 
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5.3 Implementing Genetic Algorithm for Weighted Trust 

Genetic algorithm can evolve the weighted trust, as the weighted trust is an 

array of integers only. Unlike genetic programming with possible program (function) 

evolution, genetic algorithm can evolve faster but at a more limited scope. 

Due to this simplicity, we explored the genetic algorithm to evolve our 

weighted trust model, and conduct an experiment to compare the result between 

voting by majority and weighted trust. [33] 

5.4 Experiments 

The setup for XGP to evolve classifiers are similar with previous works, which 

are as follow: 

 Termination criteria, if # of generations reach 300, or fitness value reaches 

below 2, or stagnation for 32 generations, 

 Population size is 100 individuals, 

 Elite individuals are 2 individuals, 

 Selection rate is 10%, and 

 Mutation rate is 3% 

5.4.1. Experiment setup 

The experiment is set into several configurations, and each configurations use 

several batches. Each batch of experiment consists of several XGP sessions, where 

each sessions will have an XGP runs (selections, crossovers, mutations) for several 

generations until termination criteria is reached. 

There are two basic configurations, the genetic programming and voting 

configuration, and the genetic programming and credibility evolution. 
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For voting configuration, the genetic programming will evolve 10 (ten) 

classifiers, then the 5 (five) best of these 10  (ten) classifiers will be used for voting. 

Voting will be performed by using the rule of majority: if 3 (three) or more of the 

classifiers vote for true, then the value is true.  

Fig. 16 describes the voting configuration, while Fig. 17 represents credibility 

evolution. 

 

 

 

Figure 16. Configuration for simulated evolution to evolve classifiers for normal 

voting 
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Figure 17. Configuration for simulated evolution to evolve classifiers for weight 

voting 

 



 62 

For configuration of weighted credibility evolution, the genetic programming 

will only evolve 5 (five) classifiers, which each will be multiplied by a weight 

evolution using genetic algorithm. This method uses autonomous learning, since no 

human is needed to select the better classifiers to be used. 

5.4.2. Preparations for data acquisitions 

There will be several data sets for this experiment, and this experiment makes 

sure that the data for training (Train #1, Train #2) and the data for testing (Test) are 

mutually exclusive, which means that no data will be deliberately copied to another 

data set, nor used more than once. Further, it also makes sure that data for Train #1 

and data for Train #2 mutually exclusive usage as well, in order to obtain a better 

objective results.  

5.4.3. Data acquisitions 

There are three different data acquired, and all are from a single subject. Each of 

the data is taken from a different time period (morning, noon, late afternoon), with a 

different conditions regarding seating positions and Microsoft Kinect’s position. 

There is no special setup on the positions, only the required sufficient lighting 

condition for the Microsoft Kinect, and the general direction of the device, to operate 

properly. This is meant to imply the randomness of human movement in front of the 

camera while operating computer, and also to make sure that these three sets of data 

are not from the same series. 

5.4.5. Data classifications 

The data is classified as three kinds of data: Train #1, Train #2, and Test set.  

This experiment uses two method in preparing these three kinds of data. The 

first one is prepared by sampling randomly and equally from each time (morning data, 
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noon data, late afternoon data). Train #1, Train #2, and Test data sets have mutually 

exclusive uses. This first method is used in order to test the general ideal condition of 

training, by putting more combinations of data into each set. 

The second method is by using morning data, noon data, and late afternoon data 

as Train #1, Train #2, and Test data, respectively. This second method is used in order 

to test a practical applications where it is highly inconvenient to get ideal data which 

represents most situation. 

Fig. 18 below shows the representation of the data classifications used in the 

experiment. 

 

 

Figure 18. Data acquired 3 times, and captured data classified into several chunks; the 

ideal data set will take (A), (B), and (C), while the practical data set will take 1
st
, 2

nd
, 

and 3
rd

, for Train#1, Train#2, and Test, respectively 

5.5 Results and Discussions 

There are 2 (two) configurations: voting and credibility. There are also 3 (three) 

batches of experiment for each configurations, where each batch also consisted of tree 

separation and combined tree evolution. 

5.5.1. Performance (time and generations) 

Evolving a single classifier using genetic programming (XGP) needs much 

more time and many generations compared to evolving a single weight combinations. 

Evolving the weight only takes a maximum of 15 minutes (40 generations), while to 

evolve a single classifier the minimum time required is more than 50 generations. 
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Using these figures only, it is safe to state that evolving credibility is far better 

than evolving more classifiers, in terms of simulated evolution time needed to prepare 

the classifiers. 

5.5.2. Fitness convergence 

The experiment results on fitness convergence, from all batches (2 

configurations, 3 batches each, which has 2 tree structure types), are shown at Table 

15 and Table 16, for ideal data set and practical data set, respectively. Average, 

standard deviation, as well as minimum and maximum of both # of generations and 

fitness (in the form of accuracy)  is used to give a statistical performance of the 

method based on each batches. 

 

Table 15. Fitness convergence results using Ideal data set for training 

Voting Configuration 

Category 
Combined Tree Separate Tree 

# Gen Fitness% # Gen Fitness% 

Worst 224 81.91 296 83.07 

Best 51 95.59 84 97.79 

Average 127.83 89.94 164.10 91.15 

Stdev 40.64 3.77 32.74 3.64 

Credibility Evolution Configuration 

Category 
Combined Tree Separate Tree 

# Gen Fitness% # Gen Fitness% 

Worst 218 87.71 265 82.64 

Best 70 99.97 75 99.14 

Average 115.93 93.01 153.13 93.09 

Stdev 41.46 3.44 35.08 4.97 
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Table 16. Fitness convergence results using Practical data set for training 

Voting Configuration 

Category 
Combined Tree Separate Tree 

# Gen Fitness% # Gen Fitness% 

Worst 302 85.00 226 82.42 

Best 55 95.91 73 99.14 

Average 135.27 91.02 128.97 92.63 

Stdev 43.73 2.86 20.81 4.17 

Credibility Evolution Configuration 

Category 
Combined Tree Separate Tree 

# Gen Fitness% # Gen Fitness% 

Worst 143 84.55 234 82.16 

Best 54 97.43 70 99.14 

Average 92.00 91.27 128.40 92.40 

Stdev 21.89 5.18 23.27 5.18 

 

5.5.3. Accuracy 

Results regarding accuracy is best described in Table 17 below. The data shown 

is based on the statistical result (worst, best, average, and standard deviation) from 

each batches.  

Meanwhile, Fig. 19 below shows the graphical representative of averages and 

standard deviations of the results. 
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Table 17. Accuracy Results on Test Data Set 

Ideal Test Data Set 

Category (%) 
Normal Voting Credibility Evolution 

Combi Separate Combi Separate 

Worst 77.27 79.55 68.18 77.27 

Best 90.91 81.82 79.55 81.82 

Average 82.58 80.30 75.76 80.30 

Stdev 7.31 1.31 6.56 2.62 

Practical Data Set 

Category (%) 
Normal Voting Credibility Evolution 

Combi Separate Combi Separate 

Worst 65.96 68.09 63.83 53.19 

Best 76.60 74.47 68.09 74.47 

Average 70.21 71.63 65.96 63.83 

Stdev 5.63 3.25 2.13 10.64 

 

 

Figure 19. Stem height (mean ± s) of the results 

5.6 Conclusions 

Using genetic algorithm to evolve the credibility of classifiers automatically 

gives a clear advantage in the terms of computational performance, in the form of less 

time needed for evolution. Further, this method is capable of automated evolution, as 
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the classifiers are not selected by human. This method offers possibility in completing 

a fully autonomous evolving intelligent agent. 

The results might be not satisfactory enough, but it might be related to the 

insufficient number of data for training. Increasing training data might improve the 

result, as well as increasing the number of classifiers for voting and credibility 

evolutions. However, another approach can also be used to enhance the evolutionary 

computation, and will be discussed on the next chapter. 
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Chapter 6 

Exploring Evolutionary Computation: 

Incremental GP 

This chapter aims at tackling the difficulty of real-life situations where new data 

from the user might be gathered, or user has some changes in their behavior, or 

simply from new interactions between the user and the agent, thus adaptation is 

needed. This chapter aims to explore the evolutionary computation of incremental 

genetic programming, and also to analyze and evaluate their robustness. 

6.1 Incremental Evolution / Incremental Genetic 

Programming 

On previous chapter, an exploration on adaptive evolution using genetic 

algorithm to evolve weighted trust of voters was presented. The results suggested that 

the method was a trade-off between computational performances (accuracy on test 

subject) and computational effort (time for evolution). 

Further, there is still a problem in handling situation when new data is 

introduced. Should the new data be used on the genetic algorithm, the base classifiers 
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might have been not properly trained. Meanwhile if it is used to train a new set of 

classifier, then the results might be unfitting to the old data. 

To deal with this situation, we explored another approach, which is to use 

incremental evolution in the form of incremental genetic programming (incremental 

GP). 

Incremental GP is different with evolving weighted trusts of voters, since the 

evolution only uses genetic programming and not genetic algorithm. This approach 

uses another process of evolution using XGP, but by selecting several of previously 

evolved programs by the XGP as the seed instead of randomizing the first generation 

of each independent XGP run. 

The selected individuals or programs were evolved using a set of training data, 

thus already adapted to the user’s data. Then, with user’s new data, the program is 

evolved again, with the aim of adapting to the new data. Using this approach the 

classifier can adapt to new data but still have some ability to recognize older data. 

6.2 Experiments 

We evolved the emotion recognition module by using Genetic Programming 

(GP) and explored several optimizations. We investigated and compared the evolution 

of a unique classifier (evolved from data from a single specific subject only), the 

evolution of a general classifier (evolved from data from multiple subjects), and the 

evolution of an adaptive classifier by implementing incremental GP (evolved 

incrementally, first from multiple subjects and then from a single specific subject). 

We conducted the experiment by using the same budget in terms of evolution sessions 

to obtain the best programs for a fair [34]. 
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6.2.1 Experiment Setup 

These experiments used XGP to perform the evolution, and also similar 

environmental settings with the experiments of the previous chapter. Further, there are 

several terminologies that these experiments still use: 

 Genotype: a single gene that forms the program (function). 

 Individual: a single program evolved by XGP, in the form of XML, with 

information of tree structure that represents the program. 

 Generation: One generation of XGP runs. In the experiments, we use 100 

individuals per generation. 

 Sessions: Independent XGP runs until the termination criterion is reached. The 

termination criterion is one of the following: number of generations (300 is the 

maximum), fitness value (20, which implies that it is a near-perfect match), or 

stagnation period (32 generations of stagnation or no improvements in fitness 

value). 

 Batches: Each batch consists of 20 XGP sessions, and the best are selected. 

 Experiment: One experiment consists of several batches (each with a different 

setting) to be compared in order to investigate the strengths and weaknesses of 

each method. In the current experiment, the different setting corresponds to the 

data set used for training and testing. 

6.2.2 Data Gathering and Preparations 

In our study, we performed experiments using several subjects (n is the number 

of subjects). Data were taken from all the subjects, and were labeled as Data(i), where 

i = 1 to n. 
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From each Data (i), 75% of the data were labeled as Training (i) and the 

remaining 25% were labeled as Test (i). From each Training (i), 50% of the data were 

further labeled as General (i) and the remaining 50% were labeled as Adaptive (i). 

The focus of the experiments was to compare the possibilities of self-evolving 

using incremental GP and to investigate the possibilities of introducing new data for 

learning into the existing system (thus, the system could evolve better and faster as 

the time spent with a unique user increased). For the comparison, we performed 3 

types of experiments. 

In the first batch of experiment, the task was to evolve genetic programs using 

Training (n) (training set from a single unique subject) as the training set. This task 

evolved programs specifically designed to recognize only a single unique subject. 

This experiment is called “1st Unique” experiment. 

In the second batch experiment, the task was to evolve genetic programs using 

Training (i) (training set from all the subjects) as the training set. This task evolved 

general programs that are not built specifically for a particular subject. This 

experiment is called “2nd General” experiment. 

In the third batch of experiment, the task was to evolve genetic programs using 

General (i) as the training set and then implement incremental GP to further evolve 

the genetic programs using Adaptive (i). This task first evolved general classifiers, 

and then, it adapted them to a particular subject. This experiment is called “3rd 

Adaptive” experiment. 

The third batch of experiment (or the “3rd Adaptive” experiment) could also be 

used to test whether the method can adapt itself to the introduction of new or recent 

data of the same user, thus revealing the possibility of adaptability to the latest data of 

a single user. 
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6.2.3 Experiments Performed 

We performed three separate experiments to investigate the method. The first 

experiment used 6 subjects to investigate the general feasibility of the method. The 

second experiment investigated stagnation effect using 3 subjects. The third 

experiment used 2 subjects but performed repeated simulated evolutions to clarify the 

robustness of the method [35]. 

6.3 Results and Discussions 

6.2.3 Experiments on 6 Subjects 

The experiment used 6 subjects from various demographics and nationalities; 

male and female subjects were included. Each subject required approximately 15 

minutes for data acquisition. 

From the data acquired, the application immediately extracted the features used; 

therefore, the stored data were not in the form of videos but in the form of features. 

In all the experiments, the evolutions were performed by using the same budget 

of 30 sessions. The “1st Unique” experiment required 30 sessions of simulation of 

XGP (for each subject), and we selected the five best sessions for evaluation. The 

“2nd General” experiment also required 30 sessions, and we selected the five best 

programs for evaluation. The “3rd Adaptive” experiment consisted of two-phase 

experiments: 15 sessions to evolve the general classifiers, and 15 sessions to adapt the 

classifier evolved from the first phase to a specific user. 

For evaluation, we tested the accuracy of the evolved program on the test data 

of the respective subjects. We used the voting system (majority), selecting the 5 best 

programs as voters to classify the emotions. The evaluation results differed from one 
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subject to another, as shown in Table 18 below. The numbers are represented in 

percentage (%), rounded down.  

Table 18. Accuracy results on test data 

 1st 

Unique 

(%) 

2nd 

General 

(%) 

3rd 

Adaptive 

(%) 

Subject1 88 34 73 

Subject2 34 20 27 

Subject3 57 42 92 

Subject4 40 20 69 

Subject5 25 42 53 

Subject6 76 21 56 

Average 53 29 62 

 

From Table 18 we could conclude that, in terms of the average value, the 

evolution from a general classifier or the “3rd Adapt” experiment yields better results 

than the other two experiments. The usage of incremental GP also improves the 

accuracy with test data; the 1st unique averaged 53.3 (s=24.8), the 2nd General 

averaged 29.8 (s=10.8.), and the 3rd Adaptive averaged 61.7 (s=21.9) (one-way 

ANOVA, p< 0.05). 

However, in several scenarios, the system could not yield a satisfactory result, 

especially with Subject2. After retracing the environment of the experiment, we found 

that during the data acquisition of Subject2, the movement of the subject was very 

erratic, and therefore, data acquisition was repeated. We investigated the scenario and 

found that the Kinect required some time to track the user when the face was outside 

the screen capture area; further, during the capture of the entire data for Subject2, the 

Kinect was located in front of the monitor. We concluded that the distance at which 

the Kinect is placed is important. 
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On an average, the total number of generations (and thus, the time) required to 

evolve the program with “3rd Evolve” experiments is less than the total number of 

generations required with the “2nd General” experiments (thus implying that the 3rd 

method is faster, in general). The average value of the total number of generations 

required to evolve the classifier is shown in Table 19 below. 

 

Table 19. Total number of generations (average) 

Experiments # of Generations  

(Average of Total) 

1
st
 Unique 2978.59 

2
nd

 General 3768 

3
rd

 Adaptive 3676.47 

 

The data in Table 19 are obtained by the following methods: 

• For the “1st Unique” experiment, we calculated the average of all the total 

number of generations (from 30 independent sessions of each subject), to represent 

the total number of generations needed using the entire budget, average of all 6 

subjects. 

• For the “2nd General” experiment, we added the number of generations from 

30 independent sessions to represent the total number of generations needed using the 

entire budget. 

• For the “3rd Adaptive” experiment, we calculated the average of the sum of 

the number of generations for the 15 independent sessions of the first phase and the 

number of generations for the 15 independent sessions of the second phase. 

 

The number of generations required for evolving a unique classifier using “1st 

Unique” is significantly less than the corresponding number for other methods owing 
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to several factors. The first factor is the smaller amount of data whose similarity 

should be higher; the data are for a single person only (unlike the other two 

experiments in which some parts of the training used data from several people who 

express emotions differently). Thus, in this method, it should be faster to reach 

termination.  

The second factor is that the stagnation period for all the experiments was the 

same; this period is 32 generations, and it might influence an unfair comparison with 

incremental GP. Incremental GP could have been faster if the termination criteria of 

the phases of “3rd Adapt” used a lower stagnation number (the dual phase of “3rd 

Adapt” could have resulted in stagnation being reached twice, or in double the 

number of generations on stagnation). As a theoretical prediction, by removing the 

unnecessary 32 stagnated generations (total of 32 x 15 = 480 generations), the values 

could have been approximately 2978 (1st Unique) and 3197 (3rd Adapt), which are 

considerably close.  

6.2.3 Investigating the Stagnation 

As shown at previous subsection 6.2.3, we predicted that the long stagnation 

period is hindering the computational effort of the method, without giving additional 

computational performance. Therefore, we conducted an experiment to investigate the 

effect of changing stagnation period of the method. 

In order to investigate stagnation, we performed another experiment with XGP 

batches to compare 32 stagnated generations with 16 stagnated generations. 

For this experiment, we used 3 subjects; the aim was to compare a long (32 

stagnated generations) evolution with a short (16 stagnated generations) evolution. 

The data of the subjects are labeled as General, Adaptive, and Test. Test will be used 
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only for the test data set. General and Adaptive, as in the experiment explained in 

section 5.2, will be used for training (either combined or incrementally). 

We created the following batches: 

 30 sessions of Long, trained with General and Adaptive. This batch is labeled as 

S(x)-All. 

 20 sessions of Short—trained with General— followed (incremental) by training 

using Adaptive (used 5 best programs as seed), and vice-versa, in order to 

determine whether the method works irrespective of the order of incremental GP. 

These batches are labeled as S(x)-Inc and S(x)-Inc2. 

 30 sessions of Long, trained with all General and all Adaptive. This batch is 

labeled as All-[base]. 

 20 sessions of Short, trained with all General, followed (incremental) by training 

using Adaptive (used 5 best programs as seed). These batches are labeled as 

All+S(x). 

The results—in terms of the evolution time and the precision (accuracy in 

percentage) for the Test data set—are shown in Fig. 20 and Fig. 21 below. 
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Figure 20. Comparison on time needed to simulate evolution 

 

From Fig. 20 we observe that the total time required for a generic long 

evolution is much greater than the time required for any other evolution. Further, 

incremental short evolutions are always faster than the others. 
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Figure 21. Accuracy on test data 

Fig. 21 above shows that the accuracy of short-short evolution, when compared 

with the accuracy of long stagnation, depends on the subject; the results obtained by 

calculating an average of the results are shown in Table 20 below. 
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Table 20. Mean of accuracy 

 Average (%) 

Sx-All 42.00 

Sx-Inc1 31.67 

Sx-Inc2 41.33 

All+Sx 47.67 

 

We used one-way analysis of variance (ANOVA) [36]for the evolution time for 

each method (null hypothesis is they are similar, a=0.05), and we obtained the p-value 

of 0.02, thus rejecting the null hypothesis. However, similar analysis on accuracy 

suggested that there is no significant difference between short-short or long evolution.  

6.2.3 Investigating the Robustness 

We performed additional repetition of experiments to investigate the decrease 

the stagnation period in order to reduce the possibility of over-fitting, and performing 

the experiments multiple times on 2 subjects to investigate the robustness of the 

method. 

Using the data from the 2 subjects, we run several XGP sessions each, using the 

3rd Adapt approach explained in the previous section 5.2; we set the stagnation period 

to 16. In addition to analyzing the average accuracy, we investigated the accuracy of 

each emotion. 

We run 4 batches (4x20 sessions) of XGP using Training (i), thus yielding 4 

different sets of genetic programs. Then, we proceed to evolve each set 2 times using 

Incremental GP, thus obtaining 8 different sets of genetic programs for each subject. 

From each set of genetic programs, we selected the 5 best genetic programs for 

evaluation on the test data set. 
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The results of the experiment (accuracy on test data, in percentage, with means 

and standard deviation at the bottom of the table) are shown in Table 21 and Table 22. 

Fig. 22 and Fig. 23 show the graphical representations of the average and standard 

deviations for the test results of each subject. 

Table 21. Test results for Subject1 

 Happy% Relaxed% Angry% Sad% Total% 

1a 84 45 8 25 41 

1b 84 63 8 25 45 

2a 92 54 0 25 43 

2b 84 72 0 25 45 

3a 100 54 33 33 56 

3b 92 54 0 25 43 

4a 61 54 8 16 35 

4b 84 81 33 16 54 

mean 85.29 56.57 8.14 24.86 44.00 

s 11.36 11.72 13.93 5.52 6.82 

 

 

Figure 22. Stem height (mean ± s) of Subject1, p<0.001 
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Table 22. Test results on Subject2 

 Happy% Relaxed% Angry% Sad% Total% 

1a 95 26 100 80 75 

1b 95 20 100 80 73 

2a 95 0 80 73 63 

2b 100 0 80 73 65 

3a 90 20 80 73 67 

3b 90 6 70 66 60 

4a 95 0 70 73 62 

4b 95 0 60 73 60 

mean 94.29 10.29 82.86 74.00 66.43 

s 3.20 11.11 14.14 4.49 5.71 

 

 

 

Figure 23. Stem height (mean ± s) of Subject2, p<0.001 
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recognize happy and relaxed for Subject 1; however, the evolution did not perform 

well in detecting the relaxed emotion for Subject 2. 

The reasons for this result could be the following: the data used to train the 

classifier may not have been adequately representative, the number of interactions 

was low (only 2), and the subject may not have selected an appropriate emotion. 

We used ANOVA to analyze how significant the difference between emotions 

is, and the p-value for Subject1 and Subject2 are 1.94e
-13

 and 1.5e
-16

, respectively. 

We also used ANOVA to further check the consistency of experiment repetition, 

and found that the p-value for Subject1 is 0.97, p-value for Subject2 is 0.98, and p-

value for all experiments is 0.76; thus we can conclude that the experiments have 

similar or consistent result. This suggests that the method is robust. 

Another point of interest is that the data used for Subject 2 were obtained from a 

completely different setup (using the setups shown in Fig. 11 and Fig. 12 from 

Section 3.4.1), whereas Subject 1 used a single setup (Fig. 11 from Section 3.4.1). 

This finding indicates that the setup of the Kinect did not significantly affect the 

results. The results may be affected by another important factor: the subjects can 

independently select the emotion they think they are experiencing; therefore, the 

information provided for each emotion may have differed significantly (e.g., a subject 

may have indicated 4 minutes of the happy emotion but only 1 minute of the angry 

emotion because many subjects indicated their reluctance to express anger during the 

previous experiment). This tendency could have influenced the evolution because the 

training data for the angry emotion were scarce when compared with the other 

emotions, whereas the training data for the happy emotion may have been abundant. 
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6.5 Conclusions 

We investigated the implementation of incremental genetic programming (GP) 

in the evolution of a user-specific emotion recognition model. We performed and 

compared 3 experiments: (1) evolving the unique classifier for a specific user, (2) 

evolving the general classifier, and (3) evolving incremental GP for a general 

classifier, and then adapting it for a specific user. 

The experimental results showed that on an average, incremental GP not only 

yields better accuracy for test subjects, but also achieves faster evolution when 

compared with the general classifier. 

From the results, we discovered a new area for further exploration—the 

comparison and analysis of different paradigms in investigating the time required to 

evolve a user-specific classifier from the perspective of the developer and from the 

perspective of the end-user. 

We also investigated the robustness of the 3
rd

 Adaptive method by repeating the 

experiments several times to obtain statistical data; we demonstrate that the method 

yields similar results with relatively low variance, especially for the happy emotion. 
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Chapter 7 

Miscellaneous Emotion Analysis 

Previous chapters focused on improving the model for a better computational 

performance and/or computational effort, especially by exploring the evolutionary 

computation. This chapter aims for performing miscellaneous emotion analysis using 

the developed emotion recognition model. Several comparisons performed to make 

small investigations on effect of different time of the day in acquiring user’s data, and 

on emotions that tend to be easier to recognize. 

7.1 Comparing data acquisition time 

The first small experiment we performed was to investigate whether time of 

acquisition can affect the data acquired [37]. In order to investigate this matter, we 

acquired user’s data divided into 3 categories based on time of acquisition: morning, 

afternoon, and late afternoon. Using these 3 data we evolved different programs using 

XGP with similar methods from previous chapters, to and evaluate the performances 

on each other data. 

We used several experiment terminologies on every experiments performed. 

 Genotype: a single gene that formed the program (function). 

 Individual: a single program resulting from XGP runs, in the form of XML, 

consisting of information regarding the tree structure that represents the program. 
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 Generation: One generation of genetic programming runs. In our experiments, we 

use 100 individuals per generation. 

 Sessions: One set of XGP runs until termination criterion is reached. The 

termination criterion is one of the following: number of generations (100 is the 

maximum), fitness value (2, or near perfect match), or stagnation period (30 

generations of stagnation). 

 Batch: One batch of XGP is a number of sessions with the same purposes, goals, 

and settings, in order to achieve statistical data that can show the computational 

performance and robustness of the system. 

 Experiment: One experiment consists of several batches (each with different 

setting) to be compared to investigate the strengths and weaknesses of each 

method. In the current experiment, the different setting is the data set used for 

training and testing. 

 

The experiments performed three acquisitions of data from a single subject. The 

subject was required to imagine a situation that would make him show a specific 

emotion, and then the Kinect captured a video (and extracted the data) for around 1 

minute per emotion. 

The first, second, and third acquisitions were conducted in the morning (around 

9 AM), afternoon (around 1 PM), and late afternoon (around 5 PM). The data 

acquired are labeled as Morning, Afternoon, and Late, respectively. 

We ran four batches for each data set (12 batches in total). Each batch consisted 

of 15 sessions. From each batch, the five best individuals (in terms of Fitness 

Function) were selected. They were then used as classifiers with the implementation 

of voting (majority selection). [38]. 
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7.2 Results and Discussions on Data Acquisition Time 

The basic results are shown at the following Table 4, Table 5, and Table 6, 

showing accuracy on data set of Morning, Afternoon, and Late, respectively. Shaded 

parts of the table shows where the Data set used for testing is the same with the data 

set used for training (or evolving classifiers). 

 

Table 23. Test accuracy result on morning data set 

Trained  Happy% Relaxed% Angry% Sad% 

Mor1 100.00 100.00 100.00 93.00 

Mor2 100.00 92.00 100.00 93.00 

Mor3 100.00 92.00 100.00 93.00 

Mor4 93.00 100.00 100.00 100.00 

>> Avg 98.25 96.00 100.00 94.75 

>> Std 3.50 4.62 0.00 3.50 

Aft1 60.00 85.00 16.00 75.00 

Aft2 86.00 50.00 75.00 93.00 

Aft3 93.00 85.00 75.00 56.00 

Aft4 93.00 85.00 91.00 75.00 

>> Avg 83.00 76.25 64.25 74.75 

>> Std 15.68 17.50 33.04 15.11 

Lat1 93.00 35.00 91.00 56.00 

Lat2 86.00 14.00 83.00 75.00 

Lat3 93.00 28.00 100.00 75.00 

Lat4 80.00 35.00 91.00 68.00 

>> Avg 88.00 28.00 91.25 68.50 

>> Std 6.27 9.90 6.95 8.96 
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Table 24. Test accuracy result on afternoon data set 

Trained Happy% Relaxed% Angry% Sad% 

Mor1 92.00 78.00 63.00 92.00 

Mor2 85.00 64.00 63.00 100.00 

Mor3 85.00 64.00 100.00 85.00 

Mor4 85.00 71.00 81.00 100.00 

>> Avg 86.75 69.25 76.75 94.25 

>> Std 3.50 6.70 17.67 7.23 

Aft1 93.00 100.00 100.00 100.00 

Aft2 85.00 100.00 100.00 100.00 

Aft3 92.00 100.00 100.00 100.00 

Aft4 92.00 100.00 100.00 100.00 

>> Avg 90.50 100.00 100.00 100.00 

>> Std 3.70 0.00 0.00 0.00 

Lat1 92.00 57.00 90.00 64.00 

Lat2 85.00 64.00 90.00 85.00 

Lat3 92.00 64.00 81.00 78.00 

Lat4 85.00 78.00 100.00 92.00 

>> Avg 88.50 65.75 90.25 79.75 

>> Std 4.04 8.81 7.76 11.95 
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Table 25. Test accuracy result on late data set 

Trained Happy% Relaxed% Angry% Sad% 

Mor1 90.00 92.00 75.00 41.00 

Mor2 100.00 53.00 83.00 25.00 

Mor3 90.00 69.00 91.00 58.00 

Mor4 100.00 61.00 91.00 58.00 

>> Avg 95.00 68.75 85.00 45.50 

>> Std 5.77 16.82 7.66 15.84 

Aft1 100.00 84.00 33.00 41.00 

Aft2 100.00 76.00 91.00 33.00 

Aft3 100.00 76.00 75.00 33.00 

Aft4 100.00 69.00 91.00 41.00 

>> Avg 100.00 76.25 72.50 37.00 

>> Std 0.00 6.13 27.39 4.62 

Lat1 100.00 100.00 91.00 83.00 

Lat2 100.00 100.00 91.00 75.00 

Lat3 100.00 92.00 100.00 83.00 

Lat4 100.00 100.00 100.00 93.00 

>> Avg 100.00 98.00 95.50 83.50 

>> Std 0.00 4.00 5.20 7.37 

 

To refine the tables above, we calculated the average (mean) of each batch. 

Tables 26, 27, and 28 below show the accuracy in data sets of Morning, Afternoon, 

and Late, respectively. Shaded columns show where the data sets used for testing and 

training (or evolving classifiers) were the same. 
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Table 26. Test accuracy result on morning data set 

Test Data Happy% Relaxed% Angry% Sad% All% 

Morning 98.25 96.00 100.00 94.75 97.00 

Afternoon 86.75 69.25 76.75 94.25 82.25 

Late 95.00 68.75 85.00 45.50 72.25 

mean 93.33 78.00 87.25 78.17 83.83 

s 5.93 15.59 11.79 28.29 12.45 

 

Table 27. Test accuracy result on afternoon data set 

Test Data Happy% Relaxed% Angry% Sad% All% 

Morning 83.00 76.25 64.25 74.75 76.00 

Afternoon 90.50 100.00 100.00 100.00 97.50 

Late 100.00 76.25 72.50 37.00 70.25 

mean 91.17 84.17 78.92 70.58 81.25 

s 8.52 13.71 18.72 31.71 14.36 

 

Table 28. Test accuracy result on late data set 

Test Data Happy% Relaxed% Angry% Sad% All% 

Morning 88.00 28.00 91.25 68.50 68.25 

Afternoon 88.50 65.75 90.25 79.75 80.75 

Late 100.00 98.00 95.50 83.50 93.00 

mean 92.17 63.92 92.33 77.25 80.67 

s 6.79 35.04 2.79 7.81 12.38 

 

From the tables, we can see that the average results for all emotions do not 

significantly differ; averages for the Morning, Afternoon, and Late data sets are 

83.83%, 81.25%, and 80.67%, respectively. However, there are several major 

inaccuracies, especially when Late data was used for training and Morning data for 

testing, especially for recognizing when the subject was relaxed. 



 91 

The results suggested that there is no significant differences in general 

performances between taking the data in the morning, in the afternoon, or in late 

afternoon; however, there are significant differences in that some emotions are not 

recognized well if we acquire data of a specific emotion at a specific time. 

There might be several possibilities regarding this result. First, the data might 

have been incomplete. In some cases, the data might also have been insufficient, thus 

the evolved programs actually may not have learned enough. 

Another possibility is that the stress levels (valence) and the arousal levels are 

dynamic and might have influenced the subject of the experiment to express his 

emotions differently; his expressions may have been influenced by his ‘real’ feelings 

(such as tiredness in the late afternoon, or sleepiness in the morning) at the moment of 

data acquisition. This can be examined by acquiring more data on different days, 

which can be done in separate experiments. 

To illustrate the differences between the results, Fig. 24, Fig. 25, and Fig. 26 

show graphs of accuracy using the training data of Morning, Afternoon, and Late, 

respectively. 
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Figure 24. Test accuracy result trained by morning data 

 

 

 

Figure 25. Test accuracy result trained by afternoon data 
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Figure 26. Test accuracy result trained by late data 

7.3 Comparing Emotions Captured 

In comparing the emotions captured, we used the information gained from the 

experiments on Chapter 7.1 and Chapter 6.2. First, we will analyze the results from 

the experiments conducted at Chapter 7.1. 

7.3.1 Analyzing Experimental Results from Chapter 7.1 

By re-arranging the table, we can obtain a better representation of the results, so 

we can easily see which emotions are easier to recognize. Table 29 shows the 

averages and standard deviations of all tests from the experiment. 
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Table 29. Average (mean) and standard deviation (s) of each emotion 

Emotion Mean (%) Standard Deviation 

Happy 92.22 6.27 

Relaxed 75.36 22.26 

Angry 86.17 12.60 

Sad 75.33 21.90 

 

The experimental results shown in Fig. 27 suggest that happiness is the easiest 

emotion to recognize; it has not only a better average accuracy in tests but also robust 

and stable results (a low standard deviation). Relaxation and sadness are not only 

difficult to recognize but also have very volatile results (high standard deviations). 

These results also suggested that high arousal emotions (Happy and Angry) 

might be easier to detect, while low arousal emotions (Sad and Relaxed) might be 

more difficult to detect. 

The reason behind this might be related to the tendency of people to try to hide 

their sadness (as sadness can be viewed as weakness), and that people might express 

anger or happiness with the intention of manipulating others (such as showing 

aggressiveness). These behaviors are quite similar to several phenomena in the natural 

world such as [Handicap principle].  

Another possibility that might be related to the results is that sadness and 

depression are difficult to recognize, since people are becoming more adept at hiding 

and not showing signs of them to the world. 

However, a more thorough analysis from the point of view of psychology might 

be needed. 
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Figure 27. Graph of average (mean) of test accuracy results 
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Figure 28. Stem height (mean ± s) of Subject1, p<0.001 (ch 6.2) 

 

 

Figure 29. Stem height (mean ± s) of Subject2, p<0.001 (ch 6.2) 
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As stated previously, this could possibly be caused by the lack of variety in the 

training data to represent the emotions other than happiness, which might be also 

caused by the difficulty of the subjects to express anger. A quick verbal survey was 

conducted, asking each subject about ‘what emotion was more difficult to express and 

which took the least time?’, all of the subjects replied ‘anger’ as the most difficult 

expressed, with one subject claimed to have expressed anger exaggeratedly due to 

unsure about invoking anger. 

7.7 XML Representation of Programs Evolved by XGP 

One of the reasons why we chose to use genetic programming to conduct 

simulated evolution is because the XML representation of the program can be 

analyzed. The program evolved by the XGP is a function that incorporates several 

possible terminals, such as arithmetic operations and data of extracted features. 

Fig. 30 and Fig. 31 below shows an example of XML Program evolved by XGP 

in txt format and tree representation, respectively. 

 

 

Figure 30. Sample of Genetic Program evolved by XGP, in the form of XML file, that 

can be analyzed to see which features are important and which are not from a user, in 

case further emotional analysis is needed. 
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Figure 31. The tree representation of the same XML file from Fig 30 above. 

 

By observing the XML file, analysis on which features are important for a 

specific user can be performed; in example by spreading the trees and mark the 

repeatedly occurring feature data (represented with v_[number] in the XML coding as 

explained at previous chapter 3: the first 9 (i.e. v_0 ~ v_8) represent average, the 

second 9 (i.e. v_9 ~ v_17) represent standard deviation, the last 9 (i.e. v_18 ~ v_26) 

represent power, of the nine AUs each), or whether some feature data are amplified. 
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Using the XML represented at Fig.30 and Fig. 31, combining with a simple 

analyzer we can see the tree structure of the program, as well as the mathematical 

function of each subtree as shown below. 

 

 

 

 

 

Figure 32. Flow of analysis (part 1): Top is the XML representation; Middle is the 

logical explanation of tree structure; Last four are the functions from the relevant 

subtree of Arousal and Valence (true and false) 
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From Fig. 32 above, an easier-to-understand representation of the functions and 

the tree structure of the model is shown at Fig. 33 below. 

 

 

Figure 33. Flow of Analysis (Part 2): The four mathematical formulas from Fig.32 are 

mapped on the Tree. Arousal (+) and Arousal (-) is compared to determine the 

Arousal logic value, and Valence for the Valence logic value. Emotion is determined 

by the value of both 

 

After mapping the formula to the tree, the model determines the emotion based 

on Arousal and Valence logical value: Happy (positive arousal, positive valence), Sad 

(negative arousal, negative valence), Relaxed (negative arousal, positive valence), 

Angry (positive arousal, negative valence). 

The fact that by reading tree representation of the XML we can perform 

analysis, has shown that genetic programming is not producing a black-box program, 

where analysis is very difficult, if not impossible, to perform. 



 101 

7.6 Conclusions  

Our research focuses on the evolution of an agent able to recognize emotions of 

a single user. Several approaches such as separating a tree structure for evolution, 

implementing a voting system, and evolving the voting system, showed 

improvements in accuracies and faster training time (which is required for a self-

evolving agent). 

During the development of an emotion recognition model, a question was raised 

regarding the best time of the day for recognizing emotion. Using available data, we 

performed an experiment to evolve several classifiers using different training data and 

cross-tested the classifiers using each set of data. The controlled variable is that each 

data set is taken at different times.  

The results from the experiment suggested that although the time of data 

acquisition might not make average accuracy for all emotions significantly different 

(around 80% to 83%), the accuracy for each emotion might vary. 

Further, our experimental results also suggested that high arousal emotions 

(Happy) are easier to recognize. This might be related to the psychological reasons 

behind those emotions; showing anger or happiness might be a means for people to 

manipulate other people, such as to threaten a foe, prepare to fight, or inform allies of 

a current situation. However, most subjects felt uneasy in expressing unpleasant 

emotions, and this might have influenced the results.  

To express pleasant emotions such as happiness was easier for all subjects, and 

this might influence on how should the agent interact with the user during data 

acquisition period; in example, the agent could focus on detecting happiness, and 

clarify the user when the agent could not detect happiness [37] [34]. 
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Regarding the difference in results of taking data for training, with the systems 

capable of evolving using new user’s data, the classifier can be updated as the user 

see fit, through interaction with the system. 
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Chapter 8 

Conclusions 

The present thesis focused on tackling several challenges in designing an 

emotion recognition model that can be used for real-life applications: temporal 

information, pervasiveness, unique-general user, and the black-box of many artificial 

intelligent approaches. 

Chapter 3 presented the rough model proposed, and showed that the model can 

work at real-life applications by incorporating temporal information, and by using 

pervasive (and off-the-self and multi-purpose) Microsoft Kinect as a sensor. This 

chapter also showed several literary and experimental evidences that: taking a user-

specific approach is better. Also experiments conducted suggested the genetic 

programming (GP) can be used to perform simulated evolution of programs that can 

act as classifiers. 

Chapter 4 focused on enhancing the model by tackling GP’s non-determinism 

problem, by applying collaborative filtering in the form of majority voting. The 

experimental results showed that implementing majority voting improves the 

accuracy and reduced the effect of non-determinism of GP, as well as possibly 

reducing over-fitting problems. 

Chapter 5 focused on exploring the evolutionary computation to adapt new 

user’s data. We conducted experiments on implementing weighted trust for voters 
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instead of static voters, and the result was a trade-off between computational 

performances and computational efforts. 

Chapter 6 explored the evolutionary computation on different direction, which 

is incremental genetic programming. The results showed that performing incremental 

GP has better results at computational performances and computational efforts, as 

well as easier incorporating new user’s data to the model. 

Chapter 7 analyzed the emotion analysis using the model, and also to show that 

the programs created by the simulated evolution of our model is not a black-box and 

can be analyzed. 

To sum up, the proposed model is: (1) incorporating temporal information into 

analysis, in the form of mean, variance, and the power (square) of each AU signals in 

a timeframe, (2) using an off-the-shelf and multi-purpose Microsoft Kinect as a 

pervasive sensor, and operating in a pervasive environment, (3) capable to adapt to 

new user’s data, and focusing on a single user instead of relying on generalization, (4) 

shown to be not a black-box, as the component of each AU can be analyzed if 

necessary. 
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