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Abstract

Nonnegative matrix factorization (NMF) is a matrix decomposition technique to ana-

lyze nonnegative data matrices, which are matrices of which all elements are nonnegative.

The technique has been widely applied to various fields: image recognition, music sound

analysis, genetic analysis, text mining, recommender systems, marketing analysis, etc.

The reason for the wide application of NMF is that a nonnegative data matrix is easily

obtainable. In addition, NMF is simple and easy to use and has the ability to extract in-

terpretable information from a given nonnegative data matrix. However, NMF encounters

difficulties when the data matrix has the following characteristics: it contains outliers or

many zero elements or a combination of these two characteristics. The existence of outliers

in a nonnegative data matrix sometimes leads to a meaningless result following matrix de-

composition. Moreover, a data matrix that contains a number of zero elements, which is

also referred to as a zero-inflated situation, results in poor approximation of factorization

to the given data matrix. To address these difficulties, we focus on using divergence as

an error criterion between the given data matrix part and the factorization part. In this

regard, β-divergence is one type of divergence that has proven to be robust against outliers

and has been applied to NMF by many researchers. The use of β-divergence is known to

correspond to using a Tweedie distribution as an error distribution method. A specific

case of the Tweedie distribution is compound Poisson-gamma (CP) distribution, which is

a Poisson mixture of the gamma distribution. The CP distribution can be extended to

a zero-inflated model such as that based on a zero-inflated Poisson distribution; hence,

in this study we employ the zero-inflated CP (ZICP) distribution as an error distribution

technique for NMF. NMF based on the ZICP distribution is potentially robust against

outliers and a zero-inflated situation. This research also focuses on NMF used in combina-

tion with an orthogonal constraint (ONMF) to improve the interpretability of the factor

matrix. A nonnegative factor matrix with an orthogonal constraint has a simple structure,

and hence, the role of this factor matrix is similar to that of an indicator matrix used in

k-means clustering. Although previous studies involving ONMF led to the proposal of

algorithms to solve the ONMF problem, most of these algorithms experience difficulties

when estimating factor matrices. In this study, we solve the ONMF problem using a

k-means-like algorithm that produces estimates of an acceptable accuracy. Furthermore,

the use of Poisson and CP distributions in the k-means-like algorithm enables us to solve

the ONMF problem. This approach to ONMF is valuable because most previous algo-

rithms of ONMF have employed the normal distribution and there are few studies about

ONMF based on Poisson and CP distribution. The NMF problem can be divided into



two- and three-factor NMF: the former involves decomposition to two-factor matrices,

whereas the latter entails decomposition to three-factor matrices. Three-factor NMF is

assumed to comprise two types of factors: the row and column objects of the data matrix.

The ZICP distribution and orthogonal constraint mentioned above can be applied not

only to two-factor NMF but also three-factor NMF. The aim of this study is to present

a comprehensive discussion of NMF. Especially, the discussion concentrates on the four

features of NMF: two-factor vs. three-factor NMF, orthogonal constraints, distributions

and divergences, and the zero-inflated model. Moreover, we present details of the model

setting, the derivation of the updating rules, and an estimation algorithm for NMF with

and without these features. We also include a simulation study and apply our proposed

solution to real data to capture the features of these NMFs.
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Chapter 1

Introduction

Many types of data in the world consist of only nonnegative values, e.g., pixel values

of an image, power values with respect to frequency, microarray-based gene expression

profiling, term frequency of documents, ratings on an ascending risk scale of 1 to 5, rainfall,

insurance, sales, and sales quantities. These data are often presented in the form of

a matrix; the elements are values corresponding to the combination of two finite sets

of objects; for example, in a document-term data matrix, the row and column objects

correspond to the documents and terms, and each of the entries in the matrix corresponds

to a frequency of the term existing in the document. Such a matrix is referred to as a

nonnegative matrix, and it is known that nonnegative matrix factorization (NMF) is one

of the approaches suitable to analyze data of a particular format. NMF is employed for

approximating a given nonnegative data matrix by using the product of some nonnegative

matrices, which are referred to as nonnegative factor matrices. Basically, NMF is mostly

used for two factor matrices, which is described as two-factor NMF in this thesis. Fig.

1.1 shows an example of two-factor NMF. NMF enables us to obtain an understanding

12 9 0 7 10 5 6.1 5.3 0.32 1.62 0.03
19 0 10 16 1 14 0.4 14.8 1.04 0.00 0.93
1 5 1 1 5 1 3.0 0.5

17 13 7 14 14 10 8.3 10.9
1 1 4 3 1 2 0.4 2.4
4 12 6 6 12 4 7.2 3.7
3 18 0 4 18 0 11.0 0.0
1 1 14 8 0 7 0.0 7.2
4 3 7 6 3 5 1.6 5.2
4 11 8 7 10 5 6.5 4.8
8 21 4 8 21 4 12.9 3.8

17 6 16 18 6 15 3.6 16.0
13 9 12 14 9 11 5.5 11.6

�

�

�

Figure 1.1: Example of two-factor NMF. The red color represents the magnitude of values:

the darkest red and lightest red (i.e., white) are the maximum and minimum values in

each matrix.

of the co-occurrence relation between two sets of objects. For example, in the two factor

matrices in Fig. 1.1, both the 1st and 3rd columns simultaneously have large values for the

2nd, 12th, and 13th rows. NMF has two advantages. First, in many cases, the estimated

factor matrices have sparsity thanks to the nonnegative constraints. This sparsity leads
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to an easy interpretation of the given nonnegative matrix. Lee and Seung (1999) calls this

characteristic a “parts-based representation.” In face image decomposition, Lee and Seung

(1999) demonstrates that parts of face can be extracted by NMF rather than principal

component analysis or a vector quantization technique. Second, we can easily interpret a

nonnegative factor matrix by NMF because of its nonnegativity. When a given data matrix

has only nonnegative entries, the negative values in the decomposed factor matrix are

difficult to explain. This is based on the idea that the basis vectors of a given nonnegative

data matrix should also be nonnegative.

Few studies relating to NMF were reported until Lee and Seung (1999, 2001) developed

simple and efficient algorithms to address the two-factor NMF problem. They used an

auxiliary function method, also referred to as the “majorize-minimization” or “minorize-

maximization” method, for developing algorithms to obtain estimates of the two factor

matrices. In these algorithms, the two factor matrices are iteratively updated by multi-

plicative updating, in which the updates are obtained by multiplying their current values

by some scalar values. Derivation of the update rule of the factor matrices necessitates

the determination of the divergence as an error between the data matrix and factorization

parts. Lee and Seung (2001) proposed two multiplicative updating algorithms using two

divergences: the first is the Euclidean distance and the other is the Kullback-Leibler (KL)

divergence (Kullback and Leibler, 1951), also referred to as I-divergence.

Following these studies, the use of NMF became widespread, prompting many re-

searchers to extend the technique in various ways. One of the extensions involves di-

vergence. The first generalization of the NMF algorithms Lee and Seung (2001) was

published by Kompass (2007). This author pointed out the similarity between the two

multiplicative update rules of the original algorithm Lee and Seung (2001) in terms of

the Euclidean distance and KL divergence, found a new divergence that is between and

includes the two divergences, and developed an update rule by using the new divergence.

In fact, this divergence is the so-called β-divergence (Basu et al., 1998). The β-divergence

has a hyper-parameter β ∈ R, and the divergence of the generalized NMF by Kompass

(2007) is the β-divergence for β ∈ [1, 2]. The β-divergences for β = 2 and β = 1 are

the Euclidean distance and KL divergence, respectively. Subsequently, other researchers

Févotte et al. (2009) proposed the NMF algorithm with the Itakura-Saito (IS) divergence

(Itakura and Saito, 1968) to analyze a sound spectrogram. Févotte et al. (2009) observed

that the IS divergence is a case of β-divergence such that β → 0. Moreover, Févotte et al.

(2009) found that the update rule proposed by Kompass (2007) is not only available in

the case of β ∈ [1, 2] but also for β < 1 and β > 2; however, the proof was not provided.

The perfect proof of NMF with the β-divergence is provided by Nakano et al. (2010). An-

other generalized divergence to be employed in NMF is the α-divergence (Chernoff, 1952).

NMF with the α-divergence was proposed by Cichocki et al. (2008). Both the β- and

α-divergence are generalizations of the KL-divergence, and NMF with these generalized

divergences has the advantage in that it is robust to outliers (Cichocki and Amari, 2010).

From a statistical perspective, minimization of the β-divergence and the divergences of its

cases are interpreted as the maximization of the log-likelihood under the assumption of
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the corresponding probability distribution as described in Section 3.3. In this study, we

focus on the compound Poisson-gamma (CP) distribution, which corresponds to the β-

divergence for β ∈ (0, 1). A CP distributed random variable is the sum of n independently

identically gamma-distributed random variables and the number of random variables n is

Poisson distributed.

Another extension of NMF is three-factor NMF, where the data matrix is decomposed

into three factor matrices. Fig. 1.2 is an example of three-factor NMF. Three-factor

8.3 0.3 0.0 1.0 4.0 6.6 1.0 0.1 1.1 1.9 0.6 1.5 0.0 0.1 1.0 0.7 0.4 0.2 1.3 0.4
2.4 1.0 0.1 1.3 0.8 2.0 0.4 0.1 0.5 0.6 0.4 0.2 0.1 0.2 1.1 2.8 0.4 0.0 0.3 0.8
2.7 2.0 1.4 0.8 1.6 3.1 0.7 0.2 1.5 1.0 0.2 0.5 0.6 1.4 0.1
6.9 3.0 1.1 2.1 1.4 6.6 1.6 0.4 3.4 2.2 0.9 0.6 1.4
8.5 2.3 0.2 1.8 1.7 8.6 1.4 0.2 1.5 2.5 0.3 2.5 0.0
7.4 1.4 0.9 0.9 3.8 7.2 1.5 0.3 2.7 2.3 1.3 0.6 1.0
4.3 1.2 0.0 5.0 2.6 4.0 1.4 0.5 4.0 1.6 0.2 0.3 1.9

15.3 3.6 0.2 4.5 4.7 15.2 2.9 0.5 4.5 4.7 4.1 0.4 1.4
15.9 2.9 0.0 2.8 5.4 15.7 2.5 0.3 2.6 4.6 2.5 2.7 0.1
5.1 1.9 1.0 5.6 1.4 4.2 1.7 0.6 5.0 1.8 0.0 0.2 2.5
9.8 4.5 1.6 6.1 3.1 7.5 2.8 0.9 7.8 3.0 0.1 0.6 3.8
8.1 2.1 0.0 3.0 2.0 7.6 1.4 0.2 2.0 2.3 0.9 1.4 0.4

11.1 3.3 0.0 1.4 3.6 10.7 1.7 0.2 1.7 3.1 1.4 2.1 0.0
25.4 4.5 1.2 6.1 6.5 23.7 4.4 0.7 6.7 7.3 1.6 5.3 1.6
6.3 1.8 0.6 1.5 1.6 7.1 1.2 0.1 1.4 2.1 0.4 1.8 0.1

�

� �

�

Figure 1.2: Example of three-factor NMF. The red color represents the magnitude of

values: the darkest red and lightest red (i.e., white) are the maximum and minimum

values in each matrix.

NMF with a column orthogonal constraint to the matrices on the left- and right- sides

was proposed Ding et al. (2006). These authors Ding et al. (2006) considered three-factor

NMF with no constraint, except for nonnegativity, to be equivalent to two-factor NMF,

because the matrix produced as a product of the factor matrices on the left and in the

center could be interpreted as being the matrix on the left in two-factor NMF. However,

such a three-factor NMF is not insignificant: the estimates given by three-factor NMF are

different from those given by two-factor NMF, and the approximation matrix is not the

same as that of two-factor NMF. Three-factor NMF can be regarded as a two-way data

case of nonnegative tensor factorization. Other researchers (Cichocki et al., 2007, 2009;

Kim and Choi, 2007; Kim et al., 2008) based their work on the Tucker3 decomposition

style (Tucker, 1966), in which the multi-array data is decomposed into factor matrices

consisting of the objects in each array and one core tensor.

NMF has also been expanded such that it includes some constraints for simple factor

matrices. The most well-known constraint is orthogonality to factor matrices. We refer

to NMF with an orthogonal constraint as “ONMF.” There are two types of ONMF: two-

factor and three-factor ONMF. Two-factor ONMF is two-factor NMF with an orthogonal

constraint imposed on one factor matrix. Although two-factor ONMF has been applied

mainly for document and term clustering because of its efficient result, it has also been

adopted in some other fields (Kim et al., 2011; Mauthner et al., 2010; Wang et al., 2016).

Because a nonnegative column-orthogonal matrix plays a role analogous to an indicator

matrix in k-means clustering, ONMF is considered a clustering method. On the other

hand, three-factor ONMF is three-factor NMF with column orthogonality to both of the

3



factor matrices on the left and the right (Ding et al., 2006; Yoo and Choi, 2009, 2010b).

Owing to the relationship between the column-orthogonal nonnegative factor matrices and

clustering mentioned above, three-factor ONMF is considered to be a bi-clustering method

capable of detecting the row and column clusters of a data matrix simultaneously; it has

been adopted for use in document-term clustering, collaborative filtering, etc (Chen et al.,

2009; Costa and Ortale, 2014). Almost all algorithms for ONMF are multiplicative updat-

ing algorithms (Choi, 2008; Ding et al., 2006; Li et al., 2010; Yoo and Choi, 2010a; Yoo

and Choi, 2008, 2009). However, multiplicative updating algorithms in ONMF have two

drawbacks. First, column orthogonality is not exactly (but only approximately) obtained

despite the column orthogonality constraints. Second, although the objective function

value tends to be non-increasing in the early stages, it is not exactly monotonically non-

increasing. Mirzal (2014) pointed out the second drawback and proposed a new convergent

ONMF algorithm using an additive updating rule, but there is no guarantee that a per-

fectly orthogonal factor matrix will be obtained. Kimura et al. (2014) proposed a new

ONMF algorithm using a hierarchical alternating least-squares algorithm, rather than a

multiplicative algorithm, which is a faster algorithm than the previous multiplicative al-

gorithms but which continues to experience the above-mentioned two drawbacks. On the

other hand, Pompili et al. (2014) proposed an iterative updating algorithm for ONMF in

which the orthogonality and monotonically non-increasing property of the objective func-

tion value are exactly maintained. Pompili et al. (2014) found the optimization problem

of ONMF to be similar to that of spherical k-means (Banerjee et al., 2003) and refers

to this problem as weighted spherical k-means. In this study, we develop new two- and

three-factor ONMF with KL and β-divergence in a fashion similar to that of the ONMF

of Pompili et al. (2014). Of course, the ONMF has perfect orthogonal and non-increasing

properties. This extension is valuable because the ONMF of Pompili et al. (2014), as well

as almost all of the other ONMFs, employs a normal distribution as its error distribution;

furthermore, an ONMF algorithm with KL and β-divergence has not yet been proposed.

Sometimes we encounter difficulties when working with a given sparse data matrix, in

other words, a zero-inflated data matrix that contains many zero values. In fact, situations

such as this often occur with larger data matrices, in which case the approximation tends

to be worse than for a non-zero-inflated data matrix. In such a situation, the zero-inflated

model is available to improve the goodness of approximation of the data matrix. Thus,

Lambert (1992) proposed a zero-inflated Poisson (ZIP) model for count data containing

many zero values, and Simchowitz (2013) developed an efficient Bayesian NMF technique

for a zero-inflated nonnegative data matrix that assumes the ZIP model for nonnegative

data and applied it to collaborative filtering in a recommender system. In this study, we

extend NMF proposed by Simchowitz (2013) to NMF based on zero-inflated CP (ZICP)

distribution. Moreover, we develop new two- and three-factor ONMF by employing zero-

inflated CP distribution.

The extensions mentioned in the above discussion, that is, CP distribution, three-factor

NMF, orthogonal constraint, and zero-inflated model, are appropriate for application to

real-world nonnegative data. For example, data acquired to maintain records of human

4



behavior, e.g., point of sales with customer ID and web access logs, can have outliers

because of some abnormal behavior. Hence, the assumption that a matrix consisting of

count values or the sum of nonnegative values for the combination of two objects given by

such data displays a Poisson or CP distribution is appropriate. If it is necessary to classify

objects in two sets, three-factor NMF is useful. In addition, a data matrix containing data

relating to human behavior contains many zeros because the number of samples tends to

be extremely small in comparison to the number of all the combinations of the objects

in the two sets. Therefore, the zero-inflated model is also available to process this data.

Furthermore, estimates that are easy to interpret can be obtained by using the orthogonal

constraint for factor matrices.

In this paper, we describe details of NMF, especially the model, derivations of the up-

dating rules for parameter estimation, and updating algorithms, through the perspectives

of the number of factor matrices, orthogonal constraint, distribution and divergence, and

zero-inflated model. These perspectives are important for exploratory data analysis using

nonnegative matrices. First, in some situations, a matrix may contain some extremely

large values, and this may have a significantly negative effect on estimates. One way

to solve this problem is to trim rows or columns containing these large values, but this

may cause important information to be lost. Moreover, it is difficult to determine what

values are outliers. In this situation, a better way is to use an appropriate distribution

for the robust estimation. CP distribution can be one of the solutions for robust esti-

mation. Second, a nonnegative matrix in the real world may contain many zero entries,

and the NMF model may not approximate it well. This means that some of the zero

entries are unexplainable using a nonnegative linear combination of the nonnegative ba-

sis. The zero-inflated model can be one approach to handling such zero-inflated matrices.

Third, in many cases nonnegative matrix analysis, the objective is to derive a simple re-

sult. The orthogonality constraint leads to a simple structure of the factor matrix and

this enables us to easily interpret how the nonnegative matrix is generated. Table 1.1

shows a classification of the existing NMFs discussed in this chapter as well as our pro-

posed NMFs. N3ONMF, P3ONMF, and P2ONMF are our original NMFs, but there are

existing NMFs that have a model assumption that is the same as these. In contrast ,

CP2ONMF, CP3ONMF, and all four NMFs based on ZICP are completely original. The

proposed NMF with orthogonal constraints is an extension of Pompili et al. (2014) and is

referred to as N2ONMF. The proposed NMFs based on the ZICP distribution are exten-

sions of Simchowitz (2013). Moreover, we observe the advantages and disadvantages and

characteristics of NMFs through some simulation studies and by application to real-world

data.

This paper is organized as follows. Chapter 2 provides selected notations used in this

paper. Chapter 3 presents a comprehensive explanation of NMF from the perspective of

the number of factor matrices, the orthogonal constraint, distribution and divergence, and

the zero-inflated model. From chapter 4 to 7, we introduce details of various NMFs from

the point of these four views. Chapter 8 reports simulations of the estimation accuracy and

goodness of approximation of these NMF. Chapter 9 presents an example of an analysis

5



using document and term data and point-of-sale data. Chapter 10 concludes our study

and discusses open questions.
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Chapter 2

Notations and definitions

In this chapter, we introduce the notation employed in this thesis. We use bold uppercase

letters, e.g., M , to denote a matrix, and a lowercase letter, e.g., mij , for its i, jth element.

An element i, j of a complicated matrix is expressed as [·]ij . Further, we use mi and

m(j) as the vertical vector of the i-th row and j-th column of M , respectively. We

use the prime symbol and “−1” to express a transposed matrix and an inverse matrix,

e.g., M ′ and M−1, respectively. The trace and diagonal parts of a square matrix M

are denoted by tr(M) and diag(M), respectively. The Euclidean norm of a matrix or

vector is represented as ∥M∥ =
√

tr(M ′M). DM and DM ′ are diagonal matrices in

which each diagonal element is ∥m(j)∥ and ∥mi∥, respectively. ∆(M) is the first left-side

singular vector in which all elements are converted into nonnegative values when M is

decomposed using singular value decomposition. We use ⊙ as the Hadamard product.

The element-wise quotient of two matrices is denoted by fraction notation; e.g.,
M

N
or

M/N is the element-wise quotient of M and N . Mβ is the element-wise β power of the

matrix M . The vectorization of the n× p matrix M is defined as (m′
(1) m

′
(2) · · · m

′
(p))

′.

The Kronecker product of an n× p matrix M and N are defined as

M ⊗N =


m11N m12N · · · m1pN

m21N m22N · · · m2pN
...

...
. . .

...

mn1N mn2N · · · mnpN

 . (2.1)

We denote 1n and En×p as the n-length vector and n × p matrix of which all of the

elements are 1 and denote 0n as the n-length vector of which all the elements are 0.

Finally, Rn×p is a set of n × p matrices and Rn×p
+ is a set of n × p matrices consisting of

nonnegative elements. We refer to a vector and matrix consisting of nonnegative elements

as a “nonnegative vector” and “nonnegative matrix,” respectively.

Now, we describe the definition of an auxiliary function technique to be used for deriva-

tion of updating rules of NMFs. An auxiliary function method is a technique with which

to solve the parameters such that the objective function value becomes smaller than the

current value. Let f(θ) be a function to be minimized with respect to θ. Then, auxiliary

8



function faux(θ, θ
∗) is a function that satisfies the following:

f(θ) ≤ faux(θ, θ
∗) for all θ and θ∗ (2.2)

f(θ) = faux(θ, θ
∗) if θ = θ∗. (2.3)

This definition implies that we have to find the new function using an inequality property.

When we derive the auxiliary function and the solution of θ̂ = argmin
θ
{faux(θ, θ∗)}, we

have

f(θ∗) = faux(θ
∗, θ∗) ≥ faux(θ̂, θ

∗) ≥ f(θ̂) (2.4)

from (2.2) and (2.3). It is noted that, rather than minimizing the objective function value

with respect to θ, θ̂ decreases the value of this function. It is important that the derived

auxiliary function can easily be differentiated with respect to θ and that the optimal θ for

the auxiliary function can be obtained.
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Chapter 3

Various perspectives of NMF

In this chapter, we discuss the four perspectives of NMF. NMFs start from the descrip-

tion of a statistical model of a given data matrix with some parameters, as well as other

statistical methods. The description can be divided into two parts: the structure the ex-

pected value of the data is represented by and the type of probability distribution the data

follow. Section 3.1 and 3.2 are topics about the former: the number of factor matrices

and orthogonal constraint. Section 3.3 and 3.4 are about the latter: the distributions and

divergences and the zero-inflated model. These topics are related to some versions of our

proposed NMF described from Chapter 4 to 7.

Before providing the details in each of the sections, we define and explain the NMF

problem. Let Y ∈ Rn×p
+ be a n × p data matrix that contains a nonnegative real value

as each of its entries, and let X(θ) be a representation of the matrix decomposition by

some factor matrices θ. Then NMF can be defined as a problem approximating Y by

X(θ) ∈ Rn×p
+ , that is,

Y ≈X(θ). (3.1)

For the following discussions, we denote X as X(θ) for brevity. The approximation made

possible by setting the measure to evaluate the approximation and which measure to use,

depends on the definition of the distribution of yij . Therefore, we can formulate the NMF

problem as follows:

yij
cid∼ f(xij) (i = 1, . . . , n; j = 1, . . . , p), (3.2)

where
cid∼ signifies “conditionally independently distributed” and f(·) is a density or prob-

ability function of the probability distribution. In (3.2), xij is the expected value of yij .

In section 3.1 and 3.2, we provide details of how xij can be specified. Then, in section 3.3

and 3.4, we describe how the f(·) can be defined and what the f(·) means.

3.1 Two-factor NMF vs three-factor NMF

A representation of the matrix decomposition by NMF, that is, X, is made by some

factor matrices. There are two types of matrix decomposition by NMF: two-factor and

three-factor NMF.
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Two-factor NMF

Two-factor NMF is a method to approximate Y by X := FA′, where F ∈ Rn×k
+ is a

n× k left-side nonnegative factor matrix and A ∈ Rp×k
+ is a p× k right-side nonnegative

factor matrix. Here, k is interpreted as the number of factors or clusters and recommended

to be set as k ≪ min(n, p). From a geometrical point of view, the i-th nonnegative sample

vector yi (i = 1, . . . , n) is approximated by using a nonnegative linear combination of

nonnegative basis vectors a(m) (m = 1, . . . , k) as follows:

yi ≈
k∑

m=1

fima(m). (3.3)

In other words, the goal of two-factor NMF is to search a convex cone low space such that

all samples can be approximated by its space.

Some two-factor NMF methods are available in the “NMF” R package (Gaujoux and

Seoighe, 2010). In this package, seven methods are implemented: “brunet” (Brunet et al.,

2004; Lee and Seung, 2001), “lee” (Lee and Seung, 2001), which uses the Euclidean dis-

tance, “ls-nmf” (Wang et al., 2006), “nsNMF” (Pascual-Montano et al., 2006), “offset”

(Badea, 2008), “pe-nmf” (Zhang et al., 2008), and “snmf” (Kim and Park, 2007). The

“lee” and “brunet” methods have the same updating rules of Lee and Seung (2001) for

Euclidean distance and KL divergence, and they are referred to as N2NMF and P2NMF,

respectively, here. All other methods except “snmf” are modified version of these two

methods: “ls-nmf”, “offset”, and “pe-nmf” are based on Lee and Seung (2001) for Eu-

clidean distance and “nsNMF” is based on Lee and Seung (2001) for KL divergence. The

“snmf” method is based on an alternating least squares approach.

Three-factor NMF

On the other hand, three-factor NMF is a method to approximate Y by X := FSA′,

where F ∈ Rn×k
+ is a n × k left-side nonnegative factor matrix, S ∈ Rk×ℓ

+ is a k × ℓ

nonnegative factor matrix in the center, and A ∈ Rp×ℓ
+ is a p × ℓ right-side nonnegative

factor matrix. Here, k and ℓ are the number of factors of row objects (i = 1, . . . , n)

and column objects (j = 1, . . . , p). The center factor matrix S can be interpreted as the

relationship between each of the factors of the two sets of objects.

Appropriate use of two-factor NMF and three-factor NMF

Two-factor NMF has the same number of factors for row and column objects. Hence, it

is recommended that two-factor NMF is used when the objects in a single row or column

are of interest and the other objects are independent samples. For example, two-factor

NMF has been adopted for image recognition tasks in which the row objects of the data

matrix are the image samples and the column objects are the pixels of these images. The

main objective of this task is to extract parts of the images, which are represented as A,

from the image samples, as opposed to clustering images and their pixels.
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In contrast, three-factor NMF has a different number of factors for the row and column

objects; hence, it can be useful when both the row and column objects are of interest and a

different number of clusters is required for each of the two sets. For example, three-factor

NMF has been applied to many document and term clustering problems. In this problem,

the rows and columns of the data matrix are the documents and terms, respectively, and

the data matrix contains frequencies corresponding to the terms and the documents. It

is often assumed that the types of groups of documents are different from those of the

terms: documents are preferably categorized by their content or topic, whereas terms are

preferably classified not only by their content or meaning but also their function.

3.2 Orthogonal constraint

Techniques for imposing constraints on factor matrices do exist. The main aim of these

constraints is to obtain a sparse estimate of the factor matrix. One of these techniques

involves imposing a column orthogonal constraint. A well-known statistical technique

based on the use of these constraints is principal component analysis (PCA). However, the

factor matrix in PCA does not have nonnegative constraints imposed thereupon; hence,

an orthogonal constraint for NMF differs slightly from that of PCA. If all entries of a

matrix are nonnegative and the matrix is orthogonal, only one entry has a non-zero value

and each of the others has a zero value in each row vector such that all inner products

of the two column vectors are 0 with each other, then we can find that such a matrix is

similar to the indicator matrix to be used in k-means clustering. That is, the matrix only

contains 0 or 1 and the sum of the entries in each row is 1. Let Rm (m = 1, . . . k) be a

subset of row objects (1, . . . , n) belonging to the m-th cluster of row objects; we refer to

Rm as an “m-th row cluster.” (3.4) and (3.5) are examples of a nonnegative matrix with

column orthogonality and an indicator matrix, respectively:
b1 0|R1| . . . 0|R1|

0|R2| b2 . . . 0|R2|
...

...
. . .

...

0|Rk| 0|Rk| . . . bk

 , (3.4)


1|R1| 0|R1| . . . 0|R1|

0|R2| 1|R2| . . . 0|R2|
...

...
. . .

...

0|Rk| 0|Rk| . . . 1|R2|

 . (3.5)

where bm (m = 1, . . . , k) is a |Rm|-length nonnegative vector and |Rm| is the number

of objects in Rm. From (3.6), the indicator matrix U for row objects has the following

property.

uim =

1 (i ∈ Rm)

0 (i /∈ Rm)
(i = 1, . . . , n; m = 1, . . . , k). (3.6)
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On the other hand, from (3.4), a nonnegative and column orthogonal matrix F has the

following property similar to an indicator matrix:

fim =

bi > 0 (i ∈ Rm)

0 (i /∈ Rm)
(i = 1, . . . , n; m = 1, . . . , k), (3.7)

where bi > 0 (i = 1, . . . , n). From this perspective, NMF with the combination of non-

negativity and column orthogonality is considered as a method substantially similar to a

non-hierarchical clustering method.

Three-factor NMF enables us to impose a nonnegative and column orthogonal constraint

on the left- and right-side factor matrices, that is, F and A. These constraints mean

that both the row and column objects are simultaneously clustered. This is known as

the bi-clustering method. Apart from row objects, we define a nonnegative and column

orthogonal factor matrix for column objects as follows: Let Cq (q = 1, . . . ℓ) be a subset of

column objects {1, . . . , p} belonging to the q-th cluster of column objects; we refer to Cq

as an “q-th column cluster.” Similarly, we have (3.7) for the factor matrix A:

ajq =

dj > 0 (j ∈ Cq)

0 (j /∈ Cq)
(j = 1, . . . , p; q = 1, . . . , ℓ), (3.8)

where dj > 0 (j = 1 . . . , p). We denote a set of row and column clusters as R =

{R1, . . . , Rk} and C = {C1, . . . , Cℓ}, respectively.
In many previous studies of the two-factor or three-factor orthogonal NMF problem, a

factor matrix with an orthogonal constraint is updated by using the multiplicative updat-

ing algorithm (MUA); the factor matrix F is updated by the element-wise product to its

current matrix F ∗:

F ← F ∗ ⊙M , (3.9)

where “←” denotes substitution of right-side material into the left-side. M is calculated by

the data matrix Y , F ∗, and/or the other factor matrices. MUA is a well-known updating

algorithm and is widely adopted in many NMFs because Lee and Seung (2001), whose

work resulted in NMF becoming widely known, derived an MUA for two-factor NMF

(see Section 4.1 and 4.2). Subsequently, Ding et al. (2006) and Yoo and Choi (2010b)

proposed well-known MUAs for three-factor NMF with an orthogonal constraint. Both

of these groups of researchers derived update rules of three-factor matrices to solve the

following optimization problem:

argmin
F ,S,A

{∥Y − FSA′∥2}

subject to F ∈ Rn×k
+ ,S ∈ Rk×ℓ

+ ,A ∈ Rp×ℓ
+ ,FF ′ = Ik, and AA′ = Iℓ. (3.10)

The first group Ding et al. (2006) solved the problem using a method comprising a La-

grange multiplier (Lagrange, 1788) and the Karush-Kuhn-Tucker condition (Karush, 1939;

Kuhn and Tucker, 1951). On the other hand, Yoo and Choi (2010b) solved it as an opti-

mization problem under a Stiefel manifold. These algorithms are presented in Algorithm
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Algorithm 1 three-factor NMF by Ding et al. (2006)

1: Input Y ∈ Rn×p
+ , F (0) ∈ Rn×k

+ , S(0) ∈ Rk×ℓ
+ , A(0) ∈ Rp×ℓ

+

2: t← 0

3: repeat

4: t← t+ 1

5: F (t) ← F (t−1) ⊙

(
Y A(t−1)S(t−1)′

F (t−1)F (t−1)′Y A(t−1)′S(t−1)′

)1/2

6: S(t) ← S(t−1) ⊙

(
F (t)′Y A(t−1)

F (t)′F (t)S(t−1)A(t−1)′A(t−1)

)1/2

7: A(t) ← A(t−1) ⊙

(
Y ′F (t)S(t)

A(t−1)A(t−1)′Y ′F (t)S(t)

)1/2

8: until convergence

Algorithm 2 three-factor NMF by Yoo and Choi (2010b)

1: Input Y ∈ Rn×p
+ , F (0) ∈ Rn×k

+ , S(0) ∈ Rk×ℓ
+ , A(0) ∈ Rp×ℓ

+

2: t← 0

3: repeat

4: t← t+ 1

5: F (t) ← F (t−1) ⊙ Y A(t−1)S(t−1)′

F (t−1)S(t−1)A(t−1)′Y ′F (t−1)

6: S(t) ← S(t−1) ⊙ F (t)′Y A(t−1)

F (t)′F (t)S(t−1)A(t−1)′A(t−1)

7: A(t) ← A(t−1) ⊙ Y ′F (t)S(t)

A(t−1)S(t)′F (t)′Y A(t−1)

8: until convergence

1 and 2. However, the MUA for the NMF with an orthogonal constraint is problematic in

two ways. First, column orthogonality is not exactly (but only approximately) obtained

despite the column orthogonality constraints. Second, although the objective function

value tends to be non-increasing in the early stages, it is not exactly monotonically non-

increasing. On the other hand, Pompili et al. (2014) proposed a k-means–based algorithm

for two-factor orthogonal NMF, in which the column orthogonality is retained in all steps

in the algorithm and the objective function is monotonically decreased in each of the steps.

This k-means–based algorithm is derived using the property of a nonnegative orthogonal

factor matrix described in (3.7). From (3.7), the optimization problem of F (or A) is di-

vided into an optimization problem of R (or C) and that of fim (i ∈ Rm; m = 1, . . . , k) (or

ajℓ (j ∈ Cq; q = 1, . . . , ℓ)). Details of the method of Pompili et al. (2014) are introduced

in Section (6.1). The other methods with an orthogonal constraint described in Chapter

6 and 7 are based on the k-means algorithm.
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3.3 Distributions and divergences

Solving the NMF problem requires us to determine the criteria we use to approximate

model part X to data matrix Y . The well-used setting is an element-wise divergence

between Y and X. Table 3.1 presents selected well-known divergences in NMF. The

Table 3.1: Divergences between y and x and corresponding probability distribution as-

sumptions.

Divergence
Probability distribution

assumption for y

Euclidean distance

(Lee and Seung, 2001)
dEUC(y, x) = (y − x)2 normal

KL divergence

(Lee and Seung, 2001)

dKL(y, x)

= y log(y/x)− y + x
Poisson

IS divergence

(Févotte et al., 2009)

dIS(y, x)

= y/x− log(y/x)− 1

gamma

(exponential)

β-divergence

(Févotte and Idier, 2011)

(Nakano et al., 2010)

dβ(y, x)

= y(yβ−1−xβ−1)/(β−1)
− (yβ − xβ)/β

Tweedie

(Compound Poisson-gamma

for β ∈ (0, 1))

most well-known and commonly used divergence is the Euclidean distance. The Euclidean

distance offers easy and convenient way to solve an optimization problem, and is intuitively

clear because of its high affinity for the real world. The other representative divergences are

the KL and IS divergences. These three divergences are generalized to the β-divergence.

Specifically, the Euclidean distance, KL divergence, and IS divergence are specific cases of

the β-divergence for which β = 2, β = 1, and β = 0, respectively. We define the divergence
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between two matrices as follows:

dEUC(Y ,X) =

n∑
i=1

p∑
j=1

dEUC(yij , xij), (3.11)

dKL(Y ,X) =

n∑
i=1

p∑
j=1

dKL(yij , xij), (3.12)

dIS(Y ,X) =
n∑

i=1

p∑
j=1

dIS(yij , xij), (3.13)

dβ(Y ,X) =
n∑

i=1

p∑
j=1

dβ(yij , xij) (3.14)

As seen in Table 3.1, these divergences correspond to a distribution for which yij follows

a given expected value xij . The Euclidean distance, KL divergence, IS divergence, and β-

divergence are derived from the assumption of normal, Poisson, gamma (exponential), and

Tweedie distributions, respectively, by using maximum-likelihood procedures. Similarly

to the divergences, the Tweedie distribution is a generalization of the normal, the Poisson,

and the gamma (exponential) distributions (Dunn and Smyth, 2001; Jorgensen, 1997).

When a random variable y follows the Tweedie distribution, we denote y ∼ TW (µ, ϕ, β).

The probability density function for a random variable in the Tweedie distribution is given

by

f(y;x, ϕ) = aβ(y, ϕ) exp {(yθ(x)− κ(x)) /ϕ} , (3.15)

θ(x) =


xβ−1 − 1

β − 1
(β ̸= 1)

log x (β = 1)

, κ(x) =


xβ − 1

β
(β ̸= 0)

log x (β = 0)

, (3.16)

where x and ϕ are the mean and dispersion parameters, respectively. β ∈ (−∞, 1]∪[2, ∞)

is the index that determines the distribution. The variance is V (y) = ϕx2−β. As mentioned

above, the normal (β = 2), the Poisson (β = 1), and the gamma (β = 0) distributions

are specific cases of the Tweedie distribution. aβ(yij , ϕ) varies with β, and cannot be

written in closed form except in the special cases mentioned above. For 0 < β < 1, the

Tweedie distribution is continuous for y > 0, and has a mass at y = 0. The distribution

of this range of β is referred to as a compound Poisson-gamma (CP) distribution, which

is a Poisson mixture of gamma distributions. If y = 0, the CP distribution is a Poisson

distribution at y = 0, that is,

P (y = 0) = exp{−λ}, (3.17)

and if y > 0, the density function of the CP distribution is

f(y;x, ϕ) =
∞∑
n=1

[
λn exp{−λ}

n!

][
bnα

Γ(nα)
ynα−1 exp{−bx}

]
, (3.18)
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where

λ =
xβ

ϕβ
, (3.19)

b =
xβ−1

ϕ(1− β)
, (3.20)

α =
β

1− β
. (3.21)

Equations (3.19), (3.20), and (3.21) are given by comparing the two forms of cumulant

generating function from the two ways of defining the CP distribution; one is a Poisson

mixture of the gamma distribution and the other is the power variance assumption of the

exponential dispersion model. The proof is given by Jorgensen (1997) and Şimşekli et al.

(2013). Substituting (3.19) and (3.20) into (3.18), we have

f(y;x, ϕ) =
1

y

∞∑
n=1

ynα(1− β)−nα

ϕn(1+α)βnn!Γ(nα)
exp

{
1

ϕ

(
yxβ−1

β − 1
− xβ

β

)}
(3.22)

= h(y, ϕ, β) exp

{
1

ϕ

(
yxβ−1

β − 1
− xβ

β

)}
. (3.23)

Here, we define h(y, ϕ, β) as

h(y, ϕ, β) =
1

y

∞∑
n=1

ynα(1− β)−nα

ϕn(1+α)βnn!Γ(nα)
. (3.24)

From (3.15) and (3.16), we have

f(y;x, ϕ) = aβ(y, ϕ) exp

{
− y

β − 1
+

1

β

}
exp

{
1

ϕ

(
yxβ−1

β − 1
− xβ

β

)}
. (3.25)

Hence, we have

aβ(y, ϕ) = exp

{
y

β − 1
− 1

β

}
h(y, ϕ, β). (3.26)

Fig. 3.1 shows plots of the probability density functions of the Tweedie distribution for

various values of β, where µ = 1 and ϕ = 1.

In NMF, the index parameter β affects the robustness of parameter estimation (2010).

Fig. 3.2 shows graphs of β divergence dβ(y, x) = y(yβ−1 − xβ−1)/(β − 1) − (yβ − xβ)/β

given y = 10 (left side) and y = 100 (right side) for various values of β. The value of

dβ(y, x) is lower about x = 100, given y = 100, than about x = 10 given y = 10, for β < 2.

In NMF, this means that extremely large values are not taken into account in parameter

estimation for values of β < 2.

In this study, we focus on NMF using normal, Poisson, and compound Poisson-gamma

distribution. The reason is as follows: our proposed NMFs are developed considering a

two-way table consisting of a count (such as a contingency table) or a gross summation

of the nonnegative values of a pair of objects in two sets. Count data is commonly used

with Poisson distribution, and a gross summation of the nonnegative values is compatible
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Figure 3.1: Probability density functions of the Tweedie distribution for various values of

β. The black square represents the probability at y = 0.
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Figure 3.2: Graphs of β divergence dβ(y, x) = y(yβ−1−xβ−1)/(β−1)− (yβ−xβ)/β, given

y = 10 (left side) and y = 100 (right side), for various values of β. The horizontal and

vertical axes represent x and dβ(y, x), respectively.
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with the generate model of CP. Henceforth, we introduce the probability or density func-

tion of these distributions, likelihood under these distribution assumptions, and objective

function of the NMF derived as a minus logarithm of their likelihood. These topics form

an introduction to the NMFs described in Chapter 4 to 7.

Normal distribution

When random variable y follows a normal distribution, we denote y ∼ N(x, σ2), where x

and σ2 are an expected value and a variance of y, respectively. Then, its density function

is defined as follows:

fN(y|x, σ2) =
1√
2πσ2

exp

{
− 1

2σ2
(y − x)2

}
. (3.27)

We assumed that all elements of Y , i.e., yij (i = 1, . . . , n; j = 1, . . . , p), are conditionally

independent normal distributed random variables with mean xij(θ), that is:

yij
cid∼ N(xij , σ

2) (i = 1, . . . , n; j = 1, . . . , p). (3.28)

Then, the likelihood with respect to θ and σ2 is:

L(θ, σ2|Y ) =

n∏
i=1

p∏
j=1

fN(yij |xij , σ2) =

n∏
i=1

p∏
j=1

1√
2πσ2

exp

{
− 1

2σ2
(yij − xij)

2

}
. (3.29)

The objective function to be minimized with respect to θ and σ2 is obtained as the minus

logarithm of (3.29) as follows:

Q(θ, σ2) = − log

{
n∏

i=1

p∏
j=1

1√
2πσ2

exp

{
− 1

2σ2
(yij − xij)

2

}}

=
np

2
log{σ2}+ 1

2σ2

n∑
i=1

p∑
j=1

(yij − xij)
2 + const, (3.30)

where “const” denotes terms that are independent of the parameters to be optimized. The

optimal σ2 is derived by differentiating (3.30) with respect to σ2 and setting them to zero

as follows:

σ̂2 =
1

np

n∑
i=1

p∑
j=1

(yij − xij)
2 =

1

np
∥Y −X∥2. (3.31)

Poisson distribution

When random variable y follows a Poisson distribution, we denote y ∼ Po(x), where x

is an expected value (and a variance) of y. Then, its density function is defined as follows:

fP(y|x) =
xy exp{−x}

y!
. (3.32)

We assumed that all elements of Y , i.e., yij (i = 1, . . . , n; j = 1, . . . , p), are conditionally

independent Poisson distributed random variables with mean xij(θ), that is:

yij
cid∼ Po(xij) (i = 1, . . . , n; j = 1, . . . , p). (3.33)
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Then, the likelihood with respect to θ is:

L(θ|Y ) =

n∏
i=1

p∏
j=1

fP(yij |xij) =
n∏

i=1

p∏
j=1

x
yij
ij exp{−xij}

yij !
. (3.34)

The objective function to be minimized with respect to θ is obtained as the minus loga-

rithm of (3.34) as follows:

Q(θ) = − log

{
n∏

i=1

p∏
j=1

x
yij
ij exp{−xij}

yij !

}

= −
n∑

i=1

p∑
j=1

yij log{xij}+
n∑

i=1

p∑
j=1

xij + const. (3.35)

Compound Poisson-gamma distribution

When random variable y follows a CP distribution, we denote y ∼ CP (x, ϕ, β), where

x is an expected value, β ∈ (0, 1) is an index parameter, and ϕ is a dispersion parameter.

Then, its density function is defined as follows:

fCP(y|x, ϕ, β) = h(y, ϕ, β) exp

{
1

ϕ

(
yxβ−1

β − 1
− xβ

β

)}
. (3.36)

Function h(y, ϕ, β) is defined in (3.24). We assumed that all elements of Y , i.e., yij (i =

1, . . . , n; j = 1, . . . , p), are conditionally independent CP distributed random variables

with mean xij(θ), that is:

yij
cid∼ CP (xij , ϕ, β) (i = 1, . . . , n; j = 1, . . . , p). (3.37)

Then, the likelihood with respect to θ and ϕ is:

L(θ, ϕ|Y ) =
n∏

i=1

p∏
j=1

fCP(yij |xij , ϕ, β)

=

n∏
i=1

p∏
j=1

h(yij , ϕ, β) exp

{
1

ϕ

(
yijx

β−1
ij

β − 1
−

xβij
β

)}
. (3.38)

The objective function to be minimized with respect to θ and ϕ is obtained as the minus

logarithm of (3.38) as follows:

Q(θ, ϕ) = −
n∑

i=1

p∑
j=1

log{h(yij , ϕ, β)} −
1

ϕ

n∑
i=1

p∑
j=1

(
yijx

β−1
ij

β − 1
−

xβij
β

)
. (3.39)

The optimal ϕ cannot be obtained analytically because of the h(yij , ϕ, β) term in (3.39).

However, if we use the BFGS quasi-Newton method (Byrd et al., 1995) with constraints

ϕ > 0, we always obtain the optimal value of ϕ. This property has not been proved yet,

but from our experience, this could be made available.

It is noted that β is considered as a hyper-parameter in this study; β is not estimated.

One of the ways to obtain the optimal β is to use a numerical optimization method in the

20



same manner as for ϕ. However, as mentioned above, the variance in the random variable

in the Tweedie distribution is V (y) = ϕxβ. This shows that ϕ and β are closely related.

From (3.39), we can also find that xij does not depend on ϕ, but on β instead. Hence,

if we optimize β, we should optimize ϕ simultaneously. Unfortunately, as mentioned

above, the normalization term h(y, ϕ, β) in the density function of the CP cannot be

analytically calculated; thus, a simultaneous search by a numerical optimization method

is computationally time consuming. Moreover, the change in β values indicates a change

in divergence. This means that we change the manner of estimating factor matrices.

Therefore, β should be determined in advance based on some prior knowledge. These

facts explain the difficulty of estimating the index parameters. If β has to be estimated,

we may use an approach to approximate the log likelihood, or the Bayesian approach

proposed by (Zhang, 2013) in a generalized linear model. A future task would involve

extending this procedure to NMF.

3.4 Zero-inflated model

One of the aspects on which we focus in this study is to analyze the two-way table of

the count or the gross sum of nonnegative values. Such data often contain many zeroes,

resulting in a sparse matrix Y . In this situation, the accuracy of the approximation tends

to be poor. Fig. 3.3 shows two examples of two-factor NMF using a non-zero-inflated

Figure 3.3: Examples of two-factor NMF using a non-zero-inflated matrix (left side) and

zero-inflated matrix (right side). The size of both matrices is 13 × 3. The convex cones

represent the column space of A, estimated using the respective matrices.

matrix (left side) and a zero-inflated matrix (right side). When a data matrix has many

zero entries, most of its data vectors are located along the edge of the first quadrant,

as shown on the right side of the three-dimensional (3D) plot in Fig. 3.3. Hence, most

data vectors cannot be approximated by the linear subspace, which leads to a worsening
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approximation of the basic NMF. Simchowitz (2013) proposed a zero-inflated Poisson

NMF based on a Bayesian method to estimate unvalued points in nonnegative preference

matrices for collaborative filtering in a recommender system. This is an extended NMF

model based on the Poisson distribution. In our study, we propose an NMF model based

on the ZICP distribution. Since the CP distribution is a generalization of the Poisson

distribution, our proposed model is a generalization of Simchowitz’s NMF model. We

used a numerical simulation to demonstrate the accuracy of approximation of the proposed

model for a sparse data matrix Y .

Here, we introduce the ZICP distribution and the objective function for NMF. When

random variable y follows a ZICP distribution, we denote y ∼ ZICP (x, ϕ, β, w), ory ∼ 0 with probability w

y ∼ CP (x, ϕ, β) with probability 1− w,
(3.40)

where x is an expected value, β ∈ (0, 1) is an index parameter, ϕ is a dispersion parameter,

and w ∈ (0, 1) is a mixture ratio. Then, its density function is defined as follows:

fZICP(y|x, β, ϕ, w) = wI(y = 0) + (1− w)fCP(y|x, ϕ, β), (3.41)

where I(·) is an indicator function. We assumed that all elements of Y , i.e., yij (i =

1, . . . , n; j = 1, . . . , p), are conditionally independent zero-inflated compound Poisson-

gamma distributed random variables with mean xij(θ), that is:

yij
cid∼ ZICP (xij , ϕ, β, w) (i = 1, . . . , n; j = 1, . . . , p). (3.42)

Then, the likelihood with respect to θ, ϕ, w is:

L(θ, ϕ, w|Y ) =

n∏
i=1

p∏
j=1

[wI(yij = 0) + (1− w)fCP(yij |xij , ϕ, β)]

=
n∏

i=1

p∏
j=1

[
wI(yij = 0) + (1− w)h(yij , ϕ, β) exp

{
1

ϕ

(
yijx

β−1
ij

β − 1
−

xβij
β

)}]
,

(3.43)

The objective function to be minimized with respect to θ, ϕ, and w is obtained as the

minus logarithm of (3.43) as follows:

Q(θ, ϕ, w) = −
n∑

i=1

p∑
j=1

log

[
wI(yij = 0) + (1− w)h(yij , ϕ, β) exp

{
1

ϕ

(
yijx

β−1
ij

β − 1
−

xβij
β

)}]
.

(3.44)

We are not directly using (3.44) to derive the update rules for θ, ϕ, and w because (3.44) is

difficult to differentiate with respect to these parameters. Instead of using the likelihood

(3.43), we use the complete likelihood function in the expectation-maximization (EM)

algorithm (Dempster et al., 1977; McLachlan and Krishnan, 2007). We consider latent

variables zij (i = 1, . . . , n; j = 1, . . . , p) such that

zij =

1 if yij ∼ 0

0 if yij ∼ CP (xij , ϕ, β),
(3.45)
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and assume that zij (i = 1, . . . , n; j = 1, . . . , p) is an identically and independently

Bernoulli-distributed random variable, that is,

zij ∼ Be(w), (3.46)

and hence the probability function of zij is

fzij (zij |w) = wzij (1− w)1−zij . (3.47)

We also define the conditional distribution of yij given zij from (3.45) as follows:

fyij |zij (yij |zij ,θ, ϕ) = {I(yij = 0)}zij
{
h(yij , ϕ, β) exp

{
1

ϕ

(
yijx

β−1
ij

β − 1
−

xβij
β

)}}1−zij

.

(3.48)

From (3.47) and (3.48), the joint distribution of yij and zij is as follows:

fyij ,zij (yij , zij |θ, ϕ, w)

= fyij |zij (yij |zij ,θ, ϕ)fzij (zij |w)

= {wI(yij = 0)}zij
{
(1− w)h(yij , ϕ, β) exp

{
1

ϕ

(
yijx

β−1
ij

β − 1
−

xβij
β

)}}1−zij

. (3.49)

The complete likelihood is defined as the joint distribution of Y and Z as follows:

L(θ, ϕ, w|Y ,Z) := fY ,Z(Y ,Z|θ, ϕ, w)

=

n∏
i=1

p∏
j=1

fyij ,zij (yij , zij |θ, ϕ, w)

=
n∏

i=1

p∏
j=1

{wI(yij = 0)}zij
{
(1− w)h(yij , ϕ, β) exp

{
1

ϕ

(
yijx

β−1
ij

β − 1
−

xβij
β

)}}1−zij

. (3.50)

Then, the new objective function is defined using the minus logarithm of (3.50), instead

of (3.44), as follows:

Qcomp(θ, ϕ, w) = −
n∑

i=1

p∑
j=1

[
ẑij log{w}+ (1− ẑij)

{
log{1− w}

+ log{h(yij , ϕ, β)}+
1

ϕ

(
yijx

β−1
ij

β − 1
−

xβij
β

)}]
(3.51)

where Ẑ is a conditional expected value of Z given Y , such that

ẑij = E[zij |yij ]

=
∑

zij∈{0,1}

zij
fyij ,zij (yij , zij |θ, ϕ, w)

fyij (yij |θ, ϕ, w)

=
wI(yij = 0)

wI(yij = 0) + (1− w)fCP(yij |xij , ϕ, β)

=


w

w + (1− w)h(0, ϕ, β) exp{−xβij/(ϕβ)})
if yij = 0

0 if yij ̸= 0.

(3.52)
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(3.52) is known as the update rule of Estep in the EM algorithm. From (3.51), the objective

function with respect to w is as follows:

Qw(w) = − log{w}
n∑

i=1

p∑
j=1

ẑij − log{1− w}
n∑

i=1

p∑
j=1

(1− ẑij). (3.53)

The partial derivative of (3.53) is as follows:

∂Qw(w)

∂w
= − 1

w

n∑
i=1

p∑
j=1

ẑij +
1

1− w

n∑
i=1

p∑
j=1

(1− ẑij). (3.54)

The optimal ŵ is obtained by setting (3.54) to 0 and solving the equation with respect to

w as follows:

ŵ =

∑n
i=1

∑p
j=1 ẑij

np
. (3.55)

From (3.51), the objective function to be minimized with respect to ϕ is as follows:

Qϕ(ϕ) = −
n∑

i=1

p∑
j=1

ẑ∗ij log{h(yij , ϕ, β)} −
1

ϕ

n∑
i=1

p∑
j=1

(
ẑ∗ijyijx

β−1
ij

β − 1
−

ẑ∗ijx
β
ij

β

)
. (3.56)

The optimal ϕ cannot be obtained analytically for the same reason described in Section

3.3. Hence, we use the BFGS quasi-Newton method (Byrd et al., 1995) in the same manner

as for CP.

From Chapter 4 to 7, we introduce an algorithm for each of the NMFs based on a

maximum likelihood estimation method as listed in Table 3.2. N2NMF and P2NMF are

the same as the NMFs proposed in Lee and Seung (2001). CP2NMF is an NMF of Nakano

et al. (2010) for β ∈ (0, 1). N2ONMF is the same as the NMF proposed in Pompili et al.

(2014). The algorithms of N3NMF, P3NMF, and CP3NMF are introduced in Cichocki

et al. (2009). The others NMFs written on colored cells in Table 3.2 are proposed by us.

Table 3.2: NMFs presented in this paper. The NMFs in gray cells are proposed methods.

Distribution
two-factor three-factor

non-orthogonal orthogonal non-orthogonal orthogonal

normal
N2NMF N2ONMF N3NMF N3ONMF

(Section 4.1) (Section 6.1) (Section 5.1) (Section 7.1)

Poisson
P2NMF P2ONMF P3NMF P3ONMF

(Section 4.2) (Section 6.2) (Section 5.2) (Section 7.2)

CP
CP2NMF CP2ONMF CP3NMF CP3ONMF

(Section 4.3) (Section 6.3) (Section 5.3) (Section 7.3)

ZICP
ZICP2NMF ZICP2ONMF ZICP3NMF ZICP3ONMF

(Section 4.4) (Section 6.4) (Section 5.4) (Section 7.4)

It is noted that the convergence of this algorithm is determined by the log-likelihood

value. However, we can use the corresponding divergence (3.11), (3.12), and (3.14) to
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determine the convergence of all algorithms except for that of using the zero-inflated

model.
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Chapter 4

Two-factor NMF

In this chapter, we describe four two-factor NMFs. The aim of all methods in this

chapter is to obtain estimates of the factor matrices, F ∈ Rn×k
+ and A ∈ Rp×k

+ , such

that X := FA′ is approximated to a given data matrix Y ∈ Rn×p
+ . All of the methods

are based on a maximum likelihood estimation method; hence, our goal is to obtain the

optimal parameters that minimize the objective function defined as the minus logarithm of

the likelihood. Since we cannot derive the global solution of all parameters simultaneously,

we attempt to derive an update rule for each parameter to at least decrease the objective

function given the other parameters, and to develop an iterative algorithm to optimize the

objective function.

4.1 Normal distribution

In this section we present details of two-factor NMF based on a normal distribution,

named N2NMF. The objective function is defined as (3.30), where θ = {F ,A} and X :=

FA′.

Update rules

We present the updates rules of the parameters, F and A. Note that the update rule

of σ2 is (3.31).

Update rule for F

From (3.30), the objective function to be minimized with respect to F is as follows:

QF (F ) = −2
n∑

i=1

p∑
j=1

yij

k∑
m=1

fimajm +
n∑

i=1

p∑
j=1

(
k∑

m=1

fimajm

)2

. (4.1)

It is difficult to obtain an optimal fim by differentiating (4.1) with respect to fim because

the simultaneous equation in fim (i = 1, . . . , n; m = 1, . . . , k) is complicated by the

summation of fim for m in the square function in the objective function. In this regard,

Lee and Seung (2001) tried to obtain an update rule of fim using the auxiliary function
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method described in Chapter 2. Now, we show the derivation of an update rule of fim by

using the auxiliary function method. We can find that the following function

f(x) = x2 (4.2)

is in the second term of (4.1). Obviously, this function is convex. Hence, we can use the

Jensen inequality to derive the auxiliary function of QF (F ). Then, we have(
k∑

m=1

fimajm

)2

=

(
k∑

m=1

λijm
fimajm
λijm

)2

≤
k∑

m=1

λijm

(
fimajm
λijm

)2

=
k∑

m=1

f2
ima2jm
λijm

(i = 1, . . . , n; j = 1, . . . , p) (4.3)

where λijm > 0 (i = 1, . . . , n; j = 1, . . . , p; m = 1, . . . , k) and
∑k

m=1 λijm = 1 (i =

1, . . . , n; j = 1, . . . , p). The equality is satisfied if and only if

fi1aj1
λij1

=
fi2aj2
λij2

= · · · =
fikajk
λijk

(i = 1, . . . , n; j = 1, . . . , p). (4.4)

If we define cij = fimajm/λijm then λijm = fimajm/cij , and hence we have cij =∑k
m=1 fimajm from

∑k
m=1 λijm = 1. Therefore, (4.4) implies

λijm =
fimajm∑k
u=1 fiuaju

(i = 1, . . . , n; j = 1, . . . , p; m = 1, . . . , k). (4.5)

Let f∗
im be current value of fim. If we replace (

∑k
m=1 fimajm)2 in (4.1) with∑k

m=1(f
2
ima2jm/λijm), that is, the final term in (4.3), and substitute

λijm =
f∗
imajm∑k

u=1 f
∗
iuaju

(i = 1, . . . , n; j = 1, . . . , p; m = 1, . . . , k) (4.6)

into
∑k

m=1(f
2
ima2jm/λijm), we obtain the following auxiliary function of QF (F ):

Qaux
F (F ,F ∗) = −2

n∑
i=1

p∑
j=1

yij

k∑
m=1

fimajm +

n∑
i=1

p∑
j=1

k∑
m=1

f2
imajm

∑k
u=1 f

∗
iuaju

f∗
im

. (4.7)

Of course it is satisfied that QF (F ) ≤ Qaux
F (F ,F ∗) for all F and F ∗ and QF (F ) =

Qaux
F (F ,F ∗) if and only if F = F ∗. Then, we derive an optimal f̂im that minimizes

Qaux
F (F ,F ∗) with respect to fim. The partial derivative of Qaux

F (F ,F ∗) with respect to

fim is as follows:

∂Qaux
F (F ,F ∗)

∂fim
= −2

p∑
j=1

yijajm + 2
fim
f∗
im

p∑
j=1

ajm

(
k∑

u=1

f∗
iuaju

)
. (4.8)

The optimal f̂im is obtained by setting (4.8) to 0 and solving the equation with respect to

fim as follows:

f̂im = f∗
im

∑p
j=1 yijajm∑p

j=1(
∑k

u=1 f
∗
iuaju)ajm

. (4.9)

(4.9) is an update rule of fim given the current value f∗
im (m = 1, . . . , k) and ajm (j =

1, . . . , p; m = 1, . . . , k). The matrix form of this update rule (4.9) is as follows:

F̂ = F ∗ ⊙ Y A

F ∗A′A
. (4.10)

27



Update rule for A

The minimization of the objective function (4.1) with respect to A takes the same form

as (4.1); in addition, we can obtain this update rule in a manner similar to that of F :

âjm = a∗jm

∑n
i=1 yijfim∑n

i=1(
∑k

u=1 fiua
∗
ju)fim

. (4.11)

The matrix form of (4.11) is

Â = A∗ ⊙ Y ′F

A∗F ′F
. (4.12)

Algorithm

From (4.10), (4.12), and (3.31), the N2NMF algorithm is presented in Algorithm 3. Here,

τ is a threshold to terminate the algorithm and υ is the maximum number of iterative

cycles. Through Algorithm 3, the sequence of log-likelihood L(0), L(1), . . . is of course

monotonically non-decreasing.

Algorithm 3 N2NMF Algorithm

1: Input Y ∈ Rn×p
+ , k ∈ N, F (0) ∈ Rn×k

+ , A(0) ∈ Rp×k
+ , τ > 0, and υ ∈ N

2: t← 0

3: X(t) ← F (t)A(t)′

4: (σ(t))2 ← 1

np
∥Y −X(t)∥2

5: L(t) ←
n∑

i=1

p∑
j=1

log fN

(
yij

∣∣∣x(t)ij , (σ
(t))2

)
6: repeat

7: t← t+ 1

8: F (t) ← F (t−1) ⊙ Y A(t−1)

F (t−1)A(t−1)′A(t−1)

9: A(t) ← A(t−1) ⊙ Y ′F (t)

A(t−1)F (t)′F (t)

10: X(t) ← F (t)A(t)′

11: (σ(t))2 ← 1

np
∥Y −X(t)∥2

12: L(t) ←
n∑

i=1

p∑
j=1

log fN

(
yij

∣∣∣x(t)ij , (σ
(t))2

)
13: until L(t) − L(t−1) < τ or t = υ

14: Output F (t), A(t), and (σ(t))2

4.2 Poisson distribution

In this section we present details of two-factor NMF based on a Poisson distribution,

named P2NMF. The objective function is defined as (3.35), where θ = {F ,A} and X :=

FA′.
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Update rules

Below, we show the update rules of the parameters, F and A.

Update rule for F

From (3.35), the objective function to be minimized with respect to F is as follows:

QF (F ) =
n∑

i=1

p∑
j=1

k∑
m=1

fimajm +
n∑

i=1

p∑
j=1

yij

{
− log

{
k∑

m=1

fimajm

}}
. (4.13)

It is difficult to obtain an optimal fim by differentiating this objective function with respect

to fim because the summation of fim for m exists in the minus logarithm function in the

objective function. Lee and Seung (2001) provides an update rule of this fim in a manner

similar to that of the method based on normal distribution described in Section 4.1 using

the auxiliary function method. We can find that the following function

f(x) = − log{x} (4.14)

is in the second term of (4.13). This function is convex and we can use the Jensen inequality

to derive an auxiliary function. Hence, we have

− log

{
k∑

m=1

fimajm

}
= − log

{
k∑

m=1

λijm
fimajm
λijm

}
≤ −

k∑
m=1

λijm log

{
fimajm
λijm

}
(4.15)

with equality if and only if (4.5). If we replace − log{
∑k

m=1 fimajm} in (4.13) with

−
∑k

m=1 λijm log{fimajm/λijm}, that is, the final term in (4.15), and substitute (4.6) into

−
∑k

m=1 λijm log{fimajm/λijm}, we obtain the following auxiliary function of QF (F ):

Qaux
F (F ,F ∗) =

n∑
i=1

p∑
j=1

k∑
m=1

fimajm

−
n∑

i=1

p∑
j=1

yij

k∑
m=1

(
f∗
imajm∑k

u=1 f
∗
iuaju

)
log

{
fim(

∑k
u=1 f

∗
iuaju)

f∗
im

}
. (4.16)

It is satisfied that QF (F ) ≤ Qaux
F (F ,F ∗) for all F and F ∗ and QF (F ) = Qaux

F (F ,F ∗) if

and only if F = F ∗. Then, we derive an optimal f̂im that minimizes Qaux
F (F ,F ∗) with

respect to fim. The partial derivative of Qaux
F (F ,F ∗) with respect to fim is as follows:

∂Qaux
F (F ,F ∗)

∂fim
=

p∑
j=1

ajm −
f∗
im

fim

p∑
j=1

(
yij∑k

u=1 f
∗
iuaju

)
ajm. (4.17)

The optimal f̂im is obtained by setting (4.17) to 0 and solving the equation with respect

to fim as follows:

f̂im = f∗
im

∑p
j=1{yij/(

∑k
u=1 f

∗
iuaju)}ajm∑p

j=1 ajm
. (4.18)

The matrix form of this update rule (4.18) is as follows:

F̂ = F ∗ ⊙ {Y /(F ∗A′)}A
En×pA

. (4.19)
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Update rule for A

The minimization of the objective function (3.35) with respect to A takes the same form

as (4.13); in addition, we can obtain this update rule in a manner similar to that of F :

âjm = a∗jm

∑n
i=1{yij/(

∑k
u=1 fiua

∗
ju)}fim∑n

i=1 fim
. (4.20)

The matrix form of (4.20) is

Â = A∗ ⊙ {Y /(FA∗′)}′F
Ep×nF

. (4.21)

Algorithm

From (4.19) and (4.21), the P2NMF algorithm is presented in Algorithm 4.

Algorithm 4 P2NMF Algorithm

1: Input Y ∈ Rn×p
+ , k ∈ N, F (0) ∈ Rn×k

+ , A(0) ∈ Rp×k
+ , τ > 0, and υ ∈ N

2: t← 0

3: X(t) ← F (t)A(t)′

4: L(t) ←
n∑

i=1

p∑
j=1

log fP

(
yij

∣∣∣x(t)ij

)
5: repeat

6: t← t+ 1

7: F (t) ← F (t−1) ⊙ {Y /(F (t−1)A(t−1)′)}A(t−1)

En×pA(t−1)

8: A(t) ← A(t−1) ⊙ {Y /(F (t−1)A(t−1)′)}′F (t)

Ep×nF (t)

9: X(t) ← F (t)A(t)′

10: L(t) ←
n∑

i=1

p∑
j=1

log fP

(
yij

∣∣∣x(t)ij

)
11: until L(t) − L(t−1) < τ or t = υ

12: Output F (t) and A(t)

4.3 Compound Poisson-gamma distribution

In this section we present details of two-factor NMF based on a compound Poisson-

gamma distribution, named CP2NMF. The objective function is defined as (3.39), where

θ = {F ,A} and X := FA′.

Update rules

We show the update rules of the parameters, F and A. ϕ is obtained as described in

Section 3.3.
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Update rule for F

From (3.39), the objective function to be minimized with respect to F is as follows:

QF (F ) =

n∑
i=1

p∑
j=1

(
(
∑k

m=1 fimajm)β

β
−

yij(
∑k

m=1 fimajm)β−1

β − 1

)
. (4.22)

It is difficult to obtain an optimal fim by differentiating this objective function with respect

to fim because the summation of fim for m exists in the β and β − 1 power functions.

Actually, this objective function is the same objective function of two-factor NMF based

on β-divergence, and Févotte and Idier (2011) and Nakano et al. (2010) derive the update

rule of the factor matrices given some ranges of β. First, Févotte and Idier (2011) derived

it for the case of 1 ≤ β ≤ 2, and then, Nakano et al. (2010) provided it for the other case of

β. Both of these research groups used an auxiliary function method to derive the update

rule in the same manner as section 4.1 and section 4.2. However, Févotte and Idier (2011)

only used the Jensen inequality to derive the update rule because both of the functions

in the first and second terms of (4.22), that is, f(x) = xβ/β and f(x) = −xβ−1/(β − 1),

respectively, are convex if 1 ≤ β ≤ 2. On the other hand, Nakano et al. (2010) pointed

out that the former function is concave if β < 1 and the latter function is also concave if

β > 2, in which case they not only used the Jensen inequality but also the inequality of a

concave function in response to the value of β. In this section, we only present the case

of 0 < β < 1, which pertains to the compound Poisson-gamma distribution. The function

in the first term, f(x) = xβ/β, is concave if 0 < β < 1. Hence, we have

f(x) ≤ f(λ) + f ′(λ)(x− λ) (4.23)

for any λ with equality if and only if x = λ. From this inequality, we have

(
∑k

m=1 fimajm)β

β
≤

ηβij
β

+ ηβ−1
ij

(
k∑

m=1

fimajm − ηij

)
= ηβ−1

ij

k∑
m=1

fimajm + ηβij

(
1

β
− 1

)
(i = 1, . . . , n; j = 1, . . . , p). (4.24)

The equality is satisfied if and only if

ηij =
k∑

m=1

fimajm (i = 1, . . . , n; j = 1, . . . , p). (4.25)

On the other hand, the function in the second term, f(x) = −xβ−1/(β − 1), is convex if

0 < β < 1, and hence we can use the Jensen inequality. Therefore, we have

−
(
∑k

m=1 fimajm)β−1

β − 1
= − 1

β − 1

(
k∑

m=1

λijm
fimajm
λijm

)β−1

≤ − 1

β − 1

k∑
m=1

λijm

(
fimajm
λijm

)β−1

= − 1

β − 1

k∑
m=1

(
fβ−1
im aβ−1

jm

λβ−2
ijm

)
(i = 1, . . . , n; j = 1, . . . , p). (4.26)
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The equality is satisfied if and only if (4.5). If we replace

(
∑k

m=1 fimajm)β

β
and −

(
∑k

m=1 fimajm)β−1

β − 1

in (4.22) with

ηβ−1
ij

k∑
m=1

fimajm + ηβij

(
1

β − 1

)
and − 1

β − 1

k∑
m=1

(
fβ−1
im aβ−1

jm

λβ−2
ijm

)
,

that is, the final term in (4.24) and (4.26), respectively, and substitute

ηij =
k∑

m=1

f∗
imajm (i = 1, . . . , n; j = 1, . . . , p) (4.27)

and (4.6) into the replaced (4.22), we obtain the following auxiliary function of QF (F ):

Qaux
F (F ,F ∗) =

n∑
i=1

p∑
j=1

{(
k∑

u=1

f∗
iuaju

)β−1 k∑
m=1

fimajm +

(
k∑

u=1

f∗
iuaju

)β(
1

β
− 1

)

− 1

β − 1
yij

(
k∑

u=1

f∗
iuaju

)β−2 k∑
m=1

(
fβ−1
im ajm

f∗β−2
im

)}
(4.28)

Then, we derive an optimal f̂im that minimizes Qaux
F (F ,F ∗) with respect to fim. The

partial derivative of Qaux
F (F ,F ∗) with respect to fim is as follows:

∂Qaux
F (F ,F ∗)

∂fim
=

p∑
j=1

(
k∑

u=1

f∗
iuaju

)β−1

ajm − fβ−2
im

p∑
j=1

yij

(
k∑

u=1

f∗
iuaju

)β−2
ajm

f∗β−2
im

. (4.29)

The optimal f̂im is obtained by setting (4.29) to 0 and solving the equation with respect

to fim as follows:

f̂im = f∗
im

{∑p
j=1 yij(

∑k
u=1 f

∗
iuaju)

β−2ajm∑p
j=1(

∑k
u=1 f

∗
iuaju)

β−1ajm

} 1
2−β

. (4.30)

The matrix form of this update rule (4.30) is as follows:

F̂ = F ∗ ⊙
[
{Y ⊙ (F ∗A′)β−2}A
{(F ∗A′)β−1}A

] 1
two−β

. (4.31)

Update rule for A

The minimization of the objective function (3.39) with respect to A takes the same form

as (4.22); in addition, we can obtain this update rule in a manner similar to that of F :

âjm = a∗jm

{∑n
i=1 yij(

∑k
u=1 fiua

∗
ju)

β−2fim∑n
i=1(

∑k
u=1 fiua

∗
ju)

β−1fim

} 1
2−β

. (4.32)
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The matrix form of (4.32) is

Â = A∗ ⊙

[
{Y ′ ⊙ (A∗F ′)β−2}F
{(A∗F ′)β−1}F

] 1
2−β

. (4.33)

Together (4.31) and (4.33) indicate that CP2NMF is a generalization of N2NMF or

P2NMF. When β = 1, these update rules are equivalent to (4.19) and (4.21), respec-

tively. On the other hand, when β = 2, the formulas of these update rules are equivalent

to (4.10) and (4.12), respectively except for the exponent part, 1/(2 − β). Nakano et al.

(2010) found that their formulas are the same for all β except for the exponent part.

Algorithm

The CP2NMF algorithm, which is derived from (4.31), (4.33), and the discussion in

Section 3.3 about optimal ϕ, is presented in Algorithm 5. Note that we limit the number

of times ϕ is updated to prevent the computational time from becoming excessively large.

We update ϕ for the first δ iterations; then, for the remaining iterative cycles, we update

it at every κ-th iteration.

Algorithm 5 CP2NMF Algorithm

1: Input Y ∈ Rn×p
+ , β ∈ (0, 1), k ∈ N, F (0) ∈ Rn×k

+ , A(0) ∈ Rp×k
+ , ϕ(0) > 0, τ > 0,

υ ∈ N, δ ∈ N, and κ ∈ N
2: t← 0

3: X(t) ← F (t)A(t)′

4: L(t) ←
n∑

i=1

p∑
j=1

log fCP

(
yij

∣∣∣x(t)ij , ϕ
(t), β

)
5: repeat

6: t← t+ 1

7: F (t) ← F (t−1) ⊙

[
{Y ⊙ (F (t−1)A(t−1)′)β−2}A(t−1)

{(F (t−1)A(t−1)′)β−1}A(t−1)

] 1
2−β

8: A(t) ← A(t−1) ⊙

[
{Y ′ ⊙ (A(t−1)F (t)′)β−2}F (t)

{(A(t−1)F (t)′)β−1}F (t)

] 1
2−β

9: if t ≤ δ or t mod κ = 0 then

10:
ϕ(t) is obtained as the optimal ϕ that optimizes Qϕ(ϕ) given F (t), A(t), and

β using the BFGS quasi-Newton method with constraints ϕ > 0

11: end if

12: X(t) ← F (t)A(t)′

13: L(t) ←
n∑

i=1

p∑
j=1

log fCP

(
yij

∣∣∣x(t)ij , ϕ
(t), β

)
14: until L(t) − L(t−1) < τ or t = υ

15: Output F (t), A(t), and ϕ(t)
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4.4 Zero-inflated compound Poisson-gamma distribution

In this section we present details of two-factor NMF based on a zero-inflated compound

Poisson-gamma distribution, named ZICP2NMF. The objective function is defined as

(3.44), where θ = {F ,A} and X := FA′. However, the update rule of F and A is

obtained as these optimizers, which minimize (3.51). This method was proposed by Abe

and Yadohisa (2016).

Update rules

We show the update rule of the parameters, F and A. The update rules of Ẑ and w is

obtained as (3.52) and (3.55). ϕ is obtained as described in Section 3.3. The estimation

of w, F , A, and ϕ is known as the Mstep in the EM algorithm.

Update rule for F

From (3.51), the objective function to be minimized with respect to F is as follows:

QF (F ) =
1

ϕ

n∑
i=1

p∑
j=1

(
ẑ∗ij(
∑k

m=1 fimajm)β

β
−

ẑ∗ijyij(
∑k

m=1 fimajm)β−1

β − 1

)
, (4.34)

where ẑ∗ij := 1 − z∗ij . This objective function is similar to that of (4.22); however, the

weight value in this case is ẑ∗ij . Since z∗ij is positive, we can use the Jensen inequality to

convert the second term into a function existing in the upper bound of the second term.

The first term can also be converted into a function existing in the upper bound of the first

term using inequality (4.23). Hence, the update rule of F is derived in the same manner

as described in Section 4.3. These update rules of both the element and matrix forms are

as follows:

f̂im = f∗
im

{∑p
j=1 ẑ

∗
ijyij(

∑k
u=1 f

∗
iuaju)

β−2ajm∑p
j=1 ẑ

∗
ij(
∑k

u=1 f
∗
iuaju)

β−1ajm

} 1
2−β

, (4.35)

F̂ = F ∗ ⊙

[
{Ẑ∗ ⊙ Y ⊙ (F ∗A′)β−2}A
{Ẑ∗ ⊙ (F ∗A′)β−1}A

] 1
2−β

. (4.36)

Update rule for A

The minimization of the objective function (3.51) with respect to A takes the same form

as (4.34); in addition, we can obtain this update rule in a manner similar to that of F :

âjm = a∗jm

{∑n
i=1 ẑ

∗
ijyij(

∑k
u=1 fiua

∗
ju)

β−2fim∑n
i=1 ẑ

∗
ij(
∑k

u=1 fiua
∗
ju)

β−1fim

} 1
2−β

. (4.37)

The matrix form of (4.37) is

Â = A∗ ⊙

[
{Ẑ∗ ⊙ Y ′ ⊙ (A∗F ′)β−2}F
{Ẑ∗ ⊙ (A∗F ′)β−1}F

] 1
2−β

. (4.38)
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When ẑij = 0 for all i and j, that is, all elements of Y are compound Poisson-gamma

distributed, (4.36) and (4.38) are the same as (4.31) and (4.33), respectively. Therefore,

ZICP2NMF is a generalized method of CP2NMF.

Algorithm

The ZICP2NMF algorithm, which is based on (3.52), (3.55), (4.36), (4.38), and the

discussion in Section 3.3 about an optimal ϕ, is presented in Algorithm 6. Note that we

limit the number of times ϕ is updated in the same manner as for CP2NMF.
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Algorithm 6 ZICP2NMF Algorithm

1: Input Y ∈ Rn×p
+ , β ∈ (0, 1), k ∈ N, F (0) ∈ Rn×k

+ , A(0) ∈ Rp×k
+ , w(0) ∈ (0, 1), ϕ(0) > 0,

τ > 0, υ ∈ N, δ ∈ N, and κ ∈ N
2: t← 0

3: X(t) ← F (t)A(t)′

4: z
(t)
ij ←


w(t)

w(t) + (1− w(t))h(0, ϕ(t), β) exp{−(x(t)ij )
β/(ϕ(t)β)})

if yij = 0

0 if yij ̸= 0

(i = 1, . . . , n; j = 1, . . . , p)

5: Z∗(t) ← En×p −Z(t)

6: L(t) ←
n∑

i=1

p∑
j=1

log
{
w(t)I(yij = 0) + (1− w(t))fCP(yij |x(t)ij , ϕ

(t), β)
}

7: repeat

8: t← t+ 1

9: w(t) ←
∑n

i=1

∑p
j=1 z

(t−1)
ij

np

10: F (t) ← F (t−1) ⊙

[
{Z∗(t−1) ⊙ Y ⊙ (F (t−1)A(t−1)′)β−2}A(t−1)

{Z∗(t−1) ⊙ (F (t−1)A(t−1)′)β−1}A(t−1)

] 1
2−β

11: A(t) ← A(t−1) ⊙

[
{Z∗(t−1) ⊙ Y ′ ⊙ (A(t−1)F (t)′)β−2}F (t)

{Z∗(t−1) ⊙ (A(t−1)F (t)′)β−1}F (t)

] 1
2−β

12: if t ≤ δ or t mod κ = 0 then

13:
ϕ(t) is obtained as the optimal ϕ that optimizes Qϕ(ϕ) given F (t), A(t),

Z∗(t−1), and β using the BFGS quasi-Newton method with constraints ϕ > 0

14: end if

15: X(t) ← F (t)A(t)′

16: z
(t)
ij ←


w(t)

w(t) + (1− w(t))h(0, ϕ(t), β) exp{−(x(t)ij )
β/(ϕ(t)β)})

if yij = 0

0 if yij ̸= 0

(i = 1, . . . , n; j = 1, . . . , p)

17: Z∗(t) ← En×p −Z(t)

18: L(t) ←
n∑

i=1

p∑
j=1

log
{
w(t)I(yij = 0) + (1− w(t))fCP(yij |x(t)ij , ϕ

(t), β)
}

19: until L(t) − L(t−1) < τ or t = υ

20: Output F (t), A(υ), Z(t), and ϕ(ν)
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Chapter 5

Three-factor NMF

In this chapter, we describe four three-factor NMFs. The aim of all methods in this

chapter is to obtain estimates of the factor matrices, F ∈ Rn×k
+ , S ∈ Rk×ℓ

+ , and A ∈ Rp×ℓ
+ ,

such that X := FSA′ is approximated to a given data matrix Y ∈ Rn×p
+ . Basically, the

update rules of F and A have the same form as those of the two-factor NMFs described

in Chapter 4. On the other hand, the center factor matrix S is not as straightforward.

5.1 Normal distribution

In this section we present details of the three-factor NMF based on a normal distribution,

named N3NMF. The objective function is defined as (3.30), where θ = {F ,S,A} and

X := FSA′.

Update rules

We show the update rules of the parameters, F , S, and A. Note that the update rule

of σ2 is (3.31).

Update rule for F

If we treat AS′ as the right hand factor matrix in a two-factor NMF, the form of the

objective function with respect to F is the same as that of (4.1). Hence, we can obtain

the update rule of F in the same form as (4.9) and (4.10) as follows:

f̂im = f∗
im

∑p
j=1 yij

∑ℓ
q=1 smqajq∑p

j=1(
∑k

r=1

∑ℓ
c=1 f

∗
irsrcajc)

∑ℓ
q=1 smqajq

, (5.1)

F̂ = F ∗ ⊙ Y AS′

F ∗SA′AS′ . (5.2)

Update rule for A

We can obtain an update rule of A as a same form of F :

âjm = a∗jm

∑n
i=1 yij

∑k
m=1 fimsmq∑n

i=1(
∑k

r=1

∑ℓ
c=1 firsrca

∗
jc)
∑k

m=1 fimsmq

. (5.3)
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Â = A∗ ⊙ Y ′FS

A∗S′F ′FS
. (5.4)

Update rule for S

From (3.30), the objective function to be minimized with respect to S is as follows:

QS(S) = −2
n∑

i=1

p∑
j=1

yij

k∑
m=1

ℓ∑
q=1

fimsmqajq +
n∑

i=1

p∑
j=1

(
k∑

m=1

ℓ∑
q=1

fimsmqajq

)2

. (5.5)

It is difficult to obtain an optimal smq by differentiating this objective function with

respect to smq because the summation of smq for m and q exists in the square function in

(5.5). However, we can use the auxiliary function method in a manner similar to N2NMF

because the second term in (5.5) contains a square function that is convex. From the

Jensen inequality, we have(
k∑

m=1

ℓ∑
q=1

fimsmqajq

)2

=

(
k∑

m=1

ℓ∑
q=1

λijmq
fimsmqajq

λijmq

)2

≤
k∑

m=1

ℓ∑
q=1

λijmq

(
fimsmqajq

λijmq

)2

=

k∑
m=1

ℓ∑
q=1

f2
ims2mqa

2
jq

λijmq

(i = 1, . . . , n; j = 1, . . . , p), (5.6)

where

λijmq > 0 (i = 1, . . . , n; j = 1, . . . , p; m = 1, . . . , k; q = 1, . . . , ℓ)

and

k∑
m=1

ℓ∑
q=1

λijmq = 1 (i = 1, . . . , n; j = 1, . . . , p).

The equality is satisfied if and only if

fi1s11aj1
λij11

=
fi1s12aj2
λij12

= · · · =
fi1s1ℓajℓ
λij1ℓ

=
fi2s21aj1
λij21

=
fi2s22aj2
λij22

= · · · =
fi2s2ℓajℓ
λij2ℓ

= · · · =fiksk1aj1
λijk1

=
fiksk2aj2
λijk2

= · · · =
fikskℓajℓ
λijkℓ

(i = 1, . . . , n; j = 1, . . . , p). (5.7)

If we define cij = fimsmqajq/λijmq then λijmq = fimsmqajq/cij and hence we have

cij =
k∑

m=1

ℓ∑
q=1

fimsmqajq

from
∑k

m=1

∑ℓ
q=1 λijmq = 1. Therefore, (5.7) implies

λijmq =
fimsmqajq∑k

r=1

∑ℓ
c=1 firsrcajc

(i = 1, . . . , n; j = 1, . . . , p; m = 1, . . . , k; q = 1, . . . , ℓ).

(5.8)
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Let s∗mq be the current value of smq. If we replace (
∑k

m=1

∑ℓ
q=1 fimsmqajq)

2 in (5.5) with∑k
m=1

∑ℓ
q=1 f

2
ims2mqa

2
jq/λijmq, that is, the final term in (5.6), and substitute

λijmq =
fims∗mqajq∑k

r=1

∑ℓ
c=1 firs

∗
rcajc

(i = 1, . . . , n; j = 1, . . . , p; m = 1, . . . , k; q = 1, . . . , ℓ)

(5.9)

into
∑k

m=1

∑ℓ
q=1 f

2
ims2mqa

2
jq/λijmq, we obtain the following auxiliary function of QS(S):

Qaux
S (S,S∗) =− 2

n∑
i=1

p∑
j=1

yij

k∑
m=1

ℓ∑
q=1

fimsmqajq

+

n∑
i=1

p∑
j=1

k∑
m=1

ℓ∑
q=1

fims2mqajq

∑k
r=1

∑ℓ
c=1 firs

∗
rcajc

s∗mq

. (5.10)

Of course it is satisfied that QS(S) ≤ Qaux
S (S,S∗) for all S and F S and QS(S) =

Qaux
S (S,S∗) if and only if S = S∗. Then, we derive an optimal ŝmq that minimizes

Qaux
S (S,S∗) with respect to smq. The partial derivative of Qaux

S (S,S∗) with respect to

smq is as follows:

∂Qaux
S (S,S∗)

∂smq
= −2

n∑
i=1

p∑
j=1

yijfimajq + 2
smq

s∗mq

n∑
i=1

p∑
j=1

fimajq

(
k∑

r=1

ℓ∑
c=1

firs
∗
rcajc

)
. (5.11)

The optimal ŝmq is obtained by setting (5.11) to 0 and solving the equation with respect

to smq as follows:

ŝmq = s∗mq

∑n
i=1

∑p
j=1 yijfimajq∑n

i=1

∑p
j=1(

∑k
r=1

∑ℓ
c=1 firs

∗
rcajc)fimajm

. (5.12)

(5.12) is an update rule of smq given its current value s∗mq (m = 1, . . . , k; q = 1, . . . , ℓ),

fim (i = 1, . . . , n; m = 1, . . . , k), ajq (j = 1, . . . , p; q = 1, . . . , ℓ). The matrix form of this

update rule (5.1) is as follows:

vec(Ŝ) = vec(S∗)⊙ (A⊗ F )′vec(Y )

(A⊗ F )′(A⊗ F )vec(S)
. (5.13)

(5.13) is derived from another perspective. The approximation Y ≈ FSA′ can be rewrit-

ten using the vectorization form as vec(Y ) ≈ vec(FSA′) = (A ⊗ F )vec(S). On the

other hand, when we focus on the column vector of Y , that is, y(j), we can rewrite the

approximation equation of N2NMF as y(j) ≈ Faj , and hence the update equation of aj

is described as

âj = a∗
j ⊙

F ′y(j)

F ′Fa∗
j

(5.14)

from (4.12). A comparison of the two approximation,

vec(Y ) ≈ vec(FSA′) = (A⊗ F )vec(S)

of N3NMF and y(j) ≈ Faj of N2NMF, and (5.14) enable us to derive (5.13).
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Algorithm

The N3NMF algorithm, which is based on (5.2), (5.4), (5.13), and (3.31), is presented

in Algorithm 7.

Algorithm 7 N3NMF Algorithm

1: Input Y ∈ Rn×p
+ , k ∈ N, ℓ ∈ N, F (0) ∈ Rn×k

+ , S(0) ∈ Rk×ℓ
+ , A(0) ∈ Rp×ℓ

+ , τ > 0, and

υ ∈ N
2: t← 0

3: X(t) ← F (t)S(t)A(t)′

4: (σ(t))2 ← 1

np
∥Y −X(t)∥2

5: L(t) ←
n∑

i=1

p∑
j=1

log fN

(
yij

∣∣∣x(t)ij , (σ
(t))2

)
6: repeat

7: t← t+ 1

8: F (t) ← F (t−1) ⊙ Y A(t−1)S(t−1)′

F (t−1)S(t−1)A(t−1)′A(t−1)S(t−1)′

9: A(t) ← A(t−1) ⊙ Y ′F (t)S(t−1)

A(t−1)S(t−1)′F (t)′F (t)S(t−1)

10: vec(S(t))← vec(S(t−1))⊙ (A(t) ⊗ F (t))′vec(Y )

(A(t) ⊗ F (t))′(A(t) ⊗ F (t))vec(S(t−1))

11: X(t) ← F (t)S(t)A(t)′

12: (σ(t))2 ← 1

np
∥Y −X(t)∥2

13: L(t) ←
n∑

i=1

p∑
j=1

log fN

(
yij

∣∣∣x(t)ij , (σ
(t))2

)
14: until L(t) − L(t−1) < τ or t = υ

15: Output F (t), S(t), A(t), and (σ(t))2

5.2 Poisson distribution

In this section we present details of the three-factor NMF based on a Poisson distribu-

tion, named P3NMF. The objective function is defined as (3.35), where θ = {F ,S,A}
and X := FSA′.

Update rules

Below, we show the update rules of the parameters, F , S, and A.

Update rule for F

As N3NMF, the update rule of F is given in the same form of (4.18) and (4.19) as

follows:

f̂im = f∗
im

∑p
j=1{yij/(

∑k
r=1

∑ℓ
c=1 f

∗
irsrcajc)}

∑ℓ
q=1 smqajq∑p

j=1

∑ℓ
q=1 smqajq

, (5.15)
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F̂ = F ∗ ⊙ {Y /(F ∗SA′)}AS′

En×pAS′ . (5.16)

Update rule for A

We can obtain an update rule of A in a same form as F :

âjm = a∗jm

∑n
i=1{yij/(

∑k
r=1

∑ℓ
c=1 frusrca

∗
jc)}

∑k
m=1 fimsmq∑n

i=1

∑k
m=1 fimsmq

, (5.17)

Â = A∗ ⊙ {Y /(FSA∗′)}′FS

Ep×nFS
. (5.18)

Update rule for S

From (3.35), the objective function to be minimized with respect to S is as follows:

QS(S) =
n∑

i=1

p∑
j=1

k∑
m=1

ℓ∑
q=1

fimsmqajq +
n∑

i=1

p∑
j=1

yij

{
− log

{
k∑

m=1

ℓ∑
q=1

fimsmqajq

}}
. (5.19)

It is difficult to obtain an optimal smq by differentiating this objective function with respect

to smq because the summation of smq for m and q exists in the minus logarithm function

in the objective function. However, the auxiliary function method is available to derive

the update rule of S. As P2NMF, we can apply the Jensen inequality to the second term

of (5.19) that contains a minus logarithm function, which is convex. From the Jensen

inequality, we have

− log

{
k∑

m=1

ℓ∑
q=1

fimsmqajq

}
= − log

{
k∑

m=1

ℓ∑
q=1

λijmq
fimsmqajq

λijmq

}

≤ −
k∑

m=1

ℓ∑
q=1

λijmq log

{
fimsmqajq

λijmq

}
(5.20)

with equality if and only if (5.8). If we replace − log{
∑k

m=1

∑ℓ
q=1 fimsmqajq} in (5.19) with

−
∑k

m=1

∑ℓ
q=1 λijmq log{fimsmqajq/λijmq}, that is, the final term in (5.20), and substitute

(5.9) into −
∑k

m=1

∑ℓ
q=1 λijmq log{fimsmqajq/λijmq}, we obtain the following auxiliary

function of QS(S):

Qaux
S (S,S∗)

=

n∑
i=1

p∑
j=1

k∑
m=1

ℓ∑
q=1

fimsmqajq

−
n∑

i=1

p∑
j=1

yij

k∑
m=1

ℓ∑
q=1

(
fims∗mqajq∑k

r=1

∑ℓ
c=1 frus

∗
rcajc

)
log

{
smq(

∑k
r=1

∑ℓ
c=1 firs

∗
rcajc)

s∗mq

}
.

(5.21)

41



Then, we derive an optimal ŝmq that minimize Qaux
S (S,S∗) with respect to smq. The

partial derivative of Qaux
S (S,S∗) with respect to smq is as follows:

∂Qaux
S (S,S∗)

∂smq
=

n∑
i=1

p∑
j=1

fimajq −
s∗mq

smq

n∑
i=1

p∑
j=1

(
yij∑k

r=1

∑ℓ
c=1 firs

∗
rcajc

)
fimajq. (5.22)

The optimal ŝmq is obtained by setting (5.22) to 0 and solving the equation with respect

to smq as follows:

ŝmq = s∗mq

∑n
i=1

∑p
j=1{yij/(

∑k
r=1

∑ℓ
c=1 firs

∗
rcajc)}fimajq∑n

i=1

∑p
j=1 fimajq

. (5.23)

The matrix form of this update rule (5.23) is as follows:

vec(Ŝ) = vec(S∗)⊙ (A⊗ F )′[vec(Y )/{(A⊗ F )vec(S)}]
(A⊗ F )′1np

. (5.24)

Algorithm

The P3NMF algorithm, which is derived from (5.16), (5.18), and (5.24), is presented in

Algorithm 8.

Algorithm 8 P3NMF Algorithm

1: Input Y ∈ Rn×p
+ , k ∈ N, ℓ ∈ N, F (0) ∈ Rn×k

+ , S(0) ∈ Rk×ℓ
+ , A(0) ∈ Rp×ℓ

+ , τ > 0, and

υ ∈ N
2: t← 0

3: X(t) ← F (t)S(t)A(t)′

4: L(t) ←
n∑

i=1

p∑
j=1

log fP

(
yij

∣∣∣x(t)ij

)
5: repeat

6: t← t+ 1

7: F (t) ← F (t−1) ⊙ {Y /(F (t−1)S(t−1)A(t−1)′)}A(t−1)S(t−1)′

En×pA(t−1)S(t−1)′

8: A(t) ← A(t−1) ⊙ {Y /(F (t)S(t−1)A(t−1)′)}′F (t)S(t−1)

Ep×nF (t)S(t−1)

9: vec(S(t))← vec(S(t−1))⊙ (A(t) ⊗ F (t))′[vec(Y )/{(A(t) ⊗ F (t))vec(S(t−1))}]
(A(t) ⊗ F (t))′1np

10: X(t) ← F (t)S(t)A(t)′

11: L(t) ←
n∑

i=1

p∑
j=1

log fP

(
yij

∣∣∣x(t)ij

)
12: until L(t) − L(t−1) < τ or t = υ

13: Output F (t), S(t), and A(t)

5.3 Compound Poisson-gamma distribution

In this section we present details of three-factor NMF based on a compound Poisson-

gamma distribution, named CP3NMF. The objective function is defined as (3.39), where

θ = {F ,S,A} and X := FSA′.
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Update rules

Below, we show the update rules of the parameters, F , S, and A. ϕ is obtained as

described in Section 3.3.

Update rule for F

For N3NMF and P3NMF, the update rule of F is given in the same form as two-factor

NMF, that is, (4.30) and (4.31), as follows:

f̂im = f∗
im

{∑p
j=1 yij(

∑k
r=1

∑ℓ
c=1 f

∗
irsrcajc)

β−2
∑ℓ

q=1 smqajq∑p
j=1(

∑k
r=1

∑ℓ
c=1 f

∗
irsrcajc)

β−1
∑ℓ

q=1 smqajq

} 1
2−β

. (5.25)

F̂ = F ∗ ⊙

[
{Y ⊙ (F ∗SA′)β−2}AS′

{(F ∗SA′)β−1}AS′

] 1
2−β

. (5.26)

Update rule for A

We can obtain an update rule of A in the same form as F :

âjm = a∗jm

{∑n
i=1 yij(

∑k
r=1

∑ℓ
c=1 frusrca

∗
jc)

β−2
∑k

m=1 fimsmq∑n
i=1(

∑k
r=1

∑ℓ
c=1 firsrca

∗
jc)

β−1
∑k

m=1 fimsmq

} 1
2−β

, (5.27)

Â = A∗ ⊙

[
{Y ⊙ (FSA∗′)β−2}′FS

{(FSA∗′)β−1}′FS

] 1
2−β

. (5.28)

Update rule for S

From (3.39), the objective function to be minimized with respect to S is as follows:

QS(S) =

n∑
i=1

p∑
j=1

(
(
∑k

m=1

∑ℓ
q=1 fimsmqajq)

β

β
−

yij(
∑k

m=1

∑ℓ
q=1 fimsmqajq)

β−1

β − 1

)
.

(5.29)

For CP2NMF, we can apply the Jensen inequality and inequality (4.23) to the first term

and second term, respectively, to derive the auxiliary function of (5.29) with respect to S.

From (4.23), we have

(
∑k

m=1

∑ℓ
q=1 fimsmqajq)

β

β
≤

ηβij
β

+ ηβ−1
ij

(
k∑

m=1

ℓ∑
q=1

fimsmqajq − ηij

)

= ηβ−1
ij

k∑
m=1

ℓ∑
q=1

fimsmqajq + ηβij

(
1

β
− 1

)
(i = 1, . . . , n; j = 1, . . . , p). (5.30)
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The equality is satisfied if and only if

ηij =
k∑

m=1

ℓ∑
q=1

fimsmqajq (i = 1, . . . , n; j = 1, . . . , p). (5.31)

On the other hand, from the Jensen inequality, we have

−
(
∑k

m=1

∑ℓ
q=1 fimsmqajq)

β−1

β − 1
= − 1

β − 1

(
k∑

m=1

ℓ∑
q=1

λijmq
fimsmqajq

λijmq

)β−1

≤ − 1

β − 1

k∑
m=1

ℓ∑
q=1

λijmq

(
fimsmqajq

λijmq

)β−1

= − 1

β − 1

k∑
m=1

ℓ∑
q=1

(
fβ−1
im sβ−1

mq aβ−1
jm

λβ−2
ijm

)
(i = 1, . . . , n; j = 1, . . . , p). (5.32)

The equality is satisfied if and only if (5.8). If we replace

(
∑k

m=1

∑ℓ
q=1 fimsmqajq)

β

β
and −

(
∑k

m=1

∑ℓ
q=1 fimsmqajq)

β−1

β − 1

in (5.29) with

ηβ−1
ij

k∑
m=1

ℓ∑
q=1

fimsmqajq + ηβij

(
1

β − 1

)
and − 1

β − 1

k∑
m=1

ℓ∑
q=1

(
fβ−1
im sβ−1

mq aβ−1
jm

λβ−2
ijm

)
,

that is, the final term in (5.30) and (5.32), respectively, and substitute

ηij =

k∑
m=1

ℓ∑
q=1

fims∗mqajq (i = 1, . . . , n; j = 1, . . . , p) (5.33)

and (5.9) into the replaced (5.29), we obtain the following auxiliary function of QS(S):

Qaux
S (S,S∗) =

n∑
i=1

p∑
j=1

{(
k∑

r=1

ℓ∑
c=1

firs
∗
rcajc

)β−1 k∑
m=1

ℓ∑
q=1

fimsmqajq

+

(
k∑

r=1

ℓ∑
c=1

firs
∗
rcajc

)β(
1

β
− 1

)

− 1

β − 1
yij

(
k∑

r=1

ℓ∑
q=1

firs
∗
rcajc

)β−2 k∑
m=1

ℓ∑
q=1

(
fimsβ−1

mq ajq

s∗β−2
mq

)}
.

(5.34)

Then, we derive an optimal ŝmq that minimizes Qaux
S (S,S∗) with respect to smq. The

partial derivative of Qaux
S (S,S∗) with respect to fim is as follows:

∂Qaux
S (S,S∗)

∂fim
=

n∑
i=1

p∑
j=1

(
k∑

r=1

ℓ∑
c=1

firs
∗
rcajc

)β−1

fimajq

− sβ−2
mq

n∑
i=1

p∑
j=1

yij

(
k∑

r=1

ℓ∑
c=1

firs
∗
rcajc

)β−2
fimajm

s∗β−2
mq

. (5.35)
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The optimal ŝmq is obtained by setting (5.35) to 0 and solving the equation with respect

to smq as follows:

ŝmq = s∗mq

{∑n
i=1

∑p
j=1 yij(

∑k
r=1

∑ℓ
c=1 firs

∗
rcajc)

β−2fimajq∑n
i=1

∑p
j=1(

∑k
r=1

∑ℓ
c=1 firs

∗
rcajc)

β−1fimajq

} 1
2−β

. (5.36)

The matrix form of this update rule (5.36) is as follows:

vec(Ŝ) = vec(S∗)⊙

[
(A⊗ F )′[vec(Y )⊙ {(A⊗ F )vec(S∗)}β−2]

(A⊗ F )′{(A⊗ F )vec(S∗)}β−1

] 1
2−β

. (5.37)

Together, the factorizations (5.26), (5.28), and (5.37), indicate that CP3NMF is a gener-

alization of N3NMF or P3NMF, as is the case with CP2NMF.

Algorithm

The CP3NMF algorithm, which is based on (5.26), (5.28), (5.37), and the discussion in

Section 3.3 about optimal ϕ, is presented in Algorithm 9.

Algorithm 9 CP3NMF Algorithm

1: Input Y ∈ Rn×p
+ , β ∈ (0, 1), k ∈ N, ℓ ∈ N, F (0) ∈ Rn×k

+ , S(0) ∈ Rk×ℓ
+ , A(0) ∈ Rp×ℓ

+ ,

ϕ(0) > 0, τ > 0, υ ∈ N, δ ∈ N, and κ ∈ N
2: t← 0

3: X(t) ← F (t)S(t)A(t)′

4: L(t) ←
n∑

i=1

p∑
j=1

log fCP

(
yij

∣∣∣x(t)ij , ϕ
(t), β

)
5: repeat

6: t← t+ 1

7: F (t) ← F (t−1) ⊙

[
{Y ⊙ (F (t−1)S(t−1)A(t−1)′)β−2}A(t−1)S(t−1)′

{(F (t−1)S(t−1)A(t−1)′)β−1}A(t−1)S(t−1)′

] 1
2−β

8: A(t) ← A(t−1) ⊙

[
{Y ⊙ (F (t)S(t−1)A(t−1)′)β−2}′F (t)S(t−1)

{(F (t)S(t−1)A(t−1)′)β−1}′F (t)S(t−1)

] 1
2−β

9: vec(Ŝ)← vec(S∗)⊙

[
(A(t) ⊗ F (t))′[vec(Y )⊙ {(A(t) ⊗ F (t))vec(S(t−1))}β−2]

(A(t) ⊗ F (t))′{(A(t) ⊗ F (t))vec(S(t−1))}β−1

] 1
2−β

10: if t ≤ δ or t mod κ = 0 then

11:
ϕ(t) is obtained as the optimal ϕ that optimizes Qϕ(ϕ) given F (t), S(t), A(t),

and β using the BFGS quasi-Newton method with constraints ϕ > 0

12: end if

13: X(t) ← F (t)S(t)A(t)′

14: L(t) ←
n∑

i=1

p∑
j=1

log fCP

(
yij

∣∣∣x(t)ij , ϕ
(t), β

)
15: until L(t) − L(t−1) < τ or t = υ

16: Output F (t), S(t), A(t), and ϕ(t)
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5.4 Zero-inflated compound Poisson-gamma distribution

In this section we present details of three-factor NMF based on a zero-inflated compound

Poisson-gamma distribution, named ZICP3NMF. From the perspective of an approxima-

tion matrix, ZICP3NMF is the three-factor version of ZICP2NMF. On the other hand,

from the perspective of an error distribution, it is a zero-inflated version of CP3NMF. The

objective function is defined as (3.44), where θ = {F ,S,A} and X := FSA′. However,

the update rule of F , S, and A is obtained as the optimizer, which minimizes (3.51).

Update rules

We show the update rules of the parameters, F , S, and A. The update rule of Ẑ and

w is obtained as (3.52) and (3.55). ϕ is obtained as described in Section 3.3.

Update rule for F

From (3.44), the objective function to be minimized with respect to F is as follows:

QF (F )

=
1

ϕ

n∑
i=1

p∑
j=1

(
ẑ∗ij(
∑k

m=1

∑ℓ
q=1 fimsmqajq)

β

β
−

ẑ∗ijyij(
∑k

m=1

∑ℓ
q=1 fimsmqajq)

β−1

β − 1

)
.

(5.38)

This objective function is similar to (5.29) but is weighted by z∗ij . Therefore, the update

rule of F is obtained in a form similar to (5.25) and (5.26) but each of the i, j elements is

weighted by z∗ij .

f̂im = f∗
im

{∑p
j=1 z

∗
ijyij(

∑k
r=1

∑ℓ
c=1 f

∗
irsrcajc)

β−2
∑ℓ

q=1 smqajq∑p
j=1 z

∗
ij(
∑k

r=1

∑ℓ
c=1 f

∗
irsrcajc)

β−1
∑ℓ

q=1 smqajq

} 1
2−β

, (5.39)

F̂ = F ∗ ⊙

[
{Z∗ ⊙ Y ⊙ (F ∗SA′)β−2}AS′

{Z∗ ⊙ (F ∗SA′)β−1}AS′

] 1
2−β

. (5.40)

Update rule for A

We can obtain an update rule of A in the same form as F :

âjm = a∗jm

{∑n
i=1 z

∗
ijyij(

∑k
r=1

∑ℓ
c=1 frusrca

∗
jc)

β−2
∑k

m=1 fimsmq∑n
i=1 z

∗
ij(
∑k

r=1

∑ℓ
c=1 firsrca

∗
jc)

β−1
∑k

m=1 fimsmq

} 1
2−β

, (5.41)

Â = A∗ ⊙

[
{Z∗ ⊙ Y ⊙ (FSA∗′)β−2}′FS

{Z∗ ⊙ (FSA∗′)β−1}′FS

] 1
2−β

. (5.42)
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Update rule for S

In the same way as F and A, we can obtain the update rule for S similar to that of

(5.36) and (5.37).

ŝmq = s∗mq

{∑n
i=1

∑p
j=1 z

∗
ijyij(

∑k
r=1

∑ℓ
c=1 firs

∗
rcajc)

β−2fimajq∑n
i=1

∑p
j=1 z

∗
ij(
∑k

r=1

∑ℓ
c=1 firs

∗
rcajc)

β−1fimajq

} 1
2−β

, (5.43)

vec(Ŝ) = vec(S∗)⊙

[
(A⊗ F )′[vec(Z∗)⊙ vec(Y )⊙ {(A⊗ F )vec(S∗)}β−2]

(A⊗ F )′{(A⊗ F )vec(S∗)}β−1

] 1
2−β

= vec(S∗)⊙

[
(A⊗ F )′[vec(Z∗ ⊙ Y ⊙ vec(FS∗A′)β−2]

(A⊗ F )′vec(FS∗A′)β−1

] 1
2−β

. (5.44)

Algorithm

The ZICP3NMF algorithm, which is based on (3.52), (3.55), (5.40), (5.42), (5.44), and

the discussion in 3.3 about optimal ϕ, is presented in Algorithm 10.
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Algorithm 10 ZICP3NMF Algorithm

1: Input Y ∈ Rn×p
+ , β ∈ (0, 1), k ∈ N, ℓ ∈ N, F (0) ∈ Rn×k

+ , S(0) ∈ Rk×ℓ
+ A(0) ∈ Rp×ℓ

+ ,

w(0) ∈ (0, 1), ϕ(0) > 0, τ > 0, υ ∈ N, δ ∈ N, and κ ∈ N
2: t← 0

3: X(t) ← F (t)S(t)A(t)′

4: z
(t)
ij ←


w(t)

w(t) + (1− w(t))h(0, ϕ(t), β) exp{−(x(t)ij )
β/(ϕ(t)β)})

if yij = 0

0 if yij ̸= 0

(i = 1, . . . , n; j = 1, . . . , p)

5: Z∗(t) ← En×p −Z(t)

6: L(t) ←
n∑

i=1

p∑
j=1

log
{
w(t)I(yij = 0) + (1− w(t))fCP(yij |x(t)ij , ϕ

(t), β)
}

7: repeat

8: t← t+ 1

9: w(t) ←
∑n

i=1

∑p
j=1 z

(t−1)
ij

np

10: F (t) ← F (t−1) ⊙

[
{Z∗(t−1) ⊙ Y ⊙ (F (t−1)S(t−1)A(t−1)′)β−2}A(t−1)S(t−1)′

{Z∗(t−1) ⊙ (F (t−1)S(t−1)A(t−1)′)β−1}A(t−1)S(t−1)′

] 1
2−β

11: A(t) ← A(t−1) ⊙

[
{Z∗(t−1) ⊙ Y ⊙ (F (t)S(t−1)A(t−1)′)β−2}′F (t)S(t−1)

{Z∗(t−1) ⊙ (F (t)S(t−1)A(t−1)′)β−1}′F (t)S(t−1)

] 1
2−β

12: vec(S(t))

← vec(S(t−1))⊙

[
(A(t) ⊗ F (t))′vec{Z∗(t−1) ⊙ Y ⊙ (F (t)S(t−1)A(t)′)β−2}

(A(t) ⊗ F (t))′vec(F (t)S(t−1)A(t))β−1

] 1
2−β

13: if t ≤ δ or t mod κ = 0 then

14:
ϕ(t) is obtained as the optimal ϕ that optimizes Qϕ(ϕ) given F (t), S(t) A(t),

Z∗(t−1), and β using the BFGS quasi-Newton method with constraints ϕ > 0

15: end if

16: X(t) ← F (t)S(t)A(t)′

17: z
(t)
ij ←


w(t)

w(t) + (1− w(t))h(0, ϕ(t), β) exp{−(x(t)ij )
β/(ϕ(t)β)})

if yij = 0

0 if yij ̸= 0

(i = 1, . . . , n; j = 1, . . . , p)

18: Z∗(t) ← En×p −Z(t)

19: L(t) ←
n∑

i=1

p∑
j=1

log
{
w(t)I(yij = 0) + (1− w(t))fCP(yij |x(t)ij , ϕ

(t), β)
}

20: until L(t) − L(t−1) < τ or t = υ

21: Output F (t), S(t), A(υ), Z(t), w(t), and ϕ(ν)
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Chapter 6

Two-factor orthogonal NMF

In this chapter, we present four two-factor orthogonal NMFs. The objective of these

methods is to obtain estimators of F ∈ Rn×k
+ and A ∈ Rp×k

+ such that X := FA′ is

approximated to a given data matrix Y with column orthogonality constraints on F .

Clusters Rm (m = 1, . . . , k) and R, which are used in this chapter, represent the m-th row

cluster and a set of row clusters, respectively, as defined in Section 3.2.

6.1 Normal distribution

In this section we present details of two-factor orthogonal NMF based on a normal

distribution, named N2ONMF. This method was proposed by Pompili et al. (2014) and

they named this method “Weighted Spherical k-means.”

Objective function

From (3.30), the objective function to be minimized with respect to F , A, and σ2 is

Q(F ,A, σ2) =
np

2
log{σ2}+ 1

2σ2
∥Y − FA′∥2 + const. (6.1)

Hence, the optimization problem is as follows:

argmin
F ,A,σ2

{Q(F ,A, σ2)}

subject to F ∈ Rn×k
+ ,A ∈ Rp×k

+ , and f ′
(m)f(u) = 0 (m ̸= u). (6.2)

The objective function (6.1) is invariant to changes in the length of each column vector of

A because the following is satisfied:

Q(F ,A, σ2) =
np

2
log{σ2}+ 1

2σ2
∥Y − FDAD−1

A A′∥2 + const

=
np

2
log{σ2}+ 1

2σ2
∥Y − F ⋆A⋆′∥2 + const, (6.3)

where F ⋆ = FDA and A⋆ = AD−1
A . Then, we have

f⋆′
(m)f

⋆
(u) = 0 (m ̸= u) and diag(A⋆′A⋆) = Ik. (6.4)
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According to (6.3) and (6.4), the optimization problem of N2ONMF can be rewritten as

argmin
F ,A,σ2

Q(F ,A, σ2)

subject to F ∈ Rn×k
+ ,A ∈ Rp×k

+ ,f ′
(m)f(u) = 0 (m ̸= u), and diag(A′A) = Ik. (6.5)

It is noted that F satisfies (3.7) under the condition in (6.5).

Update rules

We show the update rules of the parameters, F and A. Note that the update rule of

σ2 is (3.31).

Update rule for F

The discussion in section 3.2 enables us to divide the optimization problem of F into

that of R and fim (i ∈ Rm; m = 1, . . . , k). Hence, the objective function with respect to

F and A can be written as follows:

QF ,A(F ,A) =

n∑
i=1

∥∥∥∥∥yi −
k∑

m=1

fima(m)

∥∥∥∥∥
2

=

k∑
m=1

∑
i∈Rm

∥yi − fima(m)∥2 (∵ (3.7))

=
k∑

m=1

∑
i∈Rm

{y′
iyi − 2fimy′

ia(m) + f2
ima′

(m)a(m)} (∵ diag(A′A) = Ik)

=
k∑

m=1

∑
i∈Rm

{−2fimy′
ia(m) + f2

im}+ const. (6.6)

Hence, the minimizer of fim (i = 1, . . . , n; m = 1, . . . , k) for (6.6) given R and A is

fim =

y′
ia(m) if i ∈ Rm

0 if i /∈ Rm

(i = 1, . . . , n; m = 1, . . . , k). (6.7)

Substituting (6.7) into (6.6) and rearranging the terms proportional to the parameters,

we obtain

QR,A(R,A) =

k∑
m=1

∑
i∈Rm

{
− (y′

ia(m))
2
}
. (6.8)

Therefore, the problem of minimizing QF ,A(F ,A) is the same as the problem of minimiz-

ing QR,A(R,A). Given A, the minimizers of R for QR,A(R,A) are derived by, e.g., a

k-means algorithm such that

Rm =

{
i

∣∣∣∣ argmax
u

(y′
ia(u)) = m

}
(m = 1, . . . , k). (6.9)
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Update rule for A

Because (6.8) can be rewritten such that

QR,A(R,A) = −
k∑

m=1

∥Yma(m)∥2 (6.10)

where Ym (m = 1, . . . , k) is a |Rm|×p submatrix of Y consisting of the row vectors of Rm,

the minimizer of a(m), given R, can be obtained as the first nonnegative singular vector

of Y ′
m as follows:

a(m) = ∆(Y ′
m) (m = 1, . . . , k). (6.11)

Algorithm

The N2ONMF algorithm, which is derived from (6.7), (6.9), (6.11), and (3.31), is pre-

sented in Algorithm 11.

Algorithm 11 N2ONMF Algorithm

1: Input Y ∈ Rn×p
+ , k ∈ N, A(0) ∈ Rp×k

+ (diag(A(0)′A(0)) = Ik), τ > 0, and υ ∈ N
2: t← 0

3: R
(t)
m ←

{
i

∣∣∣∣ argmax
u

(y′
ia

(t)
(u)) = m

}
(m = 1, . . . , k)

4: Set Y
(t)
m as the submatrix of Y consisting of the row vectors of R

(t)
m for m = 1, . . . , k

5: f
(t)
im ←

y′
ia

(t)
(m) if i ∈ Rm

0 if i /∈ Rm

(i = 1, . . . , n; m = 1, . . . , k)

6: X(t) ← F (t)A(t)′

7: (σ(t))2 ← 1

np
∥Y −X(t)∥2

8: L(t) ←
n∑

i=1

p∑
j=1

log fN

(
yij

∣∣∣x(t)ij , (σ
(t))2

)
9: repeat

10: t← t+ 1

11: a(m) ← ∆(Y
(t−1)′
m ) (m = 1, . . . , k)

12: R
(t)
m ←

{
i

∣∣∣∣ argmax
r

(y′
ia

(t)
(r)) = m

}
(m = 1, . . . , k)

13: Set Y
(t)
m as the submatrix of Y consisting of the row vectors of R

(t)
m for m = 1, . . . , k

14: f
(t)
im ←

y′
ia

(t)
(m) if i ∈ Rm

0 if i /∈ Rm

(i = 1, . . . , n; m = 1, . . . , k)

15: X(t) ← F (t)A(t)′

16: (σ(t))2 ← 1

np
∥Y −X(t)∥2

17: L(t) ←
n∑

i=1

p∑
j=1

log fN

(
yij

∣∣∣x(t)ij , (σ
(t))2

)
18: until L(t) − L(t−1) < τ or t = υ

19: Output F (t), A(t), R(t) and (σ(t))2
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6.2 Poisson distribution

In this section we present details of two-factor orthogonal NMF based on a Poisson

distribution, named P2ONMF.

Objective function

From (3.35), the objective function to be minimized with respect to F and A is

Q(F ,A) = −
n∑

i=1

p∑
j=1

yij log

{
k∑

m=1

fimajm

}
+

n∑
i=1

p∑
j=1

k∑
m=1

fimajm + const. (6.12)

Hence, the optimization problem is as follows:

argmin
F ,A

{Q(F ,A)}

subject to F ∈ Rn×k
+ ,A ∈ Rp×k

+ , and f ′
(m)f(u) = 0 (m ̸= u). (6.13)

Update rules

We show the update rules of the parameters, F and A.

Update rule for F

For N2ONMF, the optimization problem of F is divided into that of R and fim (i ∈
Rm; m = 1, . . . , k). The objective function with respect to F and A can be written as

follows:

QF ,A(F ,A) =

n∑
i=1

p∑
j=1

(
− yij log

{
k∑

m=1

fimajm

}
+

k∑
m=1

fimajm

)

=
k∑

m=1

∑
i∈Rm

p∑
j=1

[−yij log {fimajm}+ fimajm] (∵ (3.7)). (6.14)

From (6.14), the minimizer of fim (i = 1, . . . , n; m = 1, . . . , k) for (6.14) given R and A is

fim =


∑p

j=1 yij∑p
j=1 ajm

if i ∈ Rm

0 if i /∈ Rm

(i = 1, . . . , n; m = 1, . . . , k). (6.15)

Substituting (6.15) into (6.14) and rearranging the terms proportional to the parameters,

we obtain

QR,A(R,A) = −
k∑

m=1

∑
i∈Rm

p∑
j=1

yij log

{
ajm∑p
s=1 asm

}
. (6.16)

Therefore, the problem of minimizing QF ,A(F ,A) is the same as the problem of min-

imizing QR,A(R,A). Given A, the minimizers of R for QR,A(R,A) are derived such

that

Rm =

{
i

∣∣∣∣∣ argmax
u

{
p∑

j=1

yij log

{
aju∑p
s=1 asu

}}
= m

}
(m = 1, . . . , k). (6.17)
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Update rule for A

Note that (6.16) is rewritten as

QR,A(R,A) =
k∑

m=1

∑
i∈Rm

p∑
j=1

yij log

{
p∑

s=1

asm

}
−

k∑
m=1

∑
i∈Rm

p∑
j=1

yij log{ajm}. (6.18)

It is difficult to directly obtain the minimizer of ajm with respect to (6.18) because the

summation of ajm occurs in the log function. However, we can obtain the optimal ajm

using the auxiliary function method. Because the log function f(x) = log(x) is concave,

we obtain the following auxiliary function from the inequality (4.23):

Qaux
A (A) =

k∑
m=1

∑
i∈Rm

p∑
j=1

yij

{
log λm +

1

λm

(
p∑

s=1

asm − λm

)}

−
k∑

m=1

∑
i∈Rm

p∑
j=1

yij log{ajm}, (6.19)

where λm =
∑p

s=1 a
∗
sm (m = 1, . . . , k). Therefore, we obtain the following update equation

of ajm as a minimizer with respect to (6.19):

ajm =

∑p
s=1 a

∗
sm

∑
i∈Rm

yij∑
i∈Rm

∑p
s=1 yis

(j = 1, . . . , p; m = 1, . . . , k). (6.20)

Algorithm

The P2ONMF algorithm, which is based on (6.15), (6.17), and (6.20), is presented in

Algorithm 12.

6.3 Compound Poisson-gamma distribution

In this section we present details of two-factor orthogonal NMF based on a compound

Poisson-gamma distribution, named CP2ONMF.

Objective function

From (3.39), the objective function to be minimized with respect to F , A, and ϕ is

Q(F ,A, ϕ) =−
n∑

i=1

p∑
j=1

log{h(yij , ϕ, β)}

− 1

ϕ

n∑
i=1

p∑
j=1

(
yij(
∑k

m=1 fimajm)β−1

β − 1
−

(
∑k

m=1 fimajm)β

β

)
. (6.21)

Hence, the optimization problem is as follows:

argmin
F ,A,ϕ

{Q(F ,A, ϕ)}

subject to F ∈ Rn×k
+ ,A ∈ Rp×k

+ , and f ′
(m)f(u) = 0 (m ̸= u). (6.22)
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Algorithm 12 P2ONMF Algorithm

1: Input Y ∈ Rn×p
+ , k ∈ N, A(0) ∈ Rp×k

+ , τ > 0, and υ ∈ N
2: t← 0

3: R
(t)
m ←

{
i

∣∣∣∣∣ argmax
u

{∑p
j=1 yij log

{
a
(t)
ju∑p

s=1 a
(t)
su

}}
= m

}
(m = 1, . . . , k)

4: f
(t)
im ←


∑p

j=1 yij∑p
j=1 a

(t)
jm

if i ∈ R
(t)
m

0 if i /∈ R
(t)
m

(i = 1, . . . , n; m = 1, . . . , k)

5: X(t) ← F (t)A(t)′

6: L(t) ←
n∑

i=1

p∑
j=1

log fP

(
yij

∣∣∣x(t)ij

)
7: repeat

8: t← t+ 1

9: a
(t)
jm ←

∑p
s=1 a

∗(t−1)
sm

∑
i∈R(t−1)

m
yij∑

i∈R(t−1)
m

∑p
s=1 yis

(j = 1, . . . , p; m = 1, . . . , k)

10: R
(t)
m ←

{
i

∣∣∣∣∣ argmax
u

{∑p
j=1 yij log

{
a
(t)
ju∑p

s=1 a
(t)
su

}}
= m

}
(m = 1, . . . , k)

11: f
(t)
im ←


∑p

j=1 yij∑p
j=1 a

(t)
jm

if i ∈ R
(t)
m

0 if i /∈ R
(t)
m

(i = 1, . . . , n; m = 1, . . . , k)

12: X(t) ← F (t)A(t)′

13: L(t) ←
n∑

i=1

p∑
j=1

log fP

(
yij

∣∣∣x(t)ij

)
14: until L(t) − L(t−1) < τ or t = υ

15: Output F (t), A(t), and R(t)

Update rules

We show the update rules of the parameters, F and A. ϕ is obtained as described in

Section 3.3.

Update rule for F

For N2ONMF and P2ONMF, the optimization problem of F is divided into that of R
and fim (i ∈ Rm; m = 1, . . . , k). The objective function with respect to F and A can be

written as follows:

QF ,A(F ,A) =
1

β

n∑
i=1

p∑
j=1

(
k∑

m=1

fimajm

)β

− 1

β − 1

n∑
i=1

p∑
j=1

yij

(
k∑

m=1

fimajm

)β−1

=
1

β

k∑
m=1

∑
i∈Rm

fβ
im

p∑
j=1

aβjm −
1

β − 1

k∑
m=1

∑
i∈Rm

fβ−1
im

p∑
j=1

yija
β−1
jm (∵ (3.7)).

(6.23)
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The minimizer of fim (i = 1, . . . , n; m = 1, . . . , k) for (6.23) given R and A is

fim =


∑p

j=1 yija
β−1
jm∑p

j=1 a
β
jm

if i ∈ Rm

0 if i /∈ Rm

(i = 1, . . . , n; m = 1, . . . , k). (6.24)

Substituting (6.24) into (6.23) and rearranging the terms proportional to the parameters,

we obtain

QR,A(R,A) = − 1

β(β − 1)

k∑
m=1

∑
i∈Rm

{∑p
j=1 yija

β−1
jm

}β{∑p
j=1 a

β
jm

}β−1
. (6.25)

Therefore, the problem of minimizing QF ,A(F ,A) is the same as the problem of min-

imizing QR,A(R,A). Given A, the minimizers of R for QR,A(R,A) are derived such

that

Rm =

{
i

∣∣∣∣∣ argmin
u

{{∑p
j=1 yija

β−1
ju

}β{∑p
j=1 a

β
ju

}β−1

}
= m

}
(m = 1, . . . , k). (6.26)

Update rule for A

It is difficult to directly obtain the minimizer of ajm with respect to (6.25) because the

summation of ajm occurs in the two power functions. However, we can obtain the optimal

ajm using the auxiliary function method. We can find that the following bivariate function

f(x, y) = − 1

β(β − 1)
(yβ/xβ−1) (6.27)

is in the (6.25). In fact, (6.27) is concave if 0 < β < 1 as can easily be proven. Therefore,

we have

f(x, y) ≤ f(λ, η) + fx(λ, η)(x− λ) + fy(λ, η)(y − η) (6.28)

for any λ and η with equality if and only if x = λ and y = η. From this inequality, we

obtain the following auxiliary function of (6.25) for ajm:

Qaux
A (A,A∗) =

k∑
m=1

∑
i∈Rm

{
− 1

β(β − 1)

ηβim

λβ−1
m

+
1

β

(
ηim
λm

)β( p∑
j=1

aβjm − λm

)

+
1

1− β

(
ηim
λm

)β−1( p∑
j=1

yija
β−1
jm − ηim

)}
, (6.29)

where

λm =

p∑
s=1

a∗βsm (m = 1, . . . , k) (6.30)

and ηim =

p∑
s=1

yisa
∗β−1
sm (i = 1, . . . n; m = 1, . . . , k). (6.31)
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It is clear that (2.2) and (2.3) also hold for (6.29). Hence, the minimizer of A with respect

to (6.29) is at least the optimal A, which is monotonically non-increasing for (6.25).

Finally, we obtain the minimizer of ajm with respect to (6.29) as follows:

ajm =
(
∑p

s=1 a
∗β
sm)

∑
i∈Rm

(
∑p

s=1 yisa
∗β−1
sm )β−1yij∑

i∈Rm
(
∑p

s=1 yisa
∗β−1
sm )β

(j = 1, . . . , p; m = 1, . . . , k). (6.32)

Algorithm

The CP2ONMF algorithm, which is based on (6.24), (6.26), (6.32), and the discussion

in Section 3.3 about optimal ϕ, is presented in Algorithm 13.

6.4 Zero-inflated compound Poisson-gamma distribution

In this section we present details of the two-factor orthogonal NMF based on a zero-

inflated compound Poisson-gamma distribution, named ZICP2ONMF. This method is an

extended version of CP2ONMF and from another perspective, it is a restricted version of

ZICP2NMF.

Objective function

From (3.44), the objective function is

Q(F ,A, w, ϕ)

=−
n∑

i=1

p∑
j=1

log

[
wI(yij = 0)

+ (1− w)h(yij , ϕ, β) exp

{
1

ϕ

(
yij(
∑k

m=1 fimajm)β−1

β − 1
−

(
∑k

m=1 fimajm)β

β

)}]
. (6.33)

Hence, the optimization problem is as follows:

argmin
F ,A,w,ϕ

{Q(F ,A, w, ϕ)}

subject to F ∈ Rn×k
+ ,A ∈ Rp×k

+ , and f ′
(m)f(u) = 0 (m ̸= u). (6.34)

However, the update rule of F , A, w, and ϕ is obtained as these optimizers, which minimize

(3.51).

Update rules

We show the update rules of the parameters F and A. The update rule of Ẑ and w is

obtained as (3.52) and (3.55). ϕ is obtained as described in Section 3.3.
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Algorithm 13 CP2ONMF Algorithm

1: Input Y ∈ Rn×p
+ , β ∈ (0, 1), k ∈ N, A(0) ∈ Rp×k

+ , ϕ(0) > 0, τ > 0, υ ∈ N, δ ∈ N, and
κ ∈ N

2: t← 0

3: R
(t)
m ←

{
i

∣∣∣∣∣ argmin
u

{{∑p
j=1 yij(a

(t)
ju )

β−1
}β{∑p

j=1(a
(t)
ju )

β
}β−1

}
= m

}
(m = 1, . . . , k)

4: f
(t)
im ←


∑p

j=1 yij(a
(t)
jm)β−1∑p

j=1(a
(t)
jm)β

if i ∈ R
(t)
m

0 if i /∈ R
(t)
m

(i = 1, . . . , n; m = 1, . . . , k)

5: X(t) ← F (t)A(t)′

6: L(t) ←
n∑

i=1

p∑
j=1

log fCP

(
yij

∣∣∣x(t)ij , ϕ
(t), β

)
7: repeat

8: t← t+ 1

9:
a
(t)
jm ←

{
∑p

s=1(a
(t−1)
sm )β}

∑
i∈R(t−1)

m
{
∑p

s=1 yis(a
(t−1)
sm )β−1}β−1yij∑

i∈R(t−1)
m
{
∑p

s=1 yis(a
(t−1)
sm )β−1}β

(j = 1, . . . , p; m = 1, . . . , k)

10: R
(t)
m ←

{
i

∣∣∣∣∣ argmin
u

{{∑p
j=1 yij(a

(t)
ju )

β−1
}β{∑p

j=1(a
(t)
ju )

β
}β−1

}
= m

}
(m = 1, . . . , k)

11: f
(t)
im ←


∑p

j=1 yij(a
(t)
jm)β−1∑p

j=1(a
(t)
jm)β

if i ∈ R
(t)
m

0 if i /∈ R
(t)
m

(i = 1, . . . , n; m = 1, . . . , k)

12: if t ≤ δ or t mod κ = 0 then

13:
ϕ(t) is obtained as the optimal ϕ that optimizes Qϕ(ϕ) given F (t), A(t), and

β using the BFGS quasi-Newton method with constraints ϕ > 0

14: end if

15: X(t) ← F (t)A(t)′

16: L(t) ←
n∑

i=1

p∑
j=1

log fCP

(
yij

∣∣∣x(t)ij , ϕ
(t), β

)
17: until L(t) − L(t−1) < τ or t = υ

18: Output F (t), A(t), R(t), and ϕ(t)

Update rule for F

For N2ONMF, P2ONMF, and CP2ONMF, the optimization problem of F is divided

into that of R and fim (i ∈ Rm; m = 1, . . . , k). From (3.51), the objective function with
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respect to F and A can be written as follows:

QF ,A(F ,A) =
1

β

n∑
i=1

p∑
j=1

ẑ∗ij

(
k∑

m=1

fimajm

)β

− 1

β − 1

n∑
i=1

p∑
j=1

ẑ∗ijyij

(
k∑

m=1

fimajm

)β−1

=
1

β

k∑
m=1

∑
i∈Rm

fβ
im

p∑
j=1

ẑ∗ija
β
jm −

1

β − 1

k∑
m=1

∑
i∈Rm

fβ−1
im

p∑
j=1

ẑ∗ijyija
β−1
jm (∵ (3.7)).

(6.35)

The minimizer of fim (i = 1, . . . , n; m = 1, . . . , k) for (6.23) given R and A is

fim =


∑p

j=1 ẑ
∗
ijyija

β−1
jm∑p

j=1 ẑ
∗
ija

β
jm

if i ∈ Rm

0 if i /∈ Rm

(i = 1, . . . , n; m = 1, . . . , k). (6.36)

Substituting (6.36) into (6.35) and rearranging the terms proportional to the parameters,

we obtain

QR,A(R,A) = − 1

β(β − 1)

k∑
m=1

∑
i∈Rm

{∑p
j=1 ẑ

∗
ijyija

β−1
jm

}β{∑p
j=1 ẑ

∗
ija

β
jm

}β−1
. (6.37)

Therefore, the problem of minimizing QF ,A(F ,A) is the same as the problem of min-

imizing QR,A(R,A). Given A, the minimizers of R for QR,A(R,A) are derived such

that

R̂m =

{
i

∣∣∣∣∣ argmin
u

{{∑p
j=1 ẑ

∗
ijyija

β−1
ju

}β{∑p
j=1 ẑ

∗
ija

β
ju

}β−1

}
= m

}
(m = 1, . . . , k). (6.38)

Update rule for A

It is difficult to directly obtain the minimizer of ajm with respect to (6.37) because

the summation of ajm is in the two power functions. However, we can derive the auxil-

iary function as in the case of CP2ONMF. The inequality (6.28) allows us to obtain the

following auxiliary function of (6.37) for ajm:

Qaux
A (A,A∗) =

k∑
m=1

∑
i∈Rm

{
− 1

β(β − 1)

ηβim

λβ−1
im

+
1

β

(
ηim
λim

)β( p∑
j=1

ẑ∗ija
β
jm − λim

)

+
1

1− β

(
ηim
λim

)β−1( p∑
j=1

ẑ∗ijyija
β−1
jm − ηim

)}
, (6.39)

where

λim =

p∑
s=1

ẑ∗isa
∗β
sm (i = 1, . . . , n; m = 1, . . . , k) (6.40)

and ηim =

p∑
s=1

ẑ∗isyisa
∗β−1
sm (i = 1, . . . n; m = 1, . . . , k). (6.41)

Finally, we obtain the minimizer of ajm with respect to (6.39) as follows:

âjm =

∑
i∈Rm

(ηim/λim)β−1ẑ∗ijyij∑
i∈Rm

(ηim/λim)β ẑ∗ij
(j = 1, . . . , p; m = 1, . . . , k). (6.42)
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Algorithm

The ZICP2ONMF algorithm, which is based on (3.52), (3.55), (6.36), (6.38), (6.42), and

the discussion in Section 3.3 about optimal ϕ, is presented in Algorithm 14.
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Algorithm 14 ZICP2ONMF Algorithm

1: Input Y ∈ Rn×p
+ , β ∈ (0, 1), k ∈ N, F (0) ∈ Rn×k

+ (f
(0)
(m)f

(0)′
(u) = 0; m ̸= u), R(0),

A(0) ∈ Rp×k
+ , w(0) ∈ (0, 1), ϕ(0) > 0, τ > 0, υ ∈ N, δ ∈ N, and κ ∈ N

2: t← 0

3: X(t) ← F (t)A(t)′

4: z
(t)
ij ←


w(t)

w(t) + (1− w(t))h(0, ϕ(t), β) exp{−(x(t)ij )
β/(ϕ(t)β)})

if yij = 0

0 if yij ̸= 0.

(i = 1, . . . , n; j = 1, . . . , p)

5: Z∗(t) ← En×p −Z(t)

6: L(t) ←
n∑

i=1

p∑
j=1

log
{
w(t)I(yij = 0) + (1− w(t))fCP(yij |x(t)ij , ϕ

(t), β)
}

7: repeat

8: t← t+ 1

9: w(t) ←
∑n

i=1

∑p
j=1 z

(t−1)
ij

np

10: λ
(t)
im ←

∑p
s=1 z

∗(t−1)
is (a

(t−1)
sm )β (i = 1, . . . , n; m = 1, . . . , k)

11: η
(t)
im ←

∑p
s=1 z

∗(t−1)
is yis(a

(t−1)
sm )β−1 (i = 1, . . . n; m = 1, . . . , k)

12: R
(t)
m ←

{
i

∣∣∣∣∣ argmin
u

{ (
η
(t)
iu

)β(
λ
(t)
iu

)β−1

}
= m

}
(m = 1, . . . , k)

13: a
(t)
jm ←

∑
i∈R(t)

m
(η

(t)
im/λ

(t)
im)β−1z

∗(t−1)
ij yij∑

i∈R(t)
m
(η

(t)
im/λ

(t)
im)βz

∗(t−1)
ij

(j = 1, . . . , p; m = 1, . . . , k)

14: f
(t)
im ←


∑p

j=1 z
∗(t−1)
ij yij(a

(t)
jm)β−1∑p

j=1 z
∗(t−1)
ij (a

(t)
jm)β

if i ∈ R
(t)
m

0 if i /∈ R
(t)
m

(i = 1, . . . , n; m = 1, . . . , k)

15: if t ≤ δ or t mod κ = 0 then

16:
ϕ(t) is obtained as the optimal ϕ that optimizes Qϕ(ϕ) given F (t), A(t), Z(t−1),

w(t), and β using the BFGS quasi-Newton method with constraints ϕ > 0

17: end if

18: X(t) ← F (t)A(t)′

19: z
(t)
ij ←


w(t)

w(t) + (1− w(t))h(0, ϕ(t), β) exp{−(x(t)ij )
β/(ϕ(t)β)})

if yij = 0

0 if yij ̸= 0.

(i = 1, . . . , n; j = 1, . . . , p)

20: Z∗(t) ← En×p −Z(t)

21: L(t) ←
n∑

i=1

p∑
j=1

log
{
w(t)I(yij = 0) + (1− w(t))fCP(yij |x(t)ij , ϕ

(t), β)
}

22: until L(t) − L(t−1) < τ or t = υ

23: Output F (t), A(t), R(t), Z(t), w(t), and ϕ(t)
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Chapter 7

Three-factor orthogonal NMF

In this chapter, we present four three-factor orthogonal NMFs. The objective of these

methods is to obtain estimators of F ∈ Rn×k
+ , S ∈ Rk×ℓ

+ , and A ∈ Rp×ℓ
+ such that X :=

FSA′ is approximated to a given data matrix Y with column orthogonality constraints

on F and A. In this chapter, Rm, Cq, R, and C are the same symbols defined in Section

3.2.

7.1 Normal distribution

In this section we present details of three-factor orthogonal NMF based on a normal

distribution, named N3ONMF. This method is an extension of the method proposed by

Pompili et al. (2014) to a three-factor model. Moreover, this is an improvement of methods

proposed by Ding et al. (2006) and Yoo and Choi (2010b) described in Section 3.2.

Objective function

From (3.30), the objective function to be minimized with respect to F , S, A, and σ2 is

Q(F ,S,A, σ2) =
np

2
log{σ2}+ 1

2σ2
∥Y − FSA′∥2 + const. (7.1)

Hence, the optimization problem of N3ONMF is

argmin
F ,S,A,σ2

{
Q(F ,S,A, σ2)

}
subject to F ∈ Rn×k

+ ,S ∈ Rk×ℓ
+ ,A ∈ Rp×ℓ

+ ,F ′F = Ik, and A′A = Iℓ. (7.2)

The objective function (7.1) is invariant for changes in the length of each row vector of S

because the following is satisfied:

Q(F ,S,A, σ2) =
np

2
log{σ2}+ 1

2σ2
∥Y − FSA′∥

=
np

2
log{σ2}+ 1

2σ2
∥Y − FDS′D−1

S′ SA
′∥2

=
np

2
log{σ2}+ 1

2σ2
∥Y − F ∗S∗A′∥2, (7.3)
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where F ∗ = FDS′ and S∗ = D−1
S′ S. Consequently,

diag
(
S∗A′AS∗′) = diag

(
S∗S∗′) = Ik (7.4)

is also satisfied. According to (7.3) and (7.4), the optimization problem (7.2) is the same

as

argmin
F ,S,A,σ2

{
Q(F ,S,A, σ2)

}
subject to F ∈ Rn×k

+ , S ∈ Rk×q
+ , A ∈ Rp×ℓ

+ ,

f ′
(m)f(r) = 0 (m ̸= r), diag

(
SS′) = Ik, A

′A = Iℓ. (7.5)

It is noted that F satisfies (3.7) under the condition in (7.5).

Update rules

We show the update rules of the parameters, F , S, A, and ϕ.

Update rule for F

Based on the discussion in section 3.2, we can divide the optimization problem of F into

that of R and fim (i ∈ Rm; m = 1, . . . , k). Hence, the objective function with respect to

F and S given that A can be written as follows:

QF ,S(F ,S) =

n∑
i=1

∥∥∥∥∥yi −
k∑

m=1

fimAsm

∥∥∥∥∥
2

=

k∑
m=1

∑
i∈Rm

∥yi − fimAsm∥2 (∵ (3.7))

=
k∑

m=1

∑
i∈Rm

{
y′
iyi − 2fimy′

iAsm + f2
ims′mA′Asm

}
=

k∑
m=1

∑
i∈Rm

{
y′
iyi − 2fimy′

iAsm + f2
im

}
(∵ diag

(
SS′) = Ik). (7.6)

Hence, the minimizer of fim given R for (7.6) is

fim =

y′
iAsm if i ∈ Rm

0 if i /∈ Rm

(i = 1, . . . , n; m = 1, . . . , k). (7.7)

Substituting (7.7) into (7.6) and rearranging the terms proportional to R and S, we obtain

QR,S(R,S) =
k∑

m=1

∑
i∈Rm

{
−
(
y′
iAsm

)2}
. (7.8)

Therefore, the problem of minimizing QF ,S(F ,S) is the same as the problem of minimizing

QR,S(R,S). Given S and A, the minimizers of R for QR,S(R,S) are derived by, e.g., a

k-means algorithm such that

Rm =

{
i

∣∣∣∣ argmax
r

(
y′
iAsr

)
= m

}
(m = 1, . . . , k). (7.9)
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Update rule for S

Because (7.8) can be rewritten such that

QR,S(R,S) = −
k∑

m=1

∥YmAsm∥2, (7.10)

where Ym (m = 1, . . . , k) is the same matrix defined in section 6.1, the minimizer of S,

givenR andA, can be obtained as the first nonnegative singular vector ofA′Y ′
m as follows:

sm = ∆(A′Y ′
m) (m = 1, . . . , k). (7.11)

Update rule for A

If we regard the approximation problem as Y ′ ≈ AS′F ′, the update rules of A, C, and
S can be derived similarly to (7.7), (7.9), and (7.11) as follows:

ajq =

y′
(j)Fs(q) (j ∈ Cq)

0 (j /∈ Cq)
(j = 1, . . . p; q = 1, . . . , ℓ), (7.12)

Cq =

{
j

∣∣∣∣argmax
c

{
y′
(j)Fs(c)

}
= q

}
(q = 1, . . . , ℓ), (7.13)

s(q) = ∆(F ′Y(q)) (q = 1, . . . , ℓ), (7.14)

where Y(q) (q = 1, . . . , ℓ) is an n × |Cq| submatrix of Y consisting of the column vectors

of Cq.

Algorithm

The ZICP2ONMF algorithm, which is derived from (7.7), (7.9), (7.11), (7.12), (7.13),

(7.14), and (3.31), is presented in Algorithm 15.

7.2 Poisson distribution

In this section we present details of the three-factor orthogonal NMF based on a Poisson

distribution, named P3ONMF. This factorization is a modified version of N3ONMF de-

scribed in Section 7.1, and it assumes that the data follow a Poisson distribution. Although

a multiplicative updating algorithm for three-factor NMF under this assumption was pre-

viously proposed by Yoo and Choi (2009), the orthogonal constraint was not imposed

thereon. In contrast, our algorithm is not based on a multiplicative updating algorithm;

instead, ours is based on the weighted spherical k-means algorithm, and the orthogonality

constraints are imposed on it.

Objective function

From (3.35), the objective function to be minimized with respect to F , S, and A is

Q(F ,S,A) = −
n∑

i=1

p∑
j=1

yij log

{
k∑

m=1

ℓ∑
q=1

fimsmqajq

}
+

n∑
i=1

p∑
j=1

xij + const. (7.15)
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Algorithm 15 N3ONMF Algorithm

1: Input Y ∈ Rn×p
+ , k ∈ N, ℓ ∈ N, S(0) ∈ Rk×ℓ

+ , A(0) ∈ Rp×ℓ
+ (diag(A(0)′A(0)) = Iℓ),

τ > 0, and υ ∈ N
2: t← 0

3: L(t) ← −∞
4: repeat

5: t← t+ 1

6: R
(t)
m ←

{
i

∣∣∣∣argmax
r

{
y′
iA

(t−1)s
(t−1)
r

}
= m

}
(m = 1, . . . , k)

7: Set Y
(t)
m as the submatrix of Y consisting of the row vectors of R

(t)
m for m = 1, . . . , k

8: s
∗(t)
m ← ∆(A(t−1)′Y

(t)′
m ) (m = 1, . . . , k)

9: f
∗(t)
im ←

y′
iA

(t−1)s
∗(t)
m (i ∈ R

(t)
m )

0 (i /∈ R
(t)
m )

(i = 1, . . . , n; m = 1, . . . , k)

10: F (t) ← F ∗(t)D−1
F ∗(t)

11: S†(t) ←DF ∗(t)S∗(t)

12: C
(t)
q ←

{
j

∣∣∣∣argmax
c

{
y′
(j)F

(t)s
†(t)
(c)

}
= q

}
(q = 1, . . . , ℓ)

13: Set Y
(t)
(q) as the submatrix of Y consisting of the column vectors of C

(t)
q for

q = 1, . . . , ℓ

14: s
⋆(t)
(q) ← ∆(F (t)′Y

(t)
(q) ) (q = 1, . . . , ℓ)

15: a
∗(t)
jq ←

y′
(j)F

(t)s
⋆(t)
(q) (j ∈ C

(t)
q )

0 (j /∈ C
(t)
q )

(j = 1, . . . p; q = 1, . . . , ℓ)

16: A(t) ← A∗(t)D−1
A∗(t)

17: S(t) ← S⋆(t)DA∗(t)

18: X(t) ← F (t)S(t)A(t)′

19: (σ(t))2 ← 1

np
∥Y −X(t)∥2

20: L(t) ←
n∑

i=1

p∑
j=1

log fN

(
yij

∣∣∣x(t)ij , (σ
(t))2

)
21: until L(t) − L(t−1) < τ or t = υ

22: Output F (t), S(t), A(t), R(t), C(t), and (σ(t))2

Hence, the optimization problem of P3ONMF is

argmin
F ,S,A

{Q(F ,S,A)}

subject to F ∈ Rn×k
+ ,S ∈ Rk×q

+ ,A ∈ Rp×ℓ
+ ,f ′

(m)f(r) = 0 (m ̸= r),a′
(q)a(c) = 0 (q ̸= c).

(7.16)

The constrained condition has been slightly changed from (7.2). It is noted that under

these conditions, we have (3.7) and (3.8) for the factor matrices F and A, respectively.

Update rules

We show the update rules of the parameters, F , S, and A.
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Update rule for F

If we treat the AS′ as the right-hand factor matrix in two-factor ONMF, the form of

the objective function with respect to F is the same as (6.14). Moreover, based on the

discussion in section 3.2, we can divide the optimization problem of F into that of R and

fim (i ∈ Rm; m = 1, . . . , k). Hence, we can obtain their update rule in the same form as

(6.15) and (6.17) as follows:

fim =


∑p

j=1 yij∑p
j=1[SA

′]mj
if i ∈ Rm

0 if i /∈ Rm

(i = 1, . . . , n; m = 1, . . . , k), (7.17)

Rm =

i

∣∣∣∣∣∣argmax
r


p∑

j=1

yij log

{
[SA′]rj∑p
γ=1[SA

′]rγ

} = m

 . (7.18)

Update rule for S

Considering A in (6.18) as AS′, the objective function with respect to S can be written

as follows:

QS(S) =

k∑
m=1

∑
i∈Rm

p∑
j=1

yij log

{
p∑

γ=1

ℓ∑
q=1

smqaγq

}
−

k∑
m=1

∑
i∈Rm

p∑
j=1

yij log

{
ℓ∑

q=1

smqaγq

}

=
k∑

m=1

∑
i∈Rm

p∑
j=1

yij log


p∑

γ=1

ℓ∑
q=1

smqaγq

−
k∑

m=1

∑
i∈Rm

ℓ∑
q=1

∑
j∈Cq

yij log {smqajq} .

(7.19)

Here, we use (3.8). It is difficult to directly obtain the minimizer of smq for (7.19) because

the summation of smq occurs in the log function. However, we can obtain the optimal smq

using the auxiliary function method. Because the log function f(x) = log(x) is concave,

we can obtain the following auxiliary function of (7.19) from the inequality (4.23):

Qaux
S (S,S∗)

=

k∑
m=1

∑
i∈Rm

p∑
j=1

yij

log λm +
1

λm

 p∑
γ=1

ℓ∑
q=1

smqaγq − λm


−

k∑
m=1

∑
i∈Rm

ℓ∑
q=1

∑
j∈Cq

yij log {smqajq} , (7.20)

where λm =
∑ℓ

q=1

∑p
j=1 s

∗
mqajq (m = 1, . . . , k) and s∗mq is the current smq. We obtain the

following update equation of smq as a minimizer for Qaux
S (S,S∗):

smq =
λm
∑

i∈Rm

∑
j∈Cq

yij(∑
i∈Rm

∑p
j=1 yij

)(∑p
j=1 ajq

) . (7.21)
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Update rule for A

If we regard the model as Y ′ ≈ AS′F ′, the update rules of C, S, and A can be derived

similarly to (7.17), (7.18), and (7.21) as follows:

ajq =


∑n

i=1 yij∑n
i=1[FS]iq

(j ∈ Cq)

0 (j /∈ Cq)

(j = 1, . . . p; q = 1, . . . , ℓ), (7.22)

Cq =

{
j

∣∣∣∣∣argmax
c

{
n∑

i=1

yij log

{
[FS]ic∑n
υ=1[FS]υc

}}
= q

}
(q = 1, . . . , ℓ), (7.23)

smq =
λ∗
q

∑
i∈Rm

∑
j∈Cq

yij(∑
j∈Cq

∑n
i=1 yij

)
(
∑n

i=1 fim)
(m = 1, . . . , k; q = 1, . . . , ℓ), (7.24)

where λ∗
q =

n∑
i=1

k∑
m=1

s∗mqfim (q = 1, . . . , ℓ).

Algorithm

The P3ONMF algorithm, which is based on (7.17), (7.18), (7.21), (7.22), (7.23), and

(7.24), is presented in Algorithm 16.

7.3 Compound Poisson-gamma distribution

In this section we present details of three-factor orthogonal NMF based on a compound

Poisson-gamma distribution, named CP3ONMF. It is a modified version of N3ONMF

and P3ONMF described in Sections 7.1 and 7.2, and it assumes that the data follow a

compound Poisson-gamma distribution.

Objective function

From (3.39), the objective function to be minimized with respect to F , S, A, and ϕ is

Q(F ,S,A, ϕ)

=−
n∑

i=1

p∑
j=1

log{h(yij , ϕ, β)}

− 1

ϕ

n∑
i=1

p∑
j=1

(
yij(
∑k

m=1

∑ℓ
q=1 fimsmqajq)

β−1

β − 1
−

(
∑k

m=1

∑ℓ
q=1 fimsmqajq)

β

β

)
. (7.25)

Hence, the optimization problem of CP3ONMF is

argmin
F ,S,A,ϕ

{Q(F ,S,A, ϕ)}

subject to F ∈ Rn×k
+ ,S ∈ Rk×q

+ ,A ∈ Rp×ℓ
+ ,f ′

(m)f(r) = 0 (m ̸= r),a′
(q)a(c) = 0 (q ̸= c).

(7.26)
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Algorithm 16 P3ONMF

1: Input Y ∈ Rn×p
+ , k ∈ N, ℓ ∈ N, S(0) ∈ Rk×ℓ

+ , A(0) ∈ Rp×ℓ
+ (a

(0)′
(q) a

(0)
(c) = 0 (q ̸= c)), C(0),

τ > 0, and υ ∈ N
2: t← 0

3: L(t) ← −∞
4: repeat

5: t← t+ 1

6: R
(t)
m ←

i

∣∣∣∣∣∣argmax
r


p∑

j=1

yij log

{
[S(t−1)A(t−1)′]rj∑p
γ=1[S

(t−1)A(t−1)′]rγ

} = m


(m = 1, . . . , k)

7: λ
(t)
m ←

∑p
j=1

∑ℓ
q=1 s

(t−1)
mq a

(t−1)
jq

8: s
∗(t)
mq ←

λ
(t)
m
∑

i∈R(t)
m

∑
j∈C(t−1)

q
yij(∑

i∈R(t)
m

∑p
j=1 yij

)(∑p
j=1 a

(t−1)
jq

) (m = 1, . . . , k; q = 1, . . . , ℓ)

9: f
(t)
im ←


∑p

j=1 yij∑p
j=1[S

∗(t)A(t−1)′]mj
(i ∈ R

(t)
m )

0 (i /∈ R
(t)
m )

(i = 1, . . . , n; m = 1, . . . , k)

10: Cq ←

{
j

∣∣∣∣∣argmax
c

{
n∑

i=1

yij log

{
[F (t)S∗(t)]ic∑n
υ=1[F

(t)S∗(t)]υc

}}
= q

}
(q = 1, . . . , ℓ)

11: λ
∗(t)
q ←

∑n
i=1

∑k
m=1 s

∗(t)
mq f

(t)
im (q = 1, . . . , ℓ)

12: s
(t)
mq ←

λ
∗(t)
q
∑

i∈R(t)
m

∑
j∈C(t)

q
yij(∑

j∈C(t)
q

∑n
i=1 yij

)(∑n
i=1 f

(t)
im

) (m = 1, . . . , k; q = 1, . . . , ℓ)

13: a
(t)
jq ←


∑n

i=1 yij∑n
i=1[F

(t)S(t)]iq
(j ∈ C

(t)
q )

0 (j /∈ C
(t)
q )

(j = 1, . . . p; q = 1, . . . , ℓ)

14: X(t) ← F (t)S(t)A(t)′

15: L(t) ←
n∑

i=1

p∑
j=1

log fP

(
yij

∣∣∣x(t)ij

)
16: until L(t) − L(t−1) < τ or t = υ

17: Output F (t), S(t), A(t), R(t), and C(t)

Update rules

We show the update rules of the parameters, F , S, and A. ϕ is obtained as described

in Section 3.3.

Update rule for F

For P3ONMF, if we treat the AS′ as the right hand factor matrix in two-factor ONMF,

the form of the objective function with respect to F is the same as (6.23). Moreover,

based on the discussion in section 3.2, we can divide the optimization problem of F into

that of R and fim (i ∈ Rm; m = 1, . . . , k). Hence, we can obtain their update rule in the
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same form as (6.24) and (6.26) as follows:

fim =


∑p

j=1 yij [SA
′]β−1
mj∑p

j=1[SA
′]βmj

if i ∈ Rm

0 if i /∈ Rm

(i = 1, . . . , n; m = 1, . . . , k), (7.27)

Rm =

i

∣∣∣∣∣∣∣argmin
r


{∑p

j=1 yij [SA
′]β−1
rj

}β

{∑p
j=1[SA

′]βrj

}β−1

 = m

 . (7.28)

Update rule for S

Considering A in (6.25) as AS′, the objective function with respect to S can be written

as follows:

QS(S) = −
1

β(β − 1)

k∑
m=1

∑
i∈Rm

{∑p
j=1 yij(

∑ℓ
q=1 smqajq)

β−1
}β{∑p

j=1(
∑ℓ

q=1 smqajq)β
}β−1

= − 1

β(β − 1)

k∑
m=1

∑
i∈Rm

{∑ℓ
q=1

∑
j∈Cq

yijs
β−1
mq aβ−1

jq

}β

{∑ℓ
q=1

∑
j∈Cq

sβmqa
β
jq

}β−1
. (7.29)

Here, we use (3.8). It is difficult to directly obtain the minimizer of smq for (7.29) because

the summation of smq occurs in the two power functions. However, we can obtain the

optimal smq using the auxiliary function method in a manner similar to CP2ONMF. We

find that (7.29) contains the function (6.27). Hence, the inequality (6.28) enables us to

obtain the following auxiliary function of (7.29):

Qaux
S (S,S∗)

=

k∑
m=1

∑
i∈Rm

− 1

β(β − 1)

ηβim

λβ−1
m

+
1

β

(
ηim
λm

)β
 ℓ∑

q=1

∑
j∈Cq

sβmqa
β
jq − λm


+

1

1− β

(
ηim
λm

)β−1
 ℓ∑

q=1

∑
j∈Cq

yijs
β−1
mq aβ−1

jq − ηim

 , (7.30)

where

λm =
ℓ∑

q=1

∑
j∈Cq

s∗βmqa
β
jq (m = 1, . . . , k) (7.31)

and ηim =

ℓ∑
q=1

∑
j∈Cq

yijs
∗β−1
mq aβ−1

jq (i = 1, . . . n; m = 1, . . . , k). (7.32)

We obtain the following update equation of smq as a minimizer for Qaux
S (S,S∗):

smq =
λm
∑

i∈Rm

∑
j∈Cq

ηβ−1
im yija

β−1
jq∑

i∈Rm

∑
j∈Cq

ηβimaβjq
. (7.33)
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Update rule for A

If we regard the model as Y ′ ≈ AS′F ′, the update rules of C, S, and A can be derived

similarly to (7.27), (7.28), and (7.33) as follows:

ajq =


∑n

i=1 yij [FS]β−1
iq∑n

i=1[FS]βiq
(j ∈ Cq)

0 (j /∈ Cq)

(j = 1, . . . p; q = 1, . . . , ℓ), (7.34)

Cq =

j

∣∣∣∣∣∣∣argmin
c


{∑n

i=1 yij [FS]β−1
ic

}β

{∑n
i=1[FS]βic

}β−1

 = q

 (q = 1, . . . , ℓ), (7.35)

smq =
λ∗
q

∑
i∈Rm

∑
j∈Cq

(η∗jq)
β−1yijf

β−1
im∑

i∈Rm

∑
j∈Cq

(η∗jq)
βfβ

im

(m = 1, . . . , k; q = 1, . . . , ℓ), (7.36)

where

λ∗
q =

k∑
m=1

∑
i∈Rm

s∗βmqf
β
im (q = 1, . . . , ℓ), (7.37)

η∗jq =

k∑
m=1

∑
i∈Rm

yijs
∗β−1
mq fβ−1

im (j = 1, . . . p; q = 1, . . . , ℓ). (7.38)

Algorithm

The CP3ONMF algorithm, which is derived from (7.27), (7.28), (7.33), (7.34), (7.35),

(7.36), and the discussion in Section 3.3 about optimal ϕ, is presented in Algorithm 17.

7.4 Zero-inflated compound Poisson-gamma distribution

In this section we present details of three-factor orthogonal NMF based on a zero-inflated

compound Poisson-gamma distribution, named ZICP3ONMF. This NMF is a modified

version of ZICP2ONMF, CP3ONMF, and ZICP3NMF.

Objective function

From (3.44), the objective function is

Q(F ,S,A, w, ϕ) =−
n∑

i=1

p∑
j=1

log

[
wI(yij = 0)

+ (1− w)h(yij , ϕ, β) exp

{
1

ϕ

(
yij(
∑k

m=1

∑ℓ
q=1 fimsmqajq)

β−1

β − 1

−
(
∑k

m=1

∑ℓ
q=1 fimsmqajq)

β

β

)}]
. (7.39)
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Algorithm 17 CP3ONMF algorithm

1: Input Y ∈ Rn×p
+ , β ∈ (0, 1), k ∈ N, ℓ ∈ N, S(0) ∈ Rk×ℓ

+ , A(0) ∈ Rp×ℓ
+ (a

(0)′
(q) a

(0)
(c) =

0 (q ̸= c)), C(0), ϕ(0) > 0, τ > 0, υ ∈ N, δ ∈ N, and κ ∈ N
2: L(0) ← −∞
3: t← 0

4: repeat

5: t← t+ 1

6: R
(t)
m ←

i

∣∣∣∣∣∣∣argmin
r


{∑p

j=1 yij [S
(t−1)A(t−1)′]β−1

rj

}β

{∑p
j=1[S

(t−1)A(t−1)′]βrj

}β−1

 = m

 (m = 1, . . . , k)

7: λ
(t)
m ←

∑ℓ
q=1

∑
j∈C(t−1)

q
(s

(t−1)
mq )β(a

(t−1)
jq )β ( m = 1, . . . , k)

8: η
(t)
im ←

∑ℓ
q=1

∑
j∈C(t−1)

q
yij(s

(t−1)
mq )β−1(a

(t−1)
jq )β−1 (i = 1, . . . , n; m = 1, . . . , k)

9: s
∗(t)
mq ←

λ
(t)
m
∑

i∈R(t)
m

∑
j∈C(t−1)

q
(η

(t)
im)β−1yij(a

(t−1)
jq )β−1∑

i∈R(t)
m

∑
j∈C(t−1)

q
(η

(t)
im)β(a

(t−1)
jq )β

(m = 1, . . . , k; q = 1, . . . , ℓ)

10: f
(t)
im ←


∑p

j=1 yij [S
∗(t)A(t−1)′]β−1

mj∑p
j=1[S

∗(t)A(t−1)′]βmj

(i ∈ Rm)

0 (i /∈ Rm)

11: C
(t)
q ←

j

∣∣∣∣∣∣∣argmin
c


{∑n

i=1 yij [F
(t)S∗(t)]β−1

ic

}β

{∑n
i=1[F

(t)S∗(t)]βic

}β−1

 = q

 (q = 1, . . . , ℓ)

12: λ
∗(t)
q ←

∑k
m=1

∑
i∈R(t)

m
(s

∗(t)
mq )β(f

(t)
im)β (q = 1, . . . , ℓ)

13: η
∗(t)
jq ←

∑k
m=1

∑
i∈R(t)

m
yij(s

∗(t)
mq )β−1(f

(t)
im)β−1 (j = 1, . . . , p; q = 1, . . . , ℓ)

14: s
(t)
mq ←

λ
∗(t)
q
∑

i∈R(t)
m

∑
j∈C(t)

q
(η

∗(t)
jq )β−1yij(f

(t)
im)β−1∑

i∈R(t)
m

∑
j∈C(t)

q
(η

∗(t)
jq )β(f

(t)
im)β

(m = 1, . . . , k; q = 1, . . . , ℓ)

15: a
(t)
jq ←


∑n

i=1 yij [F
(t)S(t)]β−1

iq∑n
i=1[F

(t)S(t)]βiq
(j ∈ Cq)

0 (j /∈ Cq)

16: if t ≤ δ or t mod κ = 0 then

17:
ϕ(t) is obtained as the optimal ϕ that optimizes Qϕ(ϕ) given F (t), S(t), A(t),

and β using the BFGS quasi-Newton method with constraints ϕ > 0

18: end if

19: X(t) ← F (t)S(t)A(t)′

20: L(t) ←
n∑

i=1

p∑
j=1

log fCP

(
yij

∣∣∣x(t)ij , ϕ
(t), β

)
21: until L(t) − L(t−1) < τ or t = υ

22: Output F (t), S(t), A(t), R(t), C(t), ϕ(t)

Hence, the optimization problem is as follows:

argmin
F ,S,A,w,ϕ

{Q(F ,S,A, w, ϕ)}

subject to F ∈ Rn×k
+ ,S ∈ Rk×q

+ ,A ∈ Rp×ℓ
+ ,f ′

(m)f(r) = 0 (m ̸= r),a′
(q)a(c) = 0 (q ̸= c).

(7.40)70



However, the update rule of F , S, A, w, and ϕ is obtained as these optimizers, which

minimize (3.51).

Update rules

We show the update rules of the parameters, F , S, and A. The update rule of Ẑ and

w is obtained as (3.52) and (3.55). ϕ is obtained as described in Section 3.3.

Update rule for F

For P3ONMF and CP3ONMF, if we treat the AS′ as the right-hand factor matrix

in two-factor ONMF, the form of the objective function with respect to F is the same

as (6.35). Moreover, from the discussion in section 3.2, we can divide the optimization

problem of F into that of R and fim (i ∈ Rm; m = 1, . . . , k). Hence, we can obtain their

update rule in the same form as (6.36) and (6.38) as follows:

f̂im =


∑p

j=1 ẑ
∗
ijyij [SA

′]β−1
mj∑p

j=1 ẑ
∗
ij [SA

′]βmj

if i ∈ Rm

0 if i /∈ Rm

(i = 1, . . . , n; m = 1, . . . , k), (7.41)

R̂m =

i

∣∣∣∣∣∣∣argmin
r


{∑p

j=1 ẑ
∗
ijyij [SA

′]β−1
rj

}β

{∑p
j=1 ẑ

∗
ij [SA

′]βrj

}β−1

 = m

 (m = 1, . . . , k). (7.42)

Update rule for S

Considering A in (6.37) as AS′, the objective function with respect to S can be written

as follows:

QS(S) = −
1

β(β − 1)

k∑
m=1

∑
i∈Rm

{∑p
j=1 ẑ

∗
ijyij(

∑ℓ
q=1 smqajq)

β−1
}β{∑p

j=1 ẑ
∗
ij(
∑ℓ

q=1 smqajq)β
}β−1

= − 1

β(β − 1)

k∑
m=1

∑
i∈Rm

{∑ℓ
q=1

∑
j∈Cq

ẑ∗ijyijs
β−1
mq aβ−1

jq

}β

{∑ℓ
q=1

∑
j∈Cq

ẑ∗ijs
β
mqa

β
jq

}β−1
. (7.43)

Here, we use (3.8). It is difficult to directly obtain the minimizer of smq for (7.43) because

the summation of smq occurs in the two power functions. However, we can obtain the

optimal smq using the auxiliary function method in a manner similar to ZICP2ONMF.

We find that (7.43) contains the function (6.27). Hence, the inequality (6.28) enables us

to obtain the following auxiliary function of (7.43):

Qaux
S (S,S∗)

=
k∑

m=1

∑
i∈Rm

− 1

β(β − 1)

ηβim

λβ−1
im

+
1

β

(
ηim
λim

)β
 ℓ∑

q=1

∑
j∈Cq

ẑ∗ijs
β
mqa

β
jq − λim


+

1

1− β

(
ηim
λim

)β−1
 ℓ∑

q=1

∑
j∈Cq

ẑ∗ijyijs
β−1
mq aβ−1

jq − ηim

 , (7.44)
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where

λim =
ℓ∑

q=1

∑
j∈Cq

ẑ∗ijs
∗β
mqa

β
jq (i = 1, . . . n; m = 1, . . . , k) (7.45)

and ηim =
ℓ∑

q=1

∑
j∈Cq

ẑ∗ijyijs
∗β−1
mq aβ−1

jq (i = 1, . . . n; m = 1, . . . , k). (7.46)

We obtain the following update equation of smq as a minimizer for Qaux
S (S,S∗):

smq =

∑
i∈Rm

∑
j∈Cq

(ηim/λim)β−1ẑ∗ijyija
β−1
jq∑

i∈Rm

∑
j∈Cq

(ηim/λim)β ẑ∗ija
β
jq

. (7.47)

Update rule for A

If we regard the model as Y ′ ≈ AS′F ′, the update rules of C, S, and A can be derived

similarly to (7.41), (7.42), and (7.47) as follows:

ajq =


∑n

i=1 ẑ
∗
ijyij [FS]β−1

iq∑n
i=1 ẑ

∗
ij [FS]βiq

(j ∈ Cq)

0 (j /∈ Cq)

(j = 1, . . . p; q = 1, . . . , ℓ), (7.48)

Cq =

j

∣∣∣∣∣∣∣argmin
c


{∑n

i=1 ẑ
∗
ijyij [FS]β−1

ic

}β

{∑n
i=1 ẑ

∗
ij [FS]βic

}β−1

 = q

 (q = 1, . . . , ℓ), (7.49)

smq =

∑
i∈Rm

∑
j∈Cq

(η∗jq/λ
∗
jq)

β−1ẑ∗ijyijf
β−1
im∑

i∈Rm

∑
j∈Cq

(η∗jq/λ
∗
jq)

β ẑ∗ijf
β
im

(m = 1, . . . , k; q = 1, . . . , ℓ), (7.50)

where

λ∗
jq =

k∑
m=1

∑
i∈Rm

ẑ∗ijs
∗β
mqf

β
im (j = 1, . . . , p; q = 1, . . . , ℓ), (7.51)

η∗jq =

k∑
m=1

∑
i∈Rm

ẑ∗ijyijs
∗β−1
mq fβ−1

im (j = 1, . . . p; q = 1, . . . , ℓ). (7.52)

Algorithm

The ZICP3ONMF algorithm, which is derived from (3.52), (3.55), (7.41), (7.42), (7.47),

(7.48), (7.49), (7.50), and the discussion in Section 3.3 about optimal ϕ, is presented in

Algorithm 18.
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Algorithm 18 ZICP3ONMF Algorithm

1: Input Y ∈ Rn×p
+ , β ∈ (0, 1), k ∈ N, ℓ ∈ N, F (0) ∈ Rn×k

+ (f
(0)′
(m)f

(0)
(r) = 0 (m ̸= r)),

S(0) ∈ Rk×ℓ
+ , A(0) ∈ Rp×ℓ

+ (a
(0)′
(q) a

(0)
(c) = 0 (q ̸= c)), R(0), C(0), w(0) ∈ (0, 1), ϕ(0) > 0,

τ > 0, υ ∈ N, δ ∈ N, and κ ∈ N
2: t← 0

3: X(t) ← F (t)S(t)A(t)′

4: z
(t)
ij ←


w(t)

w(t) + (1− w(t))h(0, ϕ(t), β) exp{−(x(t)ij )
β/(ϕ(t)β)})

if yij = 0

0 if yij ̸= 0

(i = 1, . . . , n; j = 1, . . . , p)

5: Z∗(t) ← En×p −Z(t)

6: L(t) ←
n∑

i=1

p∑
j=1

log
{
w(t)I(yij = 0) + (1− w(t))fCP(yij |x(t)ij , ϕ

(t), β)
}

7: repeat

8: t← t+ 1

9: w(t) ←
∑n

i=1

∑p
j=1 z

(t−1)
ij

np

10: λ
(t)
im ←

∑ℓ
q=1

∑
j∈C(t−1)

q
z
∗(t−1)
ij (s

(t−1)
mq )β(a

(t−1)
jq )β (i = 1, . . . n; m = 1, . . . , k)

11: η
(t)
im ←

∑ℓ
q=1

∑
j∈C(t−1)

q
z
∗(t−1)
ij yij(s

(t−1)
mq )β−1(a

(t−1)
jq )β−1 (i = 1, . . . n; m = 1, . . . , k)

12: R
(t)
m ←

{
i

∣∣∣∣∣argmin
r

{
(η

(t)
ir )

β

(λ
(t)
ir )

β−1

}
= m

}
(m = 1, . . . , k)

13:
s
∗(t)
mq ←

∑
i∈R(t)

m

∑
j∈C(t−1)

q
(η

(t)
im/λ

(t)
im)β−1z

∗(t−1)
ij yij(a

(t−1)
jq )β−1∑

i∈R(t)
m

∑
j∈C(t−1)

q
(η

(t)
im/λ

(t)
im)βz

∗(t−1)
ij (a

(t−1)
jq )β

(m = 1, . . . , k; q = 1, . . . , ℓ)

14: f
(t)
im ←


∑p

j=1 z
∗(t−1)
ij yij [S

∗(t)A(t−1)′]β−1
mj∑p

j=1 z
∗(t−1)
ij [S∗(t)A(t−1)′]βmj

if i ∈ R
(t)
m

0 if i /∈ R
(t)
m

(i = 1, . . . , n; m = 1, . . . , k)

15: λ
∗(t)
jq ←

∑k
m=1

∑
i∈R(t)

m
z
∗(t−1)
ij (s

∗(t)
mq )β(f

(t)
im)β (j = 1, . . . , p; q = 1, . . . , ℓ)

16: η
∗(t)
jq ←

∑k
m=1

∑
i∈R(t)

m
z
∗(t−1)
ij yij(s

∗(t)
mq )β−1(f

(t)
im)β−1 (j = 1, . . . p; q = 1, . . . , ℓ)

17: C
(t)
q ←

{
j

∣∣∣∣∣argmin
c

{
(η

∗(t)
jc )β

(λ
∗(t)
jc )β−1

}
= q

}
(q = 1, . . . , ℓ)

18: s
(t)
mq ←

∑
i∈R(t)

m

∑
j∈C(t)

q
(η

∗(t)
jq /λ

∗(t)
jq )β−1z

∗(t−1)
ij yij(f

(t)
im)β−1∑

i∈R(t)
m

∑
j∈C(t)

q
(η

∗(t)
jq /λ

∗(t)
jq )βz

∗(t−1)
ij (f

(t)
im)β

(m = 1, . . . , k; q = 1, . . . , ℓ)

19: ajq ←


∑n

i=1 z
∗(t−1)
ij yij [F

(t)S(t)]β−1
iq∑n

i=1 z
∗(t−1)
ij [F (t)S(t)]βiq

(j ∈ C
(t)
q )

0 (j /∈ C
(t)
q )

(j = 1, . . . p; q = 1, . . . , ℓ)
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Algorithm 18 ZICP3ONMF Algorithm (continued)

20: if t ≤ δ or t mod κ = 0 then

21: ϕ(t) is obtained as the optimal ϕ that optimizes Qϕ(ϕ) given F (t), S(t),

A(t), Z(t−1), w(t), and β using the BFGS quasi-Newton method with

constraints ϕ > 0

22: end if

23: X(t) ← F (t)S(t)A(t)′

24: z
(t)
ij ←


w(t)

w(t) + (1− w(t))h(0, ϕ(t), β) exp{−(x(t)ij )
β/(ϕ(t)β)})

if yij = 0

0 if yij ̸= 0.

(i = 1, . . . , n; j = 1, . . . , p)

25: Z∗(t) ← En×p −Z(t)

26: L(t) ←
n∑

i=1

p∑
j=1

log
{
w(t)I(yij = 0) + (1− w(t))fCP(yij |x(t)ij , ϕ

(t), β)
}

27: until L(t) − L(t−1) < τ or t = υ

28: Output F (t), S(t), A(t), R(t), C(t), Z(t), w(t), and ϕ(t)
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Chapter 8

Numerical studies

In this chapter, we present selected simulation studies. Section 8.1 concerns three-factor

orthogonal NMF; we show the effectiveness of N3ONMF in terms of its estimation accuracy

and the robustness of CP3ONMF. In Section 8.2, we present a worse approximation to

the given data by orthogonal NMFs; the poor performance is trade-off against the simple

structure of the factor matrix. In Section 8.3, we demonstrate a accurate approximation

of NMF based on a zero-inflated model for a zero-inflated data matrix.

8.1 Accuracy of estimates of three-factor orthogonal NMF

In this section, we describe two simulation studies relating to three-factor orthogonal

NMF. The first study compares N3ONMF with previous three-factor orthogonal NMFs,

Ding et al. (2006) and Yoo and Choi (2010b), in terms of estimation accuracy. The

N3ONMF is our proposed method, and it forms a foundation for the other three-factor

orthogonal NMFs. Therefore, a comparison with previous three-factor orthogonal NMFs is

needed. The second study analyzes the characteristics of the estimates given by N3ONMF,

P3ONMF, and CP3ONMF. An NMF based on a non-normal distribution, that is, the

Poisson or CP distribution, can be more robust to outliers than an NMF based on a

normal distribution. In this simulation study, we demonstrate its robustness in terms of

three-factor orthogonal NMF. Although we could use the other NMF methods for checking

the robustness, for example, two-factor non-orthogonal or orthogonal NMF or three-factor

non-orthogonal NMF, we choose three-factor orthogonal NMF because all these methods

are proposed by us and because of space limitations.

8.1.1 Estimation accuracy of N3ONMF

In this study, we conduct a simulation study to examine the estimation accuracy of

N3ONMF. Additionally, we compare N3ONMF with previous three-factor orthogonal

NMF techniques proposed by Ding et al. (2006) and Yoo and Choi (2010b). In this

section, we refer to them as Ding et al’s method and Yoo and Choi’s method, respectively.

Ding et al.’s method and Yoo and Choi’s method have some estimation difficulties, and it

is expected that N3ONMF, which uses the same model as they do but has a different al-
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gorithm, will perform better. In this simulation, we use synthetic data with a clear model

structure, and this data may be far from the real world data. However, this simulation

enables us to understand the advantages of N3ONMF.

First, we generate synthetic data using true F̃ , S̃, Ã, R̃ = {R̃1, . . . , R̃k}, and C̃ =

{C̃1, . . . , C̃ℓ} as described later; second, we apply these three three-factor orthogonal NMFs

to the synthetic data and obtain the estimated F̂ , Ŝ, Â, R̂ = {R̂1, . . . , R̂k}, and Ĉ =

{Ĉ1, . . . , Ĉℓ} for each of the methods. Finally, we measure the closeness between the true

and estimated parameters by ARI(R̃, R̂), ARI(C̃, Ĉ), ∥F̃ − F̂ ∥/(nk), ∥Ã − Â∥/(pℓ), and
∥S̃ − Ŝ∥/(kℓ). Here, ARI(·, ·) is the adjusted Rand index (ARI) (Hubert and Arabie,

1985), which is a similarity measure between two partitions of objects. If the partitions

are completely the same, ARI is 1; if they are different, ARI is close to 0.

The synthetic data is generated as follows. First, we determine the true row clusters R̃
randomly; we then generate F̃ ∗ ∈ Rn×k as follows:f̃∗

im ∼ Ex(µ1/3) (i ∈ R̃m)

f̃∗
im = 0 (i /∈ R̃m)

(i = 1, . . . , n; m = 1, . . . , k), (8.1)

where Ex(x) is an exponential distribution with an expected value x and µ represents the

mean value of each element of the synthetic data matrix. The value of µ is determined in

advance of the simulation. We use exponential random variables because some researchers,

e.g., Schmidt et al. (2009) and Tan and Févotte (2013), set the exponential distribution as

a prior of the factor matrix elements. Next, the norm of each column of F̃ ∗ is converted

to 1 as follows:

F̃ = F̃ ∗D−1
F̃ ∗ . (8.2)

The true C̃ and Ã ∈ Rp×ℓ are generated in the same manner as R̃ and F̃ . We set C̃
randomly and generate Ã∗ ∈ Rp×ℓ as follows:ã∗jq ∼ Ex(µ1/3) (j ∈ C̃q)

ã∗jq = 0 (j /∈ C̃q)

(j = 1, . . . , p; q = 1, . . . , ℓ). (8.3)

The norm of each column of Ã∗ is then converted to 1 as follows:

Ã = Ã∗D−1
Ã∗ . (8.4)

Each element of true S̃ is generated as follows: First, we generate S̃∗ from

s̃∗mq ∼ Ex(µ1/3) (m = 1, . . . , k; q = 1, . . . , ℓ), (8.5)

then we calculate

S̃ = DF̃ ∗S̃
∗DÃ∗ . (8.6)
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Finally, we obtain the synthetic data matrix by a normal distribution such that

yij ∼ N(x̃ij , σ) (i = 1, . . . , n; j = 1, . . . , p), (8.7)

where

x̃ij =
n∑

i=1

p∑
j=1

f̃ims̃mqãjq (8.8)

= f̃ims̃mqãjq (i = 1, . . . , n; j = 1, . . . , p; R̃m ∋ i; C̃q ∋ j). (8.9)

From the above, the expected value of each elements of synthetic data is as follows:

E[yij ] = E[x̃ij ] = E[f̃ims̃mqãjq] = E[f̃im]E[s̃mq]E[ãjq] = (µ1/3)3 = µ

(i = 1, . . . , n; j = 1, . . . , p; R̃m ∋ i; C̃q ∋ j). (8.10)

From this, µ undoubtedly represents the expected value of yij . If yij < 0, then the element

is converted to zero.

The parameters for generating the synthetic data are set as follows:

• (n,p,k,ℓ) = {(100,60,5,3),(100,100,5,5),(1000,600,5,3),(1000,1000,5,5)}

• σ = {1, 2, 4}

• µ = 10

• ν = 1000 (maximum number of iterative cycles)

It is noteworthy that the true numbers of row and column clusters, and the estimated

ones, are the same as k and ℓ, respectively.

We generate 100 synthetic data matrices for each 4 × 3 = 12 conditions; from among

the candidates of the estimates given by 20 executions of each of the methods, we select

the estimates for which the objective function value is minimized. The convergence is

determined using (3.11) and the convergence threshold is set as τ = 10−7np for all the

methods. The results are shown in Fig. 8.1 through Fig. 8.5.

Fig. 8.1 shows the boxplots of ARI(R̃, R̂) obtained by the three methods for the 12

situations. Note that each ARI decreases as the variance σ increases in every situation and

increase as the matrix become larger. In all situations, N3ONMF is the highest, followed by

Yoo and Choi’s method and Ding et al.’s method in that order. For rectangular matrices

such as those for which (n, p) = (100, 60) or (n, p) = (1000, 600), both the methods of

Ding et al. and Yoo and Choi obtain small values. These results indicate that N3ONMF

appears to perform more accurately than the methods of Ding et al. and Yoo and Choi

in terms of row cluster detection. Fig. 8.2 shows the boxplots of ARI(C̃, Ĉ). The results

are similar to those in Fig. 8.1 for all square matrix situations. For rectangular data

matrices, Yoo and Choi’s method obtains larger ARI values for column clusters than for

row clusters in Fig. 8.1. This result suggests that Yoo and Choi’s method can accurately

detect the smaller side clusters (in our simulation, this is the column side). However, in

all situations, N3ONMF provides the most optimal clustering accuracy. Fig. 8.3 and Fig.
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Figure 8.1: Boxplots of ARI(R̃, R̂) obtained by three three-factor orthogonal NMFs for

12 conditions. The “N” below each of the boxplots indicates N3ONMF.
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Figure 8.2: Boxplots of ARI(C̃, Ĉ) obtained by three three-factor orthogonal NMFs for 12

conditions. The “N” below each of the boxplots indicates N3ONMF.

8.4 show the boxplots of ∥F̃ − F̂ ∥/(nk) and ∥Ã− Â∥/(pℓ), respectively. The ranges of the
vertical axes are not same because the magnitude of f̂im and âjq differs depending on n

and p. Both results in Fig. 8.3 and Fig. 8.4 are similar to the ARI results in Fig. 8.1 and
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Figure 8.3: Boxplots of ∥F̃ − F̂ ∥/(nk) obtained by three three-factor orthogonal NMFs

for 12 conditions. The “N” below each of the boxplots indicates N3ONMF.
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Figure 8.4: Boxplots of ∥Ã − Â∥/(pℓ) obtained by three three-factor orthogonal NMFs

for 12 conditions. The “N” below each of the boxplots indicates N3ONMF.

Fig. 8.2. However, the variance of ∥F̃ − F̂ ∥/(nk) generated by N3ONMF is large when

σ = 4 and (n, p) = (100, 60). This reflects the fact that when any misclassifications of R
occur, all errors of fim are significant in N3ONMF, owing to the perfect orthogonality of
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Figure 8.5: Boxplots of ∥S̃− Ŝ∥/(kℓ) obtained by three three-factor orthogonal NMFs for

12 conditions. The “N” below each of the boxplots indicates N3ONMF.

F such as that represented by (3.7). This can be considered a drawback of N3ONMF. Fig.

8.5 shows the boxplots of ∥S̃− Ŝ∥2. In all situations, the values obtained by N3ONMF are

smaller than those obtained by the other two methods. This simulation study enables us

to conclude that N3ONMF provides more effective estimation consistency than the other

two methods.

8.1.2 Robustness of CP3ONMF

We conducted another simulation study to demonstrate the characteristics of the esti-

mates provided by N3ONMF, P3ONMF, and CP3ONMF. As mentioned in Chapter 7, it

is assumed that yij follows normal, Poisson, and compound Poisson distributions, respec-

tively, in these three methods. These distributions belong to the Tweedie family, which is

described by (3.15), and the value of β determines the distribution: it is normal if β = 2,

Poisson if β = 1, and compound Poisson if β ∈ (0, 1). The index parameter β is related

to the robustness of parameter estimation as described in Section 3.3. We examined these

characteristics in three-factor orthogonal NMF by measuring the estimation accuracy of

N3ONMF, P3ONMF, and CP3ONMF for synthetic data matrices generated using normal,

Poisson, and compound Poisson distributions of data. The accuracy was calculated using

the ARI between true clusters and estimated clusters of row and column objects.

We now explain how to generate a synthetic data matrix. First, we generate R̃, F̃ ∗,

C̃, Ã∗, and S̃∗ as in Section 8.1.1. Then, we generate each element of the synthetic

data matrix Y as a random number from yij ∼ TW (xij , ϕ, β̃), where the mean xij is the

corresponding element of X = F̃ ∗S̃∗Ã∗′. It is noted that TW (xij , ϕ, β̃) is normal if β̃ = 2
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and Poisson if β̃ = 1. When β̃ = 2, negative values of yij can be generated, in which case,

yij is converted to zero.

The parameters for generating synthetic data are set as follows:

• (n, p, k, ℓ) = (100, 100, 5, 5)

• ϕ = 2

• β̃ = {2, 1, 0.8, 0.5, 0.2}

• µ = 10

• ν = 1000

Fig. 8.6 shows plots of the probability density functions of the Tweedie distribution for

β = {2, 1, 0.8, 0.5, 0.2}, where µ = 10 and ϕ = 2.

β = 2 (normal)
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Figure 8.6: Probability density functions of the Tweedie distribution for β =

{2, 1, 0.8, 0.5, 0.2}. The black square represents the probability at y = 0.

Here it should be noted that the true numbers of row and column clusters, and the

estimated ones, are the same as k and ℓ, respectively. We generate 100 synthetic data

matrices for each of five conditions. Then, from among the candidate estimations given

by 20 executions, we select the estimates, R̂ and Ĉ, for which the objective function value

is minimized. We then calculate ARI(R̃, R̂) and ARI(C̃, Ĉ) of each of the methods. The

convergence is determined using (3.11) and the convergence threshold is set as τ = 10−7np

for all the methods.

We execute CP3ONMF for three cases: β = {0.2, 0.5, 0.8} and refer to the procedures

as CP3ONMF-2, CP3ONMF-5, and CP3ONMF-8, respectively. The results are shown in

Figs. 8.7 and Fig. 8.8.

The two figures appear to be similar. When β̃ = 2 (normal), N3ONMF is the most

accurate, followed by P3ONMF, CP3ONMF-8, CP3ONMF-5, and CP3ONMF-2, in that

order. When β̃ = 0.5, N3ONMF is the least accurate; when β̃ = 0.2, the accuracy dete-

riorates in the order of N3ONMF, P3ONMF, and CP3ONMF-8. Because more extreme

outliers are generated from a compound Poisson distribution with small β̃ values, these

results imply that N3ONMF, P3ONMF, and CP3ONMF procedures with relatively larger

β values do not fit a data matrix containing some outliers. This does not mean that a

CP3ONMF procedure with a small β value is the most accurate under all circumstances.

In fact, its performance may be worse for a data matrix with a normal error, as shown

in the case of β̃ = 2 in Fig. 8.7 and Fig. 8.8. However, it may be preferable to use
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Figure 8.7: ARI(R̃, R̂) obtained by five three-factor orthogonal NMFs for five conditions

CP3ONMF because for small β values, CP3ONMF is less inaccurate than N3ONMF for

a data matrix containing some outliers.
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Figure 8.8: ARI(C̃, Ĉ) obtained by five three-factor orthogonal NMFs for five conditions

8.2 Approximation of NMF with and without orthogonal

constraint

In this section we demonstrate the drawback of an orthogonal constraint by using a

numerical example. As mentioned in Section 3.2, an orthogonal constraint simplifies a
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factor matrix, thereby facilitating interpretation of the result. However, a factor matrix

with a simplified structure leads to a poor approximation to the Y byX. We demonstrated

this drawback by generating a few synthetic nonnegative data matrices and calculated

the approximation accuracy of the non-orthogonal NMF and orthogonal NMF. We then

compared the approximation accuracy of these two types of NMF for two- and three-factor

NMF. Although we can use an NMF based on a normal, Poisson, or CP distribution for

this comparison, we only use the CP distribution, which is the focus of this thesis, because

of space limitations. Now, we explain how to simulate the two-factor NMF. First, we

generate F̃ such that

f̃im ∼ Ex

((
µ

k0

)1/2)
(i = 1, . . . , n; m = 1, . . . , k0), (8.11)

where Ex(x) is an exponential distribution with an expected value x, µ is the expected

value of the element of synthetic data Y , and k0 is the number of factors. Ã ∈ Rp×k0
+

is also generated in the same manner as F̃ . Then, we obtain a noiseless data matrix

X̃ = F̃ Ã′, after which we obtain the synthetic data Y by the following CP distribution:

yij ∼ CP (x̃ij , ϕ0, β0) (i = 1, . . . , n; j = 1, . . . , p). (8.12)

Finally, we execute CP2NMF and CP2ONMF to Y , obtain the estimated Â and F̂ by

the two methods, and calculate dβ(Y , F̃ Ã′)/(np). The simulation for three-factor NMF

is as follows: first, we generate F such that

f̃im ∼ Ex

((
µ

k0ℓ0

)1/3)
(i = 1, . . . , n; m = 1, . . . , k), (8.13)

where ℓ0 is the number of column factors. Ã and S̃ are also generated in the same manner

as F̃ . Then, we obtain a noiseless data matrix X̃ = F̃ S̃Ã′, after which we obtain the

synthetic data Y by the following CP random number:

yij ∼ CP (x̃ij , ϕ0, β0) (i = 1, . . . , n; j = 1, . . . , p). (8.14)

Finally, we execute CP3NMF and CP3ONMF to Y , obtain the estimated F̂ , Ŝ, and Â by

the two methods, and calculate dβ(Y , F̃ S̃Ã′)/(np). We generate 50 synthetic data values

for two- and three-factor NMF, and allow each of the four NMFs to execute 100 times per

one synthetic data value. The parameter settings for generating synthetic data and for

these algorithms are as follows:

• n = 100, p = 60, k0 = 5, ℓ0 = 3

• µ = 10

• ϕ0 = 1, β0 = 0.5

• τ = 10−2, ν = 1000

• δ = 50, κ = 100
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Figure 8.9: Beta divergence per one element between synthetic data Y and the approxima-

tion matrix X̃ for two- and three-factor NMF with and without an orthogonal constraint.

Fig. 8.9 shows the result. The results show that the β-divergence of orthogonal NMF

is larger than that of non-orthogonal NMF for both two- and three-factor NMF. This

means that the orthogonal constraint adversely affects the approximation of NMF. This

simulation enables us to conclude that NMF with an orthogonal constraint should be used

considering the trade-off between its easy-to-understand estimates and its under fitting.

8.3 Approximation of NMF to zero-inflated matrix

In this section, we describe the numerical example that was used to test the NMF with

the zero-inflated model in terms of approximation accuracy to the zero-inflated matrix.

The following procedure was used in this simulation study. First, we generate the noiseless

nonnegative matrix X̃ ∈ Rn×p from the assumption of two- and three-factor NMF, and

two- and three-factor orthogonal NMF as described later. Then, we obtain the non-zero-

inflated nonnegative matrix Y ∗ by the following CP distribution:

yij ∼ CP (x̃ij , ϕ0, β0) (i = 1, . . . , n; j = 1, . . . , p). (8.15)

Next, we generate an artificial nonnegative data matrix Y such that 100w0% elements

of Y ∗ are converted to zero. Finally, we execute the corresponding NMF with and with-

out the zero-inflated model and calculate the degree of approximation according to the

β-divergence for each estimation result. For the non-zero-inflated NMF, we calculate

dβ(Y , X̂), whereas for the zero-inflated NMF, we calculate dβ(Y , (E − Ẑ) ⊙ X̂), where

X̂ and Ẑ are the estimated approximation matrix and estimated latent variable matrix,

respectively. The X̃ is generated as follows.
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Case of two-factor NMF

First, we generate F̃ ∈ Rn×k0 such that

f̃im ∼ Ex

((
µ

k0

)1/2)
(i = 1, . . . , n; m = 1, . . . , k0), (8.16)

where k0 is the number of factors. Ã ∈ Rp×k0
+ is also generated in the same manner as F̃ .

In this way we obtain the noiseless data matrix X̃ = F̃ Ã′.

Case of three-factor NMF

First, we generate F̃ ∈ Rn×k0 such that

f̃im ∼ Ex

((
µ

k0ℓ0

)1/3)
(i = 1, . . . , n; m = 1, . . . , k0), (8.17)

where ℓ0 is the number of column factors. Ã ∈ Rp×ℓ0 and S̃ ∈ Rk0×ℓ0 are also generated

in the same manner as F̃ . Then, we obtain the noiseless data matrix X̃ = F̃ S̃Ã′.

Case of two-factor orthogonal NMF

First, we determine the true row clusters R̃ randomly; we then generate true F̃ ∈ Rn×k0

as follows:

f̃im ∼

Ex(µ1/2) (i ∈ R̃m)

0 (i /∈ R̃m)
(i = 1, . . . , n; m = 1, . . . , k0). (8.18)

Then, each element of true Ã ∈ Rp×k0 is generated as follows:

ãjm ∼ Ex(µ1/2) (j = 1, . . . , p; m = 1, . . . , k0). (8.19)

Finally, we obtain the noiseless data matrix X̃ = F̃ Ã′.

Case of three-factor orthogonal NMF

First, we determine the true row clusters R̃ randomly; we then generate true F̃ ∈ Rn×k0

as follows:

f̃im ∼

Ex(µ1/3) (i ∈ R̃m)

0 (i /∈ R̃m)
(i = 1, . . . , n; m = 1, . . . , k0). (8.20)

Then, the true C̃ and Ã ∈ Rp×ℓ0 are generated in the same manner as R̃ and F̃ . After

that, each element of true S̃ ∈ Rk0×ℓ0 is generated as follows:

s̃mq ∼ Ex(µ1/3) (m = 1, . . . , k0; q = 1, . . . , ℓ0). (8.21)

Finally, we obtain the noiseless data matrix X̃ = F̃ S̃Ã′.
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We generate 50 synthetic data values for the combination of w0 = {0.2, 0.4, 0.6} and the

four types of NMFs and perform 100 executions of each type of NMF per one synthetic data

value. The parameter settings for generating the synthetic data and for these algorithms

are as follows:

• n = 100, p = 60, k0 = 5, ℓ0 = 3

• µ = 10

• ϕ0 = 1, β0 = 0.5

• τ = 10−2, ν = 1000

• δ = 50, κ = 100

Fig. 8.10, 8.11, and 8.12 show boxplots of the β-divergence for each of the corresponding

situations. Fig. 8.10 relates to all elements of Y , Fig. 8.11 only to the non-zero elements

of Y , and Fig. 8.12 relates only to the zero elements of Y . As shown in Fig. 8.10, the

β divergences for the zero-inflated NMF are smaller than those for the non-zero-inflated

NMF for all four types of NMFs and w0. This means that approximation using zero-

inflated NMF is more accurate than that for non-zero-inflated NMF for any number of

zero elements. Fig. 8.11 shows that β divergence values for the zero-inflated NMF are

better than those for the non-zero-inflated NMF under all conditions, as does Fig. 8.10.

This is a noteworthy result because it suggests that the use of zero-inflated NMF improves

approximation not only for zero elements, but also for non-zero elements. Non-zero ele-

ments are generated from the CP distribution, which represents the factorization model.

Hence, its result indicates that the factorized matrices estimated using zero-inflated NMF

are better than those obtained using non-zero-inflated NMF, even in terms of approxima-

tion to non-zero elements. Fig. 8.12 shows that the proposed NMF model is even better

than the basic model for zero elements.

Figs. 8.10 and 8.11 also indicate that the β divergence for non-zero-inflated NMF

increased with the ratio of zero elements (w0). This shows that a greater number of

zero elements result in a less accurate approximation in non-zero-inflated NMF. On the

other hand, the β divergence for the zero-inflated NMF model either remained constant or

decreased slightly as w0 increased. This is because the proposed NMF model does not take

into account most zero elements, and it is easy to approximate fewer non-zero elements

using the proposed NMF model.
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Figure 8.10: β divergence per element between synthetic data matrix Y and approximation

matrix X̃ by the non-zero-inflated (left boxplot) and the zero-inflated NMF model (right

boxplot). Values at the bottom of each box are mean values.
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Figure 8.11: β divergence per element for only non-zero elements of synthetic data Y

between Y and approximation matrix X̃ by the non-zero-inflated (left boxplot) and the

zero-inflated NMF model (right boxplot). Values at the bottom of each box are mean

values.
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Chapter 9

Applications

9.1 Document and term data

In this section, we describe an application involving a matrix containing document-term

data to enable us to compare the clustering accuracy and computational time of N3ONMF

with those of previous three-factor orthogonal NMFs, Ding et al. (2006) and Yoo and Choi

(2010b). There are two reasons to compare these three methods: first, the three-factor

NMF is compatible with the document-term clustering described in Section 3.1, second,

these two three-factor orthogonal NMFs have some problems, as described in Section 3.2,

and we are interested in its performance in a real data application. We do not use the

other three-factor ONMF, P3ONMF, and CP3ONMF methods, in this application for the

following reason. We use a document-term matrix that is converted using TF-IDF, which

strongly weights terms in a few documents. The entries of these terms have large positive

values. Hence, if we use a robust NMF, which implies that an NMF based on the Euclidean

distance is not used, the effect of the weighted entries disappears and interpretable clusters

cannot be obtained. Therefore, N3ONMF is appropriate in this application.

The data matrices we used were obtained from the open data CLUTO1 website. The

selected data matrices and statistics are listed in Table 9.1. The list of datasets in Table

9.1 are ordered by the number of elements. The tr11, tr12, tr23, tr31, tr41, and tr45

datasets are derived from the TREC2 collections. The true categories of the documents

in tr31 and tr41 datasets are obtained by particular queries. The re0 and re1 datasets are

from the Reuters-21578 text categorization test collection, distribution 1.03. The fbis data

set is from the Foreign Broadcast Information Service data of TREC-5. The hitech is a

dataset of San Jose Mercury Newspaper articles and contains documents about computers,

electronics, health, medicine, research, and technology. The k1a, k1b, and wap datasets

were used for the WebACE project (Boley et al., 1999) and contain web pages in various

subject directories of Yahoo!4. Datasets k1a and k1b contain the same documents, but the

true labels are different.

1http://glaros.dtc.umn.edu/gkhome/views/cluto
2http://trec.nist.gov/
3http://www.daviddlewis.com/resources/testcollections/reuters21578/
4http://www.yahoo.com/
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We conducted term frequency-inverse document frequency (tf-idf) conversion for all data

matrices. Before we started, we set the number of document clusters equal to the number of

document classes provided, and the number of word clusters was set to 10 for all the data

matrices. The convergence was determined using (3.11) and the convergence threshold

was set as τ = 10−7∥Y ∥ for all the methods. The clustering accuracy was measured

using the ARI between the given clusters and estimated clusters of the documents. It

should be noted that some clusters occasionally become empty during iterative process

to update N3ONMF. In this case, we restarted the update iteration from another initial

parameter. Hence, we calculated the computational time of N3ONMF from the beginning

of the first trial iteration to the end of the final trial iteration in which non-empty clusters

are obtained. From among the candidates of the estimates given by 10 executions of each

of the three methods, we select the best estimates for which the objective function value

is minimized. The results are listed in Table 9.2.

Table 9.2: ARI between given clusters and estimated clusters of the documents and com-

putational time generated by three methods for each CLUTO dataset.

ARI computational time (s)

data Ding Yoo N3ONMF Ding Yoo N3ONMF

tr23 0.26 0.30 0.07 341 31 6

tr12 0.55 0.36 0.52 123 50 3

tr11 0.58 0.71 0.52 190 44 6

re0 0.15 0.07 0.10 420 29 5

fbis 0.28 0.35 0.36 301 128 5

tr45 0.11 0.22 0.52 1208 281 22

re1 0.08 0.07 0.11 243 63 15

tr41 0.23 0.41 0.57 991 288 9

tr31 0.06 0.15 0.59 2158 334 16

wap 0.39 0.33 0.39 3133 738 27

k1a 0.37 0.32 0.31 4244 5021 138

k1b 0.50 0.53 0.74 3629 2211 147

hitech 0.19 0.15 0.17 29012 6267 77

Although the performance of N3ONMF is less accurate for a relatively small data matrix,

its performance improves in terms of estimating clusters for a relatively large data matrix.

Moreover, the computational time of N3ONMF is extremely short in all cases. In fact, the

N3ONMF has the fastest and deepest convergence, as shown in Fig. 9.1. These results

imply that N3ONMF may be a superior method for estimating document clusters, because

of its higher accuracy and computational efficiency.

We now show the estimates given by N3ONMF using k1a as an example to demonstrate

how to interpret N3ONMF results. The k1a dataset consists of Web news documents
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Figure 9.1: Plot of the sequence of the objective function values in iterations about “tr23”

dataset for three NMF.

obtained from the Reuters news service in October, 1997 (Boley, 1998). In k1a, the doc-

uments are labeled by six categories, “business,” “entertainment,” “health,” “politics,”

“sports,” and “tech,” in advance. Table 9.3 is a cross-tabulation of the number of docu-

ments between the given clusters and estimated clusters. We label the document clusters

as DC 1 to DC 6. As shown in Table 9.3, “health,” “sports,” and “entertainment” doc-

Table 9.3: Cross-tabulation of the number of documents between the given and estimated

clusters of the k1a dataset.

DC 1 DC 2 DC 3 DC 4 DC 5 DC 6

business 1 141 0 0 0 0

entertainment 3 116 1189 47 30 4

health 492 2 0 0 0 0

politics 0 110 4 0 0 0

sports 0 0 4 1 0 136

tech 0 60 0 0 0 0
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uments are clustered well. However, “business,” “politics,” and “tech” documents are

contained in DC 2. The interpretation of each cluster is as follows.

DC 1 “Health” documents cluster.

DC 2 “Business,” “politics,” “tech,” and some “entertainment” documents cluster.

DC 3 First “entertainment” documents cluster.

DC 4 Second “entertainment” documents cluster.

DC 5 Third “entertainment” documents cluster.

DC 6 “Sports” documents cluster.

Table 9.4 presents the estimated factor matrix of the words. We label the word clusters

as WC 1 to WC 10.
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Although a few clusters are ambiguous, we can find a meaning for most clusters. The

interpretation of each word cluster is as follows.

WC 1 Words about cinema or television.

WC 2 Words about money (“million” and “rate”) or date and time (“am,” “mondai,”

and “tuesdai”).

WC 3 Words about the Emmy awards. “gillian” and “franz” seem to be about Gillian

Anderson and Dennis Franz. They won the outstanding lead actress and actor

in a drama series of 49th Ammy award in 1997.

WC 4 Words about music CD sales (“week,” “bestsell,” “weekli,” and “publish”).

WC 5 Words about politics (“clinton,” and “house”), economics (“stock,” “compani,”

“dow,” and “percent”), and technology (“internet,” “microsoft,” and “com-

put”).

WC 6 Words about healthcare.

WC 7 Words about sports (“start” and “plai”).

WC 8 Words about investigation (“report,” “accord,” and “author”).

WC 9 Words about market (“market,” “sale,” “quote,” and “share”)

WC 10 Words about sports.

We can also grasp the relationship between the estimated document and word clusters

using center factor matrix S. Table 9.5 shows the values of its factor matrix. We find

Table 9.5: Center factor matrix S, which shows the relationship between the document

and word clusters.

DC 1 DC 2 DC 3 DC 4 DC 5 DC 6

WC 1 0.08 0.10 1.80 0.12 0.07 0.06

WC 2 0.24 0.49 0.97 0.08 0.03 0.14

WC 3 0.01 0.02 0.25 1.99 0.00 0.08

WC 4 0.06 0.05 0.15 0.02 1.75 0.03

WC 5 0.06 1.53 0.16 0.01 0.02 0.03

WC 6 1.98 0.07 0.10 0.01 0.01 0.02

WC 7 0.15 0.26 0.49 0.05 0.01 0.57

WC 8 0.79 0.33 0.40 0.03 0.03 0.10

WC 9 0.16 0.80 0.45 0.03 0.04 0.07

WC 10 0.05 0.04 0.13 0.01 0.00 1.45

that DC 1 and DC 6 are well characterized by words in WC 6 and WC 10, respectively.

This means that the words in WC 6 and WC 10 are effective for filtering documents
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about “health” and “sports.” In contrast, DC 2 has a strong values at WC 5 and WC

9, which contain words connected with the subjects of politics, economics, the market,

and technology. This indicates that these words are aggregated in two clusters and hence

the documents about “business,” “politics,” and “tech” are not separated into different

clusters. DC 2 also has some documents about “entertainment,” and these documents

may be about topics near to “business,” “politics,” and “tech.” Although the other

clusters, DC 3, DC 4, and DC 5 have documents labeled as “entertainment,” they are

related to different word clusters from each other. We can interpret that DC 3 is about

entertainment in cinema or television, as DC 3 is related to WC 1, which contains words

about the cinema or television industry. DC 4 is related to WC 3, which has words about

the Emmy awards. We guess that these documents are about the 49th Primetime Emmy

Awards held in September, 1997. DC 5 is related to WC 4, which consists of words about

music CD sales. These results indicate that the documents labeled as “entertainment” are

divided into four groups.

9.2 Point of sale data

In this section we describe the application of selected NMFs to point-of-sale data col-

lected by a Japanese grocery store in June 2014, including customer ID information.5 This

application aims to observe the effects of CP distribution, the zero-inflated model, and an

orthogonal constraint. We created a matrix that includes customer spending in monetary

units (rows) in the various product categories (columns) using the following data cleansing

steps:

Step 1: We removed those product categories for which the cumulative sum of sales is less

than JPY 1,000,000. This is the same as removing the product categories for which

the total sales is less than JPY 74,682.

Step 2: We removed those customers for whom the cumulative relative sum of customer

spending was less than 30%. This is the same as removing the customers who spent

less than JPY 5,719.

Step 3: We removed those customers for whom the number of product categories for their

customer purchases was less than or equal to five.

The statistics for the original data set and the data set after cleansing are provided in

Table 9.6.

Summaries of the cleansed data are shown in Fig. 9.2, Fig. 9.3, and Table 9.7. From

Fig. 9.2, there are some peaks in the total sales. This indicates that some groups of

customers may exist in this store. In Fig. 9.3, many customers purchased items from 15

to 30 categories.

5“i-codePOS Data” provided by IDS Co., Ltd. in the 2015 Data Analysis Competition hosted by the

Joint Association Study Group of Management Science.
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Table 9.6: Statistics for the original dataset and the dataset after cleansing based on the

point-of-sale data.

Original After cleansing

Customers 33,456 7,348

Product categories 146 114

Proportion of zero elements 0.928 0.774

Total sales (JPY) 165,169,493 114,143,984
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Figure 9.2: Histogram of customers’ total sales.
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Figure 9.3: Histogram of the number of customers’ purchasing categories.
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Using this data set, we obtained a factor matrix of product classification from N2NMF,

CP2NMF, ZICP2NMF, and CP2ONMF. We compared the estimated factor matrix, be-

tween N2NMF and CP2NMF, to confirm the effect of CP distribution; CP2NMF and

ZICP2NMF, to confirm the effect of the zero-inflated model; and CP2NMF and CP2ONMF,

to confirm the effect of the orthogonal constraint. From among the 20 estimate candidates,

we selected the estimator for the purpose of maximizing the objective function value. The

parameter settings for the algorithm of these methods are as follows:

• k = 5

• β = 0.5

• τ = 10−2, ν = 1000

• δ = 20, κ = 100.

The number of clusters k is commonly determined in various appropriate ways by using

information criteria, cross-validation, or a Bayesian method. However, for this application

we select k = 5 to enable us to easily verify the characteristics of the estimators obtained

by each NMF, and because of space limitations. The estimators of the factor matrix for

product categories A obtained by the four NMFs are provided in Table 9.8, 9.9, 9.10, and

9.11. All factor matrices for product categories A are standardized such that the length

of each column vector is 1. The table only includes product classifications with values

greater than 0.2.
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Table 9.8: Factor matrix A produced by N2NMF.

1 2 3 4 5

Gifts and brand-name confectionery 1.00 0.00 0.00 0.00 0.00

Sushi 0.00 0.95 0.00 0.00 0.00

Beer 0.00 0.00 0.97 0.00 0.00

Fruit vegetable 0.01 0.00 0.01 0.47 0.00

Vegetable-related 0.00 0.00 0.00 0.29 0.00

Fruits in season 0.00 0.17 0.00 0.28 0.00

Mizumono 0.00 0.02 0.04 0.25 0.10

Imported fruit 0.00 0.03 0.00 0.24 0.08

Japanese-grown Pork 0.00 0.01 0.02 0.23 0.03

Leaf vegetable 0.00 0.01 0.02 0.20 0.00

Bread 0.01 0.00 0.01 0.05 0.38

Dry confectionery 0.01 0.00 0.00 0.03 0.35

Fresh Japanese sweets 0.01 0.05 0.00 0.03 0.33

Salad deli 0.00 0.08 0.01 0.00 0.30

Refreshing beverage 0.01 0.00 0.04 0.00 0.29

Fried food deli 0.00 0.09 0.03 0.01 0.26

Japanese-style deli 0.00 0.09 0.00 0.00 0.21

Milk product 0.01 0.00 0.02 0.20 0.20

product classifications
N2NMF
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Table 9.9: Factor matrix A produced by CP2NMF.

1 2 3 4 5

Rice 0.62 0.00 0.00 0.00 0.00

Beer 0.49 0.00 0.00 0.09 0.09

Sashimi 0.31 0.04 0.00 0.18 0.00

Wine 0.24 0.00 0.00 0.00 0.00

Sushi 0.12 0.54 0.01 0.00 0.04

Salad deli 0.08 0.29 0.00 0.10 0.03

Rice deli 0.00 0.26 0.00 0.00 0.00

Fried food deli 0.10 0.25 0.04 0.05 0.06

Fresh Japanese sweets 0.03 0.24 0.15 0.08 0.03

Bread 0.03 0.23 0.13 0.17 0.18

Lunch box 0.00 0.20 0.00 0.00 0.00

Fruit vegetable 0.04 0.03 0.42 0.27 0.28

Mizumono 0.07 0.06 0.28 0.20 0.20

Imported fruit 0.03 0.10 0.26 0.22 0.07

Vegetable-related 0.04 0.03 0.25 0.15 0.08

Fillet 0.05 0.00 0.23 0.00 0.00

Fruits in season 0.12 0.12 0.23 0.19 0.01

Milk product 0.06 0.10 0.16 0.42 0.16

Wagyu beef 0.00 0.00 0.00 0.33 0.00

Milk beverage 0.04 0.12 0.13 0.26 0.12

Dry confectionery 0.05 0.19 0.08 0.21 0.11

Japanese-grown Pork 0.03 0.00 0.17 0.11 0.37

Processed meat 0.05 0.02 0.17 0.16 0.31

Processing seasoning 0.08 0.00 0.16 0.17 0.26

Deep-frozen food 0.00 0.00 0.00 0.00 0.22

Imported pork 0.00 0.00 0.05 0.00 0.22

product classifications
CP2NMF

109



Table 9.10: Factor matrix A produced by ZICP2NMF.

1 2 3 4 5

Beer 0.62 0.01 0.00 0.00 0.00

Milk product 0.23 0.16 0.22 0.10 0.08

Processing seasoning 0.23 0.04 0.14 0.09 0.05

Noodle 0.21 0.00 0.11 0.00 0.07

Sushi 0.00 0.35 0.10 0.28 0.12

Rice 0.00 0.35 0.01 0.00 0.00

Refreshing beverage 0.08 0.33 0.00 0.05 0.05

Lunch box 0.00 0.33 0.00 0.00 0.00

Dry confectionery 0.08 0.27 0.10 0.04 0.15

Bread 0.09 0.27 0.14 0.09 0.16

Rice deli 0.00 0.26 0.00 0.06 0.09

Fresh Japanese sweets 0.05 0.23 0.11 0.08 0.18

Fruit vegetable 0.23 0.03 0.39 0.18 0.07

Vegetable-related 0.06 0.00 0.31 0.04 0.03

Mizumono 0.16 0.04 0.28 0.09 0.11

Imported fruit 0.15 0.09 0.26 0.06 0.06

Fruits in season 0.03 0.05 0.25 0.21 0.13

Fillet 0.00 0.00 0.23 0.00 0.00

Japanese-grown Pork 0.14 0.00 0.21 0.13 0.02

Wagyu beef 0.01 0.00 0.00 0.56 0.00

Japanese-grown beef 0.00 0.00 0.00 0.40 0.00

Wine 0.00 0.00 0.00 0.26 0.00

Fried food deli 0.03 0.11 0.03 0.06 0.39

Japanese-style deli 0.00 0.06 0.01 0.02 0.38

Salad deli 0.02 0.17 0.00 0.07 0.37

Grilled deli 0.00 0.02 0.00 0.00 0.33

Gifts and brand-name confectionery 0.00 0.00 0.00 0.00 0.23

product classifications
ZICP2NMF
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Table 9.11: Factor matrix A produced by CP2ONMF.

1 2 3 4 5

Beer 0.59 0.00 0.00 0.00 0.00

Fillet 0.59 0.00 0.00 0.00 0.00

Small fish 0.46 0.00 0.00 0.00 0.00

Sushi 0.00 0.57 0.00 0.00 0.00

Fried food deli 0.00 0.41 0.00 0.00 0.00

Refreshing beverage 0.00 0.37 0.00 0.00 0.00

Precooked foods deli 0.00 0.32 0.00 0.00 0.00

Japanese-style deli 0.00 0.30 0.00 0.00 0.00

Rice deli 0.00 0.25 0.00 0.00 0.00

Fruit vegetable 0.00 0.00 0.33 0.00 0.00

Milk product 0.00 0.00 0.27 0.00 0.00

Mizumono 0.00 0.00 0.26 0.00 0.00

Bread 0.00 0.00 0.25 0.00 0.00

Imported fruit 0.00 0.00 0.24 0.00 0.00

Fruits in season 0.00 0.00 0.23 0.00 0.00

Dry confectionery 0.00 0.00 0.22 0.00 0.00

Fresh Japanese sweets 0.00 0.00 0.22 0.00 0.00

Milk beverage 0.00 0.00 0.21 0.00 0.00

Cooked beans and tsukudani 0.00 0.00 0.00 0.56 0.00

Japanese-grown chicken 0.00 0.00 0.00 0.53 0.00

Sliced fish for sashimi 0.00 0.00 0.00 0.35 0.00

Wine 0.00 0.00 0.00 0.23 0.00

Ice cream 0.00 0.00 0.00 0.23 0.00

Brand chicken 0.00 0.00 0.00 0.21 0.00

Agricultural dry food 0.00 0.00 0.00 0.21 0.00

Wagyu beef 0.00 0.00 0.00 0.00 0.52

Tasty beverage 0.00 0.00 0.00 0.00 0.47

Snack deli 0.00 0.00 0.00 0.00 0.45

Instant soup 0.00 0.00 0.00 0.00 0.37

Gifts and brand-name confectionery 0.00 0.00 0.00 0.00 0.27

Cooked rice seasoning 0.00 0.00 0.00 0.00 0.22

product classifications
CP2ONMF
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The interpretations of the estimated factors are as follows. We indicate them-th factor of

N2NMF, CP2NMF, ZICP2NMF, and CP2ONMF as N2m, CP2m, ZICP2m, and CP2Om,

respectively.

Interpretation of the N2NMF result

N21: Buying gifts and brand-name confectionery.

N22: Buying sushi.

N23: Buying beer.

N24: Buying vegetables, fruits, and mizumono (e.g., natto, konjac, and tofu.

N25: Buying bread, confectionery, beverages, and deli foods, which are ready-to-eat

foods.

Interpretation of the CP2NMF result

CP21: Buying rice, beer, and sashimi.

CP22: Buying deli and the other ready-to-eat foods.

CP23: Buying vegetables, fruits, and mizumono. This factor is similar to N24.

CP24: Buying items made out of milk and wagyu beef.

CP25: Buying meat (mainly pork) and processing seasonings.

Interpretation of the ZICP2NMF result

ZICP21: Buying mainly beer.

ZICP22: Buying refreshing beverages and somethings like a complete meal, e.g., sushi,

lunch boxes, bread, and rice deli.

ZICP23: Buying vegetables, fruits, and mizumono. This factor is similar to N24 and

CP23.

ZICP24: Buying beef and wine.

ZICP25: Buying deli foods such as side dishes.

Interpretation of the CP2ONMF result

CP2O1: Buying beer and fish.

CP2O2: Buying sushi and other deli foods such as side dishes.

CP2O3: Buying items like those of N24 and CP23, e.g., vegetables, fruits, and mizumono,

items made out of milk, and items like confectionery.
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CP2O4: Buying chicken, cooked beans, and tsukudani.

CP2O5: Buying wagyu beef and refreshing beverages .

Summaries of the estimators of the factor matrix for customers F are provided in Table

9.12. F represents something like the each customer’s amount of spending for the product

categories in each factor.

Table 9.12: Summaries of the estimators of factor matrix F for customers.

1 2 3 4 5

N2NMF mean 146.6 494.2 281.9 1,286.2 971.4

sd 1,521.9 949.7 922.5 1,500.4 1,024.8

min 0.0 0.0 0.0 0.0 0.0

25% 0.0 0.0 0.0 409.9 313.3

median 0.2 88.1 7.6 862.9 706.1

75% 7.9 576.1 110.0 1,639.6 1,287.4

max 61,131.2 14,899.3 16,169.6 28,182.1 15,333.0

CP2NMF mean 333.6 802.5 800.9 490.3 363.9

sd 709.6 1,126.1 1,074.7 748.6 599.4

min 0.0 0.0 0.0 0.0 0.0

25% 0.0 0.0 0.0 0.0 0.0

median 0.0 459.3 487.7 213.4 97.7

75% 398.8 1,147.3 1,097.0 694.6 517.7

max 12,174.8 15,265.5 12,881.1 9,420.6 8,368.9

ZICP2NMF mean 463.0 585.6 1,001.1 320.0 504.0

sd 790.3 884.5 1,277.1 575.5 837.9

min 0.0 0.0 0.0 0.0 0.0

25% 0.0 0.0 7.3 0.0 0.0

median 129.7 243.5 667.8 0.0 201.7

75% 651.7 856.6 1,363.4 441.4 694.8

max 13,270.2 13,932.4 18,526.9 9,841.8 13,575.6

CP2ONMF mean 387.4 824.7 1,785.1 289.4 303.7

sd 661.4 979.7 1,508.0 438.1 739.6

min 0.0 0.0 54.3 0.0 0.0

25% 0.0 265.5 860.0 0.0 0.0

median 156.5 543.4 1,273.9 156.8 122.0

75% 474.5 1,039.0 2,153.7 385.2 345.4

max 11,543.5 18,006.8 18,493.1 12,251.9 24,325.0
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The results of A show that all methods extract two factors: buying basic Japanese

foods, e.g., fruits, vegetables, mizumonoes, and buying ready-to-eat foods, e.g., some deli

foods, breads, lunch boxes, and beverages. Table 9.12 indicates that the amount paid for

these two factors’ items is large. In contrast, the details of the other factors are different

for each NMF method. For example, in the results of ZICP2NMF (Table 9.10), the two

ready-to-eat food factors are estimated: a complete meal and side dishes. However, other

methods provide one factor including these foods.

Below, we discuss the characteristics of each NMF by comparing them in pairs.

N2NMF vs CP2NMF

The factor matrix of N2NMF in Fig. 9.8 indicates that three bases are estimated with

only one extremely strong value (“Gifts and brand-name confectionery,” “Sushi,” and

“Beer”). In contrast, the result obtained by CP2NMF does not reflect any such bases,

all of which have middle-ranging values for various product classifications. Thus, this

result shows the effect of robust estimation using CP distribution. The basis for which we

obtained only one extreme value is estimated when the data contains outliers. Fig. 9.4

plots of the number of customers whose proportion of money spent in a single category

is more than r% for each category. This figures shows that there are a relatively large
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Figure 9.4: Number of customers whose proportion of money spent in a single category

is more than r% for each category. For example, there are 87 customers who spent more

than 30% of his/her total spending on “Sushi” items.
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number of customers who spent money on “Sushi,”“Beer,” or “Gifts and brand-name

confectionery” at a high rate, e.g, more than r = 30%. Moreover, Table 9.7 shows that

these categories all have high mean values for money spent but have a low proportion of

purchasing customers. For “Gifts and brand-name confectionery,” the maximum money

spent is the highest of all categories and is a very large value (JPY 61,128). These results

suggest that the large values of a few samples strongly affect the estimates of factor

matrices in NMFs using a normal distribution.

However, for the CP2NMF, such a extreme basis is difficult to estimate, even if there

were outliers, because the penalty for large data values is weaker than for small data values

in terms of β-divergence, as seen in Section 3.3. From the point of view of interpretation,

a basis with only one extreme value is unavailing because the aim of NMF is to capture

the co-occurrence relation. Such a basis indicates that there is no co-occurrence with an

item that has such an extreme value.

CP2NMF vs ZICP2NMF

Fig. 9.10 displays the effect of the zero-inflated model: factor matrices are estimated

considering some values of yij = 0 as non-zero. For example, “Wine” and “Beef,” (e.g.,

“Wagyu beef” and “Japanese-grown beef”) are not in the same factor in the estimates

of CP2NMF. This means that few customers buy both of these items. However, in

ZICP2NMF, customers buying either “Wine” or “Beef” but not both are regarded as

customers buying both, because some of the zero values in data matrix Y are disregarded.

In other words, some elements of yij = 0 in the “Wine” or “Beef” columns are assumed

not to be generated from the distribution yij ∼ CP (xij , ϕ, β) but from yij ∼ 0 instead, and

hence the values of yij = 0 are disregarded when the factor matrices, which are parameters

of the CP distribution, are estimated. In fact, if zij = 1, information from the i, j elements

becomes weak in the fim and ajm update rules (see (4.35) and (4.37)). A realistic inter-

pretation of this result would be the following: customers who bought “Wine” items but

not “Beef” would have bought “Beef” if the customers had conformed to the estimated

buying model, but the customers did not actually buy “Beef” for other reasons. Therefore,

the advantage of NMF with a zero-inflated model is that it can be usefully applied to a

recommender system: “Beef” items are recommended to customers who bought “Wine”

items but not “Beef.”

CP2NMF vs CP2ONMF

The effect of the orthogonal constraint is obvious in Fig. 9.11: each of the product

classifications has only one non-zero value among the five bases. Although the results

obtained for CP2ONMF are simple and easy to comprehend owing to this effect, it is

difficult to interpret each of the bases. None of the bases match Japanese food culture

except for the 2nd and 3rd bases: the 2nd basis indicates purchases of delicatessen and

drink items, (e.g., “Sushi,” “Fried food deli,” “Precooked foods deli,” “Japanese-style deli,”

and “Refreshing beverage”), whereas the 3rd basis indicates purchases of basic foods in

Japan (e.g., “Fruit & vegetables,” “Milk product,” and “Mizumono”)
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Summary of the four methods

We cannot determine which of the four methods is the best. However, we can give

suggestions as to which method is better in some situations. If we wish to obtain factors

that are affected by extremely large values of small samples such as “Gifts and brand-name

confectionery,” “Sushi,” and “Beer,” it is best to use N2NMF. On the other hand, if we

consider these values to be outliers, we should use CP2NMF. For zero-inflation, if we place

importance on an approximation between the data and factorized matrices, we should use

ZICP2NMF. If we want to simplify the result, it is best to use CP2ONMF.

The result obtained from the point-of-sale data show that the factors estimated by

ZICP2NMF seem to be better from a Japanese food culture’s point of view because there

are many meaningful factors: a complete meal, side dishes, basic cooking ingredients, or

foods in Japan, and beef and wine. However, CP2ONMF seems to perform worse on this

data because some factors are ambiguous. As described in Section 3.2, CP2ONMF does

not approximate the data as well as other methods. These ambiguous factors could have

been estimated because of the bad approximation.
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Chapter 10

Conclusions

In this paper, we described properties, derivations of updating rules, algorithms, and

examples of the usage of various NMFs for exploratory data analysis using a nonnega-

tive data matrix. Nonnegative data matrices are widely and readily available in many

academic and business fields, and NMF has been a very useful technique for generating

knowledge from these matrices. However, analysis of these data with NMF encounters

some difficulties when the nonnegative matrix contains many zero values and has some

outliers. The presence of many zero values leads to a poor approximation to the ma-

trix by NMF, whereas outliers result in the estimated factor bases becoming invaded by

them. We addressed these problems by considering the assumption of a divergence, which

is an error criteria between a given data matrix and its approximation matrix. Various

divergences have previously been proposed to ensure robust NMF, e.g., α-divergence and

β-divergence. Our research focused on NMF with β-divergence because it allows the use

of a zero-inflated model. The assumption on which β-divergence is based is equivalent

to the Tweedie distribution assumption, and Tweedie distribution with β ∈ (0, 1), that

is, CP distribution, corresponds well to the zero-inflated model because the distribution

has mass at the zero-like Poisson distribution, which is also used in combination to the

zero-inflated model. In addition, CP distribution can be given as the distribution followed

by the sum of gamma-distributed random variables when the number of these variables

is Poisson distributed; this generating model is suitable for data consisting of the sum

of nonnegative values. Based on the above idea, we proposed the two-factor NMF based

on ZICP distribution (ZICP2NMF). We used a simulation study involving three-factor

orthogonal NMF to show that CP distribution is robust against outliers by applying our

approach to point-of-sale data. Moreover, we used another simulation study to present

the goodness of fit of ZICP2NMF to a zero-inflated nonnegative data matrix and pre-

sented the characteristics of ZICP2NMF by application to point-of-sale data. We also

considered the use of an orthogonal constraint for the simple interpretation of the factor

matrices of NMF. The combination of orthogonality and a nonnegativity constraint leads

to factor matrices with a simple structure at the risk of poor approximation accuracy as

shown in the simulation study about NMF with and without an orthogonal constraint.

We discussed a simple structure property of such a constraint factor matrix, and from
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this property, we derived a new updating rule for nonnegative factor matrices with an

orthogonal constraint in NMF based on Poisson and CP distribution with reference to the

work of Pompili et al. (2014). Previous algorithms of orthogonal NMF were problematic

in terms of the estimation of orthogonal factor matrices: no non-increasing property of the

sequence of the objective function values and no orthogonality property of the estimated

factor matrices with an orthogonal constraint. On the other hand, the orthogonal NMFs

presented in this paper do not have these problems. Our simulation study and application

to document-term data demonstrated improved accuracy for the new orthogonal NMF

compared to existing NMF. Moreover, most previous orthogonal NMFs are based on a

normal distribution and orthogonal NMFs with CP distribution do not exist. Hence, or-

thogonal NMF based on CP distribution, as proposed in this paper, namely CP2ONMF,

is a valuable contribution. Of course, CP2ONMF is extended to NMF with a zero-inflated

model: we introduced it as ZICP2ONMF. These ideas described above are applicable to

three-factor NMF (see CP3NMF, CP3ONMF, ZICP3NMF, and ZICP3ONMF) in which

the data matrix is decomposed into three types of factors: factors of row objects, factors of

column objects, and factors that represent the relationship between the factors of row and

column objects. Three-factor NMF is also referred to as a bi-clustering method because

different factors are assumed for the row and column objects. ZICP3NMF, CP3ONMF,

and ZICP3ONMF are also valuable because previous three-factor NMFs cannot be ex-

tended to using CP distribution, an orthogonal constraint, and a zero-inflated model due

to the highly complicated derivation of the updating algorithm of previous three-factor

NMFs.

The drawbacks of our proposed methods are as follows. NMF with orthogonal con-

straints may lead to a bad approximation of the data matrix. If the approximation is worse

than that of non-orthogonal NMF, it is best to interpret the result of the non-orthogonal

NMF. It is a future task to develop a method to determine which is better. NMF based on

the CP distribution has a problem with the hyperparameter settings. Parameter β of the

CP distribution affects the shape of the distribution, and hence we should not determine

it using the maximum likelihood method. It seems that there might be a better solution

using the marginal likelihood, also referred to as evidence in Bayesian statistics . Zero-

inflated NMF also has a drawbacks: the impact of the zero elements on the estimation

of the factor matrices is weak. If many zero-elements in the data matrix are truly zero,

in other words, if they are generated from the factorization model y ∼ CP (x, ϕ, β) in

(3.40), we cannot obtain a true estimate of the factor matrices. We should compare the

zero-inflated NMF with non-zero-inflated NMF results using a measure of approximation

such as log likelihood.

One of the open problems is a model order determination: the way of determining the

number of factors in NMF using a given data matrix. If prior knowledge exists about

the number of factors in a given data matrix, a model order determination is not neces-

sary. However, if no prior knowledge of the rank is available, it must be estimated using

available data. This estimation is performed to simplify the calculation. Although a large

order model leads to good approximations, it is difficult to interpret the estimated factor
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matrices. Model order determination is one of the main challenges in NMF, and several

methods have been proposed for handling it in past work (Owen and Perry, 2009; Schmidt

et al., 2009; Tan and Févotte, 2013). The development of a model order determination

method in NMF based on a zero-inflated model or with an orthogonal constraint presents

a new challenge. Especially, an extension to a Bayesian model seems to be useful because

we can check the appropriate model order as well as the significance of each of the elements

of factor matrices. Another open problem is an extension to tensor factorization. NMFs

introduced in this paper can be easily extended to multi-array nonnegative data in the

same fashion as in Cichocki et al. (2007) or Cichocki et al. (2009). Nonnegative tensor

data can be easily obtained from data resulting from human behavior such as point-of-sale

data, and such tensor data may contain a large number of zero values due to the shortage

of combinations among the three types of objects representing each of the arrays of the

tensor. Hence, a zero-inflated model would be available for such tensor data.
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