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Abstract

Nonnegative matrix factorization (NMF) is a matrix decomposition technique to ana-
lyze nonnegative data matrices, which are matrices of which all elements are nonnegative.
The technique has been widely applied to various fields: image recognition, music sound
analysis, genetic analysis, text mining, recommender systems, marketing analysis, etc.
The reason for the wide application of NMF is that a nonnegative data matrix is easily
obtainable. In addition, NMF is simple and easy to use and has the ability to extract in-
terpretable information from a given nonnegative data matrix. However, NMF encounters
difficulties when the data matrix has the following characteristics: it contains outliers or
many zero elements or a combination of these two characteristics. The existence of outliers
in a nonnegative data matrix sometimes leads to a meaningless result following matrix de-
composition. Moreover, a data matrix that contains a number of zero elements, which is
also referred to as a zero-inflated situation, results in poor approximation of factorization
to the given data matrix. To address these difficulties, we focus on using divergence as
an error criterion between the given data matrix part and the factorization part. In this
regard, S-divergence is one type of divergence that has proven to be robust against outliers
and has been applied to NMF by many researchers. The use of 5-divergence is known to
correspond to using a Tweedie distribution as an error distribution method. A specific
case of the Tweedie distribution is compound Poisson-gamma (CP) distribution, which is
a Poisson mixture of the gamma distribution. The CP distribution can be extended to
a zero-inflated model such as that based on a zero-inflated Poisson distribution; hence,
in this study we employ the zero-inflated CP (ZICP) distribution as an error distribution
technique for NMF. NMF based on the ZICP distribution is potentially robust against
outliers and a zero-inflated situation. This research also focuses on NMF used in combina-
tion with an orthogonal constraint (ONMF) to improve the interpretability of the factor
matrix. A nonnegative factor matrix with an orthogonal constraint has a simple structure,
and hence, the role of this factor matrix is similar to that of an indicator matrix used in
k-means clustering. Although previous studies involving ONMF led to the proposal of
algorithms to solve the ONMF problem, most of these algorithms experience difficulties
when estimating factor matrices. In this study, we solve the ONMF problem using a
k-means-like algorithm that produces estimates of an acceptable accuracy. Furthermore,
the use of Poisson and CP distributions in the k-means-like algorithm enables us to solve
the ONMF problem. This approach to ONMF is valuable because most previous algo-
rithms of ONMF have employed the normal distribution and there are few studies about
ONMF based on Poisson and CP distribution. The NMF problem can be divided into



two- and three-factor NMF: the former involves decomposition to two-factor matrices,
whereas the latter entails decomposition to three-factor matrices. Three-factor NMF is
assumed to comprise two types of factors: the row and column objects of the data matrix.
The ZICP distribution and orthogonal constraint mentioned above can be applied not
only to two-factor NMF but also three-factor NMF. The aim of this study is to present
a comprehensive discussion of NMF. Especially, the discussion concentrates on the four
features of NMF: two-factor vs. three-factor NMF, orthogonal constraints, distributions
and divergences, and the zero-inflated model. Moreover, we present details of the model
setting, the derivation of the updating rules, and an estimation algorithm for NMF with
and without these features. We also include a simulation study and apply our proposed

solution to real data to capture the features of these NMFs.
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Chapter 1
Introduction

Many types of data in the world consist of only nonnegative values, e.g., pixel values
of an image, power values with respect to frequency, microarray-based gene expression
profiling, term frequency of documents, ratings on an ascending risk scale of 1 to 5, rainfall,
insurance, sales, and sales quantities. These data are often presented in the form of
a matrix; the elements are values corresponding to the combination of two finite sets
of objects; for example, in a document-term data matrix, the row and column objects
correspond to the documents and terms, and each of the entries in the matrix corresponds
to a frequency of the term existing in the document. Such a matrix is referred to as a
nonnegative matrix, and it is known that nonnegative matrix factorization (NMF) is one
of the approaches suitable to analyze data of a particular format. NMF is employed for
approximating a given nonnegative data matrix by using the product of some nonnegative
matrices, which are referred to as nonnegative factor matrices. Basically, NMF is mostly
used for two factor matrices, which is described as two-factor NMF in this thesis. Fig.

1.1 shows an example of two-factor NMF. NMF enables us to obtain an understanding
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17 6 16 18 6/ 15 3.6/ 16,0
13 9 12 14 9 1 55 11.6

Figure 1.1: Example of two-factor NMF. The red color represents the magnitude of values:
the darkest red and lightest red (i.e., white) are the maximum and minimum values in

each matrix.

of the co-occurrence relation between two sets of objects. For example, in the two factor
matrices in Fig. 1.1, both the 1st and 3rd columns simultaneously have large values for the
2nd, 12th, and 13th rows. NMF has two advantages. First, in many cases, the estimated

factor matrices have sparsity thanks to the nonnegative constraints. This sparsity leads



to an easy interpretation of the given nonnegative matrix. Lee and Seung (1999) calls this
characteristic a “parts-based representation.” In face image decomposition, Lee and Seung
(1999) demonstrates that parts of face can be extracted by NMF rather than principal
component analysis or a vector quantization technique. Second, we can easily interpret a
nonnegative factor matrix by NMF because of its nonnegativity. When a given data matrix
has only nonnegative entries, the negative values in the decomposed factor matrix are
difficult to explain. This is based on the idea that the basis vectors of a given nonnegative
data matrix should also be nonnegative.

Few studies relating to NMF were reported until Lee and Seung (1999, 2001) developed
simple and efficient algorithms to address the two-factor NMF problem. They used an
auxiliary function method, also referred to as the “majorize-minimization” or “minorize-
maximization” method, for developing algorithms to obtain estimates of the two factor
matrices. In these algorithms, the two factor matrices are iteratively updated by multi-
plicative updating, in which the updates are obtained by multiplying their current values
by some scalar values. Derivation of the update rule of the factor matrices necessitates
the determination of the divergence as an error between the data matrix and factorization
parts. Lee and Seung (2001) proposed two multiplicative updating algorithms using two
divergences: the first is the Euclidean distance and the other is the Kullback-Leibler (KL)
divergence (Kullback and Leibler, 1951), also referred to as I-divergence.

Following these studies, the use of NMF became widespread, prompting many re-
searchers to extend the technique in various ways. One of the extensions involves di-
vergence. The first generalization of the NMF algorithms Lee and Seung (2001) was
published by Kompass (2007). This author pointed out the similarity between the two
multiplicative update rules of the original algorithm Lee and Seung (2001) in terms of
the Euclidean distance and KL divergence, found a new divergence that is between and
includes the two divergences, and developed an update rule by using the new divergence.
In fact, this divergence is the so-called S-divergence (Basu et al., 1998). The -divergence
has a hyper-parameter S € R, and the divergence of the generalized NMF by Kompass
(2007) is the [-divergence for 8 € [1,2]. The S-divergences for 5 = 2 and § = 1 are
the Euclidean distance and KL divergence, respectively. Subsequently, other researchers
Févotte et al. (2009) proposed the NMF algorithm with the Itakura-Saito (IS) divergence
(Itakura and Saito, 1968) to analyze a sound spectrogram. Févotte et al. (2009) observed
that the IS divergence is a case of S-divergence such that 5 — 0. Moreover, Févotte et al.
(2009) found that the update rule proposed by Kompass (2007) is not only available in
the case of § € [1,2] but also for 5 < 1 and S > 2; however, the proof was not provided.
The perfect proof of NMF with the S-divergence is provided by Nakano et al. (2010). An-
other generalized divergence to be employed in NMF is the a-divergence (Chernoff, 1952).
NMF with the a-divergence was proposed by Cichocki et al. (2008). Both the §- and
a-divergence are generalizations of the KL-divergence, and NMF with these generalized
divergences has the advantage in that it is robust to outliers (Cichocki and Amari, 2010).
From a statistical perspective, minimization of the S-divergence and the divergences of its

cases are interpreted as the maximization of the log-likelihood under the assumption of



the corresponding probability distribution as described in Section 3.3. In this study, we
focus on the compound Poisson-gamma (CP) distribution, which corresponds to the (-
divergence for $ € (0,1). A CP distributed random variable is the sum of n independently
identically gamma-distributed random variables and the number of random variables n is
Poisson distributed.

Another extension of NMF is three-factor NMF, where the data matrix is decomposed

into three factor matrices. Fig. 1.2 is an example of three-factor NMF. Three-factor
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Figure 1.2: Example of three-factor NMF. The red color represents the magnitude of
values: the darkest red and lightest red (i.e., white) are the maximum and minimum

values in each matrix.

NMF with a column orthogonal constraint to the matrices on the left- and right- sides
was proposed Ding et al. (2006). These authors Ding et al. (2006) considered three-factor
NMF with no constraint, except for nonnegativity, to be equivalent to two-factor NMF,
because the matrix produced as a product of the factor matrices on the left and in the
center could be interpreted as being the matrix on the left in two-factor NMF. However,
such a three-factor NMF is not insignificant: the estimates given by three-factor NMF are
different from those given by two-factor NMF, and the approximation matrix is not the
same as that of two-factor NMF. Three-factor NMF can be regarded as a two-way data
case of nonnegative tensor factorization. Other researchers (Cichocki et al., 2007, 2009;
Kim and Choi, 2007; Kim et al., 2008) based their work on the Tucker3 decomposition
style (Tucker, 1966), in which the multi-array data is decomposed into factor matrices
consisting of the objects in each array and one core tensor.

NMF has also been expanded such that it includes some constraints for simple factor
matrices. The most well-known constraint is orthogonality to factor matrices. We refer
to NMF with an orthogonal constraint as “ONMF.” There are two types of ONMF: two-
factor and three-factor ONMF. Two-factor ONMF is two-factor NMF with an orthogonal
constraint imposed on one factor matrix. Although two-factor ONMF has been applied
mainly for document and term clustering because of its efficient result, it has also been
adopted in some other fields (Kim et al., 2011; Mauthner et al., 2010; Wang et al., 2016).
Because a nonnegative column-orthogonal matrix plays a role analogous to an indicator
matrix in k-means clustering, ONMF is considered a clustering method. On the other
hand, three-factor ONMF is three-factor NMF with column orthogonality to both of the



factor matrices on the left and the right (Ding et al., 2006; Yoo and Choi, 2009, 2010b).
Owing to the relationship between the column-orthogonal nonnegative factor matrices and
clustering mentioned above, three-factor ONMF is considered to be a bi-clustering method
capable of detecting the row and column clusters of a data matrix simultaneously; it has
been adopted for use in document-term clustering, collaborative filtering, etc (Chen et al.,
2009; Costa and Ortale, 2014). Almost all algorithms for ONMF are multiplicative updat-
ing algorithms (Choi, 2008; Ding et al., 2006; Li et al., 2010; Yoo and Choi, 2010a; Yoo
and Choi, 2008, 2009). However, multiplicative updating algorithms in ONMF have two
drawbacks. First, column orthogonality is not exactly (but only approximately) obtained
despite the column orthogonality constraints. Second, although the objective function
value tends to be non-increasing in the early stages, it is not exactly monotonically non-
increasing. Mirzal (2014) pointed out the second drawback and proposed a new convergent
ONMF algorithm using an additive updating rule, but there is no guarantee that a per-
fectly orthogonal factor matrix will be obtained. Kimura et al. (2014) proposed a new
ONMF algorithm using a hierarchical alternating least-squares algorithm, rather than a
multiplicative algorithm, which is a faster algorithm than the previous multiplicative al-
gorithms but which continues to experience the above-mentioned two drawbacks. On the
other hand, Pompili et al. (2014) proposed an iterative updating algorithm for ONMF in
which the orthogonality and monotonically non-increasing property of the objective func-
tion value are exactly maintained. Pompili et al. (2014) found the optimization problem
of ONMF to be similar to that of spherical k-means (Banerjee et al., 2003) and refers
to this problem as weighted spherical k-means. In this study, we develop new two- and
three-factor ONMF with KL and p-divergence in a fashion similar to that of the ONMF
of Pompili et al. (2014). Of course, the ONMF has perfect orthogonal and non-increasing
properties. This extension is valuable because the ONMF of Pompili et al. (2014), as well
as almost all of the other ONMF's, employs a normal distribution as its error distribution;
furthermore, an ONMF algorithm with KL and (-divergence has not yet been proposed.

Sometimes we encounter difficulties when working with a given sparse data matrix, in
other words, a zero-inflated data matrix that contains many zero values. In fact, situations
such as this often occur with larger data matrices, in which case the approximation tends
to be worse than for a non-zero-inflated data matrix. In such a situation, the zero-inflated
model is available to improve the goodness of approximation of the data matrix. Thus,
Lambert (1992) proposed a zero-inflated Poisson (ZIP) model for count data containing
many zero values, and Simchowitz (2013) developed an efficient Bayesian NMF technique
for a zero-inflated nonnegative data matrix that assumes the ZIP model for nonnegative
data and applied it to collaborative filtering in a recommender system. In this study, we
extend NMF proposed by Simchowitz (2013) to NMF based on zero-inflated CP (ZICP)
distribution. Moreover, we develop new two- and three-factor ONMF by employing zero-
inflated CP distribution.

The extensions mentioned in the above discussion, that is, CP distribution, three-factor
NMF, orthogonal constraint, and zero-inflated model, are appropriate for application to

real-world nonnegative data. For example, data acquired to maintain records of human



behavior, e.g., point of sales with customer ID and web access logs, can have outliers
because of some abnormal behavior. Hence, the assumption that a matrix consisting of
count values or the sum of nonnegative values for the combination of two objects given by
such data displays a Poisson or CP distribution is appropriate. If it is necessary to classify
objects in two sets, three-factor NMF is useful. In addition, a data matrix containing data
relating to human behavior contains many zeros because the number of samples tends to
be extremely small in comparison to the number of all the combinations of the objects
in the two sets. Therefore, the zero-inflated model is also available to process this data.
Furthermore, estimates that are easy to interpret can be obtained by using the orthogonal
constraint for factor matrices.

In this paper, we describe details of NMF, especially the model, derivations of the up-
dating rules for parameter estimation, and updating algorithms, through the perspectives
of the number of factor matrices, orthogonal constraint, distribution and divergence, and
zero-inflated model. These perspectives are important for exploratory data analysis using
nonnegative matrices. First, in some situations, a matrix may contain some extremely
large values, and this may have a significantly negative effect on estimates. One way
to solve this problem is to trim rows or columns containing these large values, but this
may cause important information to be lost. Moreover, it is difficult to determine what
values are outliers. In this situation, a better way is to use an appropriate distribution
for the robust estimation. CP distribution can be one of the solutions for robust esti-
mation. Second, a nonnegative matrix in the real world may contain many zero entries,
and the NMF model may not approximate it well. This means that some of the zero
entries are unexplainable using a nonnegative linear combination of the nonnegative ba-
sis. The zero-inflated model can be one approach to handling such zero-inflated matrices.
Third, in many cases nonnegative matrix analysis, the objective is to derive a simple re-
sult. The orthogonality constraint leads to a simple structure of the factor matrix and
this enables us to easily interpret how the nonnegative matrix is generated. Table 1.1
shows a classification of the existing NMFs discussed in this chapter as well as our pro-
posed NMFs. N3ONMF, P3ONMEF, and P20ONMF are our original NMFs, but there are
existing NMFs that have a model assumption that is the same as these. In contrast ,
CP20ONMF, CP3ONMF, and all four NMF's based on ZICP are completely original. The
proposed NMF with orthogonal constraints is an extension of Pompili et al. (2014) and is
referred to as N2ONMF. The proposed NMF's based on the ZICP distribution are exten-
sions of Simchowitz (2013). Moreover, we observe the advantages and disadvantages and
characteristics of NMF's through some simulation studies and by application to real-world
data.

This paper is organized as follows. Chapter 2 provides selected notations used in this
paper. Chapter 3 presents a comprehensive explanation of NMF from the perspective of
the number of factor matrices, the orthogonal constraint, distribution and divergence, and
the zero-inflated model. From chapter 4 to 7, we introduce details of various NMFs from
the point of these four views. Chapter 8 reports simulations of the estimation accuracy and

goodness of approximation of these NMF. Chapter 9 presents an example of an analysis



using document and term data and point-of-sale data. Chapter 10 concludes our study

and discusses open questions.
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Chapter 2

Notations and definitions

In this chapter, we introduce the notation employed in this thesis. We use bold uppercase
letters, e.g., M, to denote a matrix, and a lowercase letter, e.g., m;;, for its 4, jth element.
An element i,j of a complicated matrix is expressed as [-|;;. Further, we use m; and
my; as the vertical vector of the i-th row and j-th column of M, respectively. We
use the prime symbol and “—1” to express a transposed matrix and an inverse matrix,
e.g., M' and M~ respectively. The trace and diagonal parts of a square matrix M
are denoted by tr(M) and diag(M), respectively. The Euclidean norm of a matrix or
vector is represented as | M| = /tr(M'M). Dps and Dpy are diagonal matrices in
which each diagonal element is [[m ;)| and ||m;]|, respectively. A(M) is the first left-side
singular vector in which all elements are converted into nonnegative values when M is

decomposed using singular value decomposition. We use ® as the Hadamard product.

The element-wise quotient of two matrices is denoted by fraction notation; e.g., ~N &

M /N is the element-wise quotient of M and N. M? is the element-wise 3 power of the

matrix M. The vectorization of the n x p matrix M is defined as (m’(l) m’(2) e m’(p))’.

The Kronecker product of an n X p matrix M and IN are defined as

m11N TrL12N cee mle
m21N m22N tee mgpN

M@®N = _ ‘ _ (2.1)
mnlN anN cee mnpN

We denote 1,, and E,«, as the n-length vector and n x p matrix of which all of the
elements are 1 and denote 0, as the n-length vector of which all the elements are O.
Finally, R"*P is a set of n X p matrices and RTP is a set of n X p matrices consisting of
nonnegative elements. We refer to a vector and matrix consisting of nonnegative elements

as a “nonnegative vector” and “nonnegative matrix,”

respectively.

Now, we describe the definition of an auxiliary function technique to be used for deriva-
tion of updating rules of NMFs. An auxiliary function method is a technique with which
to solve the parameters such that the objective function value becomes smaller than the

current value. Let f(#) be a function to be minimized with respect to 6. Then, auxiliary



function faux(6,0*) is a function that satisfies the following:

f(0) < faux(0,6%) for all 6 and 6* (2.2)
F(0) = fuue(6,6%) i 0 = 0. (2.3)

This definition implies that we have to find the new function using an inequality property.

When we derive the auxiliary function and the solution of § = argmin{ faux(6,0%)}, we
0

have

F07) = faux(07,0%) > faux(0,6%) > £(B) (2.4)

from (2.2) and (2.3). It is noted that, rather than minimizing the objective function value
with respect to 0, 6 decreases the value of this function. It is important that the derived
auxiliary function can easily be differentiated with respect to 6 and that the optimal 8 for

the auxiliary function can be obtained.



Chapter 3
Various perspectives of NMF

In this chapter, we discuss the four perspectives of NMF. NMFs start from the descrip-
tion of a statistical model of a given data matrix with some parameters, as well as other
statistical methods. The description can be divided into two parts: the structure the ex-
pected value of the data is represented by and the type of probability distribution the data
follow. Section 3.1 and 3.2 are topics about the former: the number of factor matrices
and orthogonal constraint. Section 3.3 and 3.4 are about the latter: the distributions and
divergences and the zero-inflated model. These topics are related to some versions of our
proposed NMF described from Chapter 4 to 7.

Before providing the details in each of the sections, we define and explain the NMF
problem. Let Y € RiXp be a n x p data matrix that contains a nonnegative real value
as each of its entries, and let X (0) be a representation of the matrix decomposition by
some factor matrices 8. Then NMF can be defined as a problem approximating Y by
X (0) € R}, that is,

Y ~ X(6). (3.1)

For the following discussions, we denote X as X (0) for brevity. The approximation made
possible by setting the measure to evaluate the approximation and which measure to use,
depends on the definition of the distribution of y;;. Therefore, we can formulate the NMF
problem as follows:
id . .

yijcrlvf(xij) (t=1,...,n; 5=1,...,p), (3.2)
where & signifies “conditionally independently distributed” and f(-) is a density or prob-
ability function of the probability distribution. In (3.2), x;; is the expected value of y;;.
In section 3.1 and 3.2, we provide details of how z;; can be specified. Then, in section 3.3
and 3.4, we describe how the f(-) can be defined and what the f(-) means.

3.1 Two-factor NMF vs three-factor NMF

A representation of the matrix decomposition by NMF, that is, X, is made by some
factor matrices. There are two types of matrix decomposition by NMF: two-factor and
three-factor NMF.
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Two-factor NMF

Two-factor NMF is a method to approximate Y by X = FA’, where F € R’};Xk is a
n X k left-side nonnegative factor matrix and A € RﬁXk is a p X k right-side nonnegative
factor matrix. Here, k is interpreted as the number of factors or clusters and recommended

to be set as k < min(n, p). From a geometrical point of view, the i-th nonnegative sample

vector y; (i = 1,...,n) is approximated by using a nonnegative linear combination of
nonnegative basis vectors a(,,) (m = 1,..., k) as follows:
k
Yi & Z fim@(m)- (3.3)
m=1

In other words, the goal of two-factor NMF is to search a convex cone low space such that
all samples can be approximated by its space.

Some two-factor NMF methods are available in the “NMF” R package (Gaujoux and
Seoighe, 2010). In this package, seven methods are implemented: “brunet” (Brunet et al.,
2004; Lee and Seung, 2001), “lee” (Lee and Seung, 2001), which uses the Euclidean dis-
tance, “lIs-nmf” (Wang et al., 2006), “nsNMF” (Pascual-Montano et al., 2006), “offset”
(Badea, 2008), “pe-nmf” (Zhang et al., 2008), and “snmf” (Kim and Park, 2007). The
“lee” and “brunet” methods have the same updating rules of Lee and Seung (2001) for
Euclidean distance and KL divergence, and they are referred to as N2NMF and P2NMF,
respectively, here. All other methods except “snmf” are modified version of these two
methods: “ls-nmf”, “offset”, and “pe-nmf” are based on Lee and Seung (2001) for Eu-
clidean distance and “nsNMF” is based on Lee and Seung (2001) for KL divergence. The

“snmf” method is based on an alternating least squares approach.

Three-factor NMF

On the other hand, three-factor NMF is a method to approximate Y by X := FSA/,
where F € RﬁXk is a n x k left-side nonnegative factor matrix, S € Rﬁxz isakx/
nonnegative factor matrix in the center, and A € Rﬂxe is a p x £ right-side nonnegative
factor matrix. Here, k and ¢ are the number of factors of row objects (i = 1,...,n)
and column objects (7 = 1,...,p). The center factor matrix S can be interpreted as the

relationship between each of the factors of the two sets of objects.

Appropriate use of two-factor NMF and three-factor NMF

Two-factor NMF has the same number of factors for row and column objects. Hence, it
is recommended that two-factor NMF is used when the objects in a single row or column
are of interest and the other objects are independent samples. For example, two-factor
NMF has been adopted for image recognition tasks in which the row objects of the data
matrix are the image samples and the column objects are the pixels of these images. The
main objective of this task is to extract parts of the images, which are represented as A,

from the image samples, as opposed to clustering images and their pixels.
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In contrast, three-factor NMF has a different number of factors for the row and column
objects; hence, it can be useful when both the row and column objects are of interest and a
different number of clusters is required for each of the two sets. For example, three-factor
NMF has been applied to many document and term clustering problems. In this problem,
the rows and columns of the data matrix are the documents and terms, respectively, and
the data matrix contains frequencies corresponding to the terms and the documents. It
is often assumed that the types of groups of documents are different from those of the
terms: documents are preferably categorized by their content or topic, whereas terms are

preferably classified not only by their content or meaning but also their function.

3.2 Orthogonal constraint

Techniques for imposing constraints on factor matrices do exist. The main aim of these
constraints is to obtain a sparse estimate of the factor matrix. One of these techniques
involves imposing a column orthogonal constraint. A well-known statistical technique
based on the use of these constraints is principal component analysis (PCA). However, the
factor matrix in PCA does not have nonnegative constraints imposed thereupon; hence,
an orthogonal constraint for NMF differs slightly from that of PCA. If all entries of a
matrix are nonnegative and the matrix is orthogonal, only one entry has a non-zero value
and each of the others has a zero value in each row vector such that all inner products
of the two column vectors are 0 with each other, then we can find that such a matrix is
similar to the indicator matrix to be used in k-means clustering. That is, the matrix only
contains 0 or 1 and the sum of the entries in each row is 1. Let R,,, (m = 1,...k) be a
subset of row objects (1,...,n) belonging to the m-th cluster of row objects; we refer to
R, as an “m-th row cluster.” (3.4) and (3.5) are examples of a nonnegative matrix with

column orthogonality and an indicator matrix, respectively:

b, 0|R1| O\Rl\
0 b ... 0
Ole‘ Ole‘ P bk
1|R1| 0|R1| O‘Rl‘
Ok ligs ... Op
|.2| |.2| \.2\ (3.5)
Oy Oy - Limy|
where b,, (m = 1,...,k) is a |Ry,|-length nonnegative vector and |R,,| is the number

of objects in R,,. From (3.6), the indicator matrix U for row objects has the following

property.

(i=1,...,ny m=1,....k). (3.6)

Uim =
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On the other hand, from (3.4), a nonnegative and column orthogonal matrix F' has the
following property similar to an indicator matrix:

bi >0 (i€ Ry
fim = ( ) (i=1,...,n; m=1,....k), (3.7)

0 (i ¢ Rm)
where b; > 0 (i = 1,...,n). From this perspective, NMF with the combination of non-
negativity and column orthogonality is considered as a method substantially similar to a
non-hierarchical clustering method.

Three-factor NMF enables us to impose a nonnegative and column orthogonal constraint
on the left- and right-side factor matrices, that is, F and A. These constraints mean
that both the row and column objects are simultaneously clustered. This is known as
the bi-clustering method. Apart from row objects, we define a nonnegative and column
orthogonal factor matrix for column objects as follows: Let C; (¢ = 1,...¢) be a subset of
column objects {1,...,p} belonging to the g-th cluster of column objects; we refer to Cy

as an “g-th column cluster.” Similarly, we have (3.7) for the factor matrix A:

ajq = dj >0 (J‘GCq) G=1,....p; ¢g=1,...,0), (3.8)
0 (J ¢ Co)
where d; > 0 (j = 1...,p). We denote a set of row and column clusters as R =
{R1,...,R;} and C = {C,...,Cy}, respectively.
In many previous studies of the two-factor or three-factor orthogonal NMF problem, a
factor matrix with an orthogonal constraint is updated by using the multiplicative updat-
ing algorithm (MUA); the factor matrix F' is updated by the element-wise product to its

current matrix F'™*:
F«+ F"oM, (3.9)

where “+” denotes substitution of right-side material into the left-side. M is calculated by
the data matrix Y, F*, and/or the other factor matrices. MUA is a well-known updating
algorithm and is widely adopted in many NMFs because Lee and Seung (2001), whose
work resulted in NMF becoming widely known, derived an MUA for two-factor NMF
(see Section 4.1 and 4.2). Subsequently, Ding et al. (2006) and Yoo and Choi (2010b)
proposed well-known MUAs for three-factor NMF with an orthogonal constraint. Both
of these groups of researchers derived update rules of three-factor matrices to solve the

following optimization problem:

argmin{||Y — FSA'||?}

L]

subject to F € R™F 8 ¢ R¥*! A e RP*! FF' = I}, and AA' = I,. (3.10)

The first group Ding et al. (2006) solved the problem using a method comprising a La-
grange multiplier (Lagrange, 1788) and the Karush-Kuhn-Tucker condition (Karush, 1939;
Kuhn and Tucker, 1951). On the other hand, Yoo and Choi (2010b) solved it as an opti-

mization problem under a Stiefel manifold. These algorithms are presented in Algorithm
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Algorithm 1 three-factor NMF by Ding et al. (2006)

1: Input Y € RV?, FO) ¢ R §0) ¢ REXE A0) ¢ RPX
2: t+0

3: repeat

4: t—t+1

5. FO « F-1 o (

y A(t-1) glt—1) 1/2
F-1) -1y A(t-1)gt=1)

FOry A1) 2

F(t)/F(t)S(t—l)A(t—l)/A(t—l)

v/ F®H g0 1/2
A(tfl)A(tfl)/Y/F(t) S(t)

@

S®  st-1) (

7 A(t) — A(t_l) ® (

8: until convergence

Algorithm 2 three-factor NMF by Yoo and Choi (2010b)
1: Input Y € RP, F(O) ¢ R §0) ¢ REX! A0) ¢ RPX
2: <0

3: repeat

4 t—t+1

Y AE-D) S(t=1y

Ft-1)gt-1) At-1)y'F(-1)
FOy A=C-1)

F(t)/F(t)S(tfl)A(tfl)/A(tfl)
Y'F®) §®)

A-D St )y A1)

5. FO « =1

6: S stV

. AB  At-D g

8: until convergence

1 and 2. However, the MUA for the NMF with an orthogonal constraint is problematic in
two ways. First, column orthogonality is not exactly (but only approximately) obtained
despite the column orthogonality constraints. Second, although the objective function
value tends to be non-increasing in the early stages, it is not exactly monotonically non-
increasing. On the other hand, Pompili et al. (2014) proposed a k-means—based algorithm
for two-factor orthogonal NMF', in which the column orthogonality is retained in all steps
in the algorithm and the objective function is monotonically decreased in each of the steps.
This k-means—based algorithm is derived using the property of a nonnegative orthogonal
factor matrix described in (3.7). From (3.7), the optimization problem of F' (or A) is di-
vided into an optimization problem of R (or C) and that of fin, (i € Ry; m=1,...,k) (or
ajo (j € Cg; g =1,...,1)). Details of the method of Pompili et al. (2014) are introduced
in Section (6.1). The other methods with an orthogonal constraint described in Chapter

6 and 7 are based on the k-means algorithm.
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3.3 Distributions and divergences

Solving the NMF problem requires us to determine the criteria we use to approximate
model part X to data matrix Y. The well-used setting is an element-wise divergence

between Y and X. Table 3.1 presents selected well-known divergences in NMF. The

Table 3.1: Divergences between y and x and corresponding probability distribution as-

sumptions.

Probability distribution

Divergence .
assumption for y

Euclidean distance

d x) = (y —x)° normal
(Lee and Seung, 2001) suc(y, ) = (y — )

KL divergence dxr,(y, x) .
Poisson
(Lee and Seung, 2001) =ylog(y/z) —y+=
IS divergence dis(y, ) gamma
(Févotte et al., 2009) =y/x —log(y/x) — 1 (exponential)
p-divergence ds(y, ) Tweedie
(Févotte and Idier, 2011) = y(y® ' —28~1)/(8—1) (Compound Poisson-gamma
(Nakano et al., 2010) — (P -5/ for g € (0,1))

most well-known and commonly used divergence is the Euclidean distance. The Euclidean
distance offers easy and convenient way to solve an optimization problem, and is intuitively
clear because of its high affinity for the real world. The other representative divergences are
the KL and IS divergences. These three divergences are generalized to the S-divergence.
Specifically, the Euclidean distance, KL divergence, and IS divergence are specific cases of

the S-divergence for which =2, 6 =1, and 8 = 0, respectively. We define the divergence
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between two matrices as follows:

deuc(Y, X) ZZCZEUC Yij» Tij) (3.11)
i=1 j=1

dxL(Y, X) ZZdKL Yijs Tij), (3.12)
=1 j=1

dis(Y, X) ZZdIS (yij, mij), (3.13)
=1 j5=1
n p

=3 da(yij, i) (3.14)
i=1 j=1

As seen in Table 3.1, these divergences correspond to a distribution for which y;; follows
a given expected value x;;. The Euclidean distance, KL divergence, IS divergence, and 3-
divergence are derived from the assumption of normal, Poisson, gamma (exponential), and
Tweedie distributions, respectively, by using maximum-likelihood procedures. Similarly
to the divergences, the Tweedie distribution is a generalization of the normal, the Poisson,
and the gamma (exponential) distributions (Dunn and Smyth, 2001; Jorgensen, 1997).
When a random variable y follows the Tweedie distribution, we denote y ~ TW (u, ¢, ).
The probability density function for a random variable in the T'weedie distribution is given
by

flys 2, 0) = ag(y, ¢) exp {(y0(x) — r(x)) /} (3.15)
2Pt -1 1 P —1 0)

O(x) = p—1 B#1) ,  k(z) = B Cha , (3.16)
log x (8=1) log x (8=0)

where = and ¢ are the mean and dispersion parameters, respectively. § € (—oo, 1JU[2, 00)
is the index that determines the distribution. The variance is V (y) = ¢22~?. As mentioned
above, the normal (8 = 2), the Poisson (5 = 1), and the gamma (8 = 0) distributions
are specific cases of the Tweedie distribution. ag(y;;,¢) varies with 3, and cannot be
written in closed form except in the special cases mentioned above. For 0 < 8 < 1, the
Tweedie distribution is continuous for y > 0, and has a mass at y = 0. The distribution
of this range of [ is referred to as a compound Poisson-gamma (CP) distribution, which
is a Poisson mixture of gamma distributions. If y = 0, the CP distribution is a Poisson
distribution at y = 0, that is,

P(y =0) = exp{—A}, (3.17)

and if y > 0, the density function of the CP distribution is

n! I'(n«a

fe,8) =3 [Anexp{_”” bm)ym—lexp{bx} , (3.18)
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where

A= gg (3.19)
B—1

b= Mﬁi—ﬁ) (3.20)

o= 15@ (3.21)

Equations (3.19), (3.20), and (3.21) are given by comparing the two forms of cumulant
generating function from the two ways of defining the CP distribution; one is a Poisson
mixture of the gamma distribution and the other is the power variance assumption of the
exponential dispersion model. The proof is given by Jorgensen (1997) and Simsekli et al.
(2013). Substituting (3.19) and (3.20) into (3.18), we have

1 yna 5)—77,04 1 y:nﬁ_l B
y7 Z @b 5 —~ ¢"(1+a)ﬁnnlr(na) exp {¢ < B—1 - F (3‘22)

A1 B
= h(y, ¢, B) exp {; <yﬁ — 5) } (3.23)

Here, we define h(y, ¢, 3) as

h(y, ., B) =

;Z yri(l = p) (3.24)
n=1

From (3.15) and (3.16), we have

) B Y 1 1[yzPt b
f(ya%(b)—aﬁ(yyﬁb)exp{—_1+6}6XP{¢<ﬁ_1 —B>}- (3.25)

Hence, we have

as(y, d) = exp {By_l - }h(y, 6. 5). (3.26)

Fig. 3.1 shows plots of the probability density functions of the Tweedie distribution for
various values of 3, where 4 =1 and ¢ = 1.

In NMF, the index parameter 8 affects the robustness of parameter estimation (2010).
Fig. 3.2 shows graphs of 3 divergence dg(y,z) = y(y°~1 —2°71)/(B - 1) — (v° — 2P)/8
given y = 10 (left side) and y = 100 (right side) for various values of 3. The value of
ds(y, x) is lower about x = 100, given y = 100, than about = 10 given y = 10, for § < 2.
In NMF, this means that extremely large values are not taken into account in parameter
estimation for values of 8 < 2.

In this study, we focus on NMF using normal, Poisson, and compound Poisson-gamma
distribution. The reason is as follows: our proposed NMFs are developed considering a
two-way table consisting of a count (such as a contingency table) or a gross summation
of the nonnegative values of a pair of objects in two sets. Count data is commonly used

with Poisson distribution, and a gross summation of the nonnegative values is compatible

17



B = 2 (normal) B =1 (Poisson) B =0.99 B =0.95 B=0.7

1.54 1.54 15 15 15
1.04 1.0 1.0 1.0 1.0
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B8=0.1 B = 0 (exponential) B8 =-0.1 B =—1 (wald) B=-3
1.5 1.5 1.5 1.5 1.5
1.0 1.0 1.0 1.0 1.04
0.5 0.5-& o.5—k 0.5- 0.5
0.0 — "t Yt Y 00—
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Figure 3.1: Probability density functions of the Tweedie distribution for various values of
B. The black square represents the probability at y = 0.

d; (10, )
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ds(100, z)
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Figure 3.2: Graphs of 3 divergence ds(y,z) = y(y*~! —27~1) /(8- 1) — (y* —27) /B, given
y = 10 (left side) and y = 100 (right side), for various values of 3. The horizontal and

vertical axes represent x and dg(y, x), respectively.
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with the generate model of CP. Henceforth, we introduce the probability or density func-
tion of these distributions, likelihood under these distribution assumptions, and objective
function of the NMF derived as a minus logarithm of their likelihood. These topics form
an introduction to the NMF's described in Chapter 4 to 7.

Normal distribution

When random variable y follows a normal distribution, we denote 3 ~ N (z, 0?), where
and o2 are an expected value and a variance of y, respectively. Then, its density function

is defined as follows:

n(ylz,0?) = L = exp{ - i(y — a;)Q} (3.27)

2ro 202

We assumed that all elements of Y, i.e., y;; (i =1,...,n; j =1,...,p), are conditionally

independent normal distributed random variables with mean x;;(@), that is:
id . .
yijCNN(xij,az) (it=1,...,n; 5=1,...,p). (3.28)
Then, the likelihood with respect to 8 and o2 is:

L(0,0%Y) = [[ [] fx(wiilzisoo®) = [T T1 \/21r7€><p{ - %(yij - xij)Q}' (3:29)

i=1j=1 i=1j=1

The objective function to be minimized with respect to @ and o2 is obtained as the minus

logarithm of (3.29) as follows:

Q(6,0%) = —log { [I11 \/;7@@{ - %(?Jm’ - f'«“z'j)z}}

i=1j=1

n 1 =
= ?p log{o?} + 252 Z Z(y” — ;)% + const, (3.30)
i=1 j=1

where “const” denotes terms that are independent of the parameters to be optimized. The

optimal o2 is derived by differentiating (3.30) with respect to 0 and setting them to zero

as follows:

2 15~y !
6% = . lel(yij — @)% = ;p\\Y - X (3.31)
i=1 j=

Poisson distribution

When random variable y follows a Poisson distribution, we denote y ~ Po(x), where x

is an expected value (and a variance) of y. Then, its density function is defined as follows:

xYexp{—x
folyla) = BT (3.32)
We assumed that all elements of Y, i.e., y;; (i =1,...,n; j =1,...,p), are conditionally
independent Poisson distributed random variables with mean x;;(@), that is:
id . .
yijCFv Po(zi;) (i=1,...,n; j=1,...,p). (3.33)
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Then, the likelihood with respect to 8 is:

yzy

LO)Y) = [T 11 feislwiy) HH Dy PO exp{ ily (3.34)

i=1j=1 i=1j5=1

The objective function to be minimized with respect to 0 is obtained as the minus loga-
rithm of (3.34) as follows:

- f20020)

lel

n n p
== Z Z yij log{z;} + Z Z T;j + const. (3.35)

i=1 j=1 i=1 j=1
Compound Poisson-gamma distribution

When random variable y follows a CP distribution, we denote y ~ C'P(x, ¢, 3), where
x is an expected value, 8 € (0,1) is an index parameter, and ¢ is a dispersion parameter.

Then, its density function is defined as follows:

B 1 ym6*1 P
fCP(y|:E7¢7ﬁ) - h(y7¢76)exp{¢<5_ 1 - 6) } (336)

Function h(y, ¢, §) is defined in (3.24). We assumed that all elements of Y, i.e., y;; (i =
1,...,n; j = 1,...,p), are conditionally independent CP distributed random variables

with mean z;;(@), that is:

vi; N CP(ij . 8) (i=1,....m3 j=1,....p). (3.37)

Then, the likelihood with respect to 8 and ¢ is:

n p
0.6]Y) = [[ I for wislwij. 6. 8)
i=1j5=1
h( B) vy 3.38
—21_[1]1_[1 y’b]a¢ eXp ¢ B—1 _? : ( )

The objective function to be minimized with respect to @ and ¢ is obtained as the minus
logarithm of (3.38) as follows:

n 2 B
=3 log{h(yi 6. 8)} — y ZZ (y” Y B”) (3.39)

i=1 j=1 =1 j=1

The optimal ¢ cannot be obtained analytically because of the h(y;;, ¢, 3) term in (3.39).
However, if we use the BFGS quasi-Newton method (Byrd et al., 1995) with constraints
¢ > 0, we always obtain the optimal value of ¢. This property has not been proved yet,
but from our experience, this could be made available.

It is noted that (8 is considered as a hyper-parameter in this study; 3 is not estimated.

One of the ways to obtain the optimal S is to use a numerical optimization method in the
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same manner as for ¢. However, as mentioned above, the variance in the random variable
in the Tweedie distribution is V(y) = ¢x®. This shows that ¢ and § are closely related.
From (3.39), we can also find that z;; does not depend on ¢, but on J instead. Hence,
if we optimize 3, we should optimize ¢ simultaneously. Unfortunately, as mentioned
above, the normalization term h(y, ¢, ) in the density function of the CP cannot be
analytically calculated; thus, a simultaneous search by a numerical optimization method
is computationally time consuming. Moreover, the change in § values indicates a change
in divergence. This means that we change the manner of estimating factor matrices.
Therefore, 5 should be determined in advance based on some prior knowledge. These
facts explain the difficulty of estimating the index parameters. If 8 has to be estimated,
we may use an approach to approximate the log likelihood, or the Bayesian approach
proposed by (Zhang, 2013) in a generalized linear model. A future task would involve
extending this procedure to NMF.

3.4 Zero-inflated model

One of the aspects on which we focus in this study is to analyze the two-way table of
the count or the gross sum of nonnegative values. Such data often contain many zeroes,
resulting in a sparse matrix Y. In this situation, the accuracy of the approximation tends

to be poor. Fig. 3.3 shows two examples of two-factor NMF using a non-zero-inflated

Figure 3.3: Examples of two-factor NMF using a non-zero-inflated matrix (left side) and
zero-inflated matrix (right side). The size of both matrices is 13 x 3. The convex cones

represent the column space of A, estimated using the respective matrices.

matrix (left side) and a zero-inflated matrix (right side). When a data matrix has many
zero entries, most of its data vectors are located along the edge of the first quadrant,
as shown on the right side of the three-dimensional (3D) plot in Fig. 3.3. Hence, most

data vectors cannot be approximated by the linear subspace, which leads to a worsening
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approximation of the basic NMF. Simchowitz (2013) proposed a zero-inflated Poisson
NMF based on a Bayesian method to estimate unvalued points in nonnegative preference
matrices for collaborative filtering in a recommender system. This is an extended NMF
model based on the Poisson distribution. In our study, we propose an NMF model based
on the ZICP distribution. Since the CP distribution is a generalization of the Poisson
distribution, our proposed model is a generalization of Simchowitz’s NMF model. We
used a numerical simulation to demonstrate the accuracy of approximation of the proposed
model for a sparse data matrix Y.

Here, we introduce the ZICP distribution and the objective function for NMF. When

random variable y follows a ZICP distribution, we denote y ~ ZICP(x, ¢, 5, w), or
~0 with probability w
Y P Y (3.40)
y~ CP(xz,¢,5) with probability 1 —w

where z is an expected value, 8 € (0, 1) is an index parameter, ¢ is a dispersion parameter,

and w € (0,1) is a mixture ratio. Then, its density function is defined as follows:

fZICP(Z/’x; 57 ¢7w) = ’U)I(y = O) + (1 - w)fCP(?J’% ¢7 6)7 (341)

where I(-) is an indicator function. We assumed that all elements of Y, i.e., y;; (i =
1,...,n; 7 = 1,...,p), are conditionally independent zero-inflated compound Poisson-
gamma distributed random variables with mean x;;(8), that is:

4-9151Z[CP($”,¢ Bow)(i=1,...,n; j=1,....p). (3.42)

Then, the likelihood with respect to 8, ¢, w is:

¢7w|Y H H U}I y’Lj = O ( )fCP(y’Lj|xZ]7¢ B)]

i=1j=1
n p 1 yimf‘_l :L‘f
H]]T[l [w[ ylj - O) + ( w)h(yu, gb’ ﬁ) exp {¢ ( g _31 o Fj 7

(3.43)

The objective function to be minimized with respect to 8, ¢, and w is obtained as the

minus logarithm of (3.43) as follows:

n p B—1 1’6
gg [wlyu—o) (1- )(yw,dhé’)eXp{;(yZ_”l —;)H

(3.44)

We are not directly using (3.44) to derive the update rules for 8, ¢, and w because (3.44) is
difficult to differentiate with respect to these parameters. Instead of using the likelihood
(3.43), we use the complete likelihood function in the expectation-maximization (EM)
algorithm (Dempster et al., 1977; McLachlan and Krishnan, 2007). We consider latent
variables z;; (i =1,...,n; j =1,...,p) such that
L (3.45)
0 if yij ~ CP (45,0, B),
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and assume that z;; (¢ = 1,...,n; j = 1,...,p) is an identically and independently

Bernoulli-distributed random variable, that is,
zij ~ Be(w), (3.46)
and hence the probability function of z;; is
fri; (zijlw) = w* (1 — w)tFa (3.47)

We also define the conditional distribution of y;; given z;; from (3.45) as follows:

-1 B 1—2z;;
. 1 [ Yijx;; Lij
fynlzu (Yij|zij, 0,8) = {I(yi; = 0)}* {Myij, s {¢< ﬁj _]1 - 5J> }} '
(3.48)

From (3.47) and (3.48), the joint distribution of y;; and z;; is as follows:

fyijazij (yij’ Zij |07 b, w)
= fyislzi; Wijl2ig, 0, 0) £z (26 |w)
_ 1—24
= {wl(y; = o>}zw'{<1 — w)h(yij, 6, 8) exp {1 (“ﬁ - 6) }} L ()
o\ B-1 g
The complete likelihood is defined as the joint distribution of Y and Z as follows:

L(6,¢,w|Y, Z) = fy z(Y,Z|0,¢,w)

n o p
- H H fyijyzij (yija zij|0, ¢,w)

i=1j=1
oL R ) 12
= L[ljl;[l{wl(yij =0)} {(1 — w)h(yij, &, B) exp {; <ygx_”1 - xg) }} . (3.50)

Then, the new objective function is defined using the minus logarithm of (3.50), instead
of (3.44), as follows:

Qeomp (0, w) = =D >~ [Zzg log{w} + (1 — 2ij){ log{1 —w}

i=1 j=1
B-1 B
1 [ yijx;; Z;;

+ log{h(yij, ¢, 8)} + p (5_]1 - BJ) }] (3.51)

where Z is a conditional expected value of Z given Y, such that

Zij = Elzijlyij]

— Z Z..fyijyzij(yijazijw,(ﬁ, w)
N fyi; (Y3516, &, w)

zi;€{0,1}
_ wl(y;; = 0)
wl(yi; = 0) + (1 — w) fep (yijlzij, ¢, B)
w .
B if Yij = 0
_ Jw+ (1 —w)h(0,¢,8) exp{—z];/(45)}) (3.52)
0 if y;; # 0.
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(3.52) is known as the update rule of Estep in the EM algorithm. From (3.51), the objective
function with respect to w is as follows:

Qu(w) = —log{w} > > "z —log{l —w} Y > (1 - %) (3.53)
i=1 j=1 i=1 j=1

The partial derivative of (3.53) is as follows:

n p
0ulw) _ D) IR o S iR) (3.54)

=1 j=1 =1 j=1

The optimal w is obtained by setting (3.54) to 0 and solving the equation with respect to

w as follows:
n P 5.,
>ic1 Zj:l ij
np '

From (3.51), the objective function to be minimized with respect to ¢ is as follows:

n 5 1 B
ZZZU log{(ys;, 6, 8)} ZZ( Ay ” Z”;’”). (3.56)

i=1 j=1 21]1

W =

(3.55)

The optimal ¢ cannot be obtained analytically for the same reason described in Section
3.3. Hence, we use the BFGS quasi-Newton method (Byrd et al., 1995) in the same manner
as for CP.

From Chapter 4 to 7, we introduce an algorithm for each of the NMFs based on a
maximum likelihood estimation method as listed in Table 3.2. N2NMF and P2NMF are
the same as the NMFs proposed in Lee and Seung (2001). CP2NMF is an NMF of Nakano
et al. (2010) for B € (0,1). N2ONMF is the same as the NMF proposed in Pompili et al.
(2014). The algorithms of N3NMF, P3NMF, and CP3NMF are introduced in Cichocki
et al. (2009). The others NMFs written on colored cells in Table 3.2 are proposed by us.

Table 3.2: NMF's presented in this paper. The NMFs in gray cells are proposed methods.

o two-factor three-factor
Distribution
non-orthogonal  orthogonal  non-orthogonal  orthogonal
N2NMF N20ONMF N3NMF N3ONMF
normal . . ) .
(Section 4.1)  (Section 6.1) (Section 5.1)  (Section 7.1)
. P2NMF P20NMF P3NMF P3ONMF
Poisson . . . )
(Section 4.2)  (Section 6.2)  (Section 5.2) = (Section 7.2)
op CP2NMF CP20NMF CP3NMF CP3ONMF
(Section 4.3) ~ (Section 6.3)  (Section 5.3) = (Section 7.3)
Z10P ZICP2NMF  ZICP20ONMF  ZICP3NMF  ZICP3ONMF

(Section 4.4)  (Section 6.4)  (Section 5.4)  (Section 7.4)

It is noted that the convergence of this algorithm is determined by the log-likelihood

value. However, we can use the corresponding divergence (3.11), (3.12), and (3.14) to
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determine the convergence of all algorithms except for that of using the zero-inflated

model.
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Chapter 4

Two-factor NMF

In this chapter, we describe four two-factor NMFs. The aim of all methods in this
chapter is to obtain estimates of the factor matrices, F € IR{’}er and A € R’fk, such
that X := F A’ is approximated to a given data matrix Y € RCLFXP . All of the methods
are based on a maximum likelihood estimation method; hence, our goal is to obtain the
optimal parameters that minimize the objective function defined as the minus logarithm of
the likelihood. Since we cannot derive the global solution of all parameters simultaneously,
we attempt to derive an update rule for each parameter to at least decrease the objective
function given the other parameters, and to develop an iterative algorithm to optimize the

objective function.

4.1 Normal distribution

In this section we present details of two-factor NMF based on a normal distribution,
named N2NMF. The objective function is defined as (3.30), where 8 = {F, A} and X =
FA'

Update rules
We present the updates rules of the parameters, F' and A. Note that the update rule
of o2 is (3.31).
Update rule for F
From (3.30), the objective function to be minimized with respect to F' is as follows:
n p k n p k 2
Qr(F)==2) "> "yij > fimtjm+ > ( > fima/jm> : (4.1)
i=1j=1  m=1 i=1 j=1 \'m=1

It is difficult to obtain an optimal f;,, by differentiating (4.1) with respect to f;,, because
the simultaneous equation in f;, (¢ = 1,...,n; m = 1,...,k) is complicated by the
summation of f;,, for m in the square function in the objective function. In this regard,

Lee and Seung (2001) tried to obtain an update rule of f;,, using the auxiliary function
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method described in Chapter 2. Now, we show the derivation of an update rule of f;;, by

using the auxiliary function method. We can find that the following function

fl@) = 2 (4.2)

is in the second term of (4.1). Obviously, this function is convex. Hence, we can use the

Jensen inequality to derive the auxiliary function of Qg (F'). Then, we have

k 2 k 2 E g2 2
(35 ) = (S tate) 5T - - P
m=1

'ij m=1 zgm

(i=1,...,n;5=1,...,p) (4.3)

where Aijm > 0 (i = 1,...,n; j = 1,...,p; m = 1,...,k) and 3F _ Njm = 1 (i =
1,...,n; 7=1,...,p). The equality is satisfied if and only if

filajl fi2aj2 fikajk . .
= == i=1,....,n; 7=1,...,p). 4.4
Aij1 Aij2 Aijk ( J P) (44)
If we define cij = fzma]m/)\wm then )\l]m = fimajm/cijv and hence we have Cij =

Zl:nzl fim@jm from an:l Xijm = 1. Therefore, (4.4) implies
Jmm Gy
Zu:l fiuaju
Let f be current value of f;,. If we replace (an:l fim@jm)? in (4.1) with
Zk _ ( z. ]m/)‘wm) that is, the final term in (4.3), and substitute

m=1

Xijm = consj=1...p;m=1,... k). (4.5)

ym —

im &jm (i = Coa . —
e i=1,...,n;5=1,...,p; m=1,....k) (4.6)
Zuzlfiua’ju

into Efnzl( . ]m /Aijm), we obtain the following auxiliary function of Qr(F):

ax(f F*) = —222% Z fim@jm + ZZ Z flma]mw. (4.7)

=1 j=1 m=1 i=1 j=1m=1
Of course it is satisfied that Qp(F) < QF*(F,F*) for all F and F* and Qp(F) =

GX(F,F*) if and only if F = F*. Then, we derive an optimal fim that minimizes
PX(F, F*) with respect to fin,. The partial derivative of Q3™ (F, F*) with respect to
fim is as follows:
k
0QF™(F, F* f .
Fa;) ) Z Yijajm + 250 Z Qjm ( > f,.uaju> . (4.8)
im = : h—
The optimal ﬁm is obtained by setting (4.8) to 0 and solving the equation with respect to

fim as follows:

P
Zj:l Yijjm

fim = [, - . (4.9)
? 1=t fiuagu) ajm
(4.9) is an update rule of f;, given the current value f (m =1,...,k) and ajn, (j =
1,...,p; m=1,..., k). The matrix form of this update rule (4.9) is as follows:
- YA
F=F"0——. 4.1
© F*A'A (4.10)
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Update rule for A

The minimization of the objective function (4.1) with respect to A takes the same form

as (4.1); in addition, we can obtain this update rule in a manner similar to that of F"

* > ic1 Yijfim Ll
Som Z?:1(ZZ=1 fma;u)fzm ( )

Qjm =

The matrix form of (4.11) is

, Y'F
A=A'o 412
Y AFF (4.12)

Algorithm

From (4.10), (4.12), and (3.31), the N2NMF algorithm is presented in Algorithm 3. Here,
T is a threshold to terminate the algorithm and v is the maximum number of iterative
cycles. Through Algorithm 3, the sequence of log-likelihood L, LM . is of course

monotonically non-decreasing.

Algorithm 3 N2NMF Algorithm
1: Input Y e RV? ke N, FO e R"* AO ¢ RP** 750, and v € N
2: t+0
3 X0  F®)A®)
1
4 (0W)2 — —|ly — X®)2
np

5 10 =33 log (v

e (0)?)

i=1 j=1
6: repeat
7 t+—t+1 e
Y At~
) (t) (t-1)
8 FU PO iy 40D
Y'F®

9. AW At-D g
100 X® « FOAW
o (00« Ly - x0pe

np

n p
122 LO Y ") "log fx (yij z), (U(t))2>

i=1 j=1
13: until LO — LD < ror t = v
14: Output FO, A and (61))?

A=) @) p)

4.2 Poisson distribution

In this section we present details of two-factor NMF based on a Poisson distribution,
named P2NMF. The objective function is defined as (3.35), where @ = {F, A} and X =
FA.
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Update rules

Below, we show the update rules of the parameters, F' and A.

Update rule for F

From (3.35), the objective function to be minimized with respect to F' is as follows:

n p k n p k
- ZZ Z fim@jm + ZZy]{ - 10g{ Z fimajm}}- (4.13)
m=1

i=1 j=1m=1 i=1 j=1
It is difficult to obtain an optimal f;,, by differentiating this objective function with respect
to fim because the summation of f;,, for m exists in the minus logarithm function in the
objective function. Lee and Seung (2001) provides an update rule of this fi,, in a manner
similar to that of the method based on normal distribution described in Section 4.1 using

the auxiliary function method. We can find that the following function

f(x) = — log{a} (4.14)

is in the second term of (4.13). This function is convex and we can use the Jensen inequality

to derive an auxiliary function. Hence, we have

k
— log { Z fzma]m} = log { Z Az]m f’tmajm } Z Az]ml g { fz;\na]m } (415)

m—=1 zgm ijm

with equality if and only if (4.5). If we replace —10g{2m:1 fimajm} in (4.13) with
- 2221 Nijm 10g{ fim@jm/Nijm }, that is, the final term in (4.15), and substitute (4.6) into
— Zk _1 Nijm 10g{ fim@jm/Aijm}, we obtain the following auxiliary function of Qr(F):

m=1

aux F F* ZZ Z fzmajm

i=1 j=1m=1

— Zzyw Z (Zfzma{zﬂ )1 g{flm(z - zuaju)}. (416)

i=1 j=1 m=1 u=1Ju%ju im

It is satisfied that Qp(F') < Q3™ (F, F*) for all F and F* and Qp(F) = Q3*(F, F*) if
and only if F = F*. Then, we derive an optimal f;,, that minimizes QP> (F, F*) with
respect to fim. The partial derivative of Q%™ (F, F*) with respect to fi,, is as follows:

QP EF) N~ Sin 4 417
afzm _jz; j <Zu lfzza9“>ajm‘ ( ‘ )

The optimal fzm is obtained by setting (4.17) to 0 and solving the equation with respect

to fim as follows:

S E i/ (et Fuaiu) Yajm |

fim = fim (4.18)
Z?:l ajm
The matrix form of this update rule (4.18) is as follows:
5 e o LY/(FTADFA
F=F0——F7——. 4.1
© B A (4.19)
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Update rule for A

The minimization of the objective function (3.35) with respect to A takes the same form

as (4.13); in addition, we can obtain this update rule in a manner similar to that of F"

L 2/ (e fiua;(fu)}fim.

Qi = Q.
o Jm Z?:l fzm

The matrix form of (4.20) is

(4.20)

A=A Y/ (FA)VF (4.21)

Algorithm

From (4.19) and (4.21), the P2NMF algorithm is presented in Algorithm 4.

Algorithm 4 P2NMF Algorithm
1: Input Y e RV? ke N, FO e R* AO ¢ RP** 750, and v € N
2: <0
5 XO  FO) A0
n p

£ 1O < 33 o fe (v

i=1 j=1
5: repeat

6: t—t+1
o F0 e o Y/

40)

F(t—l)A(t—l)/)}A(t—l)

By p A1)
t—1 t—1)N\\/ g (t
g AD  ACD o (Y /(Ft=D A=V Y F®
E,xn F®
9: xX® . p) AQ)
n p
10: L Z Z log fp (yij mg))

i=1 j=1
11: until L® — LD <« 7 or t = v
12: Output F® and A®

4.3 Compound Poisson-gamma distribution

In this section we present details of two-factor NMF based on a compound Poisson-
gamma distribution, named CP2NMF. The objective function is defined as (3.39), where
0={F,A} and X = FA'

Update rules

We show the update rules of the parameters, F' and A. ¢ is obtained as described in
Section 3.3.
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Update rule for F

From (3.39), the objective function to be minimized with respect to F' is as follows:

k —
ZZ( e St 0ty Fntn) ) (122)
=1 j=1

It is difficult to obtain an optimal f;,, by differentiating this objective function with respect
to fim because the summation of f;,, for m exists in the 5 and § — 1 power functions.
Actually, this objective function is the same objective function of two-factor NMF based
on f(-divergence, and Févotte and Idier (2011) and Nakano et al. (2010) derive the update
rule of the factor matrices given some ranges of 5. First, Févotte and Idier (2011) derived
it for the case of 1 < § < 2, and then, Nakano et al. (2010) provided it for the other case of
5. Both of these research groups used an auxiliary function method to derive the update
rule in the same manner as section 4.1 and section 4.2. However, Févotte and Idier (2011)
only used the Jensen inequality to derive the update rule because both of the functions
in the first and second terms of (4.22), that is, f(z) = 2°/f and f(z) = —2~1/(B - 1),
respectively, are convex if 1 < § < 2. On the other hand, Nakano et al. (2010) pointed
out that the former function is concave if 8 < 1 and the latter function is also concave if
B > 2, in which case they not only used the Jensen inequality but also the inequality of a
concave function in response to the value of 5. In this section, we only present the case
of 0 < 8 < 1, which pertains to the compound Poisson-gamma distribution. The function
in the first term, f(z) = 2°/8, is concave if 0 < 3 < 1. Hence, we have

fl@) < fN) + /(N =N (4.23)

for any A with equality if and only if x = A. From this inequality, we have

k o \B
(Zm:l gmajm) < 7713 ( Z Jim@jm — 77@)) 771] - Z fim@jm + Mij (; — 1>

(i=1,...,n; 5=1,...,p). (4.24)

The equality is satisfied if and only if
k
m=1

On the other hand, the function in the second term, f(z) = —2%~1/(3 — 1), is convex if

0 < B8 < 1, and hence we can use the Jensen inequality. Therefore, we have

B (Zfﬂ:l fimajm)ﬂ_l . ( zk: ij fzma]m ) o

ﬁ_l zjm

k p—1
Z )\wm <fzma]m>

m=1 Z]m

k fﬁ 1(1'8 1
1

—1
ijm

| /\
Q
—_
—_

™

m=
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The equality is satisfied if and only if (4.5). If we replace

(an:l fimajm)ﬁ _ (an:l fimajm)ﬁil

and
p p-1
n (4.22) with
k p-1_pB-1
1 1 fim @5
L S B B M L 0]
m=1 )\ijm
that is, the final term in (4.24) and (4.26), respectively, and substitute
k
nij:Zf{';najm(izl,...,n;jzl,...,p) (4.27)
m=1

and (4.6) into the replaced (4.22), we obtain the following auxiliary function of Qg (F):
k =1 k B 1
) =3 (N ) 3 (N ) (1)
=1 j=1 u=1 m=1 u=1
k B=2 B—1
1 N [ a;
- ﬁyz‘j <Z1 fiuaju) Z (W) } (4.28)
u=

m=1 fzm
Then, we derive an optimal f;,, that minimizes PX(F, F*) with respect to fim. The
partial derivative of Qu™*(F, F*) with respect to fi,, is as follows:

B—2

oOaux F F* p -1 - D k .
QF@J(" Z ( Z fma]u> Ajm — fﬁn 2 Z Yij ( Z fizaju> f(ijﬁT (4.29)
im st —

7=1 \u=1 m

The optimal flm is obtained by setting (4.29) to 0 and solving the equation with respect

to fim as follows:

koo - ]
fim = [ =19 (2 i)’ asm | * B. (4.30)
" ?:1(25:1 frnagu)P~tam
The matrix form of this update rule (4.30) is as follows:
b o [(Y O F AT A 131
~Fe Ay a 3

Update rule for A

The minimization of the objective function (3.39) with respect to A takes the same form

as (4.22); in addition, we can obtain this update rule in a manner similar to that of F"

(4.32)

Qjm = a

R { Sy Yig (X Fautty)? 2 fim }2_15
o Z?:I(Zij:l fiua;u)ﬂ_lfim ‘
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The matrix form of (4.32) is

1
{Y/ 0] (A*F/)B—2}F 2-p

A=A*
YA Py F

(4.33)

Together (4.31) and (4.33) indicate that CP2NMF is a generalization of N2NMF or
P2NMF. When 8 = 1, these update rules are equivalent to (4.19) and (4.21), respec-
tively. On the other hand, when 8 = 2, the formulas of these update rules are equivalent
to (4.10) and (4.12), respectively except for the exponent part, 1/(2 — §). Nakano et al.

(2010) found that their formulas are the same for all 5 except for the exponent part.

Algorithm

The CP2NMF algorithm, which is derived from (4.31), (4.33), and the discussion in
Section 3.3 about optimal ¢, is presented in Algorithm 5. Note that we limit the number
of times ¢ is updated to prevent the computational time from becoming excessively large.
We update ¢ for the first ¢ iterations; then, for the remaining iterative cycles, we update

it at every x-th iteration.

Algorithm 5 CP2NMF Algorithm
1: Input Y € R”?, 3 € (0,1), k € N, FO ¢ R A0 ¢ RO 40 > 0, 7 > 0,
veN deN and k € N
2: t+0
3. X  FO AW/

n p
4: L(t) — Z Z log fcp (yij

i=1 j=1
5: repeat

6: t+—t+1

fES)y ¢(t) ) /8>

7. FO « Ft-D g

{Y 0 (F(t—l)A(t—l)/)ﬁ—Q}A(t—l) ﬁ
{(F(t—l)A(t—l)/)ﬁ—l}A(t—l)

g AW At-D g

{(AG=DH FONE-11 F (1)
9: if t <§ or t mod Kk =0 then
¢ is obtained as the optimal ¢ that optimizes Q¢(¢) given F®O_ A® and
B using the BFGS quasi-Newton method with constraints ¢ > 0
11: end if
122 X® « FO AW/

n p
13 L0 33 log for (i

i=1 j=1
14: until LO — LD < rort=v
15: Output F®, A® and ¢*)

1
{Y/ ® (A(t—l)F(t)/)ﬁ—2}F(t)] 2-8

10:

I'S)a (b(t)? 6)
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4.4 Zero-inflated compound Poisson-gamma distribution

In this section we present details of two-factor NMF based on a zero-inflated compound
Poisson-gamma, distribution, named ZICP2NMF. The objective function is defined as
(3.44), where 8§ = {F, A} and X := FA’. However, the update rule of F and A is
obtained as these optimizers, which minimize (3.51). This method was proposed by Abe
and Yadohisa (2016).

Update rules

We show the update rule of the parameters, F' and A. The update rules of Z and w is
obtained as (3.52) and (3.55). ¢ is obtained as described in Section 3.3. The estimation
of w, F'; A, and ¢ is known as the Mstep in the EM algorithm.

Update rule for F

From (3.51), the objective function to be minimized with respect to F' is as follows:

no P[0k a8 sk (SR g )81
QF(F) _ ; Z Z (zzg (Zmlﬁflmajm) . Zzgle(Zmﬁl_fima]m) ) ’ (434)
1=1 j=1

where 27, == 1 — 2j;. This objective function is similar to that of (4.22); however, the
weight value in this case is 22*] Since zz*j is positive, we can use the Jensen inequality to
convert the second term into a function existing in the upper bound of the second term.
The first term can also be converted into a function existing in the upper bound of the first
term using inequality (4.23). Hence, the update rule of F is derived in the same manner

as described in Section 4.3. These update rules of both the element and matrix forms are

as follows:
_1
f. = fr { §=1 %%j(Zﬁ:l {Zaju)ﬁ_zajm } o7 (4.35)
" L (T ) g,
1
FeFo {(Z*OY o (F*A)~2}A | *° (4.36)
{Z* o (F*A)-1} A ' '

Update rule for A

The minimization of the objective function (3.51) with respect to A takes the same form

as (4.34); in addition, we can obtain this update rule in a manner similar to that of F"

1
ox k — 3-8
s {Z?:l Zz‘jyij(zuzl fiua;u)’g 2fim}2 7

djm =a m P o . (4.37)
’ > i1 Zij(Zﬁ:l fiuaju)ﬁ_lfim
The matrix form of (4.37) is
_1
. H{ZreoY' oA F)HF | TP (438)
(Z*© (A*F")f-1}F ' '
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When Z;; = 0 for all 7 and j, that is, all elements of Y are compound Poisson-gamma
distributed, (4.36) and (4.38) are the same as (4.31) and (4.33), respectively. Therefore,
ZICP2NMF is a generalized method of CP2NMF.

Algorithm

The ZICP2NMF algorithm, which is based on (3.52), (3.55), (4.36), (4.38), and the
discussion in Section 3.3 about an optimal ¢, is presented in Algorithm 6. Note that we

limit the number of times ¢ is updated in the same manner as for CP2NMF.
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Algorithm 6 ZICP2NMF Algorithm

1: Input Y € R??, 8 € (0,1), k € N, FO ¢ R™* A0 ¢ RE* 4(0) € (0,1), ¢ > 0,
7>0,veN, deN, and Kk € N

2: 1«0

3. X®  p®) A0y

w®
12— L w® + (1 - w®)h(0, 60, B) exp{—(2{))7 /(6 8)})
0 if y;; #0

(i=1,...,n;7=1,...,p)

5: 2+ Enx,, AL

6 L) ZZlog{ I(yij =0)+ (1 — w(t))fCP(yij|l‘S)7 o, 5)}

i=1 j=1
7: repeat
8: t—t+1
9: w(t) . Zz 12] 1 2]
: np

1
10: F®  pt-1) o {Z*(tfl) oY o (F(t1)A(t1),)52}A(t1)] 525

{Z+(=1) @ (Ft=1) A(t=1))B-1} A(t=1)

e A® A o {Z*(t1)®Y’®(A(t”F(”’)ﬁQ}F(t)]”

{Z*(tfl) ® (A(tfl)F(t)/),Bfl}F(t)
12: if t <6 or t mod k = 0 then
#®) is obtained as the optimal ¢ that optimizes Q4(9) given FO A0,
Z*(t=1) and 8 using the BFGS quasi-Newton method with constraints ¢ > 0
14: end if
15: X o pt) AQ)

13:

w®

16 20 L w® 4+ (1—wt)h(0,60), B) exp{—(2)?/(6©B)})
(i=1,....,n; j=1,...,p)
17 20 Enxp - zZ®
18 L® Z Z log{ I(ysj = 0) + (1 — w®) fep (il 6@, 5)}
i=1 j=1
19: until LO — LD < rort =0
20: Output F®, A®  Z® and ¢)

if Yij = 0
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Chapter 5

Three-factor NMF

In this chapter, we describe four three-factor NMFs. The aim of all methods in this
chapter is to obtain estimates of the factor matrices, F' € RZ‘er, S € Rixg, and A € Rﬁxe,
such that X = F'SA’ is approximated to a given data matrix Y € RiXp . Basically, the
update rules of F' and A have the same form as those of the two-factor NMFs described

in Chapter 4. On the other hand, the center factor matrix .S is not as straightforward.

5.1 Normal distribution

In this section we present details of the three-factor NMF based on a normal distribution,
named N3NMF. The objective function is defined as (3.30), where 8 = {F, S, A} and
X =FSA.

Update rules

We show the update rules of the parameters, F', S, and A. Note that the update rule
of 02 is (3.31).
Update rule for F

If we treat AS’ as the right hand factor matrix in a two-factor NMF, the form of the
objective function with respect to F' is the same as that of (4.1). Hence, we can obtain
the update rule of F' in the same form as (4.9) and (4.10) as follows:

. ) S Yij Yo Smalig

Jim = fzm P k 7 * 7 ) (51)
j:l(Zr:l > =1 firSretic) Zq:l SmqQjq
~ N Y AS’
F=F©frgaas (52)
Update rule for A
We can obtain an update rule of A as a same form of F':
k

&jm —a Z?:l Yij Zmzl fimsmq (53)

jm k ‘ k ‘
D1 (Ot 2 firsrca;c) > m=1JimSmq
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. Y'FS
A=A"O S Fs

Update rule for S

From (3.30), the objective function to be minimized with respect to S is as follows:

n P k¢ n p k¢ 2

Qs(S)=-23 "> yij D> fimSmetjg+ YD ( > > fimsmqajq> - (59
i=1 j=1 m=1gq=1 i=1 j=1 \'m=1g=1

It is difficult to obtain an optimal s,,, by differentiating this objective function with

respect to s, because the summation of s,,, for m and ¢ exists in the square function in

(5.5). However, we can use the auxiliary function method in a manner similar to N2NMF

because the second term in (5.5) contains a square function that is convex. From the

Jensen inequality, we have

. - ’ k ¢ f . 2
( Z Z fimsmqaj(Z> = ( Z Z Aijqu)

m=1 qg=1 m=1 ¢g=1 AUmq
kot 2 ko £ g2 2 2
fimsmqajq fzmsmqajq
< Aijmyg =
mz::1 ; Aijmg mZ::l ; Aijma
(/L:]-u , 15 ]:17 wp), (56)

where
Aijmg >0(i=1,...,n; j=1,...,p; m=1,...,k; ¢=1,...,¢)

k 0
and D> > Ngmg=1(=1,...,n; j=1,...,p).

m=1qg=1

The equality is satisfied if and only if

firs11aj1 o fi1s12a;2 L filSMCLje
Nt Ntz Aijue
_fi2321aj1 _ Ji2s22aj2 _ fi282zaj£
D D Y D VY
.:fﬂif;?ﬂ _ f;;,;ijﬂ - f@‘i’;ﬁjﬂf (i=l...mj=1...p). (57

If we define ¢ij = fimSmqQjq/Nijmg then Aijmg = fimSmq@jq/cij and hence we have
k l
Cij = Z Zfimsmqajq
m=1 qg=1
from Eﬁ@:l Zgzl Xijmq = 1. Therefore, (5.7) implies

fimquajq

k 14
Zrzl Zczl firsrcajc

Xijmg = (i=1,....n; j=1,....,p; m=1,...)k; g=1,...,0).
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Let sy, be the current value of sp,,. If we replace (an 1 22:1 fimSmq@jq)? in (5.5) with
Zm 1 Zq VSRSt ]q/>\’LJWQ’ that is, the final term in (5.6), and substitute
fimS:;zqajq

Nijmg = = 7 (i=1,...,n;5=1,....p; m=1,....k; g=1,...,0)
Y1 Dot firSicaje

(5.9)

into Zm 1 Zq LR mq ?q/)\ijmq, we obtain the following auxiliary function of Qg(.S):

Qaux S, S* —— QZsz Z Zfzmsmqa]q

i=1 j=1 m=1 g=1
k¢

n p k ’ .
+2.D DD fimStuga L=y Zf;l fisretye, (5.10)

i=1 j=1m=1¢=1 mq

Of course it is satisfied that Qs(S) < Q¥*(S,S*) for all S and F* and Qg(S) =
QE™(S,8*) if and only if § = §*. Then, we derive an optimal 5,,, that minimizes
QE™(S,S*) with respect to s;,q. The partial derivative of Q%™ (S, S*) with respect to

Smq is as follows:

W —QZZyufzmajq + 28mq szzma/]q (ZZflTSrcaJC) 5 11)

i=1 j=1 qul]l r=1c=1

The optimal 5,,, is obtained by setting (5.11) to 0 and solving the equation with respect

to Spmq as follows:

X > i Z§:1 Yij fim@jq

mq k 4 '
Z?:l Z?:l (ZT’:I Zc:l fiTS:cajC)fimajm

(m=1,....k; g=1,...,0),
fim(G=1,...,ny m=1,...,k),a;q (j =1,...,p; ¢=1,...,¢). The matrix form of this

(5.12)

qu ==

(5.12) is an update rule of sp, given its current value s,

update rule (5.1) is as follows:

(A® F)'vec(Y)
(A® F)(A® F)vec(S)’

vec(S) = vec(S*) ® (5.13)

(5.13) is derived from another perspective. The approximation Y ~ FSA’ can be rewrit-
ten using the vectorization form as vec(Y) =~ vec(FSA') = (A ® F)vec(S). On the

other hand, when we focus on the column vector of Y, that is, y(;), we can rewrite the

)
approximation equation of N2NMF as y(;) ~ Fa;, and hence the update equation of a;

is described as

Fly.
a; = Cl,*f O) y(])

G 3 Fa}

(5.14)

from (4.12). A comparison of the two approximation,
vec(Y) =~ vec(FSA') = (A ® F)vec(S)

of N3NMF and y;) ~ Fa; of N2NMF, and (5.14) enable us to derive (5.13).
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Algorithm

The N3NMF algorithm, which is based on (5.2), (5.4), (5.13), and (3.31), is presented
in Algorithm 7.

Algorithm 7 N3NMF Algorithm
1: Input Y e RV? ke N, £ e N, FO ¢ R™** §0) ¢ REX!. A0) ¢ REXY 7 > 0, and
veN
2: 1+ 0
3. X® i) g) A@)
1
4 (0W)2 — — ||y — X2
np

n o p
5: LW« > "log fu (?/ij
i=1 j=1
6: repeat

7 t+—t+1
g  FO « Ft-1) g

7 ()

YA(tfl)S(tfl)/
F-1)gt-1) A(t-1) A(t-1) §(t-1)
Y'F®) gt-1)

A D) G- ey p) §-1)

AW @ FOYvec(Y)
. (0 (t-1) (
100 vec(S®)  vec(SE) o (A0 & FOV(AD & FO)vec(SED)

9. AW At-D g

11:  X® « pOgt) 4@y
2 (002 Ly - x o)
np

n p
132 L0« )Y "log fx (yz‘j 955;), (U(t))2>
i=1 j=1
14: until LO — LD < rort =0
15: Output FO 8O A® and (o(¥))?

5.2 Poisson distribution

In this section we present details of the three-factor NMF based on a Poisson distribu-
tion, named P3NMF. The objective function is defined as (3.35), where 8 = {F, S, A}
and X = FSA'

Update rules

Below, we show the update rules of the parameters, F', S, and A.

Update rule for F

As N3NMF, the update rule of F' is given in the same form of (4.18) and (4.19) as

follows:
P k 0 * /
R Ay e o1 firSreaj —1 Smq@j
Fon = £ 2 i=1Wii [ (Xor1 2ot [ivSre@je) } 321 Smq it (5.15)

D ¢ )
j=1 Zq:l SmqQijq
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. (Y/(F*SA')}AS'

F=F" 5.16
T B AS (5.16)
Update rule for A
We can obtain an update rule of A in a same form as F"
T'L— ij r= c= T‘UST‘Ca c m=1 JimSm
Gim :a;mZz_l{yJ/(z 12 1 j )}Z 1 q (5.17)
Zz 1 Zm 1 fzmsmq
. Y/(FSA")VFS
A=A"0 Y /( )} . (5.18)

EpxnFS

Update rule for S

From (3.35), the objective function to be minimized with respect to S is as follows:

n

p k ¢ n p k¢
S) = Z Z Z Z fimsmqajq + Z Zyij{ - log { Z Z fimsmqajq}}. (5.19)
i=1 j=1m=1 g=1 i=1 j=1 m=1 ¢=1
It is difficult to obtain an optimal s,,, by differentiating this objective function with respect
to s;q because the summation of s,,, for m and ¢ exists in the minus logarithm function
in the objective function. However, the auxiliary function method is available to derive
the update rule of §. As P2NMF, we can apply the Jensen inequality to the second term
of (5.19) that contains a minus logarithm function, which is convex. From the Jensen

inequality, we have

koL
— log{ Z Z fimsmqajq} = log{ Z Z Aijma fzmsmqa]q}

m=1 g¢g=1 m=1 g=1 zqu
k l f S
<303 Augmglog g Lemematia L (5 )
m=1 qg=1 Aijmq

with equality if and only if (5.8). If we replace —log{3 % _, Zgzl fimSmqajq} in (5.19) with
— an:l 22:1 Xijmq 1og{ fim8mq@jq/Nijmq}, that is, the final term in (5.20), and substitute
(5.9) into — an:l Z§=1 Xijmq log{ fimSmq@jq/Nijmq}, we obtain the following auxiliary
function of Qg(S):

QauX(S, S*)

p k l
D) I) Ip R

i=1 j=1 m=1 q—l

4 Ly k / o
_ Z Zyw Z 3 ( Jiming ) g { sma(Sny z Firstatse) }

* .
i=1 j=1 m=1 g=1 7“ lzc:l frusrca]c mq

(5.21)
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Then, we derive an optimal $,,, that minimize Q%™(S,S*) with respect to sp,q. The

partial derivative of Q™ (S, S*) with respect to s, is as follows:

aQaux(S S* n mq (
=5 ¢ fim
08myq Zz; jz; e ; ; Zr 1 Zc 1 flrsrcajc

The optimal 5,,4 is obtained by setting (5.22) to 0 and solving the equation with respect

)f,-majq. (522)

to spmq as follows:

« doim Z?:l{yij/(zr 1 20_1 flTsrcajC)}f’Lma]q

Smqg = Sy, (5.23)
! K > e 12; 1 fimajq
The matrix form of this update rule (5.23) is as follows:
. AR F) Y A®F S
vee(§) = vee(S*) © (A ® F)'vec(Y)/{(A® F)vec(S)}] (5.24)

(A5 F)L,

Algorithm

The P3NMF algorithm, which is derived from (5.16), (5.18), and (5.24), is presented in
Algorithm 8.

Algorithm 8 P3NMF Algorithm
1: Tnput Y e RV? ke N, L e N, FO ¢ Rk §0) ¢ REX!. A0 ¢ RP 7 > 0, and
veN
2: 1+ 0
3. X®) o p)gt) A1)
n p
£ 1O <33 og e (v

i=1 j=1
5. repeat

6: t—t+1
7. FO « pt1)

40)

{Y/( (t 1 (t— 1) (t—1) /)}A(t—l)S(t—l)/
E,yp At-D S 1)
{Y/( t)S(t lA(t 1)/ )}/
E, , F®)S(t-1)
(A® © FO) [vec(Y)/{(A® ® F®)vec(S¢V)}]
(AW ® FO)1

g AW — A-D g

9: Vec(S(t)) — VGC(S(t_l)) 0

10: X® L ) gt) Ay
n p

11: L) Z Z log fp (yij :EE?)
i=1 j=1

12: until LO — LD < s ort = v

13: Output 14"(75)7 S(t)7 and A®

5.3 Compound Poisson-gamma distribution

In this section we present details of three-factor NMF based on a compound Poisson-
gamma distribution, named CP3NMF'. The objective function is defined as (3.39), where
0={F,S,A} and X := FSA
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Update rules

Below, we show the update rules of the parameters, F', S, and A. ¢ is obtained as

described in Section 3.3.

Update rule for F

For N3NMF and P3NMF, the update rule of F' is given in the same form as two-factor
NMEF, that is, (4.30) and (4.31), as follows:

1

f' _ {Z?ﬂ yij(zlle Zﬁ:l ff;nsrcajc)ﬁ_Q 22:1 SmqQjq }H (5.25)
?:1(Zf:1 Dot fisreaje) ! D _q—1 Smqljq
8 7
N {Y © (F*SA"’21A8"|*~
F=F0 ((F*SA)P1JAS (5.26)
Update rule for A
We can obtain an update rule of A in the same form as F:
S g (T Sy Frusre) 2 E L Fomsing | 7
G —at i=1 Yij\2r=1 2ic=1 JruSrcljc m=1JimSmq (5.27)
jm = Ajm n T ) .
T (o X firseel )P Yy fimSma
-2 77
. {Y @ (FSAY)"—*}YFS |~
A=A"0 ((FSA")7 1V FS (5.28)

Update rule for S

From (3.39), the objective function to be minimized with respect to S is as follows:

QS(S) — Zn: Zp: ((mel Zg;fimsmqajq)ﬁ B yl](zl;:nzl Zgﬁiﬂimsmqa]’dﬁ_l> |
i=1 j=1

(5.29)

For CP2NMF, we can apply the Jensen inequality and inequality (4.23) to the first term
and second term, respectively, to derive the auxiliary function of (5.29) with respect to S.
From (4.23), we have

(Zk =1 ZZ:1 fimsmqajq)’@ 77/‘8‘ -1 FE
= 1 < + 775 Z Z fimsmqajq — Mij

6 a ﬁ m=1 qg=1
k Y4 1
~1
35 (1)
m=1 qg=1
(i=1,...,n;5=1,...,p). (5.30)
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The equality is satisfied if and only if

k l
Mij = Z Zfimsmqajq (7’: 1""7n; ]: 177p> (531)

m=1 qg=1

On the other hand, from the Jensen inequality, we have

k 1 — k 4 p-1
(> =1 Zq:l fimsmqajq)’ ™" Z Z fzmsmanQ>
ijmgq

Q

—_
VY
3

p-1 Aijimg
koot P p-1
<t 122%(@%)
m=1q¢=1 Jma
k¢ f qulaﬁl
()
(t=1,...,n; 5=1,...,p). (5.32)

The equality is satisfied if and only if (5.8). If we replace

(Z:’L:]. E§=1 fimquajq)B and  — (Zf‘n:l Zgzl fimquajq)ﬁi1
B p-1

n (5.29) with

1 k ¢ fﬁ 15 1a,31
-1 im  °Mq m
0SS () a5ty oy (B e

m=1 q=1 m=1 q=1 ym
that is, the final term in (5.30) and (5.32), respectively, and substitute
k

l
Nij = ZZfimS:nqajq (t=1,...,n; j=1,...,p) (5.33)

m=1 qg=1

and (5.9) into the replaced (5.29), we obtain the following auxiliary function of Qg(S):

p k0 -1 k¢
Qux(S, S*) Z Z { (Z Z firS:cajC> Z Z fimSmqQjq

i=1 j=1 r=1 c=1 m=1 g=1
E ¢ B 1
- (zzﬁrs:a%) (1)
r=1c=1
B=2 k 4 81
1 fimSmg @;
SIe R IETA IS v ol £ T I

r=1g=1 m=1 qg=1 Smq

Then, we derive an optimal §,,, that minimizes Qg™(S, S*) with respect to s,,4. The
partial derivative of Q™ (S, S*) with respect to fi,, is as follows:

0QT™(S, S*)

8fim’ - Z Z ( Z Z fiTS:cajC> Fimajq
n p kK ¢ B—2 f .
S (Z 2 f) L (539)
: 5
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The optimal §,,, is obtained by setting (5.35) to 0 and solving the equation with respect

to Spmq as follows:

1
k 4 — -3
. {2?21 Sy (Crey Yot firsieaje)? 2fimajq}2 P

Smg = S5, ! (5.36)
! ! > ie1 Z?:l(Zﬁzl Zi:1 firstcaje)? =L fimajq
The matrix form of this update rule (5.36) is as follows:
1
A . (A® F)[vec(Y) ® {(A® F)vec(8*)}=2] | 7
S) = S 5.37
vee(S) = vee(S7) © (A® F){(A® F)vec(§*)}F1 (5-37)

Together, the factorizations (5.26), (5.28), and (5.37), indicate that CP3NMF is a gener-
alization of N3NMF or P3NMF, as is the case with CP2NMF.
Algorithm

The CP3NMF algorithm, which is based on (5.26), (5.28), (5.37), and the discussion in
Section 3.3 about optimal ¢, is presented in Algorithm 9.

Algorithm 9 CP3NMF Algorithm
1: Input Y € RV?, B € (0,1), k€N, £ € N, FO ¢ R™*F §0) ¢ Rk*¢ A(0) ¢ REX,
0 >0,7>0,veN,deN, and k € N
2: t<+ 0
3. X ) g) A@)

n p
4: L(t) — Z Z log fCP (yij

i=1 j=1
5: repeat

6: t+—t+1

[ES)y ¢(t) ) ﬂ)

1
2-p

{Y 0 (F(t—l)S(t—l)A(t—l)/)B—Q}A(t—l)S(t—l)/

. (t) (t-1)
7. Y« F O] {(Ft=1) §(t=1) A(-1))5-1} A(t-1) §(t=1)/

_1
2-p4

{Y o (F(t)S(t—l)A(t—l)/)/B—Q}/F(t)S(t—l)

) ®) (t-1)
8: A — A © {(F(t)S(t_l)A(t_l)/)ﬁ—l}/F(t)S(t—l)

9: vec(S) + vec(S*) ® (A(t) . F(t))/{(A(t) 2 F(t))vec(S(t_l))}B_l

10: if t <§ or t mod Kk =0 then

¢ is obtained as the optimal ¢ that optimizes Q4(9) given F® 8t A0
and (8 using the BFGS quasi-Newton method with constraints ¢ > 0

12: end if

13: X  pt) gt) A®)

n p
1 L0 33 log for (i

i=1 j=1
15: until L — LD <« ror t = v
16: Output F® SO AM and ¢*

2 (AW & FOYvec(Y) ® {(AD @ F®)vec(St-1) )}6—2]] =

11:

ws;)a (b(t)? B)
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5.4 Zero-inflated compound Poisson-gamma distribution

In this section we present details of three-factor NMF based on a zero-inflated compound
Poisson-gamma distribution, named ZICP3NMF. From the perspective of an approxima-
tion matrix, ZICP3NMF is the three-factor version of ZICP2NMF. On the other hand,
from the perspective of an error distribution, it is a zero-inflated version of CP3NMF. The
objective function is defined as (3.44), where 8 = {F,S, A} and X = FSA’. However,
the update rule of F, S, and A is obtained as the optimizer, which minimizes (3.51).

Update rules

We show the update rules of the parameters, F', S, and A. The update rule of Z and
w is obtained as (3.52) and (3.55). ¢ is obtained as described in Section 3.3.
Update rule for F

From (3.44), the objective function to be minimized with respect to F' is as follows:

Qr(F)
— 1 zn: zp: 2‘2}(2'“ =1 22:1 fimsmqan)ﬁ _ igkjyij(anzl Z$:1 fimsn"bqajq)ﬁ_1
- ¢ i=1 j=1 b p-1 |

(5.38)

This objective function is similar to (5.29) but is weighted by 25 Therefore, the update
rule of F' is obtained in a form similar to (5.25) and (5.26) but each of the i, j elements is

weighted by z7.

1

* k ¢ F'S —_ Z 23
f’ _ f* { Z?=1 Zijyij(Zrzl Ec:l firsrcajc)ﬁ 2 Zq:1 SmqQjq } >0 (5 39)
Tl 2 (s e f8reje) P Y gy Smatijg
1
R . |[{Z*oY o (F*8sA)’-21A8" | >
F=F 5.40
Yz o (Frsay 1 AS (5.40)
Update rule for A
We can obtain an update rule of A in the same form as F':
o { Ei:l Zi;Yij (27"21 Zczl fruSrcajc) Em:l fzmsmq } (5 41)
]m - ‘m n E'3 k € 3 . k) ’ :
! >ict zij(Zrzl D=1 fi?"STCajc)B 12 met fimSma
1
. {(Z*OY © (FSA")S2VFS |7
A=A" 42
Y| {z' o (FSA")IVFS (5.42)
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Update rule for S

In the same way as F and A, we can obtain the update rule for S similar to that of
(5.36) and (5.37).

(5.43)

1
k 4 — -8
g = 5, {zz;l S 2095 (gt Sz firshetse)’ fm} i
mqg = “mg k 14 — ’
Z?:l Z?:l Z;}(Erﬂ Zczl fiTS:ca]'C)'B 1fimajq
1

(A FY[vec(2") © vee(Y) © {(A® Fvec(S%)}72]| 77
(A® F){(A® F)vec(§*)}F-1

vec(S) = vec(S*) ®

~ 1
(A® F)[vec(Z* © Y © vec(FS*A")P~2|] 77

(A® F)'vec(FS*A’)B-1 '

= vec(S*) ® (5.44)

Algorithm

The ZICP3NMF algorithm, which is based on (3.52), (3.55), (5.40), (5.42), (5.44), and
the discussion in 3.3 about optimal ¢, is presented in Algorithm 10.
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Algorithm 10 ZICP3NMF Algorithm

1: Input Y € R™?, B € (0,1), k e N, £ € N, FO ¢ R §0) ¢ REX! A(0) ¢ REX
w® € (0,1), @ >0, 7>0,veN, €N, and k €N

2: t+ 0

3. X — pi)gt) A@)

w®
12— L w® + (1= w®)h(0, 60, B) exp{—(2{))7 /(6" 8)})
0 if y;; #0

(i=1,...,n;7=1,...,p)

5. 2 Enxp AL

6 L1 ZZlog{ I(yij =0)+ (1 — w(t))fCP(yiﬂl‘S), o, 5)}

i=1 j=1
7: repeat
8: t+—t+1
9: w(t) — EZ 12] ! ”
np
1
0 g o |20 Y © (RSN Al 4G gl 2
10:  FY e« F © {Z+(t=1) o (F(-1) §(t=1) A(t=1)1)B-1} A(t=1) §(t=1)
1
-8

{Z*(t 1) oY o (F(t)S(tfl)A(tfl)/)ﬁ72}/F(t)S(tfl)

) (t) (t=1)
11: AV +— A {Z+t=1) o (F® S(t-1) At-1))5-1} () §(t-1)

12: vec(S®)

(AD @ FO)yec{Z*t=D) oY @ (F1§E-1) A))5-2} 1277
(AW @ FO)Y vec(F(t)S( DA®)s-1

13: if t < or t mod kK =0 then

¢ is obtained as the optimal ¢ that optimizes Qu(¢) given F() S®) A®)

Z*(t=1) and 8 using the BFGS quasi-Newton method with constraints ¢ > 0

15: end if

16: X o pit) gt) A®)

— vec(St) o

14:

w®
1 2l e $ w4 (1 - w®)R(0, 60, B) exp{~(x}))? /(" B)})
(i=1,....,n; j=1,...,p)
18 20« Enxp -z
19: LM Z Z log{ I(yij=0)+ (1 w(t))fCP(yiﬂfUS-), o, 5)}

i=1 j=1
20: until L&) — LY < rort =v
21: Output F®, 81 A® z® () and ¢®)
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Chapter 6

Two-factor orthogonal NMF

In this chapter, we present four two-factor orthogonal NMFs. The objective of these
methods is to obtain estimators of F € IR{’}er and A € R{f(k such that X = FA' is
approximated to a given data matrix Y with column orthogonality constraints on F'.
Clusters R, (m =1,...,k) and R, which are used in this chapter, represent the m-th row

cluster and a set of row clusters, respectively, as defined in Section 3.2.

6.1 Normal distribution

In this section we present details of two-factor orthogonal NMF based on a normal
distribution, named N20ONMF. This method was proposed by Pompili et al. (2014) and
they named this method “Weighted Spherical k-means.”

Objective function
From (3.30), the objective function to be minimized with respect to F', A, and o2 is
2y _ "np 2 1 2
Q(F,A,0°) = 710,5_’;{0 }+2—2||Y—FA I + const. (6.1)
o

Hence, the optimization problem is as follows:

argmin{Q(F, A,0”)}

F,A 02

subject to F' € Rf‘er, A€ R’fk, and f(’m)f(u) =0 (m # u). (6.2)

The objective function (6.1) is invariant to changes in the length of each column vector of

A because the following is satisfied:

1
Q(F, A, 0% = % log{c?} + EHY —~ FDAD ' A’ + const

1
- % log{0®} + 5 5|Y — F*A"||> + const, (6.3)
where F* = FD 4 and A* = ADZI. Then, we have

Fimy Fluy = 0 (m # u) and diag(A¥ A*) = I (6.4)
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According to (6.3) and (6.4), the optimization problem of N2ONMF can be rewritten as

argmin Q(F, A, 0%)
F,A0?

subject to F € RT’“, Ac RﬁXk, f(’m)f(u) =0 (m # u), and diag(A’A) = I},.  (6.5)

It is noted that F' satisfies (3.7) under the condition in (6.5).

Update rules

We show the update rules of the parameters, F' and A. Note that the update rule of
o? is (3.31).

Update rule for F

The discussion in section 3.2 enables us to divide the optimization problem of F' into

that of R and fi, (i € Ryy; m =1,...,k). Hence, the objective function with respect to
F and A can be written as follows:

Zfzma (m)
—Z S llyi = fimagmylI? (2 (3.7))

m=1i€Rm

Qr.a(F,A) = Z
=1

k
= > > Yy — 2fim¥Yia(m) + [0y @)} (- diag(A’A) = I)

m=14i€Rm

k
= Z Z {—2fimyiagm + f2.} + const. (6.6)

m=14i€Rm

Hence, the minimizer of fi, (i=1,...,n; m=1,... k) for (6.6) given R and A is

tag,y ifie R,
fim = Yi%(m) llgé (i=1,....,ny m=1,...,k). (6.7)
0 ifi1¢ R,

Substituting (6.7) into (6.6) and rearranging the terms proportional to the parameters,
we obtain

Qr.A(R, A) Z > { - e} (6.8)

Therefore, the problem of minimizing Qr a(F', A) is the same as the problem of minimiz-
ing Qr,A(R,A). Given A, the minimizers of R for Qr a(R, A) are derived by, e.g., a
k-means algorithm such that

=i

argmax(y;a,)) = m} (m=1,...,k). (6.9)
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Update rule for A

Because (6.8) can be rewritten such that

Qr.a(R, A) Z Rk (6.10)

where Y,,, (m =1,...,k) is a |R;,| X p submatrix of Y consisting of the row vectors of R,,,
the minimizer of a(,,), given R, can be obtained as the first nonnegative singular vector

of Y, as follows:

a(m) :A(Yﬂ/ﬁb) (m: 1,...,/‘&). (6.11)

Algorithm

The N20NMF algorithm, which is derived from (6.7), (6.9), (6.11), and (3.31), is pre-
sented in Algorithm 11.

Algorithm 11 N20ONMF Algorithm

I Input Y e RY? ke N, AO ¢ RﬁXk (diag(AO’AO) =1,), 7 >0, and v € N
2: t+0

3. RW {z argmax(ygagi))) = m} (m=1,....k)
4: Set Yn(f) as the submatrix of Y consisting of the row vectors of RS) form=1,...,k
if i € Ry,
5 S via (m) (i=1,...,m;m=1,...,k)
0 ifi ¢ Ry,

6: X « FO AW/
7 (o) iHY _ x|

8. LU ZZlog N (yzj

=1 j=1
9: repeat

10: t—t+1
11: () < A(Yfgt_l)/) (m =1,..., k‘)

(09))

12: Oy {z argmax(ygagi))) = m} (m=1,...,k)
13: Set Yﬁ) as the submatrix of Y consisting of the row vectors of RSZ) form=1,...,k

yéaEZ) ifi € Ry,

0 itid Ry
15 X® « p® A1y
16 (002« Ly — xO)2
np

n p

7 L0 = 33 log A (il (0)?)
i=1 j—=1

18: until LW — L1 <« rort =o

19: Output FO, A® RO and (c®)?

14: fi(ﬁz —

ol



6.2 Poisson distribution

In this section we present details of two-factor orthogonal NMF based on a Poisson
distribution, named P20ONMF.
Objective function

From (3.35), the objective function to be minimized with respect to F' and A is

Z Z yij log { Z flma]m} + Z Z Z fim@jm + const. (6.12)

=1 j=1 i=1 j=1m=1

Hence, the optimization problem is as follows:

argmin{Q(F, A)}
F.A

subject to F € R*, A € RY and f{,) fu) =0 (m # u). (6.13)

Update rules

We show the update rules of the parameters, F and A.

Update rule for F

For N2ONMF, the optimization problem of F' is divided into that of R and f;, (i €
R,; m =1,...,k). The objective function with respect to F' and A can be written as

follows:

k k
Qr.a(F,A) ZZ (- Yij log{ Z fimajm} + Z fimajm)
m=1 m=1

=1 j=1

k P
=33 [yijlog { fmajm} + fimajm] (- (3.7)). (6.14)

m=14i€Ry j=1
From (6.14), the minimizer of fi, (i =1,...,n; m=1,... k) for (6.14) given R and A is

> i1 Yij e
_)Se g HrEdm o
fim = Z]=1aym (i=1,....,ny m=1,...,k). (6.15)
0 ifid Ry

Substituting (6.15) into (6.14) and rearranging the terms proportional to the parameters,

we obtain

Qr,a(R, A) Z > Zyw log{ - } (6.16)

m=1i€R,, j=1

Therefore, the problem of minimizing Qr a(F, A) is the same as the problem of min-
imizing Qr a(R,A). Given A, the minimizers of R for Qr (R, A) are derived such

that
R, = {z

argmax{Zy”log{paju}} :m} (m=1,....k). (6.17)

= s=—1 Asu
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Update rule for A

Note that (6.16) is rewritten as

k p
QrA(R,A) Z Z Zyw log { Zasm} - Z Z Zyij log{a;m}. (6.18)

m=1i€R,, j=1 m=1i€R,, j=1

It is difficult to directly obtain the minimizer of aj,, with respect to (6.18) because the
summation of aj,, occurs in the log function. However, we can obtain the optimal aj,
using the auxiliary function method. Because the log function f(z) = log(z) is concave,

we obtain the following auxiliary function from the inequality (4.23):

QA =Y zzyw{logk + L (zam_ m)}

m=1i€ERy, j=1

k P
=2 > D uilog{ajm}, (6.19)

m=14i€R,, j=1

where A\, = Y7

t_qak, (m=1,... k). Therefore, we obtain the following update equation

of ajn, as a minimizer with respect to (6.19):

Qjm = st G Lier,, Vi G=1,....,;p; m=1 k) (6.20)
m — — 1l,..., 0 — 1l,..., . .
’ ZieRm D o1 Yis

Algorithm

The P2ONMEF algorithm, which is based on (6.15), (6.17), and (6.20), is presented in
Algorithm 12.

6.3 Compound Poisson-gamma distribution

In this section we present details of two-factor orthogonal NMF based on a compound
Poisson-gamma distribution, named CP20NMF.
Objective function

From (3.39), the objective function to be minimized with respect to F', A, and ¢ is

Q(F, A, ¢) = ZZlog{h vij, ¢ 8)}

=1 j=1

amﬂ_l ki imajmﬁ
ZZ(yu 1fml” ) _<2m1£ ) ) (6.21)

21]1

Hence, the optimization problem is as follows:

argmin{Q(F, A, ¢)}
F.A¢

subject to F € R** A € R’fk, and f(’m)f(u) =0 (m # u). (6.22)
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Algorithm 12 P20ONMF Algorithm
I Input Y e RY? ke N, A® ¢ R’rk, 7>0,and v €N

2: 1+ 0

ol

3: RSL) — {z argmax{zgzlyijlog{p]u(t)}} = m} (m=1,...,k)
w s=1 Asu

if i € R

4 fz-(Q<— ?:1“5‘21 (i=1,....n; m=1,....k)
0 if i ¢ R

5 X p® AQ)

nop
6: L(t) < ZZIOg fp (y,-j :L‘E?)

i=1 j=1
7: repeat
8: t—t+1 )

*(t

o® =10 ST(n )Z ert—b Yij

— ij=1....p;m
]m ZZ‘GR%*U 25:1 y’bs

(t)
10: ,Si) — {2 argmax{zg’:l Yij log{pw(t)}} = m} (m=1,...,k)
" D s=1 Gsti

m=1,...,k)

t i=1 y(j) if i € RY
11: fl(n2<— §=1ajm (i=1,....,.ny m=1,...,k)
0 if i ¢ R

122 X0« FO AW

n p
13: L(t) — Z Z log fp (yij

)
i=1 j=1

14: until LO — LY <« rort =0
15: Output F®, A® and R®

Update rules

We show the update rules of the parameters, F' and A. ¢ is obtained as described in
Section 3.3.

Update rule for F

For N2ONMF and P20ONMF, the optimization problem of F' is divided into that of R
and fim (1 € Ry; m=1,...,k). The objective function with respect to F' and A can be

written as follows:

n p k B B—-1
QF,A(Fv A) = ; Z Z ( Z fima]m> Z Zym ( Z fzma]m>

i=1 j=1
Zym - (3.7).

(6.23)
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The minimizer of fi, (i=1,...,n; m=1,... k) for (6.23) given R and A is

1
Z? 1 Yij@ ]ﬁm ep -
W leGRm )
fim = =1 Wiy (i=1,...,ny m=1,...,k). (6.24)

0 if i ¢ Ry,

Substituting (6.24) into (6.23) and rearranging the terms proportional to the parameters,

we obtain

{ Z] 1 yl] }/B
. (6.25)
/8 mz:lzezR:m {Zj:l ajm}ﬁ '

Therefore, the problem of minimizing Qr a(F', A) is the same as the problem of min-
imizing Qr A(R,A). Given A, the minimizers of R for Qr a(R,A) are derived such

that
R = {

Update rule for A

QR,A (R’ A) =

B
arglrbnin{{{zz]: 1 %52 ]}UB }1 } = m} (m=1,...,k). (6.26)
7=1 ]u

It is difficult to directly obtain the minimizer of aj,, with respect to (6.25) because the
summation of aj,, occurs in the two power functions. However, we can obtain the optimal

ajm, using the auxiliary function method. We can find that the following bivariate function

L
BB-1)

is in the (6.25). In fact, (6.27) is concave if 0 < 5 < 1 as can easily be proven. Therefore,

fla,y) = - (y” /271 (6.27)

we have

flxy) < fOum) + fa(Nn) (@ = X) + fy(\n)(y —n) (6.28)

for any A and n with equality if and only if z = A and y = n. From this inequality, we

obtain the following auxiliary function of (6.25) for a;,:

aux A A* . 1 nzﬁm 77”” _
Qa Z Z B(B—1) )\?n—l Z%m Am

m=1i€Rm
1 e
Tim o B-1
+ 1-8 </\m> (;%J%’m mm> }, (6.29)
where
p
:Zagfn (m=1,...,k) (6.30)
and 7, = Zy,sa*ﬁ 1 (i=1,. m=1,....k). (6.31)
s=1
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It is clear that (2.2) and (2.3) also hold for (6.29). Hence, the minimizer of A with respect
to (6.29) is at least the optimal A, which is monotonically non-increasing for (6.25).

Finally, we obtain the minimizer of a;,, with respect to (6.29) as follows:

D —1\_

P (k- aim) iGRm(§:§:1yisa:rﬁn )Ly

jm = —
ZieRm(Z§:1yisa:rﬁn )8

Algorithm

j=1,....p; m=1,...,k). (6.32)

The CP20NMF algorithm, which is based on (6.24), (6.26), (6.32), and the discussion
in Section 3.3 about optimal ¢, is presented in Algorithm 13.

6.4 Zero-inflated compound Poisson-gamma distribution

In this section we present details of the two-factor orthogonal NMF based on a zero-
inflated compound Poisson-gamma distribution, named ZICP20NMF. This method is an

extended version of CP20NMF and from another perspective, it is a restricted version of
ZICP2NMF.

Objective function

From (3.44), the objective function is

Q(F7 A7w7¢)
n p
= — ZZIOg [w[(yij = 0)
i=1 j=1
(SR )BT kL fim@jm)®
+ (1 — w)h(yij, b, B) exp {; (y”(z’”g f”{ mf”_ _ (Z’“é ) )}] (6.33)

Hence, the optimization problem is as follows:

argmin{Q(F, A, w, ¢)}
F A w,p

subject to F € RiXk, Ac RﬁXk, and f(’m)f(u) =0 (m # u). (6.34)

However, the update rule of F', A, w, and ¢ is obtained as these optimizers, which minimize
(3.51).

Update rules

We show the update rules of the parameters F' and A. The update rule of Z and w is
obtained as (3.52) and (3.55). ¢ is obtained as described in Section 3.3.
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Algorithm 13 CP20NMF Algorithm
1: Input Y € RV, 8 € (0,1), ke N, AO e RE* 40 >0, 7>0,veN,§eN, and

k€N
2: 10 (t) p
571
3. RY « i| argmin {Z 1sz 1} =my(m=1,...,k)
EE VR v/ 5}5
? 1¥ij(a ())B ! ific pW
(*) P g LS R k
4 fo Y 1( )8 (i=1,....n; m=1,...,k)
0 if i ¢ R

5 X1« PO A®Y

nop

6: L) "> "log fop (ym‘
i=1 j=1

7: repeat

8: t+—t+1

N D S Y GO e A 7

o " ZZGR(t 1>{Zs 1 yls(agm )/B 1}6
G=1,....p;, m=1,...,k)

5 18
10: 7(%)%{2' argmin{{zj 14i3(a } }—m} (m=1,...,k)

HZ’S)7 ¢(t) ) /6>

1
' (){Z B}ﬁ
j=1 i3 (a; W (t)
(t) (t) leERm .
11: Jim < Z;1( )b (i=1,....,n; m=1,...,k)
0 if i ¢ R

12: if t < or t mod k =0 then
¢ is obtained as the optimal ¢ that optimizes Q4(¢) given F® A® and
B using the BFGS quasi-Newton method with constraints ¢ > 0
14: end if
15: X® 0 ALY
n p
16: L(t) — Z Z log fcp (yij
i=1 j=1
17: until L® — LD « 7 or t = v
18: Output F®, A® R® and ¢*)

13:

.155;)7 (z)(t)a ﬁ)

Update rule for F

For N2ONMF, P2ONMF, and CP20NMF, the optimization problem of F' is divided
into that of R and fi, (1 € Ry; m =1,...,k). From (3.51), the objective function with
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respect to F and A can be written as follows:

1 P k B n p k p-1
Qra(F,A)= 3 d> ( > fimajm> ﬁ > Eyi ( > fm%m)

i=1 j=1 m=1 i=1 j=1 =
1 & P 1<
_ s+ f3 B—1
=52 2 w2 H g1 2 2 Sim Z Zyiim (2 (3.7)).
m=1i€R, j=1 m=1i€R,,
(6.35)
The minimizer of fi, (:=1,...,n; m=1,...,k) for (6.23) given R and A is
P yiia ,3 1
]pl ”ﬂ;’” if i € Ry,
fim = i1 2hag, (t=1,....,n; m=1,...,k). (6.36)
0 ifi ¢ Ry,

Substituting (6.36) into (6.35) and rearranging the terms proportional to the parameters,

we obtain

8
Qra(R,A)=— Z > {Zﬂ ! Jy]ﬁ )5 }1. (6.37)

m=1i€Rm, ] 1 zy ]m
Therefore, the problem of minimizing Qr, A(F,A) is the same as the problem of min-
imizing Qg A(R,A). Given A, the minimizers of R for Qr a(R,A) are derived such

that
% B
Rm: {Z argmin{{zj ! ijzj ju } } —m} (m: 1,...,k). (638)

. B—1
b {Zj 1 ’ij ]ﬁu}
Update rule for A

It is difficult to directly obtain the minimizer of aj, with respect to (6.37) because
the summation of a;,, is in the two power functions. However, we can derive the auxil-
iary function as in the case of CP20NMF. The inequality (6.28) allows us to obtain the

following auxiliary function of (6.37) for a;jp,:

aux * mﬁm L Nim T % 3
oA - ¥ wfﬁﬁ Ao )| 20 = i

m=1i€R, j=1
1 R
Nim
+ 1-5 ()\im) (g zyylj jm 77im> }7 (6.39)
where

Z%*saiﬁl L...,n;m=1,....k) (6.40)

P
and 7, = Z zL(),y,saz,ﬁn 1 (i=1,...ny m=1,...,k). (6.41)

s=1

Finally, we obtain the minimizer of a;,, with respect to (6.39) as follows:

D icR (nim/Aim)B_lfijij
Qjm = N —— U=1...,;;m=1,... k). (6.42)
o Z'LERM (nlm/)\lm)ﬁzw
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Algorithm

The ZICP20NMF algorithm, which is based on (3.52), (3.55), (6.36), (6.38), (6.42), and

the discussion in Section 3.3 about optimal ¢, is presented in Algorithm 14.
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Algorithm 14 ZICP20NMF Algorithm

1: ITnput Y € R”? 8 e (0,1), k € N, FO ¢ R* (f(,?j)f((j))’ -0, m £

AO e RE* () € (0,1), ¢ >0,7>0,veN,§ €N, and k € N
2: t+0
3. X @) 4@y
w®

1 20— w4+ (1—w®)h(0,60), 8) exp{~(={))? /(6! 5)})

(i=1,...,n; j=1,...,p)
5: Z* — En><p -z
6: LV Zzlog{ Iy = 0) + (1= w®) fer(yl), 0. 8) |

=1 j=1
7: repeat

8: t+—t+1

’U)(t)(— Z’L 12] 1 2]

9:
p
10: A ey OGN G=1 s m=1,... k)
T o zS(t D@81 (i =1,...ns m=1,...,k)
CPED 7 . U _
12: m < { @] argmin o =m,(m=1,...,k)
u (A@)
_1 x(t—1
0 Tiero /A2y
13 @, Gy U= b m=1k)
ZieR%)O’Iim/)‘i ) Zij
*(t—1 t
?:1 Zij( )yw( ())B b ()
) p -1, (g ifti€ Ro
14: fim i1 % (]m) (i=1,....n; m=1,...
0 if i ¢ R

15: if t <6 or t mod k = 0 then
16:

17: end if
18 X®  F® Ay
w®

10 2 e L w® 4 (1= w®)h(0,60, 8) exp{~(2))?/ (69 8)})

)

(i=1,...,n; 7=1,...,p)
20:  Z*® <—Enxp—Z()

o1: LW « Z Zlog{ I(yij =0)+ (1 w(t))fCP(yij‘fvg?a ¢(t)75)}

=1 j=1
22: until L®) — LD <« 7 or ¢t = v
23: Output FO, AO RO Z® 1,®) and ¢®)

u), R

(0)

¢ is obtained as the optimal ¢ that optimizes Q4(¢) given F(), A®) Z(=1)
w®, and § using the BFGS quasi-Newton method with constraints ¢ > 0

)
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Chapter 7

Three-factor orthogonal NMF

In this chapter, we present four three-factor orthogonal NMFs. The objective of these
methods is to obtain estimators of F' € RT’“ , 8 € Rixg, and A € Rﬂw such that X :=
FS A’ is approximated to a given data matrix Y with column orthogonality constraints
on F' and A. In this chapter, R,,, Cy, R, and C are the same symbols defined in Section
3.2.

7.1 Normal distribution

In this section we present details of three-factor orthogonal NMF based on a normal
distribution, named N3ONMF. This method is an extension of the method proposed by
Pompili et al. (2014) to a three-factor model. Moreover, this is an improvement of methods
proposed by Ding et al. (2006) and Yoo and Choi (2010b) described in Section 3.2.

Objective function
From (3.30), the objective function to be minimized with respect to F', S, A, and o2 is
2y _ "p 2 1 2
Q(F,S,A,0°) = > log{o“} + 2—2||Y — FSA'||” + const. (7.1)
o
Hence, the optimization problem of N3ONMEF is
argmin {Q(F, S,A,O’z)}
F,S,A 02

subject to F € RT*F S e RA*Y A e RO F'F = Iy, and A'A = I,. (7.2)

The objective function (7.1) is invariant for changes in the length of each row vector of S

because the following is satisfied:
1
Q(F,8,A,0%) = Plog{o®} + Y — FSA/|
2 202
_np 2 1 —1q A2
= 710g{0’ 4+ T‘QHY — FDS’DS/ SA'|

_np 2 1 * Qx A2
—7log{a }+@HY—F S*A'||, (7.3)
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where F* = FDg/ and S* = D;,IS . Consequently,
diag (S*A’ASY) = diag (S*SY) = I (7.4)

is also satisfied. According to (7.3) and (7.4), the optimization problem (7.2) is the same
as

argmin {Q(F,S,A,O‘Q)}
F,S,A,02

subject to F € R*, S ¢ kaq Ac RPXE
Fimyfry =0 (m # 1), diag (SS') = I, A’/A=1I,. (7.5)

It is noted that F' satisfies (3.7) under the condition in (7.5).

Update rules

We show the update rules of the parameters, F', S, A, and ¢.

Update rule for F

Based on the discussion in section 3.2, we can divide the optimization problem of F' into
that of R and fi, (i € Ryy; m =1,...,k). Hence, the objective function with respect to
F and S given that A can be written as follows:

Z fzmASm

Z lyi — fimAsm|® (- (3.7))
ERm

Qr.s(F,S) Z

1

b3

I
ﬁM# I M# I M#

Z Yy — 2fzmy7iASm + 7,2mSmA/ASm}
ERm

Z yzyl - 2fzmylA3m +f sz} ( diag (SS,) = Ik). (7.6)
ERm

Hence, the minimizer of f;,, given R for (7.6) is

yiAs, ifieR, .
fim = (i=1,...,ny m=1,...,k). (7.7)
0 it i ¢ Ry

Substituting (7.7) into (7.6) and rearranging the terms proportional to R and S, we obtain

Qrs(R,S) Z Z { yZA.sm } (7.8)

m=1i€R,

Therefore, the problem of minimizing Qr g(F', S) is the same as the problem of minimizing
Qr,s(R,S). Given S and A, the minimizers of R for Qr s(R, S) are derived by, e.g., a
k-means algorithm such that

R, =i

argmax (y;As,) = m} (m=1,...,k). (7.9)

r
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Update rule for S

Because (7.8) can be rewritten such that

Qr.s(R,S) Z Y7 A, (7.10)

where Y, (m = 1,...,k) is the same matrix defined in section 6.1, the minimizer of S,

given R and A, can be obtained as the first nonnegative singular vector of A'Y,! as follows:

sm=AAY!) (m=1,....k). (7.11)

Update rule for A

If we regard the approximation problem as Y’ ~ AS’F’, the update rules of A, C, and
S can be derived similarly to (7.7), (7.9), and (7.11) as follows:

y/j Fs(q) (] € CQ)

)20 o C
ajq = ‘ G=1,...p; q=1,...,0), (7.12)
0 (¢ Co)

Cy = {j argmax {ygj)Fs(C)} = q} (g=1,...,0), (7.13)

S(q) = A(F/}f(q)) (q = 1, ce ,6), (714)
where Y,y (¢ =1,...,) is an n x |C,| submatrix of Y consisting of the column vectors
of Cy.
Algorithm

The ZICP20NMF algorithm, which is derived from (7.7), (7.9), (7.11), (7.12), (7.13),
(7.14), and (3.31), is presented in Algorithm 15.

7.2 Poisson distribution

In this section we present details of the three-factor orthogonal NMF based on a Poisson
distribution, named P3ONMEF. This factorization is a modified version of N3ONMEF de-
scribed in Section 7.1, and it assumes that the data follow a Poisson distribution. Although
a multiplicative updating algorithm for three-factor NMF under this assumption was pre-
viously proposed by Yoo and Choi (2009), the orthogonal constraint was not imposed
thereon. In contrast, our algorithm is not based on a multiplicative updating algorithm;
instead, ours is based on the weighted spherical k-means algorithm, and the orthogonality

constraints are imposed on it.

Objective function

From (3.35), the objective function to be minimized with respect to F', S, and A is

k¢ n_p
Q(F,S,A) Z Z yi; log { Z Z fimsmqajq} + Z Z xi; + const. (7.15)

=1 j=1 m=1 g=1 =1 j=1
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Algorithm 15 N3ONMF Algorithm

1:

o

10:
11:

12:

13:

14:

15:

16:
17:
18:
19:

20:

Input Y € R"?, ke N, £ e N, SO ¢ R¥*! A0 ¢ RE* (diag(A©’A©) = 1)),
7>0,and v eN

t< 0

L®  —o

repeat

t—t+1

,(fl) — {z
(t)

Set Yn(f) as the submatrix of Y consisting of the row vectors of Ry form =1,... k
sil) — AAEDYDY (m=1,...,k)
Y A-D gD (j e Rl

argmax {yl’-A(t_l)sgt_l)} = m} (m=1,...,k)

L (i=1,...,n; m=1,...,k)
0 (i ¢ RY)

FO « F*OD_!

ST(t) — DF*(t) S*(t)

C(gt) — {] argrcnax {yE])F(t)S;rS)} = Q} (q =1,... ’K)

Set Y((qt)) as the submatrix of Y consisting of the column vectors of Cét) for
qg=1,...,¢
st e AFEOY) (g=1,...,0)

(a) (
FOgW (et
a;((lt) « Y4) 5(0) v Cét)) (j=1,...p;g=1,...,0)
0 (J¢Cq")
AW AOD 1

S S*(t)DA*(t)

X® . FOgH) A0y

(0®)2 Ly - xO)2
np

n p
I Z Z log fx (yij 1;5;) (O-(t))z)

i=1 j=1

o1: until L®) — LY < rort =v
22: Output F®, 81 A® RO 1) and (O'(t))2

Hence, the optimization problem of P3ONMEF is

argmin {Q(F, S, A)}
F.S A

subject to F € R** S € Rixq, Ae Rﬁxz, f(/m)f(,,) =0 (m #r), a’(q)a(c) =0 (q # ).

(7.16)

The constrained condition has been slightly changed from (7.2). It is noted that under

these conditions, we have (3.7) and (3.8) for the factor matrices F' and A, respectively.

Update rules

We show the update rules of the parameters, F', S, and A.
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Update rule for F

If we treat the AS’ as the right-hand factor matrix in two-factor ONMF, the form of
the objective function with respect to F' is the same as (6.14). Moreover, based on the

discussion in section 3.2, we can divide the optimization problem of F' into that of R and

fim (1 € Ryy; m=1,...,k). Hence, we can obtain their update rule in the same form as
(6.15) and (6.17) as follows:
p 1:'
—pzj:lylj if i € Ry
fim = i1 [SA (i=1,....,nym=1,....k), (7.17)
0 ifi ¢ Ry,
: [SA',;
R,, = < i|argmax Yiilog —=——=— =m p. (7.18)
) 2 { P SAT

Update rule for S

Considering A in (6.18) as AS’, the objective function with respect to S can be written

as follows:

Qs(S) = mzkzj | Zy,] log { ZZsmqa,yq} — Zk: > zp:y] log { zg:smqa,yq}

v=1¢g=1 m=1i€R,, j=1 g=1

k » k ¢
= > vijlog Zzsmqavq =20 2 2. 2 vilog{smaas}-

m=1i€R,, j=1 v=1qg=1 m=14i€Ry, q=1 jeC,
(7.19)

Here, we use (3.8). It is difficult to directly obtain the minimizer of s,,, for (7.19) because
the summation of s,,, occurs in the log function. However, we can obtain the optimal s,,4
using the auxiliary function method. Because the log function f(z) = log(x) is concave,

we can obtain the following auxiliary function of (7.19) from the inequality (4.23):

Q5™(S,8%)
K
B>
¢

k
-2 > vijlog {smqajq} (7.20)

i€Rm q=1 jeC,

p £
yij | log A + Zz.smqaw

1 v=1¢=1

Mws

—

1€ERm J

—_

m=

where A, = Eq 1251 Smq@iq (m =1,...,k) and sy, is the current s,,4. We obtain the

following update equation of s,,4 as a minimizer for Qg™ (S, S*):

_ Am D ic Ry 2ojeCy Yis . (7.21)
(Zz’eRm Z?:l yij) (Z];:l ajq)

Smgq
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Update rule for A

If we regard the model as Y’ =~ AS’'F’, the update rules of C, S, and A can be derived
similarly to (7.17), (7.18), and (7.21) as follows:

>ic1Yij ,
ajq = 4 2ic1[FSliq € Go) G=1,...p;q=1,...,0), (7.22)
0 (J ¢ Cy)
= < 7 |largmax Y TR 0) & = =

)‘; ZieRm Zjecq Yij

Smq = (m=1,...,k; q=1,...,0), (7.24)
(Ziec, Tt vis) (i fim)

n k
where \j = Z Z Smglim  (@=1,...,0).

=1 m=1
Algorithm

The P3ONMF algorithm, which is based on (7.17), (7.18), (7.21), (7.22), (7.23), and
(7.24), is presented in Algorithm 16.

7.3 Compound Poisson-gamma distribution

In this section we present details of three-factor orthogonal NMF based on a compound
Poisson-gamma distribution, named CP3ONMEF. It is a modified version of N3ONMF
and P3ONMF described in Sections 7.1 and 7.2, and it assumes that the data follow a

compound Poisson-gamma distribution.

Objective function

From (3.39), the objective function to be minimized with respect to F', S, A, and ¢ is

Q(F,S,A,9)
n p
= - Z ZIOg{h(yija ¢, B)}
i=1 j=1
B ;Z”;zp; (2/@(25121 E%ijiimsmqajq)ﬂl B (an:l Zszgfimsmqajq)ﬁ) (7.25)
1=1 j=

Hence, the optimization problem of CP3ONMEF is

argmin {Q(F, S, A, ¢)}
F.S A ¢
subject to F € RT*, § € RE*, A e R, £ oy = 0 (m #£7), a{ya) =0 (¢ #c).

(7.26)
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Algorithm 16 P3ONMF
1: Input Y e RY? k€N, €N, SO ¢ RT@, A0 ¢ ]RTZ (agggla(c)) =0(q+#c)), CY,
7>0,and v eN

t<« 0
LY —0

repeat
t+—1t+1

p (t-1) A(—1)1]
6: RY « i |argmax Zyijlog{ p[S Irj } =m

1[5(t—1)A(t—1)/]m

=1 v=
(m=1,...,k
SO D S S
/\ﬁﬁ) S Y (t-1) Vi
g sl i€hm T30 thl) (m=1,....,k ¢=1,...,¢)
(ZieRs,? 21 yl’]’) ( j=1%q )
P
21 Yis (i € RO
9. fU YT [SH DA, (i=1,...,n;ym=1,....k)
0 (i ¢ RiY)
_ n [F®) 81,
10: Cqg 417 argrcnax ;yij log S TR0 S0, =gq (g=1,...,0)
RTRRD WO Sl D w1/ A B ¢/ IO
*(t)
Mg Do p® 2ot Vi
12: sﬁ,ﬁ)q — ERm jEC, 7Y 5 ...k g=1,...,¢)
(Zjecgt) Dim1 ?Jij) (Zizl zm)
Zn—l Yij . Q)
T—— JjeCy’)
o e SEIEOsOE, VS G g
0 ( ¢ Cy)
o X0 o FOSOAC
15: L) « Z Z log fp (yz-j a:,fjt))

i=1 j=1
16: until L®) — LD « 7 or t = v
17: Output F®, 8O A® R® and c®

Update rules

We show the update rules of the parameters, F', S, and A. ¢ is obtained as described

in Section 3.3.

Update rule for F

For PSONMF, if we treat the AS’ as the right hand factor matrix in two-factor ONMF,
the form of the objective function with respect to F' is the same as (6.23). Moreover,
based on the discussion in section 3.2, we can divide the optimization problem of F' into
that of R and fi, (i € Ryn; m=1,...,k). Hence, we can obtain their update rule in the
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same form as (6.24) and (6.26) as follows:

B-1
Z] lyl][SA/]m] ifie Rm
fim = j:l[SA/]mj (t=1,....n; m=1,...,k), (7.27)
0 if i ¢ Ry
B
Z Yij [SA/]ﬁ !
R, =11 arginin { ity ﬁ—}l =m p. (7.28)
{ ?:1[5‘4,]77'}

Update rule for S

Considering A in (6.25) as AS’, the objective function with respect to S can be written

as follows:

371}6

QS(S)Z—B )Z Z {Z] 1yw q 1 SmqQjq)

m=14i€Rm {Z q 1 Smq@jq) }ﬁ '

B

B-1p-1

Sy iy z ')
B_

m=1i€R, {Zq:l Zjqu S”%‘JG’J@(I}

Here, we use (3.8). It is difficult to directly obtain the minimizer of s,,, for (7.29) because

(7.29)

the summation of s,,, occurs in the two power functions. However, we can obtain the
optimal s,,, using the auxiliary function method in a manner similar to CP20NMEF. We
find that (7.29) contains the function (6.27). Hence, the inequality (6.28) enables us to

obtain the following auxiliary function of (7.29):

QE™(S,57)

i 1 mﬁm 1 Thim
Y g (1) (XS sl

q=1 jelq

-1
1 Tim
s (5) S5 wsl | b (7.30)

q=1 jelq

where

:ZZ siab, (m=1,... k) (7.31)

q= 1]€Cq
andmm—ZZyw sP el (=1, o m=1,. k). (7.32)
q=1 jelq

We obtain the following update equation of s,,q as a minimizer for Qg™ (S, S*):

B-1, gP1
- Am ZieRm Z]qu Mim y” Jq ) (7.33)

5
E:ieRWLEZjecqnun iq

68



Update rule for A

If we regard the model as Y’ =~ AS’'F’, the update rules of C, S, and A can be derived
similarly to (7.27), (7.28), and (7.33) as follows:

ajg=1{ YI,[FS]; YVG=1pq=1,...,0), (7.34)
0 (7 ¢ Cq)
B
1 {EhwiEsi
Cq = < j |argmin — =q, (¢g=1,...,0), (7.35)
© | {smwsi)
AT . x)B—1y,. . pA=1
Smq = 0 2icin 25eC,y () y;flm (m=1,....k; q=1,...,0), (7.36)
DicRm 2ojec, (M) fim
where
Z Z fﬁn =1,...,0), (7.37)
m=1i€Rm
k
n;qzz Zyijs;fq 1ffml( 1,...p; g=1,...,0). (7.38)
m=1i€Rpm
Algorithm

The CP3ONMF algorithm, which is derived from (7.27), (7.28), (7.33), (7.34), (7.35),
(7.36), and the discussion in Section 3.3 about optimal ¢, is presented in Algorithm 17.

7.4 Zero-inflated compound Poisson-gamma distribution

In this section we present details of three-factor orthogonal NMF based on a zero-inflated
compound Poisson-gamma distribution, named ZICP3ONMF. This NMF is a modified
version of ZICP20ONMF, CP3ONMF, and ZICP3NMF.

Objective function
From (3.44), the objective function is

Q(F,S,A,w,¢) = ZZlog [w[yw—())

=1 j=1

(SR L VA1
+ (1 = w)h(yi;, ¢, B) exp {; <y’J(Zm=1 Z;:iflzmsmqajﬂ
(Chet g f,-msmqajqw) H
5 .

(7.39)
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Algorithm 17 CP3ONMF algorithm

1:

10:

11:

12:

13:

14:

15:

16:

17:

18:
19:

20:

Input Y € R””, € (0,1), k €N, £ € N, SO ¢ RE*¢ A0 ¢ Rx* (a(gw (0)) _
0(g#¢),C0 ¢0 >0, 7>0,veN,§eN,and k € N

LO — —0

t<+<0

repeat

t—t+1 s
O L g | 150l A Wﬁ_}l

. {Zp NG A(t—l)/]rj}

YIRS NS D) jectt- D (st 2@ (m=1,... k)

m-m — Zqzl Zjeoqt*1 yz;(s%ql))ﬁ Y(a (tfl))ﬁ_l (i=1,....,ny m=1,...,k)

Nl i et (i) g afy )P

2 ieR® Zjecé“l’ (772(”1)5(@;2 1))'3

D71 Yij [S*U)A(t_l)']i;l

=m (m=1,...,k)

® o g~ (1€ ln)
fim — Zp [ t 1)/]mj
0 (i & Rin)
n * —1 6
(t) . . {Zi=1 yij [FO 807 }
Cyq’ < < j|argmin 1 =q (g=1,...,0)

| {zmresop)”
1 ey Lo (5 P (F)? (@=1,...,0)
njét) et S po (s ESDET =1 g = 1,00
0 M iy Saecp 05 )
mq
2ier® 2jectd (Ujé (£
D i1 Yij [F“)S(t’]§1
af =1 L FOSO)
0 (¢ Cy)
if t <§ or t mod xk =0 then
W is obtained as the optimal ¢ that optimizes Qy(0) given F®_ st A0
and ( using the BFGS quasi-Newton method with constraints ¢ > 0
end if
X( ) F(t)s( ) A®)

<_ Z Z IOg fCP (yzj

=1 j=1

(7 € Cy)

NG

21: until L®) — LD « 7 or t = v
22: Output F), SO AW RO ¢cO 41

Hence, the optimization problem is as follows:

argmin {Q(F', S, A,w,$)}
F .S Aw,p

subject to F € R** S ¢ Rin7 Ac Rﬁxg, f('m)f(r) =0 (m #r), a’(q)a(c) =0 (q # ¢).
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However, the update rule of F', S, A, w, and ¢ is obtained as these optimizers, which

minimize (3.51).

Update rules

We show the update rules of the parameters, F', S, and A. The update rule of Z and
w is obtained as (3.52) and (3.55). ¢ is obtained as described in Section 3.3.

Update rule for F

For P3BONMF and CP3ONMF, if we treat the AS’ as the right-hand factor matrix
in two-factor ONMF, the form of the objective function with respect to F' is the same
s (6.35). Moreover, from the discussion in section 3.2, we can divide the optimization
problem of F' into that of R and fi, (i € Ry,; m =1,...,k). Hence, we can obtain their

update rule in the same form as (6.36) and (6.38) as follows:

Z? 1 A:(]ylj [SA/]'anjl ifieR

fim = b ELISAN Ti=1. . m=1,...k), (7.41)
0 if i ¢ R

N . . { ? 1 Azjsz[SAl],B 1}6

Ry, = { i|argmin el Gl (m=1,...,k). (7.42)

Update rule for S

Considering A in (6.37) as AS’, the objective function with respect to S can be written

as follows:

Qs(S) = —

Z Z {ZJ 1 zgyw q 1 Smgjq) 71}ﬂ

-1
m=1i€Rm {Z] 1 7,] Zq 1quajq ﬁ}

B
B—1_B-1
Z { q 12;6@; ZjYissma Gq }
B—1
§ : ~x B B
m=1i€Rm {Zq:l Zjecq Z,?}quaj‘I}

Here, we use (3.8). It is difficult to directly obtain the minimizer of s,,, for (7.43) because

B(B-1)

(7.43)

the summation of s,,, occurs in the two power functions. However, we can obtain the
optimal s,,, using the auxiliary function method in a manner similar to ZICP20NMF.
We find that (7.43) contains the function (6.27). Hence, the inequality (6.28) enables us

to obtain the following auxiliary function of (7.43):

Q5™ (S, 57)

: Lol () [ e 8
"L X i s ) (B3 kel

B—1
1 Thim
+1 _ 5 <)‘zm> Z Z lij] Enq1 B - nim) } ) (744)

q=1 jeClq
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where

¢
)\imzz 2fjsijafq (i=1,...n; m=1,...,k) (7.45)
q=1 jECq
4
and 7;, = Z Z éijijs;fq_lafgl (i=1,...n; m=1,...,k). (7.46)
q=1 jeCq

We obtain the following update equation of s,,4 as a minimizer for Qg™*(S, S*):

_ of!
i i Thim )\im Z; yz
Smq = Yicrn Xjec, (hm/Aim) " 2y, . (7.47)

ZiGRm Zje()q (Mim/ Xim)P 2 l*] Jﬁq

Update rule for A
If we regard the model as Y’ =~ AS’'F’, the update rules of C, S, and A can be derived
similarly to (7.41), (7.42), and (7.47) as follows:
( n 1
Zz 1 z]yZ][FS]/B (] c C)
n 3% q .
ajq = Yoy z][FS] (G=1,...p;q=1,...,0), (7.48)
0 (J ¢ Cq)
n AL 3 —1 B
‘ ) {Zi:l ZijYij [FSL'BC }
Cyq = < j |argmin 51
© | {ZmosiEs)
e -1
Sicr, 2jec, Mg/ X)) ”yuf{/fn

Smg = d e (m=1,...,k; qg=1,...,0), (7.50)
ZieRm Zjqu (qu/)\jq zijfim

=q, (¢g=1,...,0), (7.49)

where
ZZAZ} el G =1, p g=1,...,0), (7.51)
m=14i€ERm,
1
Mg = Z S St e G =1 g =10, (7.52)
m=11€R,
Algorithm

The ZICP3ONMF algorithm, which is derived from (3.52), (3.55), (7.41), (7.42), (7.47),
(7.48), (7.49), (7.50), and the discussion in Section 3.3 about optimal ¢, is presented in
Algorithm 18.
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Algorithm 18 ZICP3ONMF Algorithm

1 Input Y € RYP, B e (0,1), k€ N, £ € N, FO e R (FOV 0 =0 (m # 1)),
SO ¢ RE¥ A0) ¢ RPX! (agg;'agg; =0 (g #c), RO, cO w® e (0,1), © > 0,
7>0,veN, deN,and k € N

2: t+0

5 X0 L ) g Ay

w® '
(t) : ; : D\ /(50 if ij =0

4: Zij A w® + (1 —wl ))h(O, ¢( )75) eXp{_(xz‘j ) /(¢ B)D

(i=1,...,n;5=1,...,p)
5: Z*(1) Enxp— z®

6 nwzzbg{ Iy = 0) + (1= w®) fop (gl ), 69, 8) |

i=1 j=1
7: repeat
8: t+—t+1
9: w(t) . Zz IZ] 1 2]
t Y4 *(t—1 t—1 t—1 .
105 A = Yo zjecw P @ (=1, ns m= 1, k)
—1 1
1L 777,(:)’)L — Zg:l Zjecétfl) Zz] )yl]( e )> (agq ))'B ! (Z — 1 m = 1, ceey ]{3)

(t)\s
12: RS?(— i |argmin M =my (m=1,...,k)
r ()
0 Sienty Syecy» O/ A2 Ve )
%

) Smgq *(t—1 -1
13: ZieR%) Zjec,gt‘“ (771(2/)‘@(2)6%’]@ )(Q% ))B
(m:17.. k'qzl’...7€)
fory ulST A

7=1 z] mj ip s ()
if i € Ry,

Y b D50 A G=1,.om;m=1,....k)
0 if i ¢ R

15 A e Yz (PP G =1 p g =1 0)
16: n;ét) — Zm 1 Z ER(t) le(t 1),%]( *(t)> (fz(nz)ﬂil (.7 = 17 . p7 q = 17 s 76)

*(t)\8
. () . . ( jc ) . .
17: Cy <—{] argimn{()\())ﬂl}—q} (¢g=1,...,0)

Zient) Lty (n]qt)//\*(t Ve Dy ()

S n® 2o () PN B D ()8
1E€ERy, j€Cyq J J

(m=1,...,k; q=1,...,0)

Sz *(t— 1) [F(t)s(t)]/o’ 1

=1 ~ij

19 ajg e YT 1)[F( 1507

0 (¢ Cy)

18: S#L)q <

Giec)
! Gj=1,...p;g=1,...,0)
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Algorithm 18 ZICP3ONMF Algorithm (continued)

20:

21:

22:
23:

24:

25:

26:

if t <6 or t mod k =0 then

¢! is obtained as the optimal ¢ that optimizes Q4(¢) given F(*), §®)
AWz ® and S using the BFGS quasi-Newton method with
constraints ¢ > 0

end if

X(O  pt)gH) A0y

(t)

A0l w® (1 —w®)h(0 qs(t)wﬁ) exp{—(x(t.))ﬂ/((b(t)ﬁ)}) iy =0
ij 1P ij
(it=1,...,n;7=1,...,p)

Z*®) « E,yp— ZW

LO " Zp:bg {w(t)f(yz‘j =0)+ (1= w®) fep(yiglal), 6, 5)}

i=1 j=1

o7: until LO — LD « rort =0
28: Output F) 8O A® RO c®) 7B »® and ¢®
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Chapter 8

Numerical studies

In this chapter, we present selected simulation studies. Section 8.1 concerns three-factor
orthogonal NMF'; we show the effectiveness of NSONMF in terms of its estimation accuracy
and the robustness of CP3SONMEF. In Section 8.2, we present a worse approximation to
the given data by orthogonal NMF's; the poor performance is trade-off against the simple
structure of the factor matrix. In Section 8.3, we demonstrate a accurate approximation

of NMF based on a zero-inflated model for a zero-inflated data matrix.

8.1 Accuracy of estimates of three-factor orthogonal NMF

In this section, we describe two simulation studies relating to three-factor orthogonal
NMF. The first study compares N3ONMEF with previous three-factor orthogonal NMF's,
Ding et al. (2006) and Yoo and Choi (2010b), in terms of estimation accuracy. The
N3ONMF is our proposed method, and it forms a foundation for the other three-factor
orthogonal NMFs. Therefore, a comparison with previous three-factor orthogonal NMFs is
needed. The second study analyzes the characteristics of the estimates given by N3SONMF,
P3ONMF, and CP30ONMEF. An NMF based on a non-normal distribution, that is, the
Poisson or CP distribution, can be more robust to outliers than an NMF based on a
normal distribution. In this simulation study, we demonstrate its robustness in terms of
three-factor orthogonal NMF. Although we could use the other NMF methods for checking
the robustness, for example, two-factor non-orthogonal or orthogonal NMF or three-factor
non-orthogonal NMF, we choose three-factor orthogonal NMF because all these methods

are proposed by us and because of space limitations.

8.1.1 Estimation accuracy of N3SONMF

In this study, we conduct a simulation study to examine the estimation accuracy of
N3ONMFEF. Additionally, we compare N3ONMF with previous three-factor orthogonal
NMF techniques proposed by Ding et al. (2006) and Yoo and Choi (2010b). In this
section, we refer to them as Ding et al’s method and Yoo and Choi’s method, respectively.
Ding et al.’s method and Yoo and Choi’s method have some estimation difficulties, and it
is expected that N3ONMF', which uses the same model as they do but has a different al-
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gorithm, will perform better. In this simulation, we use synthetic data with a clear model
structure, and this data may be far from the real world data. However, this simulation
enables us to understand the advantages of N3ONMF.

First, we generate synthetic data using true F, S, A, R = {Ry,..., Ry}, and C =
{C’l, cee C’g} as described later; second, we apply these three three-factor orthogonal NMF's
to the synthetic data and obtain the estimated F', S, A, R = {Rl, ... ,f%k}, and C =
{C’l, cee C’g} for each of the methods. Finally, we measure the closeness between the true
and estimated parameters by ARI(R,R), ARI(C,C), |[F — F||/(nk), | A — A]|/(pt), and
|S — S||/(k¢). Here, ARI(-,-) is the adjusted Rand index (ARI) (Hubert and Arabie,
1985), which is a similarity measure between two partitions of objects. If the partitions
are completely the same, ARI is 1; if they are different, ARI is close to 0.

The synthetic data is generated as follows. First, we determine the true row clusters R

randomly; we then generate F* € R"*¥ as follows:

fin ~ Ba(u'?) (i € Rn)
Fim =0 (i ¢ Rm)
(i=1,....ny m=1,...,k), (8.1)

where Ex(z) is an exponential distribution with an expected value x and p represents the
mean value of each element of the synthetic data matrix. The value of y is determined in
advance of the simulation. We use exponential random variables because some researchers,
e.g., Schmidt et al. (2009) and Tan and Févotte (2013), set the exponential distribution as
a prior of the factor matrix elements. Next, the norm of each column of F* is converted

to 1 as follows:
S oy —1
F=F DF*' (8.2)

The true C and A € RP*¢ are generated in the same manner as R and F. We set C

randomly and generate A* € RP* as follows:
i, ~ Bo(u'?) (jeCy)
aj, =0 (7 ¢ Cy)
G=1,...,p; g=1,...,0). (8.3)
The norm of each column of A* is then converted to 1 as follows:
i ixp-1
A=A"D e (8.4)
Each element of true S is generated as follows: First, we generate S* from
Srg~ Ex(u?) (m=1,...k q=1,...,0), (8.5)
then we calculate

S=D;SD;.. (8.6)
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Finally, we obtain the synthetic data matrix by a normal distribution such that
yz'jNN(fZ'Z'j,O') (izl,...,n;jzl,...,p), (87)

where

n p
Fig =YY fimSmaiijq (8.8)

i=1 j=1
= fimBmgtjq (i=1,....n; j=1,...,p; Ry 2i; Cy 3 j). (8.9)

From the above, the expected value of each elements of synthetic data is as follows:

Elyij) = El%yj] = ElfinSmqiijel = Elfim] E3mglElaje) = (u'/?)® =

(i=1,....n; j=1,...,p; Ry 3i; Cy3j). (8.10)
From this, © undoubtedly represents the expected value of y;;. If y;; < 0, then the element
is converted to zero.

The parameters for generating the synthetic data are set as follows:
e (n,p,k,0) = {(100,60,5,3),(100,100,5,5),(1000,600,5,3),(1000,1000,5,5) }
o 0=1{1,2,4}
e 1 =10
e v =1000 (maximum number of iterative cycles)

It is noteworthy that the true numbers of row and column clusters, and the estimated
ones, are the same as k and ¢, respectively.

We generate 100 synthetic data matrices for each 4 x 3 = 12 conditions; from among
the candidates of the estimates given by 20 executions of each of the methods, we select
the estimates for which the objective function value is minimized. The convergence is
determined using (3.11) and the convergence threshold is set as 7 = 10~ "np for all the
methods. The results are shown in Fig. 8.1 through Fig. 8.5.

Fig. 8.1 shows the boxplots of ARI(R, 7@) obtained by the three methods for the 12
situations. Note that each ARI decreases as the variance o increases in every situation and
increase as the matrix become larger. In all situations, N3ONMEF is the highest, followed by
Yoo and Choi’s method and Ding et al.’s method in that order. For rectangular matrices
such as those for which (n,p) = (100,60) or (n,p) = (1000,600), both the methods of
Ding et al. and Yoo and Choi obtain small values. These results indicate that N3SONMF
appears to perform more accurately than the methods of Ding et al. and Yoo and Choi
in terms of row cluster detection. Fig. 8.2 shows the boxplots of ARI(@ , (f) The results
are similar to those in Fig. 8.1 for all square matrix situations. For rectangular data
matrices, Yoo and Choi’s method obtains larger ARI values for column clusters than for
row clusters in Fig. 8.1. This result suggests that Yoo and Choi’s method can accurately
detect the smaller side clusters (in our simulation, this is the column side). However, in

all situations, NSONMF provides the most optimal clustering accuracy. Fig. 8.3 and Fig.
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Figure 8.1: Boxplots of ARI(?@JQ) obtained by three three-factor orthogonal NMFs for
12 conditions. The “N” below each of the boxplots indicates N3ONMF.
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Figure 8.2: Boxplots of ARI(C,C) obtained by three three-factor orthogonal NMFs for 12
conditions. The “N” below each of the boxplots indicates N3ONMF.

8.4 show the boxplots of ||[F' — F||/(nk) and || A — A||/(pt), respectively. The ranges of the
vertical axes are not same because the magnitude of fm and a4 differs depending on n
and p. Both results in Fig. 8.3 and Fig. 8.4 are similar to the ARI results in Fig. 8.1 and
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Figure 8.3: Boxplots of |F' — F'||/(nk) obtained by three three-factor orthogonal NMFs
for 12 conditions. The “N” below each of the boxplots indicates NSONMEF.
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Figure 8.4: Boxplots of ||A — A||/(pf) obtained by three three-factor orthogonal NMFs
for 12 conditions. The “N” below each of the boxplots indicates NSONMEF.

Fig. 8.2. However, the variance of |F — F||/(nk) generated by N3ONMF is large when
o =4 and (n,p) = (100,60). This reflects the fact that when any misclassifications of R
occur, all errors of f;;, are significant in N3ONMF, owing to the perfect orthogonality of
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Figure 8.5: Boxplots of ||S — S||/(kf) obtained by three three-factor orthogonal NMF's for
12 conditions. The “N” below each of the boxplots indicates N3ONMF.

F such as that represented by (3.7). This can be considered a drawback of N3ONMF. Fig.
8.5 shows the boxplots of ||S — S||2. In all situations, the values obtained by N3ONMF are
smaller than those obtained by the other two methods. This simulation study enables us
to conclude that N3ONMF provides more effective estimation consistency than the other

two methods.

8.1.2 Robustness of CP3ONMF

We conducted another simulation study to demonstrate the characteristics of the esti-
mates provided by N3ONMF, PSONMF, and CP3ONMF. As mentioned in Chapter 7, it
is assumed that y;; follows normal, Poisson, and compound Poisson distributions, respec-
tively, in these three methods. These distributions belong to the Tweedie family, which is
described by (3.15), and the value of 3 determines the distribution: it is normal if 8 = 2,
Poisson if § = 1, and compound Poisson if 5 € (0,1). The index parameter § is related
to the robustness of parameter estimation as described in Section 3.3. We examined these
characteristics in three-factor orthogonal NMF by measuring the estimation accuracy of
N3ONMF, P3ONMF, and CP3ONMEF for synthetic data matrices generated using normal,
Poisson, and compound Poisson distributions of data. The accuracy was calculated using
the ARI between true clusters and estimated clusters of row and column objects.

We now explain how to generate a synthetic data matrix. First, we generate R, F*,
C, A*, and S* as in Section 8.1.1. Then, we generate each element of the synthetic
data matrix Y as a random number from y;; ~ TW (x5, ¢, B), where the mean z;; is the
corresponding element of X = F*8*A*. Tt is noted that TW (245, ¢, f3) is normal if § = 2
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and Poisson if 8 = 1. When § = 2, negative values of ¥;j can be generated, in which case,
y;j is converted to zero.

The parameters for generating synthetic data are set as follows:
e (n,pk,¢) = (100,100,5,5)
o =2
e 3=1{2,1,0.8,0.5,0.2}
e 1 =10
e v =1000

Fig. 8.6 shows plots of the probability density functions of the Tweedie distribution for
B =1{2,1,0.8,0.5,0.2}, where i = 10 and ¢ = 2.

B =2 (normal) B =1 (poison) B=0.8 B=0.5 B=0.2
0.2 0.2 0.2 0.2 0.2
0.1 0.1 ““l 0.1 0.1 0.1
0.0 - 0_0—.ul|||| ||I||lu 0.0 0.0 0.0
T T T T T T T T T T T T T T T T T T T T T T T T T
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

Figure 8.6: Probability density functions of the Tweedie distribution for f =
{2,1,0.8,0.5,0.2}. The black square represents the probability at y = 0.

Here it should be noted that the true numbers of row and column clusters, and the
estimated ones, are the same as k and ¢, respectively. We generate 100 synthetic data
matrices for each of five conditions. Then, from among the candidate estimations given
by 20 executions, we select the estimates, R and C , for which the objective function value
is minimized. We then calculate ARI(R,R) and ARI(C,C) of each of the methods. The
convergence is determined using (3.11) and the convergence threshold is set as 7 = 10~ "np
for all the methods.

We execute CP3ONMF for three cases: § = {0.2,0.5,0.8} and refer to the procedures
as CP3ONMF-2, CP3ONMF-5, and CP3ONMEF-8, respectively. The results are shown in
Figs. 8.7 and Fig. 8.8.

The two figures appear to be similar. When g =2 (normal), N3ONMF is the most
accurate, followed by P3SONMF, CP3ONMF-8, CP3ONMF-5, and CP3ONMF-2, in that
order. When 8 = 0.5, N3ONMEF is the least accurate; when 3 = 0.2, the accuracy dete-
riorates in the order of N3ONMF, P3ONMEF, and CP3ONMF-8. Because more extreme
outliers are generated from a compound Poisson distribution with small B values, these
results imply that N3ONMF, PSONMF, and CP3ONMF procedures with relatively larger
B values do not fit a data matrix containing some outliers. This does not mean that a
CP30ONMF procedure with a small 5 value is the most accurate under all circumstances.
In fact, its performance may be worse for a data matrix with a normal error, as shown

in the case of 8 = 2 in Fig. 8.7 and Fig. 8.8. However, it may be preferable to use
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Figure 8.7: ARI(7~2, 7@) obtained by five three-factor orthogonal NMF's for five conditions
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8.2 Approximation of NMF with and without orthogonal
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In this section we demonstrate the drawback of an orthogonal constraint by using a

numerical example. As mentioned in Section 3.2, an orthogonal constraint simplifies a
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factor matrix, thereby facilitating interpretation of the result. However, a factor matrix
with a simplified structure leads to a poor approximation to the Y by X. We demonstrated
this drawback by generating a few synthetic nonnegative data matrices and calculated
the approximation accuracy of the non-orthogonal NMF and orthogonal NMF. We then
compared the approximation accuracy of these two types of NMF for two- and three-factor
NMF. Although we can use an NMF based on a normal, Poisson, or CP distribution for
this comparison, we only use the CP distribution, which is the focus of this thesis, because
of space limitations. Now, we explain how to simulate the two-factor NMF. First, we
generate F' such that

1/2
meE:c<<£> )(izl,...,n;mzl,...,ko), (8.11)
0

where Fx(z) is an exponential distribution with an expected value x, p is the expected
value of the element of synthetic data Y, and ko is the number of factors. A € R’fko
is also generated in the same manner as F. Then, we obtain a noiseless data matrix
X = F A, after which we obtain the synthetic data Y by the following CP distribution:

yij ~ OP(:%Z']‘,(Z)Q,,B()) (Z = 1,. Lo, Ny j = 1,.. . ,p). (8.12)

Finally, we execute CP2NMF and CP20NMF to Y, obtain the estimated A and F by
the two methods, and calculate dg(Y', FA’)/(np). The simulation for three-factor NMF

is as follows: first, we generate F' such that

1/3
Fim ~ Bz | | (i=1,...,nm;m=1,....k), (8.13)
kolo

where £ is the number of column factors. A and S are also generated in the same manner
as F'. Then, we obtain a noiseless data matrix X = F S’A’, after which we obtain the

synthetic data Y by the following CP random number:

Finally, we execute CPSNMF and CP3ONMEF to Y, obtain the estimated F, S’, and A by
the two methods, and calculate dg(Y, FSA’)/(np). We generate 50 synthetic data values
for two- and three-factor NMF, and allow each of the four NMFs to execute 100 times per
one synthetic data value. The parameter settings for generating synthetic data and for

these algorithms are as follows:

On:100,p:60,k0=5,€0:3

uw=10

¢o=1, 8o =05
e 7=10"2, v = 1000

e §=50, k=100
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Figure 8.9: Beta divergence per one element between synthetic data Y and the approxima-

tion matrix X for two- and three-factor NMF with and without an orthogonal constraint.

Fig. 8.9 shows the result. The results show that the g-divergence of orthogonal NMF
is larger than that of non-orthogonal NMF for both two- and three-factor NMF. This
means that the orthogonal constraint adversely affects the approximation of NMF. This
simulation enables us to conclude that NMF with an orthogonal constraint should be used

considering the trade-off between its easy-to-understand estimates and its under fitting.

8.3 Approximation of NMF to zero-inflated matrix

In this section, we describe the numerical example that was used to test the NMF with
the zero-inflated model in terms of approximation accuracy to the zero-inflated matrix.
The following procedure was used in this simulation study. First, we generate the noiseless
nonnegative matrix X € R™*P from the assumption of two- and three-factor NMF, and
two- and three-factor orthogonal NMF as described later. Then, we obtain the non-zero-

inflated nonnegative matrix Y* by the following CP distribution:

Next, we generate an artificial nonnegative data matrix Y such that 100wy% elements
of Y* are converted to zero. Finally, we execute the corresponding NMF with and with-
out the zero-inflated model and calculate the degree of approximation according to the
[B-divergence for each estimation result. For the non-zero-inflated NMF, we calculate
ds(Y, X)), whereas for the zero-inflated NMF, we calculate dg(Y,(E — Z)® X)), where
X and Z are the estimated approximation matrix and estimated latent variable matrix,

respectively. The X is generated as follows.
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Case of two-factor NMF

First, we generate F' € R"*%0 such that

1/2
meEa;<<:) )(i—l,...,n;m—l,...,ko), (8.16)
0

where kg is the number of factors. A € ]RﬁX R g also generated in the same manner as F'.

In this way we obtain the noiseless data matrix X =FA.

Case of three-factor NMF

First, we generate F' € R™ %0 such that

1/3
Fom ~ Ex| [ (i=1,....,n: m=1,..., k), (8.17)
kolo

where £ is the number of column factors. A € RP*% and § € RF0*% are also generated
in the same manner as F. Then, we obtain the noiseless data matrix X = FSA'
Case of two-factor orthogonal NMF

First, we determine the true row clusters R randomly; we then generate true F' € R™*ko

as follows:

_ Ex(ut?) (i € Ry,
P S U )(izl,...,n;mzl,...,ko). (8.18)

0 (i ¢ Rn)
Then, each element of true A € RP*¥0 is generated as follows:
Gjm ~ Ex(u?) (j=1,...,p; m=1,... ko). (8.19)

Finally, we obtain the noiseless data matrix X =FA.

Case of three-factor orthogonal NMF

First, we determine the true row clusters R randomly; we then generate true F' € R™*ko

as follows:

| Baery)

im "

i€ R
Nm) (i=1,....,m; m=1,... ko). (8.20)
0 (i ¢ Rin)
Then, the true C and A € RP*% are generated in the same manner as R and F. After
that, each element of true S € RF0*%0 is generated as follows:

Smq ~ Bzt (m=1,... ko; g=1,...,4). (8.21)

Finally, we obtain the noiseless data matrix X = FSA'.
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We generate 50 synthetic data values for the combination of wy = {0.2,0.4,0.6} and the
four types of NMF's and perform 100 executions of each type of NMF per one synthetic data
value. The parameter settings for generating the synthetic data and for these algorithms

are as follows:

e n=100,p=60, k=5, lo=3

w=10

¢0:1750:0-5
e 7=10"2, v = 1000
e § =50, k =100

Fig. 8.10, 8.11, and 8.12 show boxplots of the S-divergence for each of the corresponding
situations. Fig. 8.10 relates to all elements of Y, Fig. 8.11 only to the non-zero elements
of Y, and Fig. 8.12 relates only to the zero elements of Y. As shown in Fig. 8.10, the
B divergences for the zero-inflated NMF are smaller than those for the non-zero-inflated
NMF for all four types of NMFs and wg. This means that approximation using zero-
inflated NMF is more accurate than that for non-zero-inflated NMF for any number of
zero elements. Fig. 8.11 shows that § divergence values for the zero-inflated NMF are
better than those for the non-zero-inflated NMF under all conditions, as does Fig. 8.10.
This is a noteworthy result because it suggests that the use of zero-inflated NMF improves
approximation not only for zero elements, but also for non-zero elements. Non-zero ele-
ments are generated from the CP distribution, which represents the factorization model.
Hence, its result indicates that the factorized matrices estimated using zero-inflated NMF
are better than those obtained using non-zero-inflated NMF, even in terms of approxima-
tion to non-zero elements. Fig. 8.12 shows that the proposed NMF model is even better
than the basic model for zero elements.

Figs. 8.10 and 8.11 also indicate that the S divergence for non-zero-inflated NMF
increased with the ratio of zero elements (wg). This shows that a greater number of
zero elements result in a less accurate approximation in non-zero-inflated NMF. On the
other hand, the 8 divergence for the zero-inflated NMF model either remained constant or
decreased slightly as wg increased. This is because the proposed NMF model does not take
into account most zero elements, and it is easy to approximate fewer non-zero elements

using the proposed NMF model.
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Figure 8.10: S5 divergence per element between synthetic data matrix Y and approximation
matrix X by the non-zero-inflated (left boxplot) and the zero-inflated NMF model (right

boxplot). Values at the bottom of each box are mean values.
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Figure 8.11: [ divergence per element for only non-zero elements of synthetic data Y
between Y and approximation matrix X by the non-zero-inflated (left boxplot) and the
zero-inflated NMF model (right boxplot). Values at the bottom of each box are mean

values.
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Figure 8.12: 5 divergence per element for only zero elements of synthetic data Y between
Y and approximation matrix X by the non-zero-inflated (left boxplot) and the zero-

inflated NMF model (right boxplot). Values at the bottom of each box are mean values.
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Chapter 9

Applications

9.1 Document and term data

In this section, we describe an application involving a matrix containing document-term
data to enable us to compare the clustering accuracy and computational time of N3SONMF
with those of previous three-factor orthogonal NMFs, Ding et al. (2006) and Yoo and Choi
(2010b). There are two reasons to compare these three methods: first, the three-factor
NMF is compatible with the document-term clustering described in Section 3.1, second,
these two three-factor orthogonal NMFs have some problems, as described in Section 3.2,
and we are interested in its performance in a real data application. We do not use the
other three-factor ONMF, PSONMF, and CP3ONMF methods, in this application for the
following reason. We use a document-term matrix that is converted using TF-IDF, which
strongly weights terms in a few documents. The entries of these terms have large positive
values. Hence, if we use a robust NMF, which implies that an NMF based on the Euclidean
distance is not used, the effect of the weighted entries disappears and interpretable clusters
cannot be obtained. Therefore, N3ONMEF is appropriate in this application.

The data matrices we used were obtained from the open data CLUTO! website. The
selected data matrices and statistics are listed in Table 9.1. The list of datasets in Table
9.1 are ordered by the number of elements. The tri1, tri2, tr23, trd1, trjl, and tr4d
datasets are derived from the TREC? collections. The true categories of the documents
in tr31 and tr41 datasets are obtained by particular queries. The re0) and rel datasets are
from the Reuters-21578 text categorization test collection, distribution 1.03. The fbis data
set is from the Foreign Broadcast Information Service data of TREC-5. The hitech is a
dataset of San Jose Mercury Newspaper articles and contains documents about computers,
electronics, health, medicine, research, and technology. The kila, k1b, and wap datasets
were used for the WebACE project (Boley et al., 1999) and contain web pages in various
subject directories of Yahoo!4. Datasets kla and k1b contain the same documents, but the

true labels are different.

"http://glaros.dtc.umn. edu/gkhome/views/cluto
’http://trec.nist.gov/
Shttp://www.daviddlewis.com/resources/testcollections/reuters21578/
“http://www.yahoo.com/
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We conducted term frequency-inverse document frequency (tf-idf) conversion for all data
matrices. Before we started, we set the number of document clusters equal to the number of
document classes provided, and the number of word clusters was set to 10 for all the data
matrices. The convergence was determined using (3.11) and the convergence threshold
was set as 7 = 1077||Y|| for all the methods. The clustering accuracy was measured
using the ARI between the given clusters and estimated clusters of the documents. It
should be noted that some clusters occasionally become empty during iterative process
to update N3ONMF. In this case, we restarted the update iteration from another initial
parameter. Hence, we calculated the computational time of N3ONMF from the beginning
of the first trial iteration to the end of the final trial iteration in which non-empty clusters
are obtained. From among the candidates of the estimates given by 10 executions of each
of the three methods, we select the best estimates for which the objective function value

is minimized. The results are listed in Table 9.2.

Table 9.2: ARI between given clusters and estimated clusters of the documents and com-

putational time generated by three methods for each CLUTO dataset.

ARI computational time (s)
data Ding Yoo N3ONMF Ding Yoo N3ONMF
tr23 0.26  0.30 0.07 341 31 6
tr12 0.55 036  0.52 123 50 3
trll 0.58 0.71 0.52 190 44 6
re( 0.15 0.07 0.10 420 29 5
fbis 0.28 0.35 0.36 301 128 5
trdb 0.11 0.22  0.52 1208 281 22
rel 0.08 0.07 0.11 243 63 15
trdl 0.23 0.41  0.57 991 288 9
tr3l 0.06 0.15 0.59 2158 334 16
wap 0.39 0.33 0.39 3133 738 27
kla 0.37 0.32 0.31 4244 5021 138
klb 0.50 0.53 0.74 3629 2211 147
hitech 0.19 0.15 0.17 29012 6267 77

Although the performance of N3ONMEF is less accurate for a relatively small data matrix,
its performance improves in terms of estimating clusters for a relatively large data matrix.
Moreover, the computational time of N3ONMEF is extremely short in all cases. In fact, the
N3ONMEF has the fastest and deepest convergence, as shown in Fig. 9.1. These results
imply that N3ONMF may be a superior method for estimating document clusters, because
of its higher accuracy and computational efficiency.

We now show the estimates given by N3ONMF using k1a as an example to demonstrate
how to interpret N3ONMF results. The kia dataset consists of Web news documents
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Figure 9.1: Plot of the sequence of the objective function values in iterations about “tr23”
dataset for three NMF.

obtained from the Reuters news service in October, 1997 (Boley, 1998). In kla, the doc-

o«

uments are labeled by six categories, “business,” “entertainment,” “health,” “politics,”
“sports,” and “tech,” in advance. Table 9.3 is a cross-tabulation of the number of docu-
ments between the given clusters and estimated clusters. We label the document clusters

as DC 1 to DC 6. As shown in Table 9.3, “health,” “sports,” and “entertainment” doc-

Table 9.3: Cross-tabulation of the number of documents between the given and estimated
clusters of the k1a dataset.

DC1 DC2 DC3 DC4 DC5 DC6

business 1 141 0 0 0 0
entertainment 3 116 1189 47 30 4
health 492 2 0 0 0 0
politics 0 110 4 0 0 0
sports 0 0 4 1 0 136
tech 0 60 0 0 0 0
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uments are clustered well. However, “business,” “politics,” and “tech” documents are

contained in DC 2. The interpretation of each cluster is as follows.
DC 1 “Health” documents cluster.
DC 2 “Business,” “politics,” “tech,” and some “entertainment” documents cluster.
DC 3 First “entertainment” documents cluster.
DC 4 Second “entertainment” documents cluster.
DC 5 Third “entertainment” documents cluster.
DC 6 “Sports” documents cluster.

Table 9.4 presents the estimated factor matrix of the words. We label the word clusters
as WC 1 to WC 10.
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Although a few clusters are ambiguous, we can find a meaning for most clusters. The

interpretation of each word cluster is as follows.

WC 1

WC 2

WC 3

WC 4

WC 5

WC 6

WC 7

WC 8

WC 9

WC 10

Words about cinema or television.

RE 1A
)

Words about money (“million” and “rate”) or date and time (“am,” “mondai,”

and “tuesdai”).

Words about the Emmy awards. “gillian” and “franz” seem to be about Gillian
Anderson and Dennis Franz. They won the outstanding lead actress and actor

in a drama series of 49th Ammy award in 1997.
Words about music CD sales (“week,” “bestsell,” “weekli,” and “publish”).

Words about politics (“clinton,” and “house”), economics (“stock,” “compani,”

“dow,” and “percent”), and technology (“internet,” “microsoft,” and “com-

put”).

Words about healthcare.

Words about sports (“start” and “plai”).

Words about investigation (“report,” “accord,” and “author”).

W

Words about market (“market,” “sale,” “quote,” and “share”)

Words about sports.

We can also grasp the relationship between the estimated document and word clusters

using center factor matrix S. Table 9.5 shows the values of its factor matrix. We find

Table 9.5:

Center factor matrix S, which shows the relationship between the document

and word clusters.

DC1 DC2 DC3 DC4 DC5 DC6
wWwC1]| 0.08 0.10f 1.80 0.12 0.07 0.06
wWC2] 024 049 097 0.08 0.03 0.14
WC3] 001 0.02 0.25° 199 0.00 0.08
WC4 ] 006 0.05 0.15 0.02 1.75 0.03
WC5 | 0.06/ 1.53 0.16 0.01 0.02 0.03
wC6 | 198 0.07 0.10 0.01 0.01 0.02
wWC7] 015 026 049 0.05 0.01 0.57
wC8] 079 033 040 0.03 0.03 0.10
wWC9 | 016 080 0.45 0.03 0.04 0.07
wWC 10 0.05 0.04 0.13 0.01 0.00 1.45

that DC 1 and DC 6 are well characterized by words in WC 6 and WC 10, respectively.
This means that the words in WC 6 and WC 10 are effective for filtering documents
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about “health” and “sports.” In contrast, DC 2 has a strong values at WC 5 and WC
9, which contain words connected with the subjects of politics, economics, the market,
and technology. This indicates that these words are aggregated in two clusters and hence

P14

the documents about “business,” “politics,” and “tech” are not separated into different
clusters. DC 2 also has some documents about “entertainment,” and these documents
may be about topics near to “business,” “politics,” and “tech.” Although the other
clusters, DC 3, DC 4, and DC 5 have documents labeled as “entertainment,” they are
related to different word clusters from each other. We can interpret that DC 3 is about
entertainment in cinema or television, as DC 3 is related to WC 1, which contains words
about the cinema or television industry. DC 4 is related to WC 3, which has words about
the Emmy awards. We guess that these documents are about the 49th Primetime Emmy
Awards held in September, 1997. DC 5 is related to WC 4, which consists of words about
music CD sales. These results indicate that the documents labeled as “entertainment” are

divided into four groups.

9.2 Point of sale data

In this section we describe the application of selected NMFs to point-of-sale data col-
lected by a Japanese grocery store in June 2014, including customer ID information.® This
application aims to observe the effects of CP distribution, the zero-inflated model, and an
orthogonal constraint. We created a matrix that includes customer spending in monetary
units (rows) in the various product categories (columns) using the following data cleansing

steps:

Step 1: We removed those product categories for which the cumulative sum of sales is less
than JPY 1,000,000. This is the same as removing the product categories for which
the total sales is less than JPY 74,682.

Step 2: We removed those customers for whom the cumulative relative sum of customer
spending was less than 30%. This is the same as removing the customers who spent
less than JPY 5,719.

Step 3: We removed those customers for whom the number of product categories for their

customer purchases was less than or equal to five.

The statistics for the original data set and the data set after cleansing are provided in
Table 9.6.

Summaries of the cleansed data are shown in Fig. 9.2, Fig. 9.3, and Table 9.7. From
Fig. 9.2, there are some peaks in the total sales. This indicates that some groups of
customers may exist in this store. In Fig. 9.3, many customers purchased items from 15

to 30 categories.

54-codePOS Data” provided by IDS Co., Ltd. in the 2015 Data Analysis Competition hosted by the
Joint Association Study Group of Management Science.
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Table 9.6: Statistics for the original dataset and the dataset after cleansing based on the

point-of-sale data.

Original After cleansing

Customers 33,456 7,348
Product categories 146 114
Proportion of zero elements 0.928 0.774
Total sales (JPY) 165,169,493 114,143,984

Frequency
N w S al
o o o o
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o
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0 50000 100000 150000 200000 250000 300000 350000
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Figure 9.2: Histogram of customers’ total sales.
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100



8706 GIG GLT {V1 12 i8S 4y 19°0 GTREE6T o[qe)08oA Jear]
8,901 VoL 0ce 291 0L 088 €19 710 V1LL861 oFeIaA9q SuISaN]
aRe’L  T1. 80¥ €1¢ 0¢ 125 LLG 670 1$T0908 opprd osouedef
¢e0'8 182 447 €Ve 67 €L5 ¢19 L0 LLTTETE Suruosess diseqg
909  T¥8 oSy 8G¢ 149 749 199 V0 €6.T80C 1[op POOJ patg
¢10'0T 018 01¥ 90% Ly )7 %9 870 96901€¢ 1[op peres
¢re'9 992 aey €Ve |13 €65 €09 €50 90€LEET Juruosess Jurssed0I
7L0°0T 896 cs 6¢€ 11 7.8 128 070 V19€€7C yiod umord-ssouedef
160°'8T 638 01¥ 91¢ 6 LG0T T¥L 90 L1G9TGC POYE[oI-0E1230N
8616 L98 L6V 068 06 929 889 160 8T0G.LST 1A PIssII0I]
FOS'8T  6LL 9T¥ 91¢ o 4} 6£9 LG°0 7G0€L9¢ oxed asoueder
098°0c  G¥8 8¢¥ 91% 0¢ G98 869 €50 €2980.% A19U01109JU00 AI(]
ISV 7T 628 8T¥ ¢0g 79 66. 989 ¢g 0 VESTLLT aFeraaaq N[N
0€1°0¢  Gea'T 979 ove G GOT'T  L00°T 170 o8V LT0¢ os®as UL SN
96£'8T 146 99% €1¢ i 928 6cL 180 ¢G6620€ jmnay pajrodury
89%'6 488 %)% 9€% 89 89. €1L 09°0 00L191¢€ peaIg
€EE'ST  809'T  9€8 847 €11 IT¢'T 92T 9€°0 12eV1cE gsng
F8I'0T  89L L0V 90% 67 679 119 7.0 cTeseee ouownZI\
0€6°'CT 636 7S eLe 09 57 89. 19°0 CTTsere onpoxd YT
¢68°9¢ 0T 9€¢ 8LC ¥ 176 G18 7.0 18991¥¥ o[qe3o8oA YL
I9WIO)SNO
gurseyoand
%001 %G. %068 %SG %0 ps ueow jo uorjodord  seores [e10) A10309%R0

"SON[RA 0I9Z-TOU SUISN PIje[NO[ed oI sa[ljuenb pue ‘(ps) UOIJRIAOD PIRPUR)S ‘Ueoll o], 'A1039)ed [oed JO ATRWIMNG :)'6G O[qRL,

101



8CI'T9  T8LT 998 487 80T L09°G¢  €18'c 9070 7899701 AI9UOT}ORJUOD SUIRU-PURI] PUE SIII)
191°T¢ 728 5% 3¢ 6 €8 L69 12°0 €20TS0T sy 9[OYM
600°L L. L0€ z61 09 s 6.7 0€°0 TL6LS0T Surppnd pue Afor
676°01  60L 6S€ 8€T 16 629 €L5 92°0 9607111 T[op PAIILID
T9€°LT  9TC'T 11 0T¥ 70% 690°T  TIO'T 91°0 06606TT qouny pexog
9889z  ¥E8'T 8.6 189 89T 96L'T 6SS'T  TT°0 1GET62T Joaq nAepm
c0s'6  L9T'c  @8€'T  0I0T  TI€T 86T  ¥6LT 010 GGLI9ET 001y
9.8°6T  08¥ 69¢ Q€T T 079 co¥ 670 L6TEVVT 9[(ejo80A U}
179'6 €6 187 79¢ iz 8GL 6CL 820 9508871 1[op o1y
7.8'9 0.9 90€ V61 0L 1S¥ 097 70 €8LT0ST CIECR
1068 9.5 90¢ 8LT e 6S¢ 78¥ €70 6686TST jonpoid payrssepun)
PP0'0T  €8¥ 0L% 8€T 12 7oV 66€ %S0 89965ST 9[qe3980A 100y
666'FT  LET'T 829 €ev 621 796 766 ee0 8L6£EGT 1911t
¢r9'8  1€9 Vi€ 70% c9 €9y 1§44 870 €8L97C1T EEERE RIL9)
9086  ¥80'T 829 65V €q1 ¢18 L16 730 2Ge8TIT rtyseg
98.°G  6€9 LG€ 01¢ Ve QIS 8TS €70 96.6€9T 9[POON
|¥6'TT  92L 90¥ €02 89 9L 819 8¢°0 6L680LT 1[op o[k)s-osoueder
8166 S0L 16¢€ 1G¢ 0¢g 129 €65 070 GGLGELT I[9p SPOOJ payjoodald
LGE9T  T8S'T T eov €11 88L°T  CIF'T  LT0 €6GLLLT 100g
899°0T  €T1. 88¢ L0¢ ¢ €1. 109 o 1GE6E8T I[op peaIg
JomI0gsno
surseyoind
%00T %G %06 %G% %0 ps uesw  jo uorjodord  seres [ej0) £108099€0

102



79L'¢ €99 80¥ 702 0L ¢z9 165 €1°0 €E]GTS pooj wszox-dsag
012’9 G8.L 497 €Le ITT e8¢ 199 ¢10 8G6TLG surmy Jes
L19%'S 199 66€ cLT 78 9€¢ 896 ¥1°0 9065 I[op S[POON
06S'y  8¥¢ 12¢ 98¢ 80T (1157 087 LT°0 L1%7909 pooj passanold surre]y
L6LE  68F L0¢€ 761 16 87 Gy 020 760019 dnos jueysuy
CIT'6C  88L°T  ¥IO'T  ¥8¢ €02 ¥20'c  9SS'T 900 GTGELI OUTA\
AN S A vee 01¢ 18 0c¥ 19% 1270 1L300L 1[op orug
0v0'L  T¥8 067 29¢ aal 7.9 L2L ¥1°0 GYR9EL soog
ST 8T¢ 907 4N G8¢G 49 710 6£98€L Jo9q umorg-ssouedef
100°9  T.LS L0€ €Ve 6 897 I8¥ ec0 VG162 pooy eutrewr £1(]
.79  0Fe 00¢ c0T 48 L9¢ L6¢ LE0 299508 USY MRI [}IM PIAISS SUIYSIUILY)
7L87 909 L€ 61¢ 6 €ov c6¥ €20 697518 I[op o[A)s-0soury;)
1S°L  6EL c6¢ 6. 9¢T1 786 ¢c9 8T°0 91,9€8 sprod pajrodug
1667 LIL 617 01¢ 01 1§79 66 61°0 €12ET8 odeIanaq Ajsef,
8C6'G 08¢ 12€ €02 6¢ 47 18774 820 V11106 oones A0S UL PATIOC POOJ pure sueaq paflog
L69°¢  TLS 86% ST ) c9¢G 987 92°0 ¢0.L8T6 oFeIaAd( NI pue S[RIITIA
ceT v L29 are 161 €8 1.¥ 20g qz'0 V26616 JeaU PUNOIL)
reE'S 689 aRe vee 09 LLY 82S qz0 L996S6 UMD umoIg-osoueder
I€€°9  8.S 48 €C0 901 Gev 687 L0 785696 Usy [ewg
0sv'e  16€ €1g coT IS G6% 60€ 90 6LL6€0T WOOIYSNI\
JomI0gsno
surseyoind
%00T %G %06 %G% %0 ps uesw  jo uorjodord  seres [ej0) A10309%R0

103



T€€°€ 109 08¢ 90€ 6 8¢ 967 01°0 €16€5¢ jres ur popard ysty
AN AT %97 L9¢ 621 €Le 8% 80°0 G98T9E oxod puerg
781G 8€E 702 cLT ) 8T€ L0€ 91°0 13129€ poamesg
91V ¥8€ ¢1e 1€1 06 Gre 81¢ 91°0 e19¢9¢ SurIUOSEAs AOLI PAY0O))
709'c  19€ 708 T€T 8. 26¢ c0g L1°0 8.0¥8¢ Ppooy £Ip TeInymoLIsy
02L'9 619 cLe 1G¢ 06 eSS Ges 01°0 €0166¢ UEISRELETo)
0879 8.6 719 5% €q1 G0L 818 L0°0 9.860¥ 1993e[d Twryseg
I8G°¢ 665 12€ 13€ 00T €LE 8LY e1o €L90T¥ Usy[eys
78L°¢ 169 0L€ ¢ge 00T il c1S ¢10 8800¥¥ eI PAUOSELOG
ces'’v 8h9 LTV C6E c0g a7 €8¢ 01°0 TTSOT¥ Usy pareag
8LL'G  G89 6.L€ 98¢ 4l 1217 9€¢ e10 2006S¥ [to Surjoo)
886'¢  €0L 6S7 L€ 8¢T 787 109 110 GLG99¥ UOIYD puele
0ve's  6a¥ eve 8€T 144 06€ L9¢ 8T°0 C6ET8Y w29
IPSTT  28e'T 298 cey 01 cS¥'T 09T S0°0 caTesy oYeS
GGR'TT 182 L€€ 291 16 666 1.9 01°0 G6888F moanbry
16'G  €¥S 3¢ GRT Gl 6.€ o9V 710 187687 pooy A1
1.8°GT  €I¥'C¢ 61T LT6 4! 88T  9¥6'T  ¥0°0 06070¢ (nyooyg) jrards paqusi(q
08%7'c €LY 9.2 81 18 €ee 8¢ 81°0 79G8T1¢ o[poou jueysuy
979G 08L 01¥ 653 79 L99 879 110 cTyves Tomorq
C60°'TC 192 96€ aeg Q9 6S0°T 0.9 170 680935 wreard 90]
JomI0gsno
surseyoind
%00T %G %06 %G% %0 ps uesw  jo uorjodord  seres [ej0) £108099€0

104



ove's  1a9 80¢ Vae 00T 9G¥ 677 700 GTYRET jeowr ueSI()
1€8°c  1g8 5% 11e c61 65¥ 019 €0°0 OEOTT [e919))
9207'¢  0I¥ 768 QLT 201 7ae I8¢ ¢0'0 9T08¥T AI9UOI}DIJUOD 10 [RLIOYRTA
c0L'c 98¢ 0LT Vel 16 8T¥ 8.% L0°0 1€T671 SpOO] [eI)[NOLIZe Passed0L]
ae1'c  ¥9¢ 90% oa1 101 292 03¢ 80°0 GI6GST sa[qejadoA paflog
LIV'e  6L9 oLy c0¢ 9GT1 007 695 ¢0'0 606261 1[OP PAYSIUY-TUIAS JA)S UINSIM
GRZ'0T  T1€T'c  G98E'T  T90'T  9.€ L82'T  0I6'T %00 €98G1C (mredeqesy) 1ep 3pootpydg
eeI'oT  T198°C ¥e9'T  9.8'T 018 €69°c 98¢z 100 80T0€C IonbI] WIISIAN
6 8LG 76€ LLT ¢ LG., 8.5 90°0 8CL8ET SPOOJ 9011 PaY00daI]
78V'e  9.C 8€T coT r4¢ cLT 163 ¥1°0 607053 o[qe308oA M)
0L6'8  TEV 9% €0% 10T G8¥ 86¢ 01°0 VLI6LT SuULIp S[IYM US}ed POOJ YorUS
QZL'T  TI€ 70¢ aal 06 88T 29% q1°0 £7928% JUSWIPUO))
79¢'c  0T¥ 44 €0¢ 6 LLT eve ¢1o €V2T60 [[op PoYSIUY-TUIas A[A)S asauIY))
7e9'e  val e8 ¥ 0¢ 781 Vel €e0 LVvE0e 9[qe3e8aA SuryeuIuLIdy)
Ve T€9 01¥ 80¢ G8T LvE 9%S 80°0 0£T02E 830 st
9¢LV T8¢ 01€ 70% 6 109 4 80°0 vee1ce ymay L1
I8L% 999 L€ 8L% 98 €es 695 80°0 61TVCE Jng Ny
016G 9¥¢ ard cer 06 €0¢ 66¢ a1°0 €TLYTE amyxrur A1q
08L°€ L6V 88¢ 8€T 911 76¢ 89¥ 01°0 VET6EE Usy pertog
169'¢ 029 8¢ 01¢ 6 88¢€ )% 01°0 9TLLVE oones Surddip pue peardg
JomI0gsno
surseyoind
%00T %G %06 %G% %0 ps uesw  jo uorjodord  seres [ej0) A10309%R0

105



9¢8'y  ¥aE 8L% Go1 43 ¥ eee 200 LT68¥ POOJ Passao01d 91qrId8oA
avs 0% 01 g q € LT 070 Ta86¥ IOJUNOD IDJO UL SUII]
6vE'c  LVL 60¥ ité 181 VLY 09 100 €9€29 pajepI-Joog
LEV'e  8T¥ €0g €02 5! cTe €LE €00 7.8€. 1093e1d 1P
€L6'C  8GE 90¢ e8¢ 69 0L% G9¢ €0°0 6L78L 1[op paysiuy-Tuwes yoeug
8T€'8 906 12€ 70¢ 6¢1 008 905 200 02028 ST I9YI(0)
76£9  GOT'T  GE€8 29¢ L63 0L6 780°T 100 €€668 Jooq pajroduuy
9697  80F 70% 70% 0LT 997 c9¢ €0°0 80706 O[qrIOFoA UOZOL]
0.7 099 IT¥ 09€ c0g 98¢ 196 €00 671L0T T[OP PAYSTUY-TUWOS PA[LIL)
e91'c LIS 09¢ 18¢ 9.1 065 %) 700 49444 191p Mmel JUuTuLre
VIV 164G 1€3 81T 98 91¢ ’C¥ 700 7GC9TT 93eI9A9( DT[OT[0D[e-UON
Tee'e 16€ 952 291 G6 9¢e 4s ¢0'0 670L3T U3nop uryg
681°¢  OI¥ (&é4 81 c9 763 9ee €0'0 er9TeT T[OP PAYSIUY-TUISS SA)S UINSOA
29T'c 109 eie 90€ ave 01€ 867 700 166S€T POOJ meI dULIe]\]

JomI0gsno

surseyoind

%00T %G %06 %G% %0 ps uesw  jo uorjodord  seres [ej0) A10309%R0

106



Using this data set, we obtained a factor matrix of product classification from N2NMF,
CP2NMF, ZICP2NMF, and CP20NMF. We compared the estimated factor matrix, be-
tween N2NMF and CP2NMF, to confirm the effect of CP distribution; CP2NMF and
ZICP2NMF, to confirm the effect of the zero-inflated model; and CP2NMF and CP20NMF,
to confirm the effect of the orthogonal constraint. From among the 20 estimate candidates,
we selected the estimator for the purpose of maximizing the objective function value. The

parameter settings for the algorithm of these methods are as follows:
e k=5
e =05
e 7=10"2, v = 1000
e § =20, k =100.

The number of clusters k£ is commonly determined in various appropriate ways by using
information criteria, cross-validation, or a Bayesian method. However, for this application
we select k = 5 to enable us to easily verify the characteristics of the estimators obtained
by each NMF, and because of space limitations. The estimators of the factor matrix for
product categories A obtained by the four NMF's are provided in Table 9.8, 9.9, 9.10, and
9.11. All factor matrices for product categories A are standardized such that the length
of each column vector is 1. The table only includes product classifications with values

greater than 0.2.
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Table 9.8: Factor matrix A produced by N2NMF.

e N2NMF
product classifications 1 5 3 4 5
Gifts and brand-name confectionery [1.00 0.00 0.00 0.00 0.00
Sushi 0.00°0.95 0.00 0.00 0.00
Beer 0.00 0.00£0.97 0.00 0.00
Fruit vegetable 0.01 0.00 0.01 0.47 0.00
Vegetable-related 0.00 0.00 0.00 0.29 0.00
Fruits in season 0.00 0.17 0.00 0.28 0.00
Mizumono 0.00 0.02 0.04 0.25 0.10
Imported fruit 0.00 0.03 0.00 0.24 0.08
Japanese-grown Pork 0.00 0.01 0.02 0.23 0.03
Leaf vegetable 0.00 0.01 0.02 0.20 0.00
Bread 0.01 0.00 0.01 0.05 0.38
Dry confectionery 0.01 0.00 0.00 0.03 0.35
Fresh Japanese sweets 0.01 0.05 0.00 0.03 0.33
Salad deli 0.00 0.08 0.01 0.00 0.30
Refreshing beverage 0.01 0.00 0.04 0.00 0.29
Fried food deli 0.00 0.09 0.03 0.01 0.26
Japanese-style deli 0.00 0.09 0.00 0.00 0.21
Milk product 0.01 0.00 0.02 0.20 0.20
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Table 9.9: Factor matrix A produced by CP2NMF.

e e CP2NMF
product classifications 1 5 3 4 5
Rice 0.62 0.00 0.00 0.00 0.00
Beer 0.49 0.00 0.00 0.09 0.09
Sashimi 0.31 0.04 0.00 0.18 0.00
Wine 0.24 0.00 0.00 0.00 0.00
Sushi 0.12 0.54 0.01 0.00 0.04
Salad deli 0.08 0.29 0.00 0.10 0.03
Rice deli 0.00 0.26 0.00 0.00 0.00
Fried food deli 0.10 0.25 0.04 0.05 0.06
Fresh Japanese sweets 0.03 0.24 0.15 0.08 0.03
Bread 0.03 0.23 0.13 0.17 0.18
Lunch box 0.00 0.20 0.00 0.00 0.00
Fruit vegetable 0.04 0.03 0.42 0.27 0.28
Mizumono 0.07 0.06 0.28 0.20 0.20
Imported fruit 0.03 0.10 0.26 0.22 0.07
Vegetable-related 0.04 0.03 0.25 0.15 0.08
Fillet 0.05 0.00 0.23 0.00 0.00
Fruits in season 0.12 0.12 0.23 0.19 0.01
Milk product 0.06 0.10 0.16 0.42 0.16
Wagyu beef 0.00 0.00 0.00 0.33 0.00
Milk beverage 0.04 0.12 0.13 0.26 0.12
Dry confectionery 0.05 0.19 0.08 0.21 0.11
Japanese-grown Pork 0.03 0.00 0.17 0.11 0.37
Processed meat 0.05 0.02 0.17 0.16 0.31
Processing seasoning 0.08 0.00 0.16 0.17 0.26
Deep-frozen food 0.00 0.00 0.00 0.00 0.22
Imported pork 0.00 0.00 0.05 0.00 0.22

109



Table 9.10: Factor matrix A produced by ZICP2NMF.

e ZICP2NMF
product classifications 1 5 5 4 5
Beer 0.62 0.01 0.00 0.00 0.00
Milk product 0.23 0.16 0.22 0.10 0.08
Processing seasoning 0.23 0.04 0.14 0.09 0.05
Noodle 0.21 0.00 0.11 0.00 0.07
Sushi 0.00 0.35 0.10 0.28 0.12
Rice 0.00 0.35 0.01 0.00 0.00
Refreshing beverage 0.08 0.33 0.00 0.05 0.05
Lunch box 0.00 0.33 0.00 0.00 0.00
Dry confectionery 0.08 0.27 0.10 0.04 0.15
Bread 0.09 0.27 0.14 0.09 0.16
Rice deli 0.00 0.26 0.00 0.06 0.09
Fresh Japanese sweets 0.05 0.23 0.11 0.08 0.18
Fruit vegetable 0.23 0.03 0.39 0.18 0.07
Vegetable-related 0.06 0.00 0.31 0.04 0.03
Mizumono 0.16 0.04 0.28 0.09 0.11
Imported fruit 0.15 0.09 0.26 0.06 0.06
Fruits in season 0.03 0.05 0.25 0.21 0.13
Fillet 0.00 0.00 0.23 0.00 0.00
Japanese-grown Pork 0.14 0.00 0.21 0.13 0.02
Wagyu beef 0.01 0.00 0.00 0.56 0.00
Japanese-grown beef 0.00 0.00 0.00 0.40 0.00
Wine 0.00 0.00 0.00 0.26 0.00
Fried food deli 0.03 0.11 0.03 0.06 0.39
Japanese-style deli 0.00 0.06 0.01 0.02 0.38
Salad deli 0.02 0.17 0.00 0.07 0.37
Grilled deli 0.00 0.02 0.00 0.00 0.33
Gifts and brand-name confectionery ~ 0.00 0.00 0.00 0.00 0.23
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Table 9.11: Factor matrix A produced by CP20ONMF.

e CP20NMF
product classifications 1 5 3 4 5
Beer 0.59 0.00 0.00 0.00 0.00
Fillet 0.59 0.00 0.00 0.00 0.00
Small fish 0.46 0.00 0.00 0.00 0.00
Sushi 0.00 0.57 0.00 0.00 0.00
Fried food deli 0.00 0.41 0.00 0.00 0.00
Refreshing beverage 0.00 0.37 0.00 0.00 0.00
Precooked foods deli 0.00 0.32 0.00 0.00 0.00
Japanese-style deli 0.00 0.30 0.00 0.00 0.00
Rice deli 0.00 0.25 0.00 0.00 0.00
Fruit vegetable 0.00 0.00 0.33 0.00 0.00
Milk product 0.00 0.00 0.27 0.00 0.00
Mizumono 0.00 0.00 0.26 0.00 0.00
Bread 0.00 0.00 0.25 0.00 0.00
Imported fruit 0.00 0.00 0.24 0.00 0.00
Fruits in season 0.00 0.00 0.23 0.00 0.00
Dry confectionery 0.00 0.00 0.22 0.00 0.00
Fresh Japanese sweets 0.00 0.00 0.22 0.00 0.00
Milk beverage 0.00 0.00 0.21 0.00 0.00
Cooked beans and tsukudani 0.00 0.00 0.00 0.56 0.00
Japanese-grown chicken 0.00 0.00 0.00 0.53 0.00
Sliced fish for sashimi 0.00 0.00 0.00 0.35 0.00
Wine 0.00 0.00 0.00 0.23 0.00
Ice cream 0.00 0.00 0.00 0.23 0.00
Brand chicken 0.00 0.00 0.00 0.21 0.00
Agricultural dry food 0.00 0.00 0.00 0.21 0.00
Wagyu beef 0.00 0.00 0.00 0.00 0.52
Tasty beverage 0.00 0.00 0.00 0.00 0.47
Snack deli 0.00 0.00 0.00 0.00 0.45
Instant soup 0.00 0.00 0.00 0.00 0.37
Gifts and brand-name confectionery  0.00 0.00 0.00 0.00 0.27
Cooked rice seasoning 0.00 0.00 0.00 0.00 0.22
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The interpretations of the estimated factors are as follows. We indicate the m-th factor of
N2NMF, CP2NMF, ZICP2NMF, and CP20NMF as N2,,, CP2,,, ZICP2,,, and CP20,,,

respectively.

Interpretation of the N2NMF result

N2;:
N2y:
N2s:
N2y:

N25:

Buying gifts and brand-name confectionery.

Buying sushi.

Buying beer.

Buying vegetables, fruits, and mizumono (e.g., natto, konjac, and tofu.

Buying bread, confectionery, beverages, and deli foods, which are ready-to-eat
foods.

Interpretation of the CP2NMF result

CP2;:
CP2,:
CP23:
CP2:

CP252

Buying rice, beer, and sashimi.

Buying deli and the other ready-to-eat foods.

Buying vegetables, fruits, and mizumono. This factor is similar to N24.
Buying items made out of milk and wagyu beef.

Buying meat (mainly pork) and processing seasonings.

Interpretation of the ZICP2NNMF result

Z1CP2;:

Z1CP2,:

Z1CP2s:

Z1CP2y:

Z1CP25:

Buying mainly beer.

Buying refreshing beverages and somethings like a complete meal, e.g., sushi,

lunch boxes, bread, and rice deli.

Buying vegetables, fruits, and mizumono. This factor is similar to N24 and

CP2;.
Buying beef and wine.

Buying deli foods such as side dishes.

Interpretation of the CP20NMEF result

CP2012
CP20s,:

CP20s3:

Buying beer and fish.
Buying sushi and other deli foods such as side dishes.

Buying items like those of N2, and CP23, e.g., vegetables, fruits, and mizumono,

items made out of milk, and items like confectionery.
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CP20,4: Buying chicken, cooked beans, and tsukudani.

CP205: Buying wagyu beef and refreshing beverages .

Summaries of the estimators of the factor matrix for customers F' are provided in Table
9.12. F represents something like the each customer’s amount of spending for the product

categories in each factor.

Table 9.12: Summaries of the estimators of factor matrix F' for customers.

1 2 3 4 5
N2NMF mean 146.6 494.2 281.9  1,286.2 971.4
sd 1,521.9 949.7 9225  1,500.4  1,024.8
min 0.0 0.0 0.0 0.0 0.0
25% 0.0 0.0 0.0 409.9 313.3
median 0.2 88.1 7.6 862.9 706.1
75% 7.9 576.1 110.0  1,639.6  1,287.4
max 61,131.2 14,809.3 16,169.6 28,182.1 15,333.0
CP2NMF  mean 333.6 802.5 800.9 490.3 363.9
sd 709.6  1,126.1  1,074.7 748.6 599.4
min 0.0 0.0 0.0 0.0 0.0
25% 0.0 0.0 0.0 0.0 0.0
median 0.0 459.3 487.7 213.4 97.7
75% 3988  1,147.3  1,097.0 694.6 517.7
max 12,174.8  15,265.5 12,881.1  9,420.6  8,368.9
ZICP2NMF  mean 463.0 585.6  1,001.1 320.0 504.0
sd 790.3 884.5  1,277.1 575.5 837.9
min 0.0 0.0 0.0 0.0 0.0
25% 0.0 0.0 7.3 0.0 0.0
median 129.7 243.5 667.8 0.0 201.7
75% 651.7 856.6  1,363.4 441.4 694.8
max 13,270.2 13,9324 18,526.9  9.841.8 13,575.6
CP20NMF  mean 387.4 824.7  1,785.1 289.4 303.7
sd 661.4 979.7  1,508.0 438.1 739.6
min 0.0 0.0 54.3 0.0 0.0
25% 0.0 265.5 860.0 0.0 0.0
median 156.5 5434  1,273.9 156.8 122.0
75% 4745  1,039.0  2,153.7 385.2 345.4
max 11,543.5 18,006.8 18,493.1 12,251.9 24,325.0
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The results of A show that all methods extract two factors: buying basic Japanese
foods, e.g., fruits, vegetables, mizumonoes, and buying ready-to-eat foods, e.g., some deli
foods, breads, lunch boxes, and beverages. Table 9.12 indicates that the amount paid for
these two factors’ items is large. In contrast, the details of the other factors are different
for each NMF method. For example, in the results of ZICP2NMF (Table 9.10), the two
ready-to-eat food factors are estimated: a complete meal and side dishes. However, other
methods provide one factor including these foods.

Below, we discuss the characteristics of each NMF by comparing them in pairs.

N2NMF vs CP2NMF

The factor matrix of N2NMF in Fig. 9.8 indicates that three bases are estimated with
only one extremely strong value (“Gifts and brand-name confectionery,” “Sushi,” and
“Beer”). In contrast, the result obtained by CP2NMF does not reflect any such bases,
all of which have middle-ranging values for various product classifications. Thus, this
result shows the effect of robust estimation using CP distribution. The basis for which we
obtained only one extreme value is estimated when the data contains outliers. Fig. 9.4
plots of the number of customers whose proportion of money spent in a single category

is more than r% for each category. This figures shows that there are a relatively large

% 700 - — Gifts and brand—name confectionery
c — Beer
o 600 —— Sushi

10 20 30 40 50 60
(%)

Figure 9.4: Number of customers whose proportion of money spent in a single category
is more than r% for each category. For example, there are 87 customers who spent more

than 30% of his/her total spending on “Sushi” items.
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number of customers who spent money on “Sushi,” “Beer,” or “Gifts and brand-name
confectionery” at a high rate, e.g, more than r = 30%. Moreover, Table 9.7 shows that
these categories all have high mean values for money spent but have a low proportion of
purchasing customers. For “Gifts and brand-name confectionery,” the maximum money
spent is the highest of all categories and is a very large value (JPY 61,128). These results
suggest that the large values of a few samples strongly affect the estimates of factor
matrices in NMFs using a normal distribution.

However, for the CP2NMF, such a extreme basis is difficult to estimate, even if there
were outliers, because the penalty for large data values is weaker than for small data values
in terms of S-divergence, as seen in Section 3.3. From the point of view of interpretation,
a basis with only one extreme value is unavailing because the aim of NMF is to capture
the co-occurrence relation. Such a basis indicates that there is no co-occurrence with an

item that has such an extreme value.

CP2NMF vs ZICP2NMF

Fig. 9.10 displays the effect of the zero-inflated model: factor matrices are estimated
considering some values of y;; = 0 as non-zero. For example, “Wine” and “Beef,” (e.g.,
“Wagyu beef” and “Japanese-grown beef”) are not in the same factor in the estimates
of CP2NMF. This means that few customers buy both of these items. However, in
ZICP2NMF, customers buying either “Wine” or “Beef” but not both are regarded as
customers buying both, because some of the zero values in data matrix Y are disregarded.
In other words, some elements of y;; = 0 in the “Wine” or “Beef” columns are assumed
not to be generated from the distribution y;; ~ CP(x;;, ¢, 3) but from y;; ~ 0 instead, and
hence the values of y;; = 0 are disregarded when the factor matrices, which are parameters
of the CP distribution, are estimated. In fact, if z;; = 1, information from the 7, j elements
becomes weak in the f;, and aj, update rules (see (4.35) and (4.37)). A realistic inter-
pretation of this result would be the following: customers who bought “Wine” items but
not “Beef” would have bought “Beef” if the customers had conformed to the estimated
buying model, but the customers did not actually buy “Beef” for other reasons. Therefore,
the advantage of NMF with a zero-inflated model is that it can be usefully applied to a
recommender system: “Beef” items are recommended to customers who bought “Wine”

items but not “Beef.”

CP2NMF vs CP20ONMF

The effect of the orthogonal constraint is obvious in Fig. 9.11: each of the product
classifications has only one non-zero value among the five bases. Although the results
obtained for CP20NMF are simple and easy to comprehend owing to this effect, it is
difficult to interpret each of the bases. None of the bases match Japanese food culture
except for the 2nd and 3rd bases: the 2nd basis indicates purchases of delicatessen and
drink items, (e.g., “Sushi,” “Fried food deli,” “Precooked foods deli,” “Japanese-style deli,”
and “Refreshing beverage”), whereas the 3rd basis indicates purchases of basic foods in

Japan (e.g., “Fruit & vegetables,” “Milk product,” and “Mizumono”)
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Summary of the four methods

We cannot determine which of the four methods is the best. However, we can give
suggestions as to which method is better in some situations. If we wish to obtain factors
that are affected by extremely large values of small samples such as “Gifts and brand-name
confectionery,” “Sushi,” and “Beer,” it is best to use N2NMF. On the other hand, if we
consider these values to be outliers, we should use CP2NMF. For zero-inflation, if we place
importance on an approximation between the data and factorized matrices, we should use
ZICP2NMF. If we want to simplify the result, it is best to use CP20ONMF'.

The result obtained from the point-of-sale data show that the factors estimated by
ZICP2NMF seem to be better from a Japanese food culture’s point of view because there
are many meaningful factors: a complete meal, side dishes, basic cooking ingredients, or
foods in Japan, and beef and wine. However, CP20NMF seems to perform worse on this
data because some factors are ambiguous. As described in Section 3.2, CP20NMF does
not approximate the data as well as other methods. These ambiguous factors could have

been estimated because of the bad approximation.
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Chapter 10
Conclusions

In this paper, we described properties, derivations of updating rules, algorithms, and
examples of the usage of various NMFs for exploratory data analysis using a nonnega-
tive data matrix. Nonnegative data matrices are widely and readily available in many
academic and business fields, and NMF has been a very useful technique for generating
knowledge from these matrices. However, analysis of these data with NMF encounters
some difficulties when the nonnegative matrix contains many zero values and has some
outliers. The presence of many zero values leads to a poor approximation to the ma-
trix by NMF, whereas outliers result in the estimated factor bases becoming invaded by
them. We addressed these problems by considering the assumption of a divergence, which
is an error criteria between a given data matrix and its approximation matrix. Various
divergences have previously been proposed to ensure robust NMF, e.g., a-divergence and
B-divergence. Our research focused on NMF with g-divergence because it allows the use
of a zero-inflated model. The assumption on which S-divergence is based is equivalent
to the Tweedie distribution assumption, and Tweedie distribution with 5 € (0,1), that
is, CP distribution, corresponds well to the zero-inflated model because the distribution
has mass at the zero-like Poisson distribution, which is also used in combination to the
zero-inflated model. In addition, CP distribution can be given as the distribution followed
by the sum of gamma-distributed random variables when the number of these variables
is Poisson distributed; this generating model is suitable for data consisting of the sum
of nonnegative values. Based on the above idea, we proposed the two-factor NMF based
on ZICP distribution (ZICP2NMF). We used a simulation study involving three-factor
orthogonal NMF to show that CP distribution is robust against outliers by applying our
approach to point-of-sale data. Moreover, we used another simulation study to present
the goodness of fit of ZICP2NMF to a zero-inflated nonnegative data matrix and pre-
sented the characteristics of ZICP2NMF by application to point-of-sale data. We also
considered the use of an orthogonal constraint for the simple interpretation of the factor
matrices of NMF. The combination of orthogonality and a nonnegativity constraint leads
to factor matrices with a simple structure at the risk of poor approximation accuracy as
shown in the simulation study about NMF with and without an orthogonal constraint.

We discussed a simple structure property of such a constraint factor matrix, and from
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this property, we derived a new updating rule for nonnegative factor matrices with an
orthogonal constraint in NMF based on Poisson and CP distribution with reference to the
work of Pompili et al. (2014). Previous algorithms of orthogonal NMF were problematic
in terms of the estimation of orthogonal factor matrices: no non-increasing property of the
sequence of the objective function values and no orthogonality property of the estimated
factor matrices with an orthogonal constraint. On the other hand, the orthogonal NMF's
presented in this paper do not have these problems. Our simulation study and application
to document-term data demonstrated improved accuracy for the new orthogonal NMF
compared to existing NMF. Moreover, most previous orthogonal NMFs are based on a
normal distribution and orthogonal NMFs with CP distribution do not exist. Hence, or-
thogonal NMF based on CP distribution, as proposed in this paper, namely CP20NMF,
is a valuable contribution. Of course, CP20NMF is extended to NMF with a zero-inflated
model: we introduced it as ZICP20ONMF. These ideas described above are applicable to
three-factor NMF (see CP3NMF, CP30ONMF, ZICP3NMF, and ZICP3ONMF) in which
the data matrix is decomposed into three types of factors: factors of row objects, factors of
column objects, and factors that represent the relationship between the factors of row and
column objects. Three-factor NMF is also referred to as a bi-clustering method because
different factors are assumed for the row and column objects. ZICP3NMF, CP3ONMF,
and ZICP3ONMEF are also valuable because previous three-factor NMFs cannot be ex-
tended to using CP distribution, an orthogonal constraint, and a zero-inflated model due
to the highly complicated derivation of the updating algorithm of previous three-factor
NMFs.

The drawbacks of our proposed methods are as follows. NMF with orthogonal con-
straints may lead to a bad approximation of the data matrix. If the approximation is worse
than that of non-orthogonal NMF, it is best to interpret the result of the non-orthogonal
NMEF. It is a future task to develop a method to determine which is better. NMF based on
the CP distribution has a problem with the hyperparameter settings. Parameter g of the
CP distribution affects the shape of the distribution, and hence we should not determine
it using the maximum likelihood method. It seems that there might be a better solution
using the marginal likelihood, also referred to as evidence in Bayesian statistics . Zero-
inflated NMF' also has a drawbacks: the impact of the zero elements on the estimation
of the factor matrices is weak. If many zero-elements in the data matrix are truly zero,
in other words, if they are generated from the factorization model y ~ CP(z,¢, /) in
(3.40), we cannot obtain a true estimate of the factor matrices. We should compare the
zero-inflated NMF with non-zero-inflated NMF results using a measure of approximation
such as log likelihood.

One of the open problems is a model order determination: the way of determining the
number of factors in NMF using a given data matrix. If prior knowledge exists about
the number of factors in a given data matrix, a model order determination is not neces-
sary. However, if no prior knowledge of the rank is available, it must be estimated using
available data. This estimation is performed to simplify the calculation. Although a large

order model leads to good approximations, it is difficult to interpret the estimated factor
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matrices. Model order determination is one of the main challenges in NMF, and several
methods have been proposed for handling it in past work (Owen and Perry, 2009; Schmidt
et al., 2009; Tan and Févotte, 2013). The development of a model order determination
method in NMF based on a zero-inflated model or with an orthogonal constraint presents
a new challenge. Especially, an extension to a Bayesian model seems to be useful because
we can check the appropriate model order as well as the significance of each of the elements
of factor matrices. Another open problem is an extension to tensor factorization. NMF's
introduced in this paper can be easily extended to multi-array nonnegative data in the
same fashion as in Cichocki et al. (2007) or Cichocki et al. (2009). Nonnegative tensor
data can be easily obtained from data resulting from human behavior such as point-of-sale
data, and such tensor data may contain a large number of zero values due to the shortage
of combinations among the three types of objects representing each of the arrays of the

tensor. Hence, a zero-inflated model would be available for such tensor data.
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