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Abstract

In the dissertation, two kinds of spatially coupled concatenated codes are introduced. The

spatial coupling is a kind of design method to structure channel codes whose decoding per-

formance approach to theoretical limit. A spatially coupled code is obtained by associating

multiple identical base codes. More specifically, spatial coupling is to line up all of base

codes, and then to exchange parts of parity relations of several adjacent base codes. The

concatenated codes, serially concatenating an outer code and an inner code, are considered

as base codes. With the concatenated base codes, more relax code construction can be built.

Spatial coupling technique lets designer pick up outer and inner codes for some practical

aspects (such as simple encoding implementation, flexible construction, rate adjustability,

etc.) without considering performance issue. Based on this feature, two classes of codes are

structured to fit different communication requirements.

One kind of codes is obtained by spatially coupling base codes consisting of repeater-

combiner outer code and convolutional inner code. The codes, called spatially coupled

repeater-combiner-convolutional (SC-RCC) codes, have simple encoder realization. And de-
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coding analysis and computer simulation show that their decoding performances are nearer to

theoretical limit than these of conventional spatially coupled codes on additive white Gaus-

sian noise channels (AWGNC) and Gaussian multiple access channels (MAC). In particular,

SC-RCC codes can achieve good decoding performance with not very long code length. This

makes it possible for SC-RCC codes to be adopted in the future communication systems.

Another kind of of spatially coupled concatenated codes is for rate-compatible com-

munication problem that demand transmitter and receiver to process different rate codes

with a single encoder and single decoder. A family of rate-compatible codes consists of

multiple different rate codes, in which the higher rate member codes are embedded into the

lower rate member codes. The rate-compatible spatially coupled low-density parity-check

(SC-LDPC) codes are obtained by spatially coupling base codes including an LDPC out-

er code for spatial coupling and rate-adjustable repeat-accumulate (RA) inner code. The

proposed codes are called RA-extended SC-LDPC codes, since they also can be considered

as LDPC codes with RA-extensions. They achieve arbitrary rate in wide and continuous

real number interval. Decoding analysis shows the all of member codes in a RA-extended

SC-LDPC code family have decoding performance near to theoretical limit on binary erasure

channels (BEC). In particular, in the low rate region, RA-extended SC-LDPC codes perfor-

m better than conventional codes. This makes the codes are promising in low rate coding

workplace, e.g., non-orthogonal multiple access system discussing for next generation mobile

communications.
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Chapter 1

Introduction

1.1 Noisy Channel Coding Problem

Today, digital communication systems are widely used in our lives. The frequently used

examples include mobile phone, digital television, wired and wireless internet connections,

and so on. Generally, each example fits into a common digital communication framework

establish by C. E. Shannon in his seminal paper, A Mathematical Theory of Communication,

1948 [1]. This framework is illustrated in Figure 1.1.

At transmitter of a digital communication system, there are four necessary processors,

including source, source encoder, channel encoder, and modulator. The source digitizes its

message, such as speech, audio, data, etc., and transmits the digitized message to a sink via

a noisy physical channel. For guaranteeing efficiency of the transmission, a source encoder

1



2 1.1. Noisy Channel Coding Problem

Figure 1.1: Basic digital communication system established by C. E. Shannon.

compress digital message into fewer bits representation. For guaranteeing reliability of the

transmission, a channel encoder adds redundancy to protect the transmitted bits over a

physical channel with noise, distortion, and interference. The output of channel encoder

is called by codeword. Before transmitting codeword over physical channel, a modulator

converts the codeword into analog signals suitable for transmission. At receiver, the original

message is recovered by corresponding invert processors, including demodulator, channel

decoder, source decoder, and sink.

In Shannon’s seminal paper [1], the digital communication problem can be decom-

posed into two separate problems: source coding problem and noisy channel coding problem.

In the dissertation, we mainly focus on the latter, noisy channel coding problem. In

order to describe the channel coding problem more clearly, the digital communication can

be simplified as binary message source/sink, channel encoder/decoder, and binary-input

channel. The simplified framework is also shown in Figure 1.1.

To be mathematically more precise, the output of the binary message source is consid-
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Chapter 1. Introduction 3

ered as a stochastic model. By the noisy channel coding theorem [1], if the channel coding

rate R is less than the channel capacity C, then error-free transmission is possible. The

channel capacity C depends on the noise of channel. The goal of channel coding research is

to design capacity-approaching channel codes.

1.2 Channel Capacity

Mathematically, we use capital letters to represent random variables, and use corresponding

lower cases to represent realizations. Let X and Y be the random variables of channel input

and output, and x and y be realizations of X and Y , respectively. When X and Y are

discrete random variables, the mutual information between X and Y is written as

I(X;Y ) = H(Y )−H(Y |X) (1.1)

where the entropy of Y and the conditional entropy of Y given X are given by

H(Y ) = −
∑
y

Pr(y) log2 Pr(y) (1.2)

and

H(Y |X) = −
∑
x

∑
y

Pr(x, y) log2 Pr(y|x) (1.3)

respectively. Then, the channel capacity is defined as

C = max
Pr(x)

I(X;Y ). (1.4)

For a binary-input channel in Figure 1.1, the channel capacity is the maximum mutual

information over the channel input probability distribution. When a channel code has code

3



4 1.2. Channel Capacity

Figure 1.2: Binary erasure channel with parameter ϵ.

rate R < C, the error-free communication is achievable.

In channel coding researches, the binary-input channels are usually considered as some

simplified mathematical models [2] [3]. Although these simplified models cannot reflect all

features of real channels, they make problem become more concise, clear and accurate. In

practice use, the designs based on mathematical models also can perform as expected. Now,

let us introduce two frequently used channel models.

1.2.1 Binary Erasure Channel

The binary erasure channel (BEC) is the simplest channel model introduced by Elias, 1954

[4]. Generally, a channel code can be easily analyzed on BEC, and the most of analyzed

properties hold on other channel models [3].

The BEC model is illustrated in Figure 1.2. The channel input and output represented

by X and Y , X ∈ {0, 1} and Y ∈ {0, ?, 1}. The sign ‘?’ represent that nothing is known.

For the BEC with parameter ϵ, a bit of information is completely discarded with erasure

probability ϵ or error-freely transmitted to receiver with probability 1 − ϵ. The capacity of

4



Chapter 1. Introduction 5

the BEC with erasure ϵ is [6]

CBEC(ϵ) = 1− ϵ. (1.5)

The channel capacity means that information can be transmitted reliably over the BEC at

a most rate of 1− ϵ bits per channel use.

Since channel codes are usually design at fixed rates, we consider coding rate R = C.

Thus, we have alternative target ϵSh = 1 − R. The ϵSh is called Shannon limit that is the

largest possible channel erasure probability such that the error-free decoding is possible. If

a channel coding scheme with rate R guarantees that error-free decoding can be achieved

when ϵ approaches to Shannon limit ϵSh, we say the channel codes are capacity-approaching.

1.2.2 Additive White Gaussian Noise Channel

The additive white Gaussian noise channel (AWGNC) is the most common channel model

of digital communication system. It does not account for some practical influencing factors,

such as fading, frequency selectivity, interference, and so on. However, AWGNC is a tractable

models which are useful for investigating the behavior of a channel code before these practical

influencing factors are considered.

The AWGNC model is illustrated in Figure 1.3. Let discrete binary input X ∈ {±1}

and additive white Gaussian noise (AWGN) Z ∼ N (0, σ2). We have channel output Y =

X + Z. Here, N (0, σ2) presents Gaussian distribution with mean 0 and variance σ2. The

5



6 1.3. Spatial Coupling Technique

Figure 1.3: Additive white Gaussian noise channel.

channel capacity of the AWGNC is given by [5] [6]

CAWGNC(σ) =
1

2

∑
x=±1

∫ +∞

−∞
p(y|x) log2

( p(y|x)
p(y)

)
dy (1.6)

where p(y|x = ±1) = 1√
2πσ

exp
(
− (y∓1)2

2σ2

)
and p(y) = 1

2
p(y|x = +1) + 1

2
p(y|x = −1).

In coding design, we focus on the smallest possible signal-to-noise-ratio (SNR) when

coding rate R = C. The SNR is frequently measured by Eb/N0, where Eb is the average

energy per information bit and N0/2 = σ2 is the 2-sided power spectral density of the

noise [2]. The smallest Eb/N0 limit of guaranteeing error-free decoding is called as Shannon

limit of Eb/N0 on AWGNC. For example, Shannon limit of 1/2-rate channel codes is 0.187

dB. When Eb/N0 ≥ 0.187 dB, error-free decoding is possible.

1.3 Spatial Coupling Technique

In Shannon’s seminal paper [1], he gave the theoretical limit of channel codes with error-free

decoding on noisy channels. However, he do not provide any practical coding scheme to

achieve the limit. This is a challenge for the upcoming researchers.

In the past semi-century, central objective was to structure codes that have decoding

6



Chapter 1. Introduction 7

Figure 1.4: The diagram of (a) a single code and (b) spatially coupling multiple identical

single codes.

performanace near to Shannon limit on frequently used channels [7]. There are some effective

schemes are presented, such as convolutional codes [4] and famous Viterbi decoding algorithm

[8], turbo codes and their iterative decoding [9] [10], low-density parity-check (LDPC) codes

[11] via degree-distribution optimization [12], and so on. These schemes become the base

stones of modern coding theory.

Recently, a spatial coupling technique is presented to structure capacity-approaching

codes [13]. Different from conventional schemes, the spatially coupled codes are obtained by

associating multiple identical base codes. Spatially coupled codes universally well-perform

on various channels due to their distinct chaining decoding [14], and thus become a potential

coding scheme for future communication systems.

Figure 1.4(a) shows the diagram of a base code, which encode input message to a

7



8 1.4. Contributions

codeword. In fact, the base code can be any conventional code. Figure 1.4(b) illustrates

the construction of spatially coupled code. The message is divided into multiple blocks that

are encoded by coupled coding processor. The output codeword block of each base code

depends on not only its input message block but also some codeword blocks generated by

several adjacent base codes.

Let us observe the chaining construction of spatially coupled codes. Since those base

codes at two ends process the least message, they have more stronger decoding capability

than that of base codes at middle positions. After error-free decoding are achieved at two

ends, those base codes at adjacent positions of two ends become new ends. When the coupled

chain is enough long, the rate of a spatially coupled code is approximately equal to the rate

of corresponding base code. Under the chaining decoding mechanism, the spatially coupled

code can achieve near-Shannon-limit performance, though the base code may be not very

good. We will give the details of spatial coupling technique in Chapter 2.

1.4 Contributions

Through research of recent years, spatial coupling technique is shown to be a effective method

of structuring good codes on various channels. One of the advantages of spatially coupled

codes is that they are less demanding in base code. In other words, a base code without any

optimization usually leads to a capacity-approaching spatially coupled code. This feature

make it easy to design codes for some applications.

8



Chapter 1. Introduction 9

Our work mainly focus on spatial coupling of serially-concatenated codes. Serially-

concatenated codes are a kind of conventional channel codes, which are obtained by con-

catenating an outer code with an inner code. Under spatial coupling, we have more relax

conditions for component codes. We pick up the two component codes only based on their

basic characteristics, such as rate variability, encoding simplification, decoding effectiveness,

and so on. These selected characteristics will guarantee the resulted spatially coupled codes

to fit different communication requirements. The good decoding performance will be guar-

anteed by spatial coupling technique.

Based on spatial coupling of serially-concatenated codes, we proposed two kinds of

codes:

1. spatially coupled Repeater-Combiner-Convolutional (SC-RCC) Codes,

2. repeat-accumulate extended spatially coupled low-density parity-check (RA-extended

SC-LDPC) codes.

With the two kinds of codes, we investigated spatially coupled serially-concatenated codes

on three different communication scenarios:

1. point-to-point communication systems,

2. multiple access channels,

3. rate-compatible communication systems.

9



10 1.4. Contributions

Next, we are going to briefly introduce our main contributions by different communication

scenarios.

1.4.1 SC-RCC codes for Point-to-Point Communication Systems

We first structure spatially coupled codes for point-to-point communication systems. In

research field of channel coding, an important evaluation of a code is decoding bit error

ratio (BER) performance on AWGNC. Although the conventional spatially coupled codes

are proven to be capacity-approaching on AWGNC, a large code length usually is demanded

to achieve near-Shannon-limit BER performance. However, since a large code length means

a large system cost, such as a big time delay, a large memory requirement, a large decoding

complexity, and so on, the spatially coupled codes haven’t been adopted by existing com-

munication system. This motivate us to find out new spatially coupled codes that achieve

near-Shannon limit BER performance with as possible as short code length.

We structure a kind of SC-RCC codes that are obtained by coupling multiple iden-

tical concatenated codes. The concatenated base codes consisting of a block outer code (a

repetition code followed by a single-parity code) concatenated with a convolutional inner

code of infinite impulse response. Because of the simple outer code and diverse inner code,

the proposed codes have simple encoding implementation and flexible design space.

We employ extrinsic information transfer (EXIT) functions to analyse the iterative

decoding threshold of proposed codes on AWGNC. The threshold help us to pick up the best

10



Chapter 1. Introduction 11

one from all considered codes. Numerical results demonstrate that the proposed codes have

better BER performances than conventional spatially coupled coding schemes. In particular,

the proposed codes with a rate of about 0.5 and length 15628 have a BER of 10−5 at

Eb/N0 = 1.13 dB that is less than 1 dB away from the Shannon limit. This code length may

therefore satisfy the practical requirements of communication systems.

1.4.2 SC-RCC Codes on Multiple Access Channels

Beside point-to-point systems, channel coding also used in multiple-user communication

systems for guaranteeing reliability of transmission. We consider a multiple-user system with

multiple transmitters and a single receiver. The channel model is multiple access channel

(MAC) [6]. On Gaussian MAC, there exist an achievable power region for given coding rates.

Theoretically, with any power allocation in the achievable power region, the receiver may

perfectly rebuild all messages of transmitters. However, conventional coding scheme cannot

achieve all possible power allocations. It is necessary to design a coding scheme for specific

power allocation.

Spatially coupled codes were proven to achieve all power allocation points in achiev-

able power region, when code length is infinite. The property motivate us to investigate the

performance of spatially coupled codes with finite code length on MAC.

We apply our proposed SC-RCC codes to Gaussian MAC. The results of EXIT func-

tions analysis and BER simulation show that our proposed codes approximately achieve all

11



12 1.4. Contributions

possible points in achievable power region with finite code length.

1.4.3 RA-Extended SC-LDPC Codes for Rate-Compatible Com-

munication Systems

In some practical communication system, rate-compatible codes are usually used to adapt

changing channel condition with various available coding rates. A family of rate-compatible

codes consists of a set of member codes with different rates, in which the higher rate member

codes are embedded into the lower rate codes, and all the member codes can be processed by

a single encoder and a single decoder. The design problem of rate-compatible is to guarantee

all of these embedded member codes capacity-approaching.

We structure RA-extended SC-LDPC codes by spatially coupling a kind of concate-

nated codes whose outer code is a typical base code for coupling and inner code is a simple

rate-compatible repeat-accumulate (RA) code. The base codes provide simple construc-

tion and rate compatibility. Spatial coupling technique guarantees that all member codes

are capacity-approaching. We analyse a performance indicator of the base code, potential

threshold. The fact that potential thresholds with various rates are near to Shannon limits

means that RA-extended SC-LDPC codes with various rate are capacity-approaching. The

prediction is confirmed by numerical results. Compared with conventional rate-compatible

coding schemes based on spatial coupling, our codes achieved arbitrary rates in continuous

interval and perform better in the low rate region.

12



Chapter 2

Elements of Graph-Based Codes

In this chapter, we briefly introduce some channel codes based on graph. We first review

bipartite graph codes: low-density parity-check (LDPC) codes. About LDPC codes, we de-

scribe their basic concept, graph representation, iterative decoding, and ensemble threshold

analysis. We then demonstrate an effective method, spatial coupling, to structure bipartite

graph codes. Finally, we show generalized graph-based codes. All of knowledge introduced

in this chapter are important elements of our work in subsequent chapters.

13



14 2.1. Bipartite Graph Codes: LDPC Codes

2.1 Bipartite Graph Codes: LDPC Codes

2.1.1 Basic Concept

As the most typical of graph-based codes, low-density parity-check (LDPC) codes, which

were invented by Gallager in 1960 [11], are a kind of block codes. An LDPC code with

rate R = k/n is given by the null space of an (n− k)× n non-singular parity-check matrix

H ∈ {0, 1}(n−k)×n that has a low density of 1s. In parity-check matrix H , the number of 1s

in each column is called by column weight, and the number of 1s in each row is called by

row weight. If all column and row weights are both constant, the LDPC code is regular; on

the contrary, the LDPC code is irregular.

Based on graph theory, parity-check matrix H of an LDPC code corresponds to a

bipartite graph [15]. Thus an LDPC code can be represented by a bipartite graph. Since this

graph representation is proposed by R. M. Tanner, it is usually called Tanner graph. The

two types of nodes in the bipartite graphs are called the variable nodes and the check nodes.

Variable nodes are transmitted into channel. Consider an LDPC code with (n−k)×n parity-

check matrix H . When the element hij = 1 in H , the i-th check node and the j-th variable

node are connected. Similarly, when the element hij = 0 in H , the i-th check node and the

j-th variable node are non-connected. Here, i = 0, 1, 2, ..., n− k− 1 and j = 0, 1, 2, ..., n− 1.

14



Chapter 2. Elements of Graph-Based Codes 15

Figure 2.1: Tanner graph for a 1/3-rate LDPC code in Example 2.1.

Example 2.1 Consider an LDPC code with 8× 12 parity-check matrix:

H =



1 0 0 0 1 0 0 0 1 1 0 0

0 1 0 0 0 1 0 0 0 1 1 0

0 0 1 0 0 0 1 0 0 0 1 1

0 0 0 1 0 0 0 1 1 0 0 1

1 0 0 0 0 1 0 0 0 0 0 1

0 1 0 0 0 0 1 0 1 0 0 0

0 0 1 0 0 0 0 1 0 1 0 0

0 0 0 1 1 0 0 0 0 0 1 0



. (2.1)

Let c be arbitrary codeword of the LDPC code, c ∈ {0, 1}12. We have constraint cHT = 0,

where HT is transposition of H . The code has rate R = 1/3. Its corresponding Tanner

graph representation is shown in Figure 2.1. The filled circles and blank squares are variable

and check nodes, respectively. There are 8 check nodes (labelled by i = 0, 1, 2, ..., 7) and 12

variable nodes (labelled by j = 0, 1, 2, ..., 11) in the Tanner graph. The fact that the i-th

check node and the j-th variable node are connected (or non-connected) means hij = 1 (or

15



16 2.1. Bipartite Graph Codes: LDPC Codes

hij = 0) in H . 2

In Tanner graph, the number of edges connected to a variable (or check) node is

called variable (or check) node degrees, which correspond to column (or row) weights in

parity-check matrix H . For irregular LDPC codes, all of variable and check node degrees

are usually described by degree-distribution polynomials [16], denoted by λ(x) and ρ(x),

respectively. The polynomials are

λ(x) =
∑
i

λix
i−1 (2.2)

ρ(x) =
∑
i

ρix
i−1 (2.3)

where λi and ρi are the fractions of edges that connect to variable and check nodes of degree

i, respectively.

An irregular LDPC code with λ(x) and ρ(x) is denoted by (λ, ρ)-LDPC code. A

set of all possible irregular LDPC codes is called (λ, ρ)-LDPC code ensemble. The rate of

(λ, ρ)-LDPC ensemble is given by

R = 1−
∫ 1

0
ρ(x)dx∫ 1

0
λ(x)dx

. (2.4)

Specially, when λ(x) = xdv−1 and ρ(x) = xdc−1, the corresponding LDPC codes are regular.

Denoted by the set of regular codes (dv, dc)-LDPC code ensemble.

Example 2.2 The LDPC code depicted in Example 2.1 is a specific realization in code

ensemble with λ(x) = 4
7
x+ 3

7
x2 and λ(x) = 3

7
x2 + 4

7
x3. 2

16



Chapter 2. Elements of Graph-Based Codes 17

Figure 2.2: (a) Massage passing from the j-th variable node to the i-th check node, and (b)

massage passing from the i-th check node to the j-th variable node.

2.1.2 Belief Propagation Decoding

An LDPC code is obtained by constructing a Tanner graph that satisfies given degree-

distribution polynomials λ(x) and ρ(x). Its decoding is also based on Tanner graph. The

frequently used LDPC decoder is the belief propagation (BP) decoder [2].

In decoding process, the BP decoder processes each variable node and each check

node with a posteriori probability (APP) decoding. The iterative information exchange

occurs between all of variable nodes and all of check nodes that are two types of component

decoders. In precisely, the output extrinsic information of all variable (or check) nodes are

input into their connected check (or variable) nodes as a priori information.

Before iterative update, we initialize each message passing from the j-th variable node

to the i-th check node with L
(0)
ji = Lj, j = 0, 1, 2, ..., n− 1 and i = 0, 1, 2, ..., n− k− 1. Here,

Lj = log
Pr(yj|xj = 0)

Pr(yj|xj = 1)
(2.5)

17



18 2.1. Bipartite Graph Codes: LDPC Codes

is the belief message of channel value at the j-th variable node, where xj and yj are trans-

mitted bit and received value at the j-th variable node. For BEC, when yj = 0, 1, and

‘?’, Lj = +∞, −∞, and 0, respectively [2]. For AWGNC with modulation mapping

{0, 1} → {+1,−1}, Lj = 2yj/σ
2, where σ2 is an estimate of channel noise variance [2].

Consider the l-th round iteration, l = 1, 2, 3, ..., lmax, where lmax is the maximum

iterative round. As shown in Figure 2.2(a), the message passing from the j-th variable node

to the i-th check node is given by [2]

L
(l)
ji = Lj +

∑
i′∈N(j)/i

L
(l)
i′j (2.6)

where N(j) expresses index set of those nodes connected to the j-th variable node, and

N(j)/i expresses set N(j) removed element i. As shown in Figure 2.2(b), the message

passing from the i-th check node to the j-th variable node is given by [2]

L
(l)
ij = 2 tanh−1

( ∏
j′∈N(i)/j

tanh
(
L
(l−1)
j′i /2

))
. (2.7)

where N(i) expresses index set of those nodes connected to the i-th check node, and N(i)/j

expresses set N(i) removed element j.

When l = lmax, the total belief message at each variable node is calculated by [2]

Ltotal
j = Lj +

∑
i′∈N(j)

L
(lmax)
i′j . (2.8)

From each Ltotal
j , j = 0, 1, 2, ..., n− 1, the decision of each transmitted bit is obtained by

x̂j =


0, Ltotal

j > 0,

1, else.

18



Chapter 2. Elements of Graph-Based Codes 19

Figure 2.3: Illustrations of (a) probability density functions and (b) mutual information

passing on variable and check nodes.

2.1.3 BP Thresholds Analysis

For evaluating iterative decoding performance of LDPC code ensembles, we calculate a the-

oretical limit under BP decoding, called BP threshold. Usually, there are two methods to

determine LDPC code ensembles’ BP thresholds. They are density evolution (DE) anal-

ysis [16] and extrinsic information transfer (EXIT) analysis [17] [18]. Both methods are

based on an assumption of infinite code length that guarantees no circle in Tanner graph

and accurate average belief message.

2.1.3.1 DE Analysis

The DE analysis is based on principle of LDPC decoder. The difference is that the DE

analysis update the average probability density function (pdf ) of all passing messages instead

of each specific belief message. In the decision process, a final pdf is used to judge error-free

19



20 2.1. Bipartite Graph Codes: LDPC Codes

decoding successful or not successful.

We derive DE analysis on BEC with channel parameter ϵ. On BEC, the pdf s of

all messages are erasure probabilities passing between variable and check nodes. Consider

variable and check nodes with degrees dv and dc, respectively. The output erasure probabil-

ities of variable (check) node relates to all input erasure probabilities. As shown in Figure

2.3(a), the input erasure probabilities of variable node are p1, p2, ..., pdv−1, the input erasure

probabilities of check node are p1, p2, ..., pdc−1.

Then, the output can be calculate by

pv = ϵp1p2...pdv−1 (2.9)

for variable node and

pc = 1− (1− p1)(1− p2)...(1− pdc−1) (2.10)

for check node.

From the basic calculation of variable and check nodes, we can obtain the DE update

equation for LDPC code ensembles. Let the average erasure probabilities passing from

variable node to check node be p. At the l-round update, we have

p(l) = ϵ
(
1−

(
1− p(l−1)

)dc−1
)dv−1

(2.11)

for (dv, dc)-regular LDPC code ensemble and

p(l) = ϵλ
(
1− ρ

(
1− p(l−1)

))
(2.12)

20



Chapter 2. Elements of Graph-Based Codes 21

for (λ, ρ)-irregular LDPC code ensemble, where nodes degree-distributions λ(x) =
∑

i λix
i−1

and ρ(x) =
∑

i ρix
i−1. By updating (2.11) or (2.12) with the initial erasure probabilities

message p(0) = ϵ, we can determine code ensemble’s BP threshold

ϵBP , sup{ϵ ∈ [0, 1] : p(l)(ϵ)
l→∞−−−→ 0}. (2.13)

DE update equation (2.11) or (2.12) is built on BEC. On AWGNC, channel charac-

teristic is not erasure probability. To determine BP thresholds, DE update equation should

be rebuilt [3] [16].

2.1.3.2 EXIT Analysis

In principle, the EXIT analysis can be considered as another evolution analysis that uses

mutual information between transmitted random variableX and passed message L to replace

pdf s. For BEC, the mutual information is given by I = 1− p. Thus, DE and EXIT analysis

are completely consistent with each other on BEC. For AWGNC, besides infinite code length

assumption, the EXIT analysis depended on another assumption: the pdf s of passed belief

messages in (2.6) and (2.7) are Gaussian function. This assumption is approximately hold

and greatly reduces the analysis complexity on AWGNC.

For brevity’s sake, we just show the basic calculation of mutual information passing for

variable and check nodes on AWGNC with nosie variance σ2. Similar to DE analysis, consider

variable and check nodes with degree dv and dc, respectively. As shown in Figure 2.3(b),

input a priori information of variable node are I1, I1, .., Idv−1, input a priori information of

21



22 2.1. Bipartite Graph Codes: LDPC Codes

check node are I1, I1, .., Idc−1. Then, the output information can be calculated by [2]

Iv = J


√√√√ 4

σ2
+

dv−1∑
i=1

[
J−1
(
Ii
)]2  (2.14)

for variable node and

Ic = 1− J


√√√√dc−1∑

i=1

[
J−1
(
1− Ii

)]2  (2.15)

for check node, where J-function is given by [2]

J(x) = 1−
∫ +∞

−∞

1√
2πx

exp

(
− (r − x2/2)2

2x2

)
log2

(
1 + e−r

)
dr.

From the basic calculation of variable and check nodes, we can obtain the EXIT

update equation for LDPC code ensembles. At the l-round update, we have [2]

I(l)v = J

(√
4

σ2
+ (dv − 1)

[
J−1
(
I
(l)
c

)]2 )
(2.16)

I(l)c = 1− J

(√
(dc − 1)

[
J−1
(
1− I

(l−1)
v

)]2 )
(2.17)

for (dv, dc)-regular LDPC code ensemble and

I(l)v =
dv−1∑

i

λiJ

(√
4

σ2
+ (i− 1)

[
J−1
(
I
(l)
c

)]2 )
(2.18)

I(l)c =
dc−1∑

i

ρi

(
1− J

(√
(i− 1)

[
J−1
(
1− I

(l−1)
v

)]2 ))
(2.19)

for (λ, ρ)-irregular LDPC code ensemble, where λi and ρi are degree-distributions coefficients.

By updating (2.16)-(2.17) or (2.18)-(2.19) with I
(0)
c = 0, we can determine regular or irregular

LDPC code ensembles’ BP threshold

σBP , sup{σ ∈ (0,+∞) : I(l)v (σ)
l→∞−−−→ 1}. (2.20)
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Compared with DE analysis, EXIT analysis is a more effective method to determine

BP threshold on AWGNC. This is because EXIT function costs lower calculation complexity

than pdf that is obtained by complicated convolution operation [2].

2.1.3.3 Degree-Distribution Optimization of Code Ensembles

By above BP threshold analysis of LDPC code ensembles, code’s iterative decoding per-

formance can be evaluated. It is obvious that the BP threshold depends on the degree-

distribution of ensemble. Thus, the problem of constructing a capacity-approaching code

can be formulated as a degree-distribution optimization problem [12].

Consider (λ, ρ)-irregular LDPC ensemble with rate R on BEC(ϵ). Shannom limit of

the code ensemble is ϵSh = 1−R. Denoted by BP threshold gap to Shannon limit GBP. The

degree-distribution optimization problem is described by

min
λ(x),ρ(x)

GBP = ϵSh − ϵBP

s.t.

∫ 1

0
ρ(x)dx∫ 1

0
λ(x)dx

= R.

By working with the problem, one can design a code ensemble that has near-Shannon-limit

BP threshold.

The degree-distribution optimization is a kind of effective method to structure a good

channel code [19]. However, in some specific communication schemes, e.g., rate-compatible

coding-transmission scheme that require multiple codes with related construction and dif-

ferent rates are capacity-approaching, the degree-distribution optimization cannot provide
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24 2.2. Spatial Coupling of Bipartite Graph Codes

a global optimal solution. In our work, we employ alternative method, spatial coupling

technique, to structure capacity-approaching code ensembles.

2.2 Spatial Coupling of Bipartite Graph Codes

2.2.1 Protograph LDPC Code Ensembles

Before we get into spatially coupled codes, we first cover fundamentals of protogragh LDPC

codes [20]. Protograph is a small bipartite graph, which is used to construct LDPC codes

as a design blueprint. The two types of nodes in a protograph are also variable and check

nodes. LDPC code ensemble with rate R = k/n can be obtained from a protograph with n

variable nodes and n−k check nodes. From a protograph, we obtain a Tanner graph by copy

M times the protograph and permute (or interleave) those edges connected corresponding

variable and check nodes in all copies. The code length is nM .

Example 2.3 Figure 2.4(a) shows a protograph with 3 variable nodes and 2 check nodes.

To copy the protograph M = 3 times and permute those edges in dash ellipses in Figure

2.4(b), then a Tanner graph of LDPC code with rate R = 1/3 and code length 9 is derived

(see Figure 2.4(c)). 2

Although the protograph of a code ensemble reflects the degree-distributions of vari-

able and check nodes, the protograph-based ensemble is just a subset of the ensemble

with corresponding degree-distributions. Therefore, when determining the BP threshold,
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Chapter 2. Elements of Graph-Based Codes 25

Figure 2.4: Illustration of (a) protograph with n = 3 and n− k = 2, (b) M = 3 copies of the

protograph, and (c) derived Tanner graph.
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a protograph-based DE analysis is more scientifically accurate than the DE based on degree-

distributions [21]. We demonstrate the DE analysis of protograph ensemble by the following

example.

Example 2.4 Consider a protograph shown in Figure 2.5. There are two classes of variable

node sets that are labelled by V1 and V2, respectively. The check node set is labelled by

C. In fact, the protograph corresponds a repeat-accumulate (RA) code ensemble. Let us

analyse BP threshold of the ensemble on BEC with channel erasure ϵ. Let pv,1, pv,2, pc,1,

and pc,2 be erasure probability messages passing from in V1 to C, V2 to C, C to V1, and C

to V2, respectively. Based on principle of DE, at the l-th round iteration, we have

p
(l)
v,1 = ϵ

(
p
(l)
c,1

)2
(2.21)

p
(l)
v,2 = ϵp

(l)
c,2 (2.22)

p
(l)
c,1 = 1−

(
1− p

(l−1)
v,2

)2
(2.23)

p
(l)
c,2 = 1−

(
1− p

(l−1)
v,1

)(
1− p

(l−1)
v,2

)
. (2.24)

By substituting (2.23) and (2.24) into (2.21) and (2.22), we have the DE update equations

p
(l)
v,1 = ϵ

(
1−

(
1− p

(l−1)
v,2

)2)2

(2.25)

p
(l)
v,2 = ϵ1−

(
1− p

(l−1)
v,1

)(
1− p

(l−1)
v,2

)
. (2.26)

By updating (2.25) are (2.26) with the p
(0)
v,1 = p

(0)
v,2 = ϵ, we can determine BP threshold of

the RA code ensemble by

ϵBPRA , sup{ϵ ∈ [0, 1] : p(l)
v (ϵ)

l→∞−−−→ 0} (2.27)
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Figure 2.5: The erasure probability messages passing on protograph of RA code ensemble.

where p
(l)
v = {p(l)v,1, p

(l)
v,2}. 2

2.2.2 Spatially Coupled Code Ensembles

By using spatial coupling technique mentioned in Section 1.3, one can structure a kind of

capacity-approaching channel codes, called spatially coupled codes [13]. Now, with spatially

coupled LDPC (SC-LDPC) code ensembles, for example, let us present the spatial coupling

technique.

The SC-LDPC code ensembles are obtained by associating the protographs of L iden-

tical LDPC code ensembles, base code ensembles. For the sake of simplicity, we introduce

(dv, tdv)-regular LDPC as base code ensembles and corresponding SC-LDPC code ensem-

bles, denoted by L(dv, tdv, L), where t is integer and t ≥ 2. Figure 2.6(a) shows L = 12

protographs of (3, 6)-regular LDPC ensembles, and Figure 2.6(b) shows the protograph of

SC-LDPC ensemble L(3, 6, L = 12). The dv edges emitted from variable nodes in the

(dv, tdv)-protograph i are reconnected to check nodes in the protographs i to i + dv − 1,

27



28 2.2. Spatial Coupling of Bipartite Graph Codes

Figure 2.6: (a) L(= 12) copies of protograph (3, 6)-LDPC code ensemble, (b) the protograph

of SC-LDPC code ensemble L(3, 6, L = 12).

where i = 0, 1, ..., 11. There are dv − 1 additional check nodes to guarantee all edges are

connected. The rate of L(dv, tdv, L) is

R =

(
1− 1

t

)
− dv − 1

tL
. (2.28)

When L ≫ dv, R ≈ 1− 1/t.

The exact BP threshold of L(dv, tdc, L) can be determined by DE analysis similar to

that in Example 2.4. However, the DE update of L(dv, tdc, L) is run on many different edges

so that their equations are complicated. Therefore, we also demonstrate a random version

of spatially coupled ensemble that have simpler DE equations [13].

Consider the more general (dv, dc)-regular LDPC ensemble. Randomly couple L copies
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of its protograph. The dv edges emitted from variable nodes in the protograph i are randomly

reconnected to check nodes in the protographs i to i + w − 1, where i = 0, 1, ..., L − 1 and

dv ≤ w < L. The random version of the SC-LDPC ensembles are denoted by L(dv, dc, L, w).

With random connection, there are w − 1 possible additional check nodes to guarantee all

edges are connected. The rate of L(dv, dc, L, w) is [13]

R =

(
1− dv

dc

)
− dv

dc
·
w + 1− 2

∑w
i=0(

i
w
)dc

L
. (2.29)

When L ≫ w, R ≈ 1− dv/dc.

For DE of L(dv, dc, L, w) ensembles, all of the pdf s of messages passing into certain

variable and check nodes are processed with their average. On BEC, let pi be the erasure

probability message emitted from a variable node in the i-th coupling position. At the l-th

round iteration, the DE update equation is given by [13]

p
(l)
i = ϵ

1− 1

w

w−1∑
j=0

(
1− 1

w

w−1∑
k=0

pi+j−k(l − 1)

)dc−1
dv−1

. (2.30)

By updating (2.30) with pi = ϵ for i = 0, 1, ..., L − 1 and pi = 0 for otherwise, the BP

threshold of L(dv, dc, L, w) can be determine. Specially, one can calculate the BP threshold

of L(dv, dc, L, w = dv) as an approximate result of L(dv, dc, L).

S. Kudekar et al. [13] proven that, when L is large, the BP threshold of L(dv, dc, L, w)

approaches to Shannon limit of (dv, dc)-regular LDPC ensemble. In fact, when L is large,

the most coupling positions of L(dv, dc, L, w) are (dv, dc)-regular LDPC ensemble except a

few positions at two terminals (see Figure 2.6(b)).

Figure 2.7 shows an erasure probability distribution diagram of SC-LDPC ensemble
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Figure 2.7: Erasure probability distribution diagram of SC-LDPC ensemble L(dv, dc, L, w)

after l round iterations.

L(dv, dc, L, w) after l round iterations in the process of DE. In the diagram, we see that the

erasure probabilities at two terminals first converge to 0. This is because the lower check

node degrees at two terminals provide more powerful decoding capability. And then, those

positions with lower erasure probability will help their neighbouring positions to decline

erasure probabilities. This chaining process will improve global decoding capability.

Compared with L(dv, dc, L, w) ensemble, their uncoupled version (dv, dc)-regular en-

semble has the worse decoding performance. Consider the DE of (dv, dc)-regular ensemble.

Without effect of two terminals, the erasure probability output from variable node may stop

at a non-zero fixed point (middle positions in Figure 2.7) when channel noise parameter ϵ is

same.
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2.3 Generalized Graph-Based Code Ensembles

In the previous description, we review bipartite graph code ensembles and their constructions

based on protograph. In fact, the concept of protograph can be extended to more general

case. In other word, besides variable and check nodes, other types node constraints are

possible. In this section, we introduce a concept of convolutional code node.

2.3.1 Realization Graph of Convolutional Codes

The convolutional codes were invented by P. Elias in 1955 [4]. A convolutional encoder is a

linear convolution processor with transfer matrix G(D) [2]. Let input information sequence

be u ∈ {0, 1}K . We denote u by polynomial form

u(D) = u0 + u1D + u2D
2 + ...+ uK−1D

K−1.

Then the output sequence polynomial

v(D) = u(D)G(D). (2.31)

Specifically, Figure 2.8 shows realization diagram of a kind of frequently used convo-

lution function

g(D) =
a(D)

b(D)
=

a0 + a1D + a2D
2 + ...+ amD

m

1 + b1D + b2D2 + ...+ bmDm
,

where a = (a0, a1, ..., am) ∈ {0, 1}m+1, b = (b1, b2, ..., bm) ∈ {0, 1}m, and integer m is memory

order. The squares with D are m-bit registers. For simplicity, a(D) and b(D) usually are
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Figure 2.8: The realization of convolution function g(D) = a(D)/b(D).

described by octal form. For example, g(D) = D+1
D3+D2+1

is also denoted by (3/15)octal or more

simple form (3/15) [2].

Example 2.5 Consider transfer matrix G(D) = [1, 1+D2

1+D+D2 ] that leads to a systematic con-

volutional code with rate 1/2. Its encoder is shown in Figure 2.9(a).

A convolutional code also can represented by a trellis chart [22]. The trellis chart

representation is shown in Figure 2.9(b). In trellis chart, filled squares are states of registers.

Let s0, s1, s2, and s3 are states ‘00’, ‘01’, ‘10’, and ‘11’, respectively. The edges represent

state transfers (see Figure 2.9(b)). The numbers on edges denote input/output bits. For

example, when the state of encoder is s2 = ‘10’, an input information bit ‘1’ transfer the

state to s1 = ‘01’ and leads an output parity bit ‘0’.

Figure 2.9(c) shows coding realization graph [23] when input information sequence

u = {101}. In Figure 2.9(c), the squares with T are trellis nodes, the filled circles are

variable nodes. We see that the output sequence v = {101 110}. If we terminate the state
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Figure 2.9: (a) The encoder, (b) trellis chart representation, and (c) coding realization graph

of systematic convolutional code G(D) = [1, 1+D2

1+D+D2 ].

to s0 = ‘00’, there are 4 additional parity bits ‘01 11’. 2

To decode convolutional codes, the bit-wise a posteriori probability (APP) decoding

criterion is given by

ûk = argmax
uk

Pr(uk|y) (2.32)

where y is received sequence. Under the criterion, a BCJR algorithm is a frequently used

decoding method [24]. Similar to BP decoding, BCJR decoder pass the belief messages

of variable nodes and possible states on coding realization graph (like Figure 2.9(c)). The

belief message passing of trellis nodes is based on corresponding trellis chart [2]. Through

BCJR decoder, the extrinsic or decision information of all message and parity nodes can be

calculated. For brevity’s sake, we omit the details of BCJR decoder.
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Figure 2.10: (a) An example of generalized protograph with rate-1 convolutional code nodes

and (b) its realization graph with M = 3.

2.3.2 Generalized Graph-Based Code Ensembles: An Example

Based on above introduction of convolutional codes, we add a new type of nodes, convolu-

tional code nodes, to generalize protograph. By this generalized protograph, we can obtain

more degree of freedom to structure a code ensemble.

Figure 2.10 shows an example of generalized protograph and its coding realization

graph with rate-1 convolutional code constraint nodes. The generalized protograph is usually

called factor graph, too. In the generalized protograph, the squares with C are convolutional

code nodes. One can analyze the BP threshold on Figure 2.10(a), and makes an encoding and

decoding of a code realization on Figure 2.10(b). Note that, when we determine BP threshold,

the convolutional code constraint nodes should be considered as a whole to calculate extrinsic
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information by BCJR decoding.

In the previous sections, we introduced the closed equations of variable and check

nodes’ calculation during DE or EXIT analysis. Unfortunately, the update equation of

analytic expression is difficult to derive. For DE or EXIT analysis to convolutional code

node, the Monte Carlo method is usually employed [25]. The numerical computation method

is based on BCJR decoder. By an a priori information IA, one can build an enough long

a priori belief message sequence with Monte Carlo method. Run BCJR decoder with the

built sequence, an output extrinsic belief message sequence can be obtained. By the output

sequence, one can build extrinsic information IE.

2.4 Summary

In this chapter, we introduced elements of graph-based codes. As main example, bipartite

graph codes (LDPC codes) and their iterative decoding and ensemble decoding analysis are

described. We also introduced a structure method of graph-based codes, spatial coupling.

The chaining decoding process of spatially coupled codes provides more powerful decoding

capability than conventional codes. Finally, we given a concept of generalized graph-based

codes by introducing convolutional codes and their coding realization graph.
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Chapter 3

Spatially Coupled

Repeater-Combiner-Convolutional

Codes

In this chapter, we propose a kind of spatially coupled serially-concatenated codes: spatially

coupled repeater-combiner-convolutional (SC-RCC) codes. For the SC-RCC codes, we also

analyze their theoretical iterative decoding performance and simulate their code realizations

in point-to-point communication systems.
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3.1 Introduction

Spatially coupled codes are obtained by connecting multiple identical base codes. For ex-

ample, block low-density parity-check (LDPC) codes [26]. It has been demonstrated that

the belief propagation (BP) threshold of a spatially coupled code ensemble asymptotically

achieves the maximum a posteriori probability (MAP) threshold of the corresponding base

code [13] [14]. The threshold saturation of spatially coupled codes has attracted a great deal

of attention over the past few years.

While researchers have focused intensely on spatially coupled LDPC (SC-LDPC)

codes, relatively little effort has been focused on how to couple serial concatenated codes. A

serial concatenated code consists of an outer component code and an inner code [27]. Each

of the two components can be block or convolutional codes, and proper component codes

may improve the overall decoding performance. In particular, a convolutional inner code

with infinite impulse response (IIR) is desirable since it ensures an interleaving gain [25].

The direct extension of SC-LDPC codes to spatially coupled concatenated codes is

straightforward. The spatial coupling operation may involve one or both of the outer and

inner component codes. Coupling convolutional-convolutional concatenated codes was at-

tempted in [28]. By coupling both component codes of multiple base codes, the spatially

coupled convolutional-convolutional concatenated codes asymptotically achieve MAP thresh-

olds of their base code.

To structure spatially coupled serial concatenated codes, two efforts were made to
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couple block-convolutional concatenated codes in which only the block outer codes are cou-

pled. In [29], the base code is repeat-accumulate (RA) code, i.e., a block code (specifically,

a repetition code followed by a combiner) concatenated with an accumulator. The coupled

versions are called spatially coupled RA (SC-RA) codes. In [30], the base code is obtained by

concatenating a block LDPC code with an RA code. Although both coupled codes [29] [30]

provide BP thresholds near to the Shannon limits, they may be optimized by extending their

accumulator to IIR convolutional codes.

In this chapter, we further investigate spatially coupled block-convolutional concate-

nated codes by proposing a form of spatially coupled repeater-combiner-convolutional (SC-

RCC) codes. We begin with a base code that consists of the outer block LDPC code,

repetition code (repeater) followed by a single-parity code (combiner), and inner code of

a convolutional code. After copying the base code multiple times, we simply connect the

outputs of the repetition codes to the inputs of several adjacent single-parity codes, while

preserving unchanged the inputs and outputs of the convolutional inner code. Compared

with conventional SC-LDPC and SC-LDPC-RA codes, in our coding scheme, the simple

outer component code confirms simple encoding implementation. Compared with conven-

tional SC-RA codes, the diverse construction of the convolutional component code provides

more designation space to improve decoding performance. Notably, when the convolutional

component code is chosen as a two-state IIR convolutional code accumulator, our code is

reduced to a conventional SC-RA code.

We employed extrinsic information transfer (EXIT) functions to analyze the BP
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thresholds of our proposed codes over additive white Gaussian noise channel (AWGNC).

The numerical results show that the proposed codes provide BP thresholds and bit error

rate (BER) performance closer to the corresponding Shannon limits than conventional SC-

RA and SC-LDPC codes. In particular, when the rate is about 0.5, the proposed codes with

a code length of 15628 have BER of 10−5 at Eb/N0 of 1.13 dB, which is less than 1 dB away

from the Shannon limit. This code length may therefore satisfy the practical requirements

of communication systems.

3.2 Construction of SC-RCC Codes

We propose a kind of spatially coupled repeater-combiner-convolutional (SC-RCC) codes

with a systematic block-convolutional concatenated base code.

Before proceeding further, let us explain the base codes, denoted by B(q, C). As shown

in Figure 3.1(a), µ ∈ {0, 1}M is an information bit vector. Each input bit of a q-repeater is

repeatedly output q times: q ≥ 3. Through interleaver Π1, we get α ∈ {0, 1}qM . For a q-

combiner, every q input bit is mapped into one output bit that is the modulo-2 sum of those

q input bits. Through interleaver Π2, β ∈ {0, 1}M is input into an encoder of convolutional

code C with rate RC = M/N . The output parity bit vector is ν ∈ {0, 1}N . Vectors µ and ν

are transmitted to the channel. Note that, as investigated previously [25], the base codes are

actually enhanced RA codes by replacing the accumulator of the RA code with a stronger

convolutional code.
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Base codes B(q, C) are also described by a factor graph in Figure 3.1(b). The filled

circle, square, and square with a sign C are the equation constraint (EC), single-parity

constraint (SPC), and convolutional code constraint (CCC), which correspond to the q-

repeater, q-combiner, and convolutional code in Figure 3.1(a), respectively. An edge between

two constraints is an intermediate variable. In fact, each intermediate variable follows an

interleave operation, which is not illustrated in the factor graph for brevity’s sake [13] [29].

An edge connected to only one constraint is a channel variable. The left and right channel

variables correspond to the information and parity parts of a transmitted word, respectively.

We can now describe the proposed SC-RCC codes denoted by S(q, L, C). To structure

an SC-RCC code, we copy the factor graph of B(q, C) by L times. Then, we reconnect only

those edges between the ECs and SPCs, while preserving unchanged the input and output

of the CCCs. Specifically, for an EC at the i-th position, 0 ≤ i ≤ L− 1, we connect the τ -th

edge, 0 ≤ τ ≤ q − 1, to the SPC at the (i+ τ)-th position and thus obtain the factor graph

of S(q, L, C) in Figure 3.1(c). For the purpose of spatial coupling, it should be noted that

q ≥ 3. Here, the larger the value of q, the larger the number of edges and thus the higher

the decoding complexity. Furthermore, to maintain compact representation, the interleavers

are not illustrated in Figure 3.1(c), too.

In Figure 3.1(c), there are q−1 additional SPCs and CCCs at positions L to L+q−2.

The factor graph has L and L+q−1 channel variables of information and parity, respectively.

Let M be the size of the information bit vector corresponding to each channel variable. The
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Figure 3.1: (a) Encoder and (b) factor graph of concatenated code B(q, C), and (c) factor

graph of SC-RCC code S(q, L, C) with q = 3.

rate of S(q, L, C) is given by

R =
LM

LM + (L+ q − 1)N
≈ RC

RC + 1
(3.1)

when L ≫ q.

To decode the proposed code, we apply a BP algorithm to the corresponding factor

graph. During the decoding process, the ECs and SPCs are decoded by a sum-product
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algorithm and the CCCs are decoded by a BCJR algorithm.

Note that the proposed SC-RCC codes are an extension of the SC-RA codes [29]. By

extending the accumulator into the convolutional code, we achieve much more design freedom

for improving decoding performance. On the other hand, the proposed codes follow the cou-

pling construction of SC-RA codes. Thus, our codes have simpler encoding implementation

than SC-LDPC [13] and SC-LDPC-RA codes [30].

3.3 Iterative Decoding Analysis

In this section, we use EXIT function analysis [17] to determine the BP thresholds of SC-RCC

code ensembles over AWGNC.

In order to simply analysis, similarly to [13], we modify the factor graph of Fig-

ure 3.1(c) by randomizing the edge connections: each of q state variable edges from the EC

at position i is uniformly and independently connected to one of the SPCs from position i to

i+w− 1, where w ≤ L. We denote by S(q, L, C, w) the randomized version of our proposed

codes. With this randomization, we can calculate the extrinsic information of each EC and

each SPC by averaging a priori information. This kind of randomization is usually employed

to assess the iterative decoding performance of the non-randomized ensemble [13] [29]. We

also use the BP threshold worked out from S(q, L, C, w) to approximate the BP threshold of
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Figure 3.2: The message passing at the i-th coupled position of S(q, L, C, w).

S(q, L, C). Due to the randomness of the connection, the rate of S(q, L, C, w) becomes [13]

R =
LRC

LRC +
(
L+ w + 1− 2

∑w
i=0(

i
w
)q
) . (3.2)

Figure 3.2 shows the l-th round message update at position i of the factor graph of

S(q, L, C, w). Let Ich be channel information. Let I
(l)
eq [i], I

(l)
sp [i], I

(l)
A [i], and I

(l)
E [i] be extrinsic

information transferred from EC to SPC, SPC to EC, SPC to CCC, and CCC to SPC,

respectively.

The EXIT functions of EC, SPC, and CCC are denoted by f , g, and λ, respectively.

By averaging a priori information, the extrinsic information in S(q, L, C, w) are given by

I(l)eq [i] = f
(
Ich,

1

w

w−1∑
j=0

I(l)sp [i+ j], q − 1
)

(3.3)

I(l)sp [i] = g
(
I
(l−1)
E [i],

1

w

w−1∑
k=0

I(l−1)
eq [i− k], q − 1

)
(3.4)

I
(l)
A [i] = g

(
1,

1

w

w−1∑
k=0

I(l−1)
eq [i− k], q

)
(3.5)

I
(l)
E [i] = λ

(
Ich, I

(l)
A [i]

)
. (3.6)

EXIT function f(I1, I2, d) (or g(I1, I2, d)) above is given by a local decoding of variable

(or check) node, where there are a single input of a priori information I1 and d identical
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inputs of a priori information I2. From the computation of EXIT functions and the J-

function [25], we have

f(I1, I2, d) = J
(√

[(J−1(I1)]2 + d · [(J−1(I2)]2
)

g(I1, I2, d) = 1− J
(√

[J−1(1− I1)]2 + d · [J−1(1− I2)]2
)
.

Moreover, since CCC is decoded by the BCJR algorithm, the EXIT function λ can be

determined by the Monte Carlo method [25].

By eliminating variables I
(l)
sp and I

(l)
A in (3.3) to (3.6), we obtain more concise update

equations:

I(l)eq [i] = f

(
Ich,

1

w

w−1∑
j=0

g
(
I
(l−1)
E [i+ j],

1

w

w−1∑
k=0

I(l−1)
eq [i+ j − k], q − 1

)
, q − 1

)
(3.7)

I
(l)
E [i+ j] = λ

(
Ich, g

(
1,

1

w

w−1∑
k=0

I(l−1)
eq [i+ j − k], q

))
. (3.8)

By updating (3.7) and (3.8) with initial values I
(0)
eq [i] = Ich, 0 ≤ i ≤ L−1, i ∈ Z, we determine

the BP threshold of the mutual information of SC-RCC code ensemble S(q, L, C, w). The

BP threshold is defined by

IBP(q, L, C, w) , inf{Ich ∈ [0, 1] : I(l)
eq

l→∞−−−→ 1} (3.9)

where I(l)
eq = (I

(l)
eq [0], ..., I

(l)
eq [L−1]). From IBP, we can obtain the corresponding BP threshold

of channel noise standard deviation by

σBP =
2

J−1(IBP)
. (3.10)
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We can obtain the corresponding BP threshold of Eb/N0 by

(Eb/N0)BP = 10 log10

(
1

2R(σBP)2

)
. (3.11)

Note that equations (3.7) and (3.8) also can be employed to calculate the BP thresh-

olds of the proposed codes over a binary erasure channel (BEC), where EXIT functions f ,

g, and λ should be given over a BEC.

3.4 Numerical Results

3.4.1 BP thresholds

In this subsection, we update (3.7) and (3.8) to approximately calculate the BP thresholds

of Eb/N0 of the proposed SC-RCC codes S(q, L, C). We set the parameter at w = q. The

maximum iteration number of EXIT function evolutions is set at 50000 and the breakout

condition of each 1− I
(l)
eq [i] is set at 10−4. Rate-1 recursive convolutional component codes,

such as C(5/7), are employed, where (5/7) is generator polynomial 1+D2

1+D+D2 in octal form.

Each rate versus the BP threshold performance is obtained by connecting the threshold-rate

points of coupled lengths L = 5, 10, 15, 20, ..., 150.

Focusing on the effect of the various 4-state convolutional component codes C(1/7),

C(3/7), and C(5/7) in Figure 3.3, we see that, at the same rate, the proposed codes with

C(5/7) have BP thresholds nearest to the Shannon limits, with q = 4 being slightly better

than q = 3. As stated in Sec. II, for a given L, the smallest q (= 3) gives the lowest decoding

46



Chapter 3. Spatially Coupled Repeater-Combiner-Convolutional Codes 47

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.43

0.44

0.45

0.46

0.47

0.48

0.49

0.50

0.51

L = 10

20

15

15

10

L = 5

L = 10

15

L = 5

20

15

 Shannon limit
 q=3, (5/7)
 q=4, (5/7)
 q=3, (1/7)
 q=4, (1/7)
 q=3, (3/7)
 q=4, (3/7)

10

LMAX = 150

 

 

Ra
te

Threshold (Eb/No)

L

Figure 3.3: Rate versus threshold curves of SC-RCC codes with 4-state convolutional com-

ponent codes C(1/7), C(3/7), and C(5/7).

complexity.

Let us consider the effect of L for a given q, e.g., from the curve with q = 3 and

C(5/7) in Figure 3.3. In the large L region (L > 10), with an increase of L, rates tend to

be 0.5 (base code’s rate), while BP thresholds are near the corresponding Shannon limits.

This is so-called threshold saturation phenomenon of spatial coupling [2]. In the small L

region (L ≤ 10), unfortunately we do not observe this phenomenon. In fact, BP thresholds

decrease as L (and thus rates) decrease. This is consistent with conventional (uncouple)

coding theory.

Then, looking at the proposed codes with the 8-state convolutional component codes

C(13/15), C(15/17), and C(11/17) in Figure 3.4, we see that there is little difference in
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Figure 3.4: Rate versus threshold curves of SC-RCC codes with 8-state convolutional com-

ponent codes C(13/15), C(15/17), and C(11/17).

performance among the codes in the high-rate region.

Furthermore, we compare the performance among the proposed codes with 2-, 4-,

and 8-state convolutional component codes in Figure 3.5. It is apparent that 4-state C(5/7)

provides obvious improvement over the 2-state C(1/3) with q = 3, 4, and is slightly worse

than that with q = 6 at the same rate. For a given L, C(5/7) provides higher rates and

better BP thresholds than C(1/3) with q = 6. It should be pointed out that the codes with

C(1/3) are actually the conventional SC-RA codes of [29]. Moreover, although 4-state C(5/7)

results in slightly worse performance than 8-state C(15/17), the former has a smaller state

number and thus less decoding complexity.

In Figure 3.5, we also compare the proposed codes with conventional SC-LDPC codes
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Figure 3.5: Rate versus threshold curves of the SC-RCC codes S(3, L, C, 3) with C(5/7)

and C(15/17), SC-RA codes S(q, L, C(1/3), w = q) with q = 3, 4, 6, and SC-LDPC codes

L(dl, dr, L, w = dl) with (dl, dr) = (3, 6) and (4, 8).
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L(dl, dr, L, w) [13], where dl and dr are variable and check node degrees. At the same

rate, the proposed codes perform obviously better than L(3, 6, L, 3) and slightly better than

L(4, 8, L, 4). For a given L, the proposed codes have an obviously higher rate than the

SC-LDPC codes.

Interestingly, it is known that, over a BEC, the BP thresholds of spatially coupled

parallel and serial turbo codes with convolutional component codes C(1, 5/7) are 0.4689 and

0.4969, respectively [28]. At the same rate, our code S(3, L, C(5/7), 3) with a large L (e.g.,

1000) has an erasure probability BP threshold of 0.4972, which is better than the parallel

one.

3.4.2 Simulation of Finite Length Codes

In this section, we simulate the error correction performance of finite length codes. The

simulated codes are obtained by random interleavers. We set the maximum iteration number

of decoders at 150 for the SC-RCC and SC-RA codes, and 1000 for the SC-LDPC codes.

The coupled length L is fixed at 30.

Figure 3.6 shows the BER versus Eb/N0 curves of SC-RCC codes S(3, 30, C(5/7))

with rate near 0.5 and code length n = 15628, 21828, and 28028. We see that the code with

n = 15628 has a BER of 10−5 at Eb/N0 of 1.13 dB.

In Figure 3.6, we also compare the proposed codes and conventional codes at almost

the same code length (about 28000) and rate (near 0.5). The approximate BP thresholds of

50



Chapter 3. Spatially Coupled Repeater-Combiner-Convolutional Codes 51

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
10-6

10-5

10-4

10-3

10-2

10-1

100

BP thresholds

WER       BER
         SC-RCC, q=3, (5/7), M=250, n=15628, R=0.4799
         SC-RCC, q=3, (5/7), M=350, n=21828, R=0.4810
         SC-RCC, q=3, (5/7), M=450, n=28028, R=0.4817

                  SC-RA, q=3, (1/3), M=450, n=27964, R=0.4838
         SC-RA, q=6, (1/3), M=430, n=28020, R=0.4615

                  SC-LDPC, dl=3. dr=6, M=470, n=28200, R=0.4667

 

 

BE
R 

/ W
ER

Eb/No

Shannon limit 
of rate 0.5

Figure 3.6: Error correction performance of SC-RCC codes S(3, 30, C(5/7)) with n =

15628, 21828, and 28028, SC-RA codes S(3, 30, C(1/3)) with n = 27964 and S(6, 30, C(1/3))

with n = 28020, and SC-LDPC code L(dl = 3, dr = 6, L = 30) with n = 28200.

51



52 3.5. Summary

the related codes provided in Sec. IV are also shown in Figure 3.6. We see that proposed

code S(3, 30, C(5/7)) obviously performs better BER than the SC-RA code with q = 3, 6

and SC-LDPC code L(3, 6, 30). In addition, the consistent results are reflected in the word

error ratio (WER) comparison. We do not illustrate the WER curves of the SC-RA code

with q = 3 and SC-LDPC code in Fig. 3.6 due to their obviously inferior performance.

3.5 Summary

We proposed SC-RCC codes that are obtained by coupling the outer codes of multiple block-

convolutional concatenated codes. The proposed codes have flexible designation space and

achieve better BP threshold and error correction performance than several related conven-

tional codes. In particular, the proposed codes with a rate of about 0.5 and length of 15628

have a BER of 105 at Eb/N0 of 1.13 dB that is less than 1dB away from the Shannon limit

on an AWGN channel. Future work should investigate the optimization of interleavers for

further improvement of the decoding performance.
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SC-RCC Codes on Multiple Access

Channels

In this chapter, we use SC-RCC codes on Gaussian multiple access channels (MAC), and

investigate their error correction performance in theory and code realizations.

4.1 Introduction to MAC Coding

Before proceeding, let us review the model of Gaussian MAC with 2 users. As shown in

Figure 4.1(a), the MAC is defined by

Y = h1X1 + h2X2 + Z (4.1)
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Figure 4.1: (a) 2-user Gaussian MAC model, and (b) system diagram of coding on Gaussian

MAC.

The channel inputs X1, X2 ∈ {±1} are uniformly distributed random variables. The vari-

ation in channel gains h1, h2 ∈ [0,∞) can be explained by power constraint parameters.

(Strictly speaking, h1 =
√
P1 and h2 =

√
P2, where P1 and P2 are actual power gains of dif-

ferent users. For brevity’s sake, we adopt parameters h1 and h2 to depict MAC model [31].)

The noise Z is a random variable that follows Gaussian distribution N (0, 1).

Assume that the messages of two users are encoded by the same error correction codes

with rate R. The system diagram of coding on 2-user Gaussian MAC is shown in Figure
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4.1(b). Let vectors µ1 and µ2 be messages of users 1 and 2, respectively. Encoding messages

of users 1 and 2, we have codewords c1 and c2. Through mapping of {0, 1} → {+1,−1},

we get symbol vectors x1 and x2. Transmitting x1 and x2 on Gaussian MAC with power

constraints h1 and h2, the received signal vector is y = h1x1+h2x2+z, where each component

of noise vector z is a realization of Z. At receiver, a decoder is used to rebuild messages of

users 1 and 2.

Given a power constraint tuples (h1, h2), if the receiver can decode successfully, the

power constraint tuples is achievable. With coding rate R, the MAC achievable power

region (MAC-APR) is defined as the set of all achievable power tuples (h1, h2), given by the

equations

R ≤ c(h2
1) (4.2)

R ≤ c(h2
2) (4.3)

2R ≤ c(h2
1 + h2

2) (4.4)

where c(x) = 0.5 log(1 + x) is the capacity function AWGNC [32]. A diagram of MAC-APR

boundary is shown in Figure 4.2. The upper right area of the boundary is MAC-APR.

For specific code in MAC communication system, under BP decoding, there exist a

BP achievable power region (BP-APR) [31]. The transmitted signal with arbitrary power

tuples (h1, h2) in BP-APR can be error freely decoded. In the research of coding for MAC,

the BP-APR is determined by calculating the BP thresholds for all possible power tuples.

Firstly, let us look at what a common code performs. For a common code, the diagram
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Figure 4.2: The boundary MAC-APR and boundaries of BP-APR for different codes.

of BP-APR boundary is illustrated in Figure 4.2. There are two types of important points

on the BP-APR boundary. One type is the minimum sum power points that are labelled by

blank small circles in Figure 4.2. Another type is the minimum equal power point that is

labelled by filled small circle in Figure 4.2. Compared with the BP-APR and MAC-APR,

there is a half ellipse unachievable region [33].

A typical MAC coding problem is that encode message of transmitters such that

sum power of transmission is minimum. Obviously, the problem is equivalent to selecting

coding scheme such that the minimum sum power points as near to the boundary of MAC-

APR as possible. When transmitted signals with power allocation on the minimum sum

power points, a successive cancellation decoding scheme can perfectly rebuild information of

transmitters [34]. In fact, a capacity-approaching code in single user system can guarantees
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the minimum sum power points near to the boundary of MAC-APR. However, a capacity-

approaching single user code usually has a large half ellipse unachievable region.

Anther typical MAC coding problem is based on an assumption that the transmission

powers of all transmitters are equal. Thus, the problem of minimizing sum power is equivalent

to selecting coding scheme such that the minimum equal power point as near to the boundary

of MAC-APR as possible. Figure 4.2 also diagrams the BP-APR boundary of optimized

codes for equal power point [35]. However, a optimized code with good minimum equal

power point usually has BP-APR whose most part of boundary is away form the boundary

of MAC-APR.

Whether one optimize the minimum sum power points or equal power point, there is

considerable area of MAC-APR can not be achieved by MAC coding. In practical communi-

cation, the channel gains for different transmitters often randomly vary as time. This means

that received power (h1, h2) could be located at undecodable region with a large probability.

Thus, a optimal solution to MAC coding problem is find out codes such that their BP-APR

is universally close to MAC-APR.

Spatially coupled codes are shown to universally approach MAC-APR on MAC [31]

[36]. Figure 4.2 also diagrams the BP-APR boundary of spatially coupled codes. Although

the BP-APR boundary is determined based on assumption of infinite code length, spatially

coupled codes may be the perfect solution to MAC coding problem. All we need to do is find

out good coding realization with as short code length as possible for practical communication

systems on MAC.

57



58 4.2. SC-RCC Codes on MAC

In this chapter, we focus on coding realization on Gaussian MAC. Due to excellent

finite length performance, we employ our proposed SC-RCC codes, given in previous chapter,

to encode two users’ messages and investigate the iterative detective-decoding performance.

4.2 SC-RCC Codes on MAC

Consider SC-RCC code S(q, L, C) for users 1 and 2. Figure 4.3(a) shows the factor graph of

S(3, 6, C) code at user t, t = 1, 2. The filled circles, blank squares and squares with C sign are

equation constraint (EC), single-parity constraint (SPC), and convolutional code constraint

(CCC), respectively. Review system diagram of coding on Gaussian MAC in Figure 4.1(b).

For the t-th user, the message µt, codeword ct, and symbol vector xt can be obtained by

encoding on factor graph in Figure 4.3(a).

Let µt = (µt,0,µt,1, ...,µt,L−1) be message bit vector of user t, where µt,i ∈ {0, 1}M is

message block at i-th coupling position, 0 ≤ i ≤ L − 1. Each µt,i is input into an EC that

is actually a repeater, and then is repeatedly output q times. Note that, for the purpose

of spatial coupling, it should be that q ≥ 3. Through interleavers, we get αt,iτ ∈ {0, 1}M ,

0 ≤ τ ≤ q − 1. For an SPC that is actually a combiner, all of input bit vectors are mapped

into one output bit vector that is bitwise modulo-2 sum of those input vectors. Through

interleavers, we get βt,i′ ∈ {0, 1}M , 0 ≤ i′ ≤ L+ q− 2. Each βt,i′ is input into a CCC that is

a convolutional component code C with rate RC = M/N . Then we obtain parity bit vector

νt = (νt,0,νt,1, ...,νt,L+q−2), νt,i′ ∈ {0, 1}N . Message vector µ and parity vector ν will be
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Figure 4.3: (a) Factor graph of SC-RCC code S(q = 3, L = 6, C) at user t, t = 1, 2 and (b)

illustration of the permutation and transmission of two users’ symbol vectors.
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modulated and transmitted. We get the t-th user’s codeword

ct = (µt,0,µt,1, ...,µt,L−1,νt,0,νt,1, ...,νt,L+q−2).

Through mapper of {0, 1} → {+1,−1}, we get the t-th user’s symbol vector

xt = {ut,0,ut,1, ...,ut,L−1,vt,0,vt,1, ...,vt,L+q−2}

where symbol blocks ut,i ∈ {±1}M and vt,i′ ∈ {±1}N , t = 1, 2. Therefore, the receiver

obtains a superimposed signal vector y = h1x1 + h2x2 + z, z ∈ N (0, 1)ML+N(L+q−1).

For guarantee excellent decoding performance, each user’s symbol vector should be

permuted before transmitting [37]. However, using an uniform permutation to each xt

will lead to chaining decoding effect of spatial coupling invalidations. Thus, we have to

respectively permute every message or parity blocks and transmit them in the same order.

Figure 4.3(b) illustrates the permutation and transmission of two users’ symbol vectors. In

Figure 4.3(b), the small grey squares are interleavers, and the squares with plus sign are

MAC constraint (MACC).

To rebuild the two users’ messages at receiver, we using a joint iterative BP detection-

decoding on the corresponding factor graph. The MACCs are processed by maximum poste-

rior probability (MAP) detection, the ECs and SPCs are processed by MAP decoding similar

to that of LDPC codes’ variable and check nodes, and the CCCs are processed by a BCJR

decoding.
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Figure 4.4: EXIT illustration of (a) MACC, (b) EC, (c) SPC, and (d) CCC.

4.3 Iterative Detection-Decoding Analysis

In this section, we employ EXIT function evolution to determine the BP threshold for SC-

RCC code ensemble over Gaussian MAC.

4.3.1 EXIT Function for Local Processing

Before analyzing proposed scheme, we first formulate the EXIT functions for the local de-

tection at MACC and the local decoding at EC, SPC, and CCC in Figure 4.3.

4.3.1.1 EXIT Function of MACC

Let ϕ denote EXIT Function of MACC. For a general local MACC, as shown in Fig.

4.4(a), extrinsic information IE depends on a priori information IA, a priori message power
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hA, and extrinsic message power h2. The EXIT function of general MACC is defined by

IE , ϕ(IA, hA, hE). (4.5)

We employ a MAP detection at MACC. The ϕ-function can be calculated by [38].

4.3.1.2 EXIT Functions of EC and SPC

Let f and g denote EXIT Functions of EC and SPC, respectively. The decoding

process of EC (or SPC) is similar to that of LDPC code’s variable (or check) node. For

a general local EC (or SPC) matching the proposed scheme, its extrinsic information IE

depends on a single a priori information I1A and d identical a priori information I2A, as

shown in Fig. 4.4(b) (or Fig. 4.4(c)). From the computation of variable and check nodes’

EXIT function, the EXIT function of the local EC and SPC are given by

IE , f(I1A, I
2
A, d) (4.6)

= J
(√

[(J−1(I1A)]
2 + d · [(J−1(I2A)]

2
)

IE , g(I1A, I
2
A, d) (4.7)

= 1− J
(√

[(J−1(1− I1A)]
2 + d · [(J−1(1− I2A)]

2
)

where the J-function is given in Section 2.
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4.3.1.3 EXIT Functions of CCC

A local CCC is actually a convolutional code. It is decoded by a BCJR decoder. As

a component processor matching the proposed scheme, the BCJR decoder can rebuild both

the message part (input of CCC) and parity part (output of CCC). Let a priori information

of the two parts are ImA and IpA, corresponding extrinsic information are ImE and IpE. Their

relation is illustrated in Fig. 4.4(d). The EXIT functions of the two parts are defined by

ImE , λ(ImA , IpA) (4.8)

IpE , ρ(ImA , IpA) (4.9)

where the function λ and ρ can be determined by the Monte Carlo method.

4.3.2 BP Thresholds

In order to simply analysis, we employ randomized ensemble S(q, L, C, w) to approximately

determine the BP threshold of the iterative detection-decoding system of MAC.

Fig. 4.5 shows the factor graph representation of joint iterative detection-decoding

analysis at the i-th coupling position. Note that, although the interleavers are not illustrated

in Fig. 4.5 for brevity’s sake, we analyze ensemble’s BP threshold for all possible interleaver

permutations illustrated in Fig. 4.3.

For ease of description, we label MACC sets connected to ECs and CCCs by V1 and
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Figure 4.5: The Factor graph representation of joint iterative detection-decoding analysis at

the l-th coupling position.

V5, respectively. Besides, we label EC, SPC, and CCC sets by V2, V3, and V4, respectively.

Let It,uv[i] be the t-th user’s extrinsic information passed from a constraint in set Vu to a

constraint in set Cv at the i-th coupling position, where uv ∈ {12, 23, 34, 45, 54, 43, 32, 21}.

64



Chapter 4. SC-RCC Codes on Multiple Access Channels 65

At l-th iteration, the t-th user’s update equations of extrinsic information are given by

I
(l+1)
t,12 [i] = ϕ

(
I
(l)
t′,21[i], ht′ , ht

)
(4.10)

I
(l+1)
t,23 [i] = f

(
I
(l)
t,12[i],

1

w

w−1∑
j=0

I
(l)
t,32[i+ j], q − 1

)
(4.11)

I
(l+1)
t,34 [i] = g

(
1,

1

w

w−1∑
k=0

I
(l)
t,23[i− k], q

)
(4.12)

I
(l+1)
t,45 [i] = ρ

(
I
(l)
t,34[i], I

(l)
t,54[i]

)
(4.13)

I
(l+1)
t,54 [i] = ϕ

(
I
(l)
t′,45[i], ht′ , ht

)
(4.14)

I
(l+1)
t,43 [i] = λ

(
I
(l)
t,34[i], I

(l)
t,54[i]

)
(4.15)

I
(l+1)
t,32 [i] = g

(
I
(l)
t,43[i],

1

w

w−1∑
k=0

I
(l)
t,23[i− k], q − 1

)
(4.16)

I
(l+1)
t,21 [i] = f

(
0,

1

w

w−1∑
j=0

I
(l)
t,32[i+ j], q

)
(4.17)

where t = 1, 2 and t′ = 3− t.

By updating (4.10) to (4.17) with given (h1, h2) and initial value I
(0)
t,uv[i] = 0, we can

judge the pow constraint tuples (h1, h2) is achievable (all related I
(∞)
t,uv [i] → 1) or unachievable

(all related I
(∞)
t,uv [i] 9 1.). Then, the BP-APR can be determined.

4.4 Numerical Results

Using analysis in Section 4.3, we can determine the BP-APR of our SC-RCC codes on

Gaussian MAC. As an example, Figure 4.6 shows the BP-APR of S(3, 30, C(1/5)). We see

that the BP-APR is universally close to MAC-APR with rate-0.5 coding.
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Figure 4.6: BP-APR of S(3, 30, C(1/5)) on Gaussian MAC.

Observe the BP-APR of spatially coupled codes in Figure 4.2 again. In fact, the

boundary lines paralleled with coordinate axes reflect the BP decoding performance of codes

on single user AWGNC. Since we have shown the SC-RCC codes are capacity-approaching

on AWGNC in previous chapter, we just need to investigate SC-RCC codes transmitted with

equal power point. Let h = h1 = h2. The fact that required smallest power h with error-free

decoding is close to theoretical limit of h∗ can mean that the investigated code universally

approach MAC-APR. With the definition of MAC-APR, we have h∗ =
√
[24R − 1]/2.

Figures 4.7 and 4.8 show the BER versus h iterative detection-decoding performance

of SC-RCC codes with M = 100, 200 and code length n = 6200, 12400, respectively.

We see that convolutional component code C(1/5) provides better decoding perfor-
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mance than C(1/3), C(1/7) and C(5/7) when BER is set as 10−5. Compared with conventional

SC-LDPC code L(dl = 3, dr = 6, L = 30), the SC-RCC code S(3, 30, C(1/5)) also performs

better.

From Figures 4.7 and 4.8, we also see the S(3, 30, C(1/5)) has decoding error floor

when BER is about 10−6. The error floor performance better than that of S(3, 30, C(1/3)) and

worse than these of other considered codes. This is because the codeword weight distribution

of S(3, 30, C(1/5)) is better than S(3, 30, C(1/3)) and worse than other codes [2].

4.5 Summary

In this chapter, we employed our proposed SC-RCC codes on Gaussian MAC. We analyzed

the BP-APR and simulated several code realizations. Numerical results show that the BP-

APR of SC-RCC codes universally approaches to MAC-APR and S(3, 30, C(1/5)) provides

better BER performance than conventional SC-LDPC codes at equal power case.
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Figure 4.7: BER versus h of the SC-RCC codes S(3, 30, C(1/3)), S(3, 30, C(1/5)),

S(3, 30, C(1/7)), and S(3, 30, C(5/7)) with M = 100, and SC-LDPC codes L(dl = 3, dr =

6, L = 30) with M = 104.
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Figure 4.8: BER versus h of the SC-RCC codes S(3, 30, C(1/3)), S(3, 30, C(1/5)),

S(3, 30, C(1/7)), and S(3, 30, C(5/7)) with M = 200, and SC-LDPC codes L(dl = 3, dr =

6, L = 30) with M = 207.
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Chapter 5

Rate-Compatible RA-Extended

SC-LDPC Codes

In this chapter, we propose a kind of rate-compatible spatially coupled serially-concatenated

codes: RA-extended SC-LDPC codes. The RA-extended SC-LDPC codes are obtained by

coupling rate-compatible base codes. We analyze the potential thresholds of base code

ensembles, and use them to predict the BP threshold performance of the proposed code

ensembles.

5.1 Introduction

The rate-compatible code family consists of a set of member codes with different rates, in

which the higher rate member codes are embedded into the lower rate member codes and thus

71



72 5.1. Introduction

all member codes can be processed by a single encoder and a single decoder [39]. There are

two ways to generate rate-compatible code family. One is by puncturing, i.e. starting from

a low rate code and then selectly removing some bits to obtain higher rate codes. Another

is by extending, i.e. starting from a high rate code and then adding some bits accompanied

with new parity-check relations to obtain lower rate codes.

A rate-compatible code family is good in the sense that all member codes are capacity-

approaching. Since low-density parity-check (LDPC) codes can approach their correspond-

ing capacities via degree distribution optimization, they are mostly used to construct rate-

compatible codes by puncturing [40]- [42] or extending [42]- [44]. However, it is difficult to

guarantee that all of the member codes are capacity-approaching, since degree distribution

optimization of member codes is constrained due to their embedded construction.

Another approach for constructing good rate-compatible LDPC codes is spatial cou-

pling. Without degree distribution optimization, a capacity-approaching code is obtained

by coupling multiple identical non-optimized base codes [13], [14], [26], [50], [51]. Naturally,

one can obtain a good family of rate-compatible spatially coupled LDPC (RC-SC-LDPC)

codes by coupling multiple identical copies of each member code in a given rate-compatible

base code family.

One scheme for constructing RC-SC-LDPC codes is to use spatial coupling to a family

of punctured rate-compatible LDPC base codes, which are generated by randomly puncturing

a regular LDPC code [52], [53]. The RC-SC-LDPC code ensembles achieve a wide and

continuous rate range, and their belief propagation (BP) thresholds depend on that of the
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lowest rate member code ensemble. When the lowest rate member code ensemble is capacity-

approaching, all of the member code ensembles have BP thresholds close to Shannon limits.

Like others punctured schemes, all the member codes in the rate-compatible code family

employ a single decoder, and their decoding complexities are the same although some bits

in higher rate member codes are removed randomly.

Another scheme is to use spatial coupling to a family of extended rate-compatible

LDPC base codes, which are recursively formed by using three-edge-type (TET) graph ex-

tension [54]. More precisely, starting from (J,K)-regular LDPC code, where J and K are

variable and check node degrees, a (J+i+1, K)-regular LDPC code is obtained by extending

the graph of (J+i,K)-regular LDPC code. This provides a family of rate-compatible regular

LDPC base codes with the rate increment 1/K. Through spatial coupling, the RC-SC-LDPC

codes are obtained, and they have BP thresholds near to Shannon limits at finite discrete

rates. Although the larger K can provides the more discrete rates, the larger K also leads to

the larger BP threshold gap to Shannon limit in low rate region for a given coupling length.

In this chapter, we propose an alternative scheme to construct RC-SC-LDPC codes

based on repeat-accumulate (RA) extension, called RA-extended SC-LDPC codes. The rate-

compatible base codes, called RA-extended LDPC base codes, for coupling are obtained by

extending the variable nodes of a regular LDPC code with a simple and parameter-adjustable

RA operation. More precisely, we repeatedly accumulate LDPC code’s variable nodes by

q+1 times to obtain q+1 blocks of accumulated parity bits. The whole accumulated bits in

the first q blocks and α-fractional accumulated bits in the last block are transmitted. The
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different q and α provide different base codes that are rate-compatible. By coupling multiple

identical copies of the above RA-extended LDPC base codes, we obtain the RA-extended

SC-LDPC codes. The RA-extended SC-LDPC codes with different parameters q and α are

rate-compatible and achieve arbitrary continuous rates. Although all of the member codes

in the proposed RA-extended SC-LDPC code family are decoded by a single decoder with

the largest qT , a high rate member code with smaller qt has lower decoding cost than that

with qT , since qT − qt accumulated blocks of parity bits are not computed. This is different

from conventional randomly punctured schemes.

To investigate iterative decoding performance of the proposed RA-extended SC-LDPC

codes, we calculate potential thresholds of the RA-extended LDPC base code ensembles over

binary erasure channel (BEC). The potential thresholds are capacity-approaching, which

predict the proposed RA-extended SC-LDPC code ensembles are capacity-approaching. This

fact is confirmed by BP thresholds of the proposed code ensembles with density evolution

(DE) analysis. Compared with the conventional TET-extended scheme, the proposed rate-

compatible codes have better BP threshold performance in low rate region.

5.2 Construction of RA-Extended SC-LDPC Codes

We propose a kind of rate-compatible codes called RA-extended SC-LDPC codes. The

proposed codes are obtained by spatially coupling multiple identical base codes.

Before proceeding, we describe the base code ensemble, i.e. RA-extended LDPC

74



Chapter 5. Rate-Compatible RA-Extended SC-LDPC Codes 75

Figure 5.1: (a) Protograph of B(J,K, q, α) and Tanner graph of α-extension, and (b) con-

nection diagram at i-th coupling position of C(J,K, L,w, q, α)
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code ensemble B(J,K, q, α). Figure 5.1(a) illustrate protograph of B(J = 3, K = 6, q, α).

The filled circles are variable nodes to be transmitted to channel, and theblank squares are

check nodes. RA-extended LDPC code ensemble’s protograph consists of (J,K)-part and

(q + α)-extension part. The (J,K)-part represents a standard (J,K)-regular LDPC code

ensemble. The (q + α)-extension part represents a RA coding that repeatedly accumulate

LDPC code’s variable nodes by q+1 times to obtain q+1 blocks of accumulated parity bits.

All accumulated bits in the first q blocks and α-fractional accumulated bits in the last block

are transmitted. Here, q is a nonnegative integer, and α ∈ [0, 1) is a real number. The rate

of B(J,K, q, α) is given by

RB =
K − J

K(1 + q + α)
. (5.1)

The details of (q + α)-extension can be described by Tanner graph, which can be

obtained by copying its corresponding protograph M (M is a positive integer) times and

permuting the edges that connect corresponding variable nodes and check nodes in all copies

[20]. A (q + α)-extension includes q 1-extensions and a single α-extension. In Figure 5.1(a),

we also illustrate Tanner graph of α-extension, in which the blank circles are non-transmitted

variable nodes. Let N be the number of variable nodes in (J,K)-part’s Tanner graph. For

example, N = 2M for B(3, 6, q, α). We first permute the N variable nodes by πR and

accumulate the permuted ones. Then, through another permutation operation πA to the N

accumulated nodes, we transmit the first αN ones (filled circles) and do not transmit the rest

(1 − α)N ones (blank circles). Notably, when α = 1, the α-extension is called 1-extension

specially.
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After describing base code ensemble B(J,K, q, α), we are now ready to introduce its

corresponding coupled version, the RA-extended SC-LDPC code ensemble C(J,K, L,w, q, α).

To construct C(J,K,L,w, q, α), we copy the protograph of B(J,K, q, α) by L times and

place them at L positions. Then we associate those (J,K)-parts of adjacent positions, while

preserve (q + α)-extension part of each position unchanged. More precisely, each of J edges

proceeding from a variable node in (J,K)-part at position i, 0 ≤ i ≤ L− 1, is uniformly and

independently connected to one of check nodes in (J,K)-parts from position i to i+ w − 1,

where coupling width w < L. Accordingly, each of K edges proceeding from a check node in

(J,K)-part at position i is connected to one of variable nodes in (J,K)-parts from position

i−w+1 to i. Figure 5.1(b) illustrate diagram of edge connections at coupling position i. For

obtaining termination effect, check nodes are allowed to exist at positions L,L+1, ..., L+w−2.

The proposed codes can also be seen as an SC-LDPC mother code C0(J,K,L,w, 0, 0)

with (q + α)-extensions at every coupling positions. The mother code has rate [13]

R0 = (1− J

K
)− J

K
·
w + 1− 2

∑w
i=0(

i
w
)K

L
. (5.2)

With (q + α)-extension, the RA-extended SC-LDPC code ensemble C(J,K,L,w, q, α) has

rate

R =
R0

q + α + 1
(5.3)

and achieves an arbitrary rate over (0, R0] by adjusting RA-extension parameters q and α.

Note that, when J is fixed, the larger K provides the larger R0 and thus the wider achievable

rate interval.
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A family of the proposed codes C(J,K, L,w, q, α) with various q and α have rate com-

patibility. For nonnegative integer qt and αt ∈ [0, 1), let qt−1 + αt−1 < qt + αt, t = 1, 2, ..., T .

Given mother code C0(J,K, L,w, q0, α0) a priori, we obtain code C1(J,K, L,w, q1, α1) by ad-

justing encoding operation such that (q1+α1)-extension is met. Recursively, we obtain code

Ct from Ct−1, t = 1, 2, ..., T , and the codes of set {C0, C1, ..., CT} are rate-compatible.

In the rate-compatible code family {C0, C1, ..., CT}, all member codes can be decoded

by a single decoder of CT . But a member code Ct, qt < qT , has lower decoding complexity

than the lowest rate member code CT , since qT −qt 1-extensions at each coupling position are

not computed. This is different from conventional punctured rate-compatible codes, e.g. [52],

where all member codes have the same decoding complexity due to randomly puncturing.

5.3 Iterative Decoding Analysis

In this section, we analyze the potential threshold of base code ensemble and BP threshold

of the proposed RA-extended SC-LDPC ensemble over BEC with erasure probability ϵ.

5.3.1 Potential Threshold Analysis

We briefly review the general concept of potential function and threshold.

Definition 1 ( [50]) A single iterative system (f, g) with parameter ϵ ∈ [0, 1] that is defined
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by

x(l+1) , f
(
g
(
x(l)
)
, ϵ
)

(5.4)

where f : [0, 1] × [0, 1] → [0, 1] is strictly increasing in both arguments for y, ϵ ∈ (0, 1], and

g : [0, 1] → [0, 1] satisfies that its first-order derivative g′(x) > 0 for x ∈ (0, 1). 2

Definition 2 ( [50]) The potential function U(x, ϵ) and potential threshold ϵ∗ of a single

iterative system are defined by

U
(
x, ϵ
)
,
∫ x

0

(
z − f

(
g(z), ϵ

))
· g′
(
z
)
dz (5.5)

and

ϵ∗ , sup{ ϵ ∈ [0, 1] | min
x∈[0,1]

U
(
x, ϵ
)
≥ 0}. (5.6)

2

Corresponding to the single iterative system (f, g), a spatially coupled iterative system

(f, g, L, w) is defined by

x
(l+1)
i , 1

w

w−1∑
k=0

f
( 1
w

w−1∑
j=0

g
(
x
(l)
i+j−k

)
, ϵ
)

(5.7)

where x
(0)
i = ϵ for i = 0, 1, ..., L−1 and x

(0)
i = 0 for else i, and w < L. By [50, Theorem 1], if

ϵ < ϵ∗ and w is sufficiently large, then spatially coupled system (f, g, L, w) can converge to

x = 0 for finite iterations. It is shown that several base code ensembles’ DE can be described

as (f, g), and their potential thresholds is the maximum a posterior (MAP) thresholds [50].
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Thus, BP thresholds of corresponding coupled ensembles asymptotically saturate to potential

thresholds (or MAP thresholds) of these base ensembles [13].

Based on above discussion, we conjecture that, for B(J,K, q, α), its potential thresh-

old is also MAP threshold. If the potential threshold is close to Shannon limit, then we

predict that the proposed RA-extended ensemble C(J,K, L,w, q, α) has BP threshold close

to Shannon limt. We calculate the potential threshold next.

5.3.2 Potential Thresholds of Base Code Ensembles

For the base code ensemble B(J,K, q, α), we calculate its potential threshold ϵ∗B by build-

ing its DE update as a single iterative system (f, g) with corresponding f -function and

g-function.

Let us first observe the protograph in Figure 5.1(a). It is straightforward that if we

merge the variable nodes and their (q+α)-extension into modified (extension-variable) nodes,

we can give the single iterative system description of B(J,K, q, α), following that of (J,K)-

regular LDPC code ensemble [50]. For analysis’ sake, we draw out a virtual copy of each

variable node in (J,K)-part for (q + α)-extension. As shown in Figure 5.2, the blank circles

are the virtual copies that do not change any of the base code ensemble of Figure 5.1(a).

The two ensembles, represented by Figures 5.1(a) and 5.2, are equivalent.

In Figure 5.2, we label the variable node sets in (J,K)-part, 1-extensions, and α-

extension by V1, V2, and V3, respectively. Similarly, we label corresponding check node sets
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Figure 5.2: Protograph of B(J,K, q, α) with virtual copies of variable nodes in (J,K)-part

by C1, C2, and C3. We also label the virtual copy of V1 by V4. Let xuv be the erasure

probability of the message that is passed from a variable node in set Vu to a check node in

set Cv, uv ∈ {22, 33, 42, 43}. Moreover, let a, e, x, and y be the erasure probability messages

outflow from V1 to V4, V4 to V1, V1 to C1, and C1 to V1, respectively.

The (q + α)-extension with node sets {V2, C2, V3, C3, V4} forms a sub-system with

parameter ϵ, input a, and output e. We define its a posterior probability (APP) decoding

function by

e , γ(a, ϵ). (5.8)

To calculate the γ-function, we analyze the messages update in the (q + α)-extension. For
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given ϵ and a, the DE equations are given by

x
(l+1)
42 = a

(
1−

(
1− x

(l)
22

)2)q−1(
1−

(
1− x

(l)
33

)2)
(5.9)

x
(l+1)
43 = a

(
1−

(
1− x

(l)
22

)2)q
(5.10)

x
(l+1)
22 = ϵ

(
1−

(
1− x

(l)
42

)(
1− x

(l)
22

))
(5.11)

x
(l+1)
33 =

(
αϵ+ 1− α

)(
1−

(
1− x

(l)
43

)(
1− x

(l)
33

))
. (5.12)

When q > 0 and α > 0, we update equations (5.9) to (5.12) from x
(0)
42 = x

(0)
43 = a and

x
(0)
22 = x

(0)
33 = ϵ until all x

(l)
uv do not change with increasing l, uv ∈ {22, 33, 42, 43}. Let these

fixed points x
(l)
uv = x◦

uv. We have

e = γ(a, ϵ)

=
(
1−

(
1− x◦

22

)2)q(
1−

(
1− x◦

33

)2)
(5.13)

where x◦
22 and x◦

33 only depend on a and ϵ for given q and α. When q = 0 and α > 0, (5.9) and

(5.11) do not exist since 1-extensions do not exist. When q = 0 and α = 0, e = γ(a, ϵ) = 1,

since (q + α)-extension does not exist.

After working out the γ-function, we turn to DE equations of base code ensemble

B(J,K, q, α). The equations are given by

y(l) = 1−
(
1− x(l)

)K−1
(5.14)

a(l) = ϵ
(
y(l)
)J

(5.15)

e(l) = γ(a(l), ϵ) (5.16)

x(l+1) = ϵ
(
y(l)
)J−1

e(l). (5.17)
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Accordingly, the single iterative system (f, g) description is represented by

x(l+1) = f
(
g
(
x(l)
)
, ϵ
)

(5.18)

where

g(x) = 1−
(
1− x

)K−1
(5.19)

f(y, ϵ) = ϵyJ−1γ
(
ϵyJ , ϵ

)
. (5.20)

When (q+α)-extension does not exist, γ
(
ϵyJ , ϵ

)
= 1 and thus the f -function of (5.20)

become f(y, ϵ) = ϵyJ−1 that is variable node update equation of (J,K)-regular ensemble [50].

When q + α > 0, the f -function of (5.20) is update function of the modified (extension-

variable) node, in which factor γ
(
ϵyJ , ϵ

)
reflects the effect of (q+α)-extension. Numerically,

we find that γ-function is strictly increasing in y, ϵ ∈ (0, 1] for all q and α considered. This

is consistent with normal APP decoding behavior. Thus, the f -function of (5.20) satisfies

constraint in Definition 1. With (5.19) and (5.20), we can calculate potential threshold ϵ∗B

of B(J,K, q, α) by (5.6).

5.3.3 BP Thresholds of RA-Extended SC-LDPC Code Ensembles

For confirming the iterative decoding performance, we also use DE to determine BP threshold

of the proposed ensemble C(J,K, L,w, q, α). Different from base code ensemble, the message

x in Figure 5.2 will be updated at all coupling positions. Denoted by these messages on the

l-th iteration x
(l)
i , 0 ≤ i ≤ L − 1. The DE equation of C(J,K, L,w, q, α) is formed as (5.7),
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where functions g and f are given in (5.19) and (5.20), respectively. By updating of (5.7),

we can determine the BP threshold of C(J,K, L,w, q, α) by

ϵBP , sup{ϵ ∈ [0, 1] : x(l)(ϵ)
l→∞−−−→ 0} (5.21)

where vector x(l) , (x
(l)
0 , x

(l)
1 , ..., x

(l)
L−1).

5.4 Numerical Results

In this section, we give numerical results of potential thresholds of B(J,K, q, α) and BP

thresholds of C(J,K, L,w, q, α) over BEC. In the computation process of DE, we set 105 as

the maximum iteration number of the variable nodes and halt the iteration when each x
(l)
11,i

is smaller than the value of 10−7.

We first calculate potential threshold ϵ∗B of the base code ensembles. Let ϵSh be the

Shannon limit. Denote by potential gap GP , ϵSh − ϵ∗B. Figure 5.3 shows GP versus q + α

curves of B(3, K, q, α). We have the following observations.

• The investigated base code ensembles have very small potential gaps (≤ 0.053) for all

q + α.

• When q + α > 0, the smaller K, the smaller GP to Shannon limit.

By discussion in Section 5.3.1, the fact that the base code ensembles have potential

thresholds close to Shannon limits predict that the proposed RA-extended SC-LDPC code
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Figure 5.3: Potential gaps of B(3, K, q, α) and BP gaps of C(3, K, 100, 5, q, α) with K =

6, 8, 10 and 12

ensembles, i.e. the coupled version of the base code ensembles, are also capacity-approaching

when L is large, e.g. L = 100. The BP threshold gap GBP , ϵSh − ϵBP versus q + α curves of

C(3, K, 100, 5, q, α) in Fig. 5.3 verified the prediction.

Then, we turn to rate versus BP threshold performance of the proposed codes. As

mentioned in Section 5.2, a family of codes C(J,K,L,w, q, α) with various q + α are rate-

compatible. The family has infinite member codes since q + α can be arbitrary nonnegative

real number. Figure 5.4 shows curves of two code families C(3, K, 100, 5, q, α) with K = 6

and 12. We see that the code family with K = 6 has BP threshold performance nearer

to Shannon limit, and the code family with K = 12 has the wider achievable rate interval

as we stated in Section 5.2. This is a trade-off between iterative decoding performance of
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Figure 5.4: Rates versus BP thresholds of codes C(3, K, 100, 5, q, α) with K = 6 and K =

12, C ′(3, K = 12, 100, 5, q, α), and TET-extended rate-compatible code families with rate

increments 0.1 and 0.05

code family and width of achievable rate interval. In addition, at the frequently-used specific

rates, the above families’ parameters, and their BP gaps are also listed in Tables 5.1 and 5.2.

For comparison, we also illustrate the performances of the rate-compatible TET-

extended code families [54] as shown in Figure 5.4. From Figure 5.4, we see that there

is a obvious loss in BP threshold performance in low rate region when the rate increment

becomes small, e.g. from 0.1 to 0.05. On the contrary, our proposed rate-compatible families

have better iterative decoding performance in low rate region and stable performance for

whole achievable rate interval.

Remark 1: Let us turn to a modification of the α-extension with focusing on the
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Table 5.1: Rate-compatible code family of C(3, 6, 100, 5, q, α)

R q α ϵSh ϵBP GBP

0.45 0 0.0736 0.55 0.5246 0.0254

0.40 0 0.2078 0.60 0.5767 0.0233

0.35 0 0.3803 0.65 0.6266 0.0234

0.30 0 0.6104 0.70 0.6769 0.0231

0.25 0 0.9324 0.75 0.7285 0.0215

0.20 1 0.4157 0.80 0.7835 0.0165

0.15 2 0.2207 0.85 0.8330 0.0170

0.10 3 0.8313 0.90 0.8798 0.0202

0.05 8 0.6620 0.95 0.9218 0.0282
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Table 5.2: Rate-compatible code family of C(3, 12, 100, 5, q, α)

R q α ϵSh ϵBP GBP

0.7 0 0.0577 0.3 0.2797 0.0203

0.6 0 0.2339 0.4 0.3643 0.0357

0.5 0 0.4807 0.5 0.4475 0.0525

0.4 0 0.8509 0.6 0.5413 0.0587

0.3 1 0.4679 0.7 0.6665 0.0335

0.2 2 0.7018 0.8 0.7715 0.0285

0.1 6 0.4036 0.9 0.8587 0.0413

permutation πA in Figure 5.1(a). If the identity permutation matrix is chosen as πA, the

decoding complexity of the α-extension will be decreased, compared with the normal random

permutation. Obviously, the decoding complexity of the normal α-extension is equal to that

of 1-extension due to the random permutation. Thanks to the identity permutation, the

non-transmitted accumulated nodes can be removed from decoding processing. The modified

code family C ′(3, 12, 100, 5, q, α) has almost the same decoding performance in the low rate

region without much degradation in the high rate region (see Figure 5.4).
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5.5 Summary

In this chapter, we proposed a family of capacity-approaching RC-SC-LDPC codes based

on parameteradjustable RA-extension. Arbitrary rates were achieved by simply adjusting

RA-extension parameters q and α. The potential thresholds were also calculated. The fact

that the potential thresholds are close to the Shannon limits means that the proposed codes

are capacity-approaching. Compared with conventional TET-extended RC-SC-LDPC code

ensembles, the proposed code ensembles achieve continuous rates and perform better in the

low rate region.
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Chapter 6

Concluding Remarks

The spatial coupling is a new technique to structure capacity-approaching codes by associ-

ating multiple identical base codes. Without complicated optimization, we employ serially-

concatenated codes, which include an outer code and an inner code, as base codes to structure

more flexible spatially coupled codes. Since spatial coupling technique guarantees coupled

codes to be capacity-approaching, the two component codes in base codes can be selected

for some practical factors, such as simple encoding, effective decoding and rate adjustability,

and so on.

The first kind of spatially coupled serially-concatenated codes is called SC-RCC codes.

The SC-RCC codes are obtained by spatially coupling multiple identical base codes that

consist of repeater-combiner outer code and convolutional inner code. In base code, both

outer and inner component codes have simple encoder realization. With APP decoder, the
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convolutional inner codes with IIR can provide more effective decoding. Thus, the SC-RCC

codes also have simple encoder and effective decoder. The decoding analysis with infinite

code length shows that the SC-RCC codes can be perfectly decoded Eb/N0 that are nearer

to theoretical limit than conventional spatially coupled codes on AWGNC. With finite code

length realizations, the SC-RCC codes perform better than conventional codes. In particular,

when the rate is about 0.5, the proposed codes with a code length of 15628 have BER of

10−5 at Eb/N0 of 1.13 dB, which is less than 1 dB away from the Shannon limit. This code

length may therefore satisfy the practical requirements of communication systems.

The effect that use SC-RCC codes on Gaussian MAC is investigated. Since SC-RCC

codes with finite code length have better decoding performance than conventional codes, we

predict they also may be an excellent practical coding schemes on Gaussian MAC. We have

analysed iterative detection-decoding with infinite code length and simulated code realization

with finite code length . The numerical results show that the SC-RCC codes perform better

than conventional spatially coupled codes on Gaussian MAC.

The second kind of spatially coupled serially-concatenated codes is called RA-extended

SC-LDPC codes. The design is for rate-compatible communication problem. In some prac-

tical system, rate-compatible codes are usually used to adapt changing channel condition

with various available coding rates. A family of rate-compatible codes consists of a set of

member codes with different rates, in which the higher rate member codes are embedded into

the lower rate codes, and all the member codes can be processed by a single encoder and a

single decoder. The design problem of rate-compatible is to guarantee all of these embedded
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member codes are capacity-approaching. The RA-extended SC-LDPC codes are obtained by

coupling multiple identical serially-concatenated base codes, which consist of LDPC outer

code and a simple rate-compatible repeat-accumulate (RA) inner code. Since the concate-

nated LDPC-RA base codes also can be considered as LDPC codes with RA-extension in

graph representation, the spatially coupled codes are called RA-extended SC-LDPC codes.

The base codes provide simple encoder construction and rate compatibility. Spatial coupling

technique make all member codes are capacity-approaching. A potential threshold analysis

is used to determine base codes potential thresholds. The fact that the potential thresholds

with various rates are near to theoretical limits means the RA-extended SC-LDPC codes

with various rate have decoding performance near to theoretical limit. This is confirmed by

analysis results of the coupled codes. Compared with conventional rate-compatible coding

schemes based on spatial coupling, our codes achieve arbitrary rates in a wide continuous

real number interval and perform better than conventional rate-compatible SC-LDPC codes

in the low rate region.
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