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Abstract

Asymmetric dissimilarity data exists and is obserable in a variety of fields such a market-

ing and psychology. Given asymmetric dissimilarity data, it is important to interpret such

asymmetries between objects. A visualization method for asymmetric relations, asym-

metric Multidimensional scaling (AMDS) is often used to interpret asymmetric relations

between objects; however, in some situations, it becomes far too difficult to visually inter-

pret the asymmetric relations from the results of AMDS since the number of parameters in

AMDS is larger than that in ordinal MDS. To overcome this problem, we propose simulta-

neous methods of AMDS and clustering based on concepts of parsimonious models. Using

our proposed methods, asymmetries between clusters are represented in low-dimensions

rather than between objects. Results of this simultaneous approach provide us with asym-

metric information with a smaller number of parameters; however various AMDS methods

have been proposed. In short, various ways of representing asymmetries exist. Therefore,

when one simultaneous method is proposed, AMDS model should be selected. In this

study, we present from two distinct perspectives, simultaneous methods of AMDS and

clustering. Furthermore, we note how these methods are characterized by various de-

compositions of the respective objective functions, as well as relations for feasible areas

between these objective functions.

First, from Unfolding type AMDS, we propose two types of simultaneous methods,

namely constrained Unfolding and the constrained slide-vector model. Unfolding type

AMDS consists of two types of models, one that applies Unfolding (Coombs, 1950) to

asymmetric dissimilarity data, the other method being the slide-vector model (Zieltman

and Heiser, 1993), which is a parsimonious model of Unfolding. In Unfolding type AMDS,

each object is represented by two sets of coordinates to describe asymmetries in low-

dimensions. Then, in the simultaneous methods based on Unfolding type AMDS, each

cluster is also represented by two sets of coordinates in low-dimensions. These methods

can be formulated as a special case of cluster difference scaling (CDS) (Heiser, 1993).

Furthermore, because the models are formulated in the same way the constrained slide-

vector model can be considered a generalization of the slide-vector model, constrained

Unfolding, and Unfolding from the perspective of these feasible areas.

Second, we propose two types of simultaneous methods based on the hill-climbing model

(Borg and Groenen, 2005) and the radius model (Okada and Imaizumi, 1987); these meth-

ods are the constrained hill-climbing model and the constrained radius model, respectively.

These methods have the same properties for the decomposition of these objective func-

tions into symmetric and skew-symmetric parts. From the decomposition, the symmetric



part of these objective functions becomes the objective function of CDS. Therefore, these

objective functions can be decomposed into CDS and skew-symmetric parts, and can be

considered a simultaneous method of CDS and AMDS for skew-symmetries. Then, just

as with CDS, the symmetric and skew-symmetric parts of these objective functions can

be further decomposed, respectively, by using the Sokal and Michener dissimilarity (Sokal

and Michener, 1958): as such the meaning of these objective functions then becomes clear.

Consequently, we show that these proposed methods inherit properties of CDS and AMDS.
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Chapter 1

Introduction

Asymmetric dissimilarity data exist in various fields, such as marketing and psy-

chology. Examples of such data are provided in Table. 1.1 (Bell and Lattin,

1998; Borg and Groenen, 2005) and Table. 1.2 (Foa, 1971). For example, The

row and column in Table. 1.1 represent cola brands and, in this paper, they are

called “objects”. The element (c, d) in Table. 1.1 indicates the frequency of switch-

ing from brand c to brand d. Therefore, these frequencies can be interpreted as the

similarities between these brands. In this case, frequencies of switching from brand

c to brand d are not necessarily the same as those of switching from brand d to

brand c. This relation is interpreted as an asymmetric relation. For details on the

analysis of such brand switching data, one can refer to Okada and Tsurumi (2012).

Table 1.1: Example of brand switching data for 15 different cola brands (Bell and Lattin,

1998; Borg and Groenen, 2005).

To

From a. b. c. d. e. f. g. h. i. j. k. l. m. n. o.

a. 41 11 2 8 0 2 15 8 14 0 9 11 0 6 2

b. 9 341 32 3 4 8 55 78 31 1 63 16 17 14 4

c. 3 27 160 15 8 2 18 15 32 2 31 13 2 12 7

d. 7 3 17 89 2 3 16 8 4 0 3 27 1 6 3

e. 1 7 6 2 119 6 20 8 19 0 16 15 2 21 7

f. 4 4 2 1 4 73 37 8 12 3 8 33 3 36 6

g. 14 53 16 16 22 38 675 98 56 10 48 187 33 172 20

h. 5 74 14 12 7 5 108 716 123 26 92 31 11 27 18

i. 14 35 36 3 15 11 56 120 422 20 86 82 29 38 10

j. 0 5 0 1 3 3 6 30 5 12 17 6 4 14 1

k. 13 70 29 6 12 5 49 87 92 19 471 40 11 34 8

l. 8 18 9 26 19 29 204 26 91 5 29 663 24 217 51

m. 2 14 4 3 1 2 35 13 22 1 20 19 364 23 1

n. 7 10 13 7 19 34 171 30 31 10 36 230 22 440 41

o. 3 3 7 3 10 9 26 22 11 2 4 48 2 35 215
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Table. 1.2 is constructed through the data obtained from psychological exper-

iments (Foa, 1971). The objects are the “resources” for social exchange and the

elements are interpreted as asymmetric similarities between the “resources”.

Table 1.2: Social exchange of resources (Foa, 1971)

Taking

Giving Love Status Information Money Goods Service

Love 65 10 0 2 23

Status 62 20 10 2 5

Information 17 34 11 24 14

Money 0 16 8 60 16

Goods 6 5 21 55 14

Service 41 18 7 16 18

This implies that asymmetric dissimilarity is the dissimilarity in which the dissim-

ilarity from object i to object j is not necessarily the same as the dissimilarity from

object j to object i. When analyzing asymmetric dissimilarity data, it is important

to understand the asymmetries between objects within the asymmetric data. For

an example in Table. 1.1, if the asymmetries of brand switching data are analyzed,

customer loyalties and competitive relation between these brands can be interpreted.

In Table. 1.1, similarity from brand k. to a. is larger than that from brand a. to

k.. From this fact, we can interpret that customers who were purchasing brand

a. tend to switch to brand k. and that there is are competitive relation between

brands a. and k.. One approach for analysis is through asymmetric multidimen-

sional scaling (AMDS). In AMDS, asymmetric dissimilarity data is the input, and

the coordinates of objects in low-dimensions with the relations of the asymmetries

between such objects are provided as the output. This implies that the purpose

of AMDS is to visualize the asymmetric relation among objects through the esti-

mated coordinates of objects in low-dimensions. Several types of AMDS methods

have been proposed (Borg and Groenen, 2005; Chino, 2012; Saito and Yadohisa,

2005). In particular, in Chino (2012), AMDS is divided into two methods, namely

descriptive AMDS and inferential AMDS (e.g. Okada, 2011; Saburi and Chino,

2008) methods; these methods satisfy the narrower definition of AMDS described

by (Chino, 2012). Descriptive AMDS can be further divided into three types, i.e.,

the augmented distance model, non-distance model, and extended distance model,

which have been described by Chino and Okada (1996) and Chino (1997). In the

augmented distance model, certain types of parameters for asymmetries are added

to the ordinal distance model(Chino and Okada, 1996). The augmented distance

model has been adopted by Borg and Groenen (2005), Gower (1977), Krumhansl

(1978), Okada and Imaizumi (1984, 1987, 1997), Saito (1991), Saito and Takeda

(1990), Tobler (1976), Weeks and Bentler (1982), Yadohisa and Niki (1999), Young
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(1975), and Zielman and Heiser (1993). The non-metric distance model is a model

in which the distance measure is not used; however indices such as the inner product

are used. Finally, the extended distance model is a model measured in Minkowski

space. In this study, we focus on the augmented AMDS model.

However, there are many parameters in AMDS because the asymmetric relations

between objects are described as low-dimensional data. Therefore, in some sit-

uations, it becomes difficult to interpret these asymmetric relations between the

objects even if the AMDS model is applied to such asymmetric dissimilarity data.

Therefore, representatives of the asymmetries between objects are required for easily

interpreting the asymmetries using a small number of parameters. To overcome this

problem, cluster difference scaling (CDS) (Heiser, 1993; Heiser and Groenen, 1997;

Kiers, et al., 2005; Vera et al. 2008), which is the simultaneous analysis of k-means

and MDS, can be used as a useful tool for detecting features of symmetric dissimi-

larity data through clusters. In CDS, coordinates of the clusters and not of objects

are estimated; however, CDS is unable to consider and describe the asymmetries

between clusters.

In this study, we propose new methods for simultaneously performing AMDS and

clustering. Our proposed methods can represent the asymmetries between clusters;

however, because several types of AMDS models have been proposed, there exist

many representations of asymmetries between clusters. Therefore, we propose four

types of methods for simultaneously performing AMDS and clustering; these four ap-

proaches can divided into two groups, namely, methods that are based on unfolding

and methods that are based on the decomposition of symmetric and skew-symmetric

parts. The four proposed methods adopt the approaches of CDS, primarily the es-

timation approach and the decomposition of the objective functions (Nocedal and

Wright, 1999), to interpret the features within and between clusters.

For the first group, i.e., methods based on unfolding, each object is represented

in the form of two coordinates. Concretely, constrained unfolding and constrained

slide-vector models are proposed as a part of the first group, which are based on un-

folding (Gower, 1977) and the slide-vector model (De Leeuw and Heiser, 1982;Zielt-

man and Heiser, 1993), respectively. Constrained unfolding is a method for simul-

taneous unfolding and clustering of asymmetric dissimilarity data. Each cluster is

represented by two coordinates that represent the asymmetries, which can be used

to interpret the asymmetries between clusters. However, because the number of

clusters is large, it becomes difficult to understand the asymmetric relationship.

Given this problem of large number of objects, we also propose a constrained slide-

vector model, which is a parsimonious constrained unfolding model. The constrained

slide-vector model can represent the asymmetries between clusters using a smaller

number of parameters than those of the constrained unfolding model. Furthermore,

in some situations, the constrained slide-vector model can be used to perform both

unfolding and constrained unfolding. Therefore, the constrained slide-vector model

3



can be considered as a generalized unfolding model.

For the second group, i.e., methods based on the decomposition of symmetric

and skew-symmetric parts, the objective functions can be decomposed into sym-

metric and skew-symmetric parts. Concretely, a constrained hill-climbing model

and a constrained radius model are proposed as a part of the second group, which

are based on the hill-climbing model (Borg and Groenen, 2005) and radius model

(Okada and Imaizumi, 1987), respectively. For these models, the skew-symmetric

part can be further divided into parts that are within and between the clusters

using the method described by Vicari(2014). Therefore, a detailed interpretation

of the objective function can be performed. Here, the constrained hill-climbing

model involves simultaneous application of the hill-climbing model and clustering

of the asymmetric dissimilarity data. The parameters of the hill-climbing model

are represented in the same manner as those of the slide-vector model; however,

the interpretation is different. Concretely, the skew-symmetric part of the asym-

metric dissimilarity data is represented by one vector, called the slope-vector. In

the hill-climbing model, it is easy to interpret the asymmetric part because the ob-

jective function of the hill-climbing model can be decomposed into symmetric and

skew-symmetric parts. Hence, the interpretation easier in this model than in the

slide-vector model due to the skew-symmetric part. Therefore, the constrained hill-

climbing model can represent the asymmetries between clusters while including the

advantages of the hill-climbing model. Similarly, the constrained radius model is

the simultaneous implementation of the radius model and clustering for asymmetric

dissimilarity data based on Tanioka and Yadohisa (2016). The parameters of the

radius model are very simple, and the objective function can be decomposed into

symmetric and skew-symmetric parts in the same manner as that in the hill-climbing

model. In particular, data corresponding to the symmetric parts can be represented

as the coordinates of the objects and the skew-symmetric parts can be represented

by the radii of the objects. In the constrained radius model, the coordinates and

radii of clusters, and not those of objects, are estimated to represent the asymmetries

between the clusters.

The reminder of this paper is organized as follows. In Chapter 2, some nota-

tions used in this paper are defined. In Chapter 3, the definitions for AMDS are

introduced, including the decomposition of asymmetric dissimilarity data as pre-

liminaries. Furthermore, unfolding, the slide-vector model, the hill-climbing model,

and the radius model are described as a part of previous studies on AMDS. Finally,

CDS, which is key in this paper, is described. In Chapter 4, the models and ob-

jective functions of constrained unfolding and constrained slide-vector models are

described. Next, these algorithms based on the majorizing function are described.

Furthermore, we show the relationships between the constrained slide-vector model

and unfolding, the constrained slide-vector model and constrained unfolding, and

the constrained slide-vector model and slide-vector model. In Chapter 5, AMDS
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methods, based on the decomposition of symmetric and skew-symmetric parts, are

described. We also describe the models and objective functions of the constrained

hill-climbing and constrained radius models. Next, as properties of these methods,

we prove several ways to decompose these methods. We also show the relationships

between the hill-climbing and constrained hill-climbing models, as well as the radius

and constrained radius models. In Chapter 6, we provide the results of our pro-

posed methods through numerical simulations and the effectiveness of the proposed

methods. In Chapter 7, a real example of constrained unfolding, the constrained

slide-vector model, the constrained hill-climbing model, and the constrained radius

model are shown. In Chapter 8, conclusion and remarks are described.
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Chapter 2

Notations

In this chpater, mathematical symbols are shown before describing the contents.

First, asymmetric dissimilarity data, symmetric part of asymmetric dissimilarity

data and skew-symmetric dissimilarity data are defined as inputs of MDS. Second, as

outputs of AMDS, coordinates of objects, clusters of objects, coordinates of clusters,

slide-vectors, a slope vector, length of radii, clusters of these centroids are shown.

Third, symbols related to objective function of AMDS models are defined such as

distance matrieces, weights matrices and zero matrices.

2.1 Symbols related to inputs of AMDS

In this section, asymmetric dissimilarity data, symmetric dissimilarity data and

symmetric parts and skew-symmetric parts of the asymmetric dissimilarity data are

defined.

First, asymmetric dissimilarity data is defined.

Definition 2.1.1 Asymmetric dissimilarity data

Let I = {1, 2, · · · , n} and J = {1, 2, · · · , n} be an index sets of objects, respec-

tively, where n ∈ N is the number of objects. The function ∆ is defined as follows:

∆ : I × J 7→ R†
n×n

where × indicates Cartesian product and Rn×n
† is a set of n by n non-negative matri-

ces but these diagonal elements are 0. Here, elements of I and J are called as row

objects and column objects, respectively although I = J is assumed in the definition

of the asymmetric dissimilarity data. The range of ∆ is described as follows:

∆ = ∆(I × J ).

Then, the asymmetric dissimilarity data is defined as follows:

∆ = (δij), δij ∈ R+ (i ̸= j; i, j = 1, 2, · · · , n)

6



where ¬(∀i, j = 1, 2, · · · , n)(δij = δji), (∀i = 1, 2, · · · , n)(δii = 0), n is the number

of objects and R+ is a set of non-negative real numbers. If δij > δst for some objects

i, j, s and t, the dissimilarity from object i to j is considered as larger than the

dissimilarity from object s to t.

Next, symmetric dissimilarity data is defined.

Definition 2.1.2 Symmetric dissimilarity data

Symmetric dissimilarity data is defined as follows:

Ξ = (ξij), ξij ∈ R+ (i ̸= j; i, j = 1, 2, · · · , n)

where Ξ = ΞT . If ξij > ξst for some objects i, j, s and t, the dissimilarity between

object i and j is considered as larger than the dissimilarity between object s and t.

Next, symmetric part and skew-symmetric part of asymmetric dissimilarity data

are defined.

Definition 2.1.3 Symmetric part and skew-symmetric part of asymmetric dissim-

ilarity data

Given any asymmetric dissimilarity data ∆, symmetric part of ∆, S and skew-

symmetric part of ∆, A are defined as follows:

S =
1

2
(∆+∆T ) and A =

1

2
(∆−∆T ),

where ·T indicate transposition of matrix.

2.2 Symbols related to outputs of AMDS

In this section, symbols used as outputs of AMDS are defined. First, coordinates

of row objects and column objects are defined. Second, cluster of row objects and

column objects are shown and indicator matrices of objects are defined. In addition,

coordinates of cluster centorids of row objects and column objects are defined. Fi-

nally, parameters for asymmetries, cluster of centroids of clusters for column objects

and indicator matrix for these centroids are shown.

First, cooridnates of objects are defined.

Definition 2.2.1 Coordinates of row objects and column objects

Given sets of index for objects I and J , coordinates of row objects i ∈ I are

defined as follows:

X = (x1,x2, · · · ,xn)
T = (xit) xit ∈ R (i = 1, 2, · · · , n; t = 1, 2, · · · , d)

and coordinates of column objects j ∈ J are defined as follows:

Y = (y1,y2, · · · ,yn)
T = (yjt) yjt ∈ R (j = 1, 2, · · · , n; t = 1, 2, · · · , d)

where d is the number of dimensions.

7



X and Y are estimated by some kinds of AMDS to visualize the relation between

objects. In many cases, d is set as 2 or 3 to visualize these relations.

Next, clusters of objects are defined.

Definition 2.2.2 Clusters of objects

Given a set of objects I, clusters of these objects Co ⊂ I (o = 1, 2, · · · , k) are

defined as so that it satisfies

(∀Co, Cℓ ⊂ I)(o ̸= ℓ)(Co ∩ Cℓ = ϕ) (2.1)

k∪
o=1

Co = I. (2.2)

where k ( ≤ n ) is the number of clusters.

Next, indicator matrix of objects is defined.

Definition 2.2.3 Indicator matrix of clusters for objects

Given clusters of objects Co (o = 1, 2, · · · , k), indicator matrix of clusters for

objects is defined as follows:

U = (uio) uio =

{
1 (i ∈ Co)

0 (others)
(i = 1, 2, · · · , n; o = 1, 2, · · · , k).

Next, coordinates of object clusters are defined.

Definition 2.2.4 Coordinates of clusters for row objects and column objects

I = J is assumed. Coordinates of clusters for row objects are defined as follows;

X∗ = (x∗
1,x

∗
2, · · · ,x∗

k)
T = (x∗ot) x∗ot ∈ R (o = 1, 2, · · · , k; t = 1, 2, · · · , d)

and coordinates of clusters of column objects are defined as follows:

Y ∗ = (y∗
1,y

∗
2, · · · ,y∗

k)
T = (y∗ot) y∗ot ∈ R (o = 1, 2, · · · , k; t = 1, 2, · · · , d)

where d is the number of dimensions.

X∗ and Y ∗ are used in simultaneous methods of clustering and AMDS based on

Unfolding.

Next, three kinds of asymmetric parameters such as slide-vector (De Leeuw and

Heiser, 1982; Zieltman and Heiser, 1993), slope-vector (Borg and Groenen, 2005)

and radii (Okada and Imaizumi, 1987) are shown, although the ways of interpreting

these parameters are not described here.

Definition 2.2.5 Notations of slide-vectors

Notations of slide-vectors are defined as follows:

Z = (z1, z2, · · · , zm)
T = (zst) zst ∈ R zst ∈ R (s = 1, 2, · · · ,m; t = 1, 2, · · · , d).

where m ( ≤ k ≤ n ) is the number of slide-vectors.
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Originally, slide-vector model is defined by m = 1. However, in this paper, the

concept of slide-vectos is extended to those of m ≥ 1. In the slide-vector model, Y

is described by using X and Z and asymmetries are described based on Y , X and

Z.

Next, the slope vector is defined.

Definition 2.2.6 Notations of slope-vector

Notations of the slope vector is defined as follows:

v = (vt) vt ∈ R vt ∈ R (t = 1, 2, · · · , d).

The slope vector is used in hill-climbing model. In hill-climbing model, the esti-

mated slope vector represents skew-symmetric part of asymmetric dissimilarity data

based on non-distance model (Chino, 2012).

Finally, radii for objects and clusters are defined.

Definition 2.2.7 Notations of radii for these centorids

Notations of radii for objects are defined as follows:

r = (r1.r2, · · · , rn) ri ≥ 0 (i = 1, 2, · · · , n),

and notation of radii for clusters are defined as follows:

r∗ = (r∗1, r
∗
2, · · · , r∗m) rf ≥ 0 (f = 1, 2, · · · ,m)

where m ( ≤ k ≤ n ) is the number of clusters.

As the same way of hill-climbing model, in the radius model, difference between

radii represents skew-symmetric part of asymmetric dissimilarity data.

Next, clusters of centroids are defined. When skew-symmetric matrix of asym-

metric dissimilarity data

Definition 2.2.8 clusters of centroids for object cluster

Given a set of clusters for objects K = {1, , 2, · · · , k}, clusters of these centorids

C∗
f ⊂ K (f = 1, 2, · · · ,m(≤ k)) are defined as satisfying both Eq. (2.3) and Eq.

(2.4).

(∀C∗
f , C

∗
q ⊂ K)(f ̸= q)(C∗

f ∩ C∗
q = ϕ) (2.3)

m∪
f=1

C∗
f = K (2.4)

where m is the number of clusters for centroids.

These clusters of centroids are used to represent skew-symmetries by the small

number of parameters in the proposed method.

Next, indicator matrix for centroids is defined.
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Definition 2.2.9 Indicator matrix of centroids

Given clusters of centroids C∗
f (f = 1, 2, · · · ,m), indicator matrix of centroids is

defined as follows:

Ψ = (ψsf ) ψsf =

{
1 (s ∈ C∗

f )

0 (others)
(s = 1, 2, · · · , k; f = 1, 2, · · · ,m).

2.3 Symbols related to the objective function of AMDS

In this section, distance matrices, weights matrices, zero matrices and Hadmard

product are defined.

First, distance matrices are defined.

Definition 2.3.1 Distance matrix

Given coordinates of objects X, the distance matrix for X is defined as follows:

D(X) = (dij(X)) dij(X) = ∥xi − xj∥ (i, j = 1, 2, · · · , n).

where ∥x∥ =
√∑d

t=1 x
2
t is defined as norm for arbitrary vector x = (xt) xt ∈

R (t = 1, 2, · · · , d).
As the same way of this, given two coordinates of objects X and Y , distance

matrix for X and Y is defined as follows:

D(X,Y ) = (dij(X,Y )) dij(X,Y ) = ∥xi − yj∥ (i, j = 1, 2, · · · , n).

These distance matrices are used when dissimilarity matrix is approximated by

coordinates of objects.

Next, weight matrix for dissimilarities is defined. The weight matrix is used in

the objective function of Unfolding to describe the objective function based on the

unified framework as the same way of oridinal MDS.

Definition 2.3.2 Weight matrix for dissimilarities

Given dissimilarity matrix ∆ = (δij) (i, j = 1, 2, · · · , n), weight matrix for dis-

similarities is defined as follows:

W † =

[
On W

W T On

]
= (wi†j†) wi†j† ∈ {0, 1} (i†, j† = 1, 2, · · · , 2n)

where W = 1n1
T
n , 1n = (1, 1, · · · , 1) is a vector with a length of n and On = (0) is

n by n matrix.

The definition of weight matrix for dissimilarities is used for AMDS based on Un-

folding when the kind of AMDS is formulated based on unified framework.

Finally, Hadmard product is defined.
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Definition 2.3.3 Hadmard product

Given n by p matrices, B = (bit) and C = (cit) (i = 1, 2, · · · , n; t = 1, 2, · · · , p),
Hadmard product is defined as follows:

B ⊙C = (bitcit) (i = 1, 2, · · · , n; t = 1, 2, · · · , p).
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Chapter 3

Asymmetric MDS and CDS

In this chapter, we provide definitions and properties related to AMDS(Borg and

Groenen, 2005;Chino, 2012;Saito and Yadohisa, 2005) and CDS (Heiser, 1993; Heiser

and Groenen, 1997), as preliminaries for introducing our proposed methods. First,

we introduce decompositions of asymmetric dissimilarity data, and show relations

betweem Frobenius norm and an asymmetric dissimilarity data (e.g. Borg and

Groenen, 2005). Second, we present previous studies of AMDS based on Unfolding

(Gower, 1977), for example, applying Unfolding to asymmetric dissimilarity data

and the slide-vector model (De Leeuw and Heiser, 1982; Zielman and Heiser, 1993).

Third, we describe previous studies of AMDS based on decomposing symmetric

and skew-symmetric parts, for example, the hill-climbing (Borg and Groenen, 2005)

model and radius models (Okada and Imaizumi, 1987;1997). Finally, CDS (Heiser,

1993;Heiser and Groenen, 1996), which is a simultaneous analysis of MDS and clus-

tering, is shown.

3.1 Proposerties of asymmetric dissimilarity data

In this section, we show a property for decomposition of asymmetric dissimilarity

data. Furthermore, we show the relation between this decomposition and Frobenus

norm. The relation is related to the decomposition of the objective function for

symmetric and skew-symmetric parts.

First, we show the decomposition of asymmetric dissimilarity data; however, the

proposition is shown for a square matrix because the property is satisfied for arbi-

trarily square matrices that include asymmetric dissimilarity data.

Proposition 3.1.1 Decomposistion of square matrix

Let P = (pij) pij ∈ R (i, j = 1, 2, · · · , n) be a square matrix. Then, the following

decomposition exists for any P ,

P = S +A (3.1)

12



where

S = (P + P T )/2, and

A = (P − P T )/2.

Here, S and A are symmetric matrix and skew-symmetric matrix, respectively.

where skew-symmetric matrix is A = (aij) aij ∈ R (i, j = 1, 2, · · · , n) satisfying

(∀i, j = 1, 2, · · · , n)(aij = −aji)

Proof. From the right side of Eq. (3.1),

S +A = (P + P T )/2 + (P − P T )/2 = P /2 + P T/2 + P /2− P T/2 = P

and aij = (pij − pji)/2 = −(pji − pij)/2 = −aji.

In this paper, each diagonal element of ∆ is assumed to be 0. Therefore, diagonal

elements of S derived from decomposition of ∆ become 0.

Next, a relation between the decomposition of symmetric and skew-symmetric

matrix, and Frobenius norm is shown.

Proposition 3.1.2 Decomposition of square matrix based on least squares

Let P be a square matrix, S, and A be symmetric and skew-symmetric parts of

P , respectively. In the situation, the following property is satisfied:

∥P ∥2 = ∥S∥2 + ∥A∥2

where ∥B∥ =
√∑n

i=1

∑n
j=1 b

2
ij is Frobenius norm of arbitrary matrix B = (bij) bij ∈

R (i, j = 1, 2, · · · , n).

Proof.

∥P ∥2 = ∥(P + P T )/2 + (P − P T )/2∥2 = ∥S +A∥2

From the property of ∥ · ∥2,
∥S +A∥2 = tr(S +A)T (S +A)

= tr(STS + 2STA+ATA)

= ∥S∥2 + 2tr(STA) + ∥A∥2. (3.2)

Here, following equations are satisfied since S is symmetric matrix.

tr(STA) = tr(SA) = tr(AS)

From the property of the skew − symmetricmatrix
= tr(STAT ) = tr(SAT ) = tr(−SA) = 0 (3.3)

From Eq (3.2) and Eq (3.3), we obtain the proposition.
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Proposition 3.1.2 is used when objective functions of AMDS are decomposed into

symmetric and skew-symmetric parts (e.g. Borg and Groenen, 2005; Saito and Yado-

hisa, 2005 ). Especially, it is important for interpreting the objective functions of

the hill-climbing and radius models.

Next, property of skew-symmetric matrix is shown.

Proposition 3.1.3 Property of skew-symmetric matrices

Given arbitrarily two skew-symmetric matricesB = (bij) bij ∈ R (i, j = 1, 2, · · · , n)
and C = (cij) cij ∈ R (i, j = 1, 2, · · · , n), B −C becomes skew-symmetric matrix.

Proof. From the definition of B and C, B = −BT and C = −CT are satisfied.

Then, following property is satisfied.

B −C = −BT − (−CT ) = −(BT −CT ) = −(B −C)T

3.2 AMDS based on Unfolding

In this section, Unfolding (Coombs, 1950;Gower, 1977) and slide-vector model

(De Leeuw and Heiser, 1982; Zilman and Heiser, 1993) are introduced. First, the

model and objective function of Unfolding is defined as a special case of ordinary

MDS (Borg and Groenen, 2005). In Unfolding, coordinates of objects are estimated

based on dissimilarities between two groups, and dissimilarities within each group

can not be considered. Therefore, Unfolding is considered as ordinary MDS for

dissimilarities including missing corresponding to those within groups. Using the

same approach, the model and objective function of the slide-vector model can be

formulated on a basis of a special case of MDS.

3.2.1 Model and objective function of Unfolding

In this subsection, Unfolding was proposed for not only asymmetric dissimilarity

data, however, we define them through asymmetric dissimilarity data in this paper.

Definition 3.2.1 Unfolding model based on elements description

Let ∆ be asymmetric dissimilarity data, X = (xit) xit ∈ R (i = 1, 2, · · · , n; t =
1, 2, · · · , d) and Y = (yjt) yjt ∈ R (j = 1, 2, · · · ,m; t = 1, 2, · · · , d) be coordinates

of row-objects and column-objects in d dimensions, respectively. Here, the model of

Unfolding is defined as following equation:

δij = dij(X,Y ) + εij, (i, j = 1, 2, · · · , n)

where

dij(X,Y ) =
[ d∑

t=1

(xit − yjt)2
] 1

2
, and

εij (i, j = 1, 2, · · · , n) is a error term.

14



For the determination of the number of low dimensions, two or three are set

because the purpose of AMDS is visualize asymmetric relation between objects.

From the Unfolding model, we explain how to interpret the results when Unfolding

is applied to asymmetric dissimilarity data. First, there exists the same object i

with coordinates of a row object and a column object; i.e., in short, each object

is represented as two coordinates. Therefore, when dissimilarity from object i to

Figure 3.1: Example of the results of Unfolding.From the example, distance from object i

to object j is interpreted as closer than distance from object j to object i.

object j is interpreted, we interpret the distance from the coordinate of row object i

to the coordinate of column object j. From this interpretation, we apply Unfolding

to asymmetric dissimilarity data to identify asymmetries between objects because

there are different distances from coordinate of row object i to coordinate of column

object j and from the coordinate of row object j to the coordinate of column object

i.

Figure 3.1 represents example for model of Unfolding. The distance from object i

to j indicates distance from xi to yj. On the other hand, the distance from object

j to i indicates distance from xj to yi.

Next, we define the objective function of Unfolding I.

Definition 3.2.2 Objective function of Unfolding I

Given asymmetric dissimilarity data ∆ and the number of low-dimensions d, the

objective function of Unfolding I is defined as follows:

L(X,Y |∆) =
n∑

i=1

n∑
j=1

(δij − dij(X,Y ))2.
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In the objective function, X and Y such that the objective function is minimized

are estimated.

Next, we define the objective function of Unfolding II; futhermore, we show the

equivalence of objective functions for both Unfolding I and II.

Definition 3.2.3 Objective function of Unfolding II

Given ∆ and the number of dimensions d, the objective function of Unfolding II

is defined as follows:

L(X,Y |∆†) =
1

2
∥W † ⊙ (∆† −D(Q))∥2

where

∆† =

[
On ∆

∆T On

]
,

Q =

[
X

Y

]
= (qi†t) (i† = 1, 2, · · · , 2n; t = 1, 2, · · · , d),

D(Q) = (di†j†(Q)) di†j†(Q) =
[ d∑

t=1

(qi†t − qj†t)2
] 1

2
(i†, j† = 1, 2, · · · , 2n),

W † =

[
On W

W T On

]
= (w†

i†j†
) (i†, j† = 1, 2, · · · , 2n)

w†
i†j†

is weights for pair of i† and j† and ⊙ is Hadmard product.

Next, we show the equivalence of the objective functions of Unfolding I and II.

Proposition 3.2.1 Equivalence of objective functions of Unfolding I and II

Given asymmetric dissimilarity data ∆, coordinates of row objects X and column

objects Y , and the number of low-dimensions d, the following equation is satisfied.

n∑
i=1

n∑
j=1

(δij − dij(X,Y ))2 =
1

2
∥W † ⊙ (∆† −D(Q))∥2 (3.4)

Proof. From the right hand of Eq. (3.4),

1

2
∥W † ⊙ (∆† −D(Q))∥2 = 1

2

2n∑
i†=1

2n∑
j†=1

w†
i†j†

(δ†
i†j†
− di†j†(Q))2. (3.5)
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from the definition of ∆† and W †, Eq. (3.5) is described as follows:

1

2

2n∑
i†=1

2n∑
j†=1

w†
i†j†

(δ†
i†j†
− di†j†(Q))2

=
1

2

n∑
i†=1

2n∑
j†=n+1

w†
i†j†

(δ†
i†j†
− di†j†(Q))2 +

1

2

2n∑
i†=n+1

n∑
j†=1

w†
i†j†

(δ†
i†j†
− di†j†(Q))2

=
1

2

n∑
i=1

n∑
j=1

(δij − dij(X,Y ))2 +
1

2

n∑
j=1

n∑
i=1

(δij − dij(X,Y ))2

=
n∑

i=1

n∑
j=1

(δij − dij(X,Y ))2

From Proposition 3.2.1, Unfolding is considered as a special case of ordinal symme-

tirc MDS. In short, if both dissimilarities between row-objects and between column

objects are missing, the MDS model becomes Unfolding.

3.2.2 Model and objective function of slide-vector model

In this subsection, the slide-vector model (De Leeuw and Heiser, 1982; Zilman

and Heiser, 1993) is described. This model is considered a parsimonious model of

Unfolding; as such, the model is assumed only for situations in which a square matrix

is applied, particularly for asymmetirc dissimilarity data.

We define the slide-vector model.

Definition 3.2.4 Model of the slide-vector model

Let ∆ be an asymmetric dissimilarity matrix, X = (xit), xit ∈ R and z = (zt), zt ∈
R (t = 1, 2, · · · , d) be cooridnates of objects and slide-vector in d dimensions, re-

spectively. The model of slide-vecotr model is defined as following equation:

δij = dij(X,X − 1nz
T ) + εij (i, j = 1, 2, · · · , n)

where

dij(X,X − 1nz
T ) =

[ d∑
t=1

(xit + zt − xjt)2
] 1

2
,

and εij ∈ R (i, j = 1, 2, · · · , n) is error term.

Next, we explain how we interpret the results of the slide-vector model. In the

model, when dissimilarity from object i to object j is interpreted, we interpret the

distance from xi to xi−z, where xi is row vector ofX. In short, yi is modelized such

that yi = xi − z. Therefore, the slide-vector model is a special case of Unfolding.

While it is difficult to interpret the distance from object i to object j in Unfolding,

it is easy to interpret the distance from object i to object j in the slide-vector model
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Figure 3.2: Example of slide-vector model. In this example, distance from object i to

object j is closer to that from object j to object i.

because z is only considered when asymmetries are interpreted in the slide-vector

model although yi (i = 1, 2, · · · , n) have to be considered in Unfolding.

Figure 3.2 indicates example of slide-vector model. In this example, distance

object i to j is closer than distance object j to i from the direction of slide- vector

z.

Next, we define the objective function of slide-vector model I.

Definition 3.2.5 Objective function of slide-vector model

Given an asymmetric dissimilarity data ∆ and the number of low-dimensions d,

the objective function of the slide-vector model is defined as follows:

L(X, z|∆) =
n∑

i=1

n∑
j=1

(δij − dij(X,X − 1nz
T ))2.

In the slide-vector model, X and z such as minimizing the objective function is

estimated.

To clearly show the relationships between the slide-vector model and Unfolding,

we next define the objective function of slide-vector model II.

Definition 3.2.6 Objective function of slide-vector model II

Given ∆ and the number of dimensions d, the objective function of slide-vector

model II is defined as follows:

L(X,z|∆) =
1

2
∥W † ⊙ (∆† −D(Q))∥2

18



where

∆† =

[
On ∆

∆T On

]
,

Q =

[
X

X − 1nz
T

]
=

[
I 0

I −1n

][
X

zT

]
= (qi†t)

(i† = 1, 2, · · · , 2n; t = 1, 2, · · · , d)
D(Q) = (dij(Q)),

dij(Q) =
[ d∑

t=1

(qit − qjt)2
] 1

2
(i, j = 1, 2, · · · , 2n),

W † =

[
On W

W T On

]
In the slide-vector model, X and z are estimated such that the value of the objective

function is minimized.

Then, equivalence of these objective functions for slide-vector model I and II is

shown.

Proposition 3.2.2 Equivalence of these objective functions of slide-vector model I

and II

Given asymmetric dissimilarity data ∆, coordinates of objects X, and slide-vector

z, the following equation is satisfied

1

2
∥W † ⊙ (∆† −D(Q))∥2 =

n∑
i=1

n∑
j=1

(δij − dij(X,X − 1nz
T ))2

Proof. The proof is the same way as Unfolding

Again, from proposition 3.2.2, we interpret the objective function of the slide-

vector model as a special case of Unfolding.

3.3 Asymmetric MDS based on decomposistion

In this section, we introduce the hill-climbing (Borg and Groenen, 2005) and

radius model(Okada and Imaizumi, 1987). Objective functions for these models can

be decomposed into symmetric and skew-symmetric parts, respectively, based on

proposition 3.1.2. In particular, this means that these objective functions can be

decomposed into mutually orthogonal terms. The symmetric parts are the same as

that of objective functions of ordinal MDS for symmetric part of the asymmetric

dissimilarity matrix; furthermore, the skew-symmetric part of the objective function

of the hill-climbing model includes the same parameters of the symmetric part. In
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contrast, the objective function of the radius model has no parameters included in

both the symmetric and skew-symmetric parts. Therefore, when the parameters of

the symmetric parts are estimated in the radius model, we do not need to consider

the skew-symmetric part. In short, these decompositions reveal various important

aspects of these objective functions.

Below, we show the models, objective functions and decompositions of the hill-

climbing model and radius model.

3.3.1 Model and objective function of hill-climbing model

In this subsection, we show the model, objective function, and decomposition of

the hill-climbing model.

First, we introduce the hill-climbing model itself.

Definition 3.3.1 Model of the hill-climbing model

Let∆ be an asymmetric dissimilarity matrix, X = (xit), xit ∈ R (i = 1, 2, · · · , n; t =
1, 2, · · · , d) and v = (vt) vt ∈ R (t = 1, 2, · · · , d) be coordinates matrix of objects

and slope vector, respectively. The model of hill-climbing model is defined as follow-

ing equation:

δij = dij(X) +
[ d∑

t=1

(xit − xjt)vt
](
dij(X)−1

)
+ εij (i, j = 1, 2, · · · , n; i ̸= j).

where εij ∈ R (i, j = 1, 2, · · · , n) is error.

In the hill-climbing model, asymmetries between objects are represented by one

vector, slope vector although the interpretation of the slope vector is different from

the slide-vector.

Next, we define the objective function of the hill-climbing model.

Definition 3.3.2 Objective function of hill-climbing model

Given asymmetric dissimialrity data ∆ and the number of low-dimensions d , the

objective function of the hill-climbing model is defined as follows:

L(X,v|∆) =
∑
i̸=j

[
δij −

(
dij(X) + (xi − xj)

Tvdij(X)−1
)]2

where xi = (xit), xit ∈ R(i = 1, 2, · · · , n; t = 1, 2, · · · , d) is coordinates vector of

object i.

Next, we show the property of the objective function of the hill-climbing model.

From the property, the relationships between the slope-vector and the skew-symmetric

part become clear.
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Proposition 3.3.1 Decomposition of the objective function of the hill-climbmodel

The objective function of the hill-climbing model can be decomposed into symmetric

and skew-symmetric parts of the objective function as follows:

L(X,v|∆) =
∑
i̸=j

[
δij −

(
dij(X) + (xi − xj)

Tvdij(X)−1
)]2

=
∑
i̸=j

[
sij − dij(X)

]2
+
∑
i̸=j

[
aij − (xi − xj)

Tvdij(X)−1
]2

where

S = (∆+∆T )/2, S = (sij) (i, j = 1, 2, · · · , n), and
A = (∆−∆T )/2, A = (aij) (i, j = 1, 2, · · · , n)

are symmetric and skew-symmetric parts of asymmetric dissimilarity data, respec-

tively.

Proof.

L(X,v|∆) =
∑
i ̸=j

[
δij −

(
dij(X) + (xi − xj)

Tvdij(X)−1
)]2

=
∑
i ̸=j

[
(δij + δji)/2 + (δij − δji)/2− dij(X)− (xi − xj)

Tvdij(X)−1
]2

=
∑
i ̸=j

[
sij − dij(X)

]2
+
∑
i̸=j

[
aij − (xi − xj)

Tvdij(X)−1
]2

+ 2
∑
i̸=j

[
sij − dij(X)

][
aij − (xi − xj)

Tvdij(X)−1
]
. (3.6)

Here, S and D(X) are symmetric matrices, respectively and A and A† = ((xi −
xj)

Tvdij(X)−1) (i, j = 1, 2, · · · , n) are skew-symmetric matrices, respectively, since

(xi − xj)
Tvdij(X)−1 = −(xj − xi)

Tvdij(X)−1 is satisfied. S − D is symmetric

matrix and A − A† is skew-symmetric matrix from proposition 3.1.3. Therefore,

from proposition 3.1.2, Eq (3.6) becomes 0 and the proposition is proved.

From proposition 3.3.1, the distance between estimated coordinates of objects

indicate corresponding dissimilarities for symmetric part of the asymmetric dissimi-

larity data. In constrast, the inner product between the slope-vector and difference

vectors between objects represent the skew-symmetries part of asymmetric dissim-

ilarity data. Figure 3.3 shows an example of the results of hill-climbing model. In

the example, these distances on the estimated coordinates between objects corre-

spond to symmetric part of the asymmetric dissimilarity data. On the other hand,

the value of innner product between xj − xo and v tends to be higher than that
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Figure 3.3: Example of hill climbing model.

between xo−xi and v in the example. Then, the skew-symmetry between object j

and o is interpreted as higher than that between object j and o. In addition, skew-

symmetries from object o to object j is larger than that from object j to object

o.

3.3.2 Model and objective function of radius model

In this subsection, we introduce the model, objective function, and property of

the radius model.

First, we define the radius model.

Definition 3.3.3 Model of the radius model

Let ∆ be asymmetric dissimilarity matrix, X = (xij), xij ∈ R (i, j = 1, 2, · · · , n)
and r = (ri) ri > 0 (i = 1, 2, · · · , n) be coordinate matrix of objects and the length

of the radii for objects, respectively. The model of the radius model is defined as

following equation:

δij = dij(X)− ri + rj + εij (i, j = 1, 2, · · · , n) (3.7)

where εij ∈ R (i, j = 1, 2, · · · , n) is error term. The model of the radius model based

on matrix representation is defined as follows:

∆ = D(X)− 1nr
T + r1T

n +E

where

D(X) = (dij(X)) dij(X) =
[ d∑

t=1

(xit − xjt)2
] 1

2
(i, j = 1, 2, · · · , n)
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is Euclidean distance matrix, 1n is a vector whose elemtns are all 1 with the length

of n, and E = (εij) εij ∈ R (i, j = 1, 2, · · · , n) is error matrix.

From Eq. (3.7), differences between objects are described as distance between es-

timated coordinates of objects. For the interpretation of asymmetries, see Figure

3.4. If length of radius for object j is large and length of radius for object i is small,

these relations are interpreted as large asymmetries. In the situation, distance from

object j to object i is closer than that from object i to j.

Figure 3.4: Model of raidius model

Next, objective function of radius model is defined.

Definition 3.3.4 Objective function of the radius model

Given asymmetric dissimilarity data ∆, and the number of low-dimensions d, the

objective function of the radius model is defined as follows:

L(X, r|∆) =
∥∥∥∆− (D(X)− 1nr

T + r1T
n )
∥∥∥2

.

In the radius model, X and r such that the value of the objective function is mini-

mized are estimated.

Next, the decomposition of the objective function for the radius model is shown.

.

Proposition 3.3.2 Decomposition of the objective function of the radius model
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The objective function of the radius model can be decomposed into symmetric part

and skew-symmetric part of the objective function, respectively, as follows:

L(X, r|∆) =
∥∥∥∆− (D(X)− 1nr

T + r1T
n )
∥∥∥2

=
∥∥∥S −D(X)

∥∥∥2

+
∥∥∥A− (r1T

n − 1nr
T )
∥∥∥2

(3.8)

where S and A are symmetric part and skew-symmetric part of ∆, respectively.

Proof. The objective function of the radius model can be decomposed as follows:

L(X, r|∆) =
∥∥∥∆− (D(X)− 1nr

T + r1T
n )
∥∥∥2

=
∥∥∥S +A− (D(X)− 1nr

T + r1T
n )
∥∥∥2

=
∥∥∥S −D(X) +A− (r1T

n − 1nr
T )∥2

S −D(X) is symmetric matrix since both S and D(X) are symmetric matrix. In

addition, A− (r1T
n − 1nr

T ) becomes skew-symmetric matrix from proposition 3.1.3

since A is skew-symmetric matrix and

−(r1T
n − 1nr

T )T = −1nr
T + rn1

T
n = rn1

T
n − 1nr

T .

Therefore, this proposition is proved from proposition 3.1.2.

From Eq. (3.8), the difference between radius lengths between object i and object

j indicate skew-symmetry between object i and object j. Furthermore, parameter

X is included only in the symmetric part of Eq. (3.8), while parameter r is included

only in the skew-symmetric part of Eq. (3.8). Therefore, estimating X in the radius

model is performed in the same manner as that of ordinal MDS. Furthermore, when

r is estimated, the estimation depends only on the skew-symmetric part of Eq. (3.8).

In the objective function of the radius model, the feasible area of ri (i = 1, 2, · · · , n)
is greater than zero; however, we do not need to estimate ri above zero because the

objective function of the radius model includes indefiniteness. Therefore, the opti-

mization problem of ri becomes a non-constrained optimization problem with the

indefiniteness of the objective function of the radius model shown.

Proposition 3.3.3 Indefiniteness of the objective function of radius model

For the objective function of the radius model, following property is satisfied:

(∀c ∈ R)∥∥∥∆− (D(X)− 1nr
T + r1T

n )
∥∥∥2

=
∥∥∥∆− (D(X)− 1n(r + c1n)

T + (r + c1n)1
T
n )
∥∥∥2

Proof. For any c ∈ R,

∥∆− (D(X)− 1n(r + c1n)
T + (r + c1n)1

T
n )
∥∥∥2

=∥∆− (D(X)− 1nr
T + r1T

n ) + c1n1
T
n − c1n1

T
n

∥∥∥2

=
∥∥∥∆− (D(X)− 1nr

T + r1T
n )
∥∥∥2

.
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From proposition 3.3.3, the optimization problem becomes a non-constrained

problem. In short, even if there exists an i such that estimated ri < 0, the value

of the objective function does not change for transformation r† = r − c1, where

c = mini ri.

3.4 Cluster difference scaling (CDS)

In this section, we introduce cluster difference scaling (CDS) (Heiser, 1993; Heiser

and Groenen, 1997). CDS is a simutaneous method for MDS and clustering of

symmetric dissimilarity data. As a result of CDS, clustering results and coordinates

of cluster centorids are estimated. Therefore, it is useful when the number of objects

is large. Here, the objective function of CDS can be decomposed into four parts,

i.e., Among cluster error sum of squares (SSQ), Within-clusters Error SSQ, Lack

of spatial fit and Lack of homogeneity. From this decomposition, the needs for

simultaneous analysis becomes clear.

Among cluster error sum of squares (SSQ) indicates variations of dissimilarities for

between clusters, Within-clusters Error SSQ indicates variations of dissimilarities

between objects within clusters, Lack of spatial fit represent MDS for dissimilarities

between clusters, and Lack of homogeneity is variation of self dissimilarities for

clusters. For the details of interpretaion of these terms, see Heiser and Groenen

(1997).

3.4.1 Model and objective function of CDS

In this subsection, we define the CDS model. Next, we introduce the objective

function of both CDS and constrained MDS; the equivalence of these objective

functions is also shown.

Definition 3.4.1 Model of the cluster difference scaling

Let Ξ = (ξij) ξij ∈ R+ (i, j = 1, 2, · · · , n; i ̸= j) be symmetric dissimilarity matrix,

and Cℓ (ℓ = 1, 2, · · · , k) be cluster of objects, where k is the number of clusters. The

model of the cluster difference scaling is defined as following equation:

(∀i, j = 1, 2, · · · , n)(∃!Co; i ∈ Co)(∃!Cℓ; j ∈ Cℓ)(ξij = doℓ(X
∗) + εij)

where X∗ = (x∗ot) x
∗
ot ∈ R (o = 1, 2, · · · , k; t = 1, 2, · · · , d) is a coordinates matrix

of cluster centroids, doℓ(X
∗) is an Euclidean distance between cluster Co and Cℓ on

X∗, and εij ∈ R is error. .

Next, we define the objective function of CDS.

Definition 3.4.2 Objective function of the cluster difference scaling
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Given symmetric dissimilarity data Ξ, the number of clusters k and the number

of low-dimensions d, the objective function of the cluster difference scaling is defined

as follows:

L(X,U | Ξ) =
k∑

ℓ=1

k∑
o=1

∑
i∈Co

∑
j∈Cℓ

(ξij − doℓ(X∗))2

=
n∑

i=1

n∑
j=1

k∑
ℓ=1

k∑
o=1

uiℓujo(ξij − doℓ(X∗))2

where U = (uiℓ) uiℓ ∈ {0, 1} (i = 1, 2, · · · , n; ℓ = 1, 2, · · · , k) is an indicator ma-

trix. Here, X∗ and U are estimated such that the value of the objective function is

minimized.

Next, we define the constrained MDS model.

Definition 3.4.3 Model of the constrained MDS

Let Ξ be a symmetric dissimilarity matrix, and U = (uiℓ) uiℓ ∈ {0, 1} (i =

1, 2, · · · , n; ℓ = 1, 2, · · · , k) be indicator matrix. The model of constrained MDS is

defined as following equation:

Ξ = D(UX∗) +E.

where

D(UX∗) = (dij(UX∗)) dij(UX∗) =
∥∥∥ k∑

o=1

uioxo −
k∑

ℓ=1

ujℓxℓ

∥∥∥,
and E = (εij) εij ∈ R (i, j = 1, 2, · · · , n) is error matrix. Here, xo is the oth

row-vector of X∗.

Next, we define the objective function of the constrained MDS.

Definition 3.4.4 Objective function of the constrained MDS

Given symmetric dissimilarity matrix Ξ, the number of clusters k and the number

of low-dimensions d, the objective function of the constrained MDS is defined as

follows:

L(X,U |∆) =
∥∥∥Ξ −D(UX∗)

∥∥∥2

.

In the objective function, U and X∗ are estimated such that a value of the objective

function is minimized.

Next, we show the equivalence of the objective functions of CDS and constrained

MDS.

26



Proposition 3.4.1 Equivalence of CDS and constrained MDS

Given symmetric dissimilarity matrix Ξ, Indicator matrix U , coordinate matrix

of cluster centorids X∗, the number of clusters k and the number of low-dimensions

d, the following property is satisfied;

n∑
i=1

n∑
j=1

k∑
ℓ=1

k∑
o=1

uiℓujo(ξij − dℓo(X∗))2 =
∥∥∥∆−D(UX∗)

∥∥∥2

. (3.9)

Proof. From the right term of Eq (3.9),∥∥∥Ξ −D(UX∗)
∥∥∥2

=
n∑

i=1

n∑
j=1

(
ξij − dij(UX∗)

)2

=
n∑

i=1

n∑
j=1

(
ξij −

∥∥∥ k∑
ℓ=1

uiℓx
∗
ℓ −

k∑
o=1

ujox
∗
o

∥∥∥)2

, (3.10)

where x∗
ℓ (ℓ = 1, 2, · · · , k) is row-vector of X∗.

Here, for all i, ℓ∗ exists such that uiℓ∗ = 1 and uiℓ = 0 (ℓ∗ ̸= ℓ) from the definition

of indicator matrix. In the same way as i, for all j, o∗ exists such that ujo∗ = 1 and

ujo = 0 (o∗ ̸= o). Therefore, Eq (3.10) for i, j is described as follows:

(ξij − ∥x∗
ℓ∗ − x∗

o∗∥)2 =uiℓ∗ujo∗(ξij − ∥x∗
ℓ∗ − x∗

o∗∥)2

=
k∑

ℓ=1

k∑
o=1

uiℓujo(ξij − ∥x∗
ℓ − x∗

o∥)2.

Then, we have this proposition.

From Eq.(3.9), we note that CDS is equivalent to constrained MDS in terms of

coordinates of matrix with indicator matrix.

3.4.2 Properties of CDS

In this subsection, we show how to interpret the features of the objective function

of CDS by the decomposition of the objective function for CDS. When the objective

function of CDS can be decomposed into four parts, we use the Sokal-Michener dis-

similarity (Sokal and Michener, 1958), where Sokal-Michener dissimilarity indicates

aggregated dissimilarities within and between clusters. From the decomposition, we

also interpret the effects of clustering and MDS results.

Next, we show the decomposition of the objective function of CDS.

Proposition 3.4.2 Decomposition of the objective function of CDS
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Given the objective function of CDS, the objective function can be decomposed as

follows:

L(X,U | Ξ) =∥Ξ −D(UX∗)∥2

=
∑
o̸=ℓ

∥diag(u(o))[Ξ − PUΞPU ]diag(u(ℓ))∥2 (3.11)

+
k∑

o=1

∥diag(u(o))[Ξ − PUΞPU ]diag(u(o))∥2 (3.12)

+
∑
o̸=ℓ

∥diag(u(o))[PUΞPU − PUΞD(UX∗)PU ]diag(u(ℓ))∥2 (3.13)

+
k∑

o=1

∥diag(u(o))[PUΞPU − PUΞD(UX∗)PU ]diag(u(o))∥2 (3.14)

where (UTU)−1UTΞU (UTU)−1 is Sokal-Michener dissimilarity matrix, PU = U(UTU )−1UT

is projection matrix and u(o) (o = 1, 2, · · · , k) is oth column vector of U .

Proof. The objective function of CDS can be decomposed as fllows:

∥Ξ −D(UX∗)∥2 = ∥Ξ − PUΞPU + PUΞPU −D(UX∗)∥2

= ∥Ξ − PUΞPU∥2 (3.15)

+ ∥PUΞPU −D(UX∗)∥2 (3.16)

+ tr(Ξ − PUΞPU)
T (PUΞPU −D(UX∗)). (3.17)

Eq.(3.17) is transformed as follows:

tr(ΞTPUΞPU)− tr(ΞTD(UX∗))

− tr(P T
U ΞTP T

U PUΞPU) + tr(P T
U ΞTP T

U D(UX∗)) (3.18)

Since PU = P T
U and PUPU = PU , the sum of the first term and the third term

in Eq.(3.18) becomes 0. In addition, since D(UX∗) = UD(X∗)UT , sum of the

second term and forth term becomes 0. Therefore, Eq.(3.18) becomes 0.

Eq. (3.15) can be decomposed into Eq. (3.11) and Eq. (3.12), and Eq. (3.16) can

be decomposed into Eq. (3.13) and Eq. (3.14).

Therefore, this proposition is proved.

Next we show how to interpret for Eq (3.11), Eq (3.12), Eq (3.13), and Eq (3.14).

Here Eq (3.11), Eq (3.12), Eq (3.13), and Eq (3.14) are interpreted as Among-

cluster Error Sum of Squares (SSQ), Within-clusters Error SSQ, Lack of spatial fit,

and Lack of homogeneity, respectively. From the terms of Among-cluster Error Sum

of Squares (SSQ) and Lack of spatial fit, CDS can be interpreted as simultaneous

analysis involving non-hierarchical clustering applied to dissimilarity data and MDS

for these centorids. Furthermore, CDS considers the effects of self dissimilarities for

clustering from Within-clusters Error SSQ and Lack of homogeneity.
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Chapter 4

Constrained analysis of

asymmetric data based on

Unfolding

4.1 Background of constrained asymmetric MDS based on

Unfolding

As noted in the introduction, asymmetric dissimilarity data exists and is observed

in different research areas, including marketing and psychology. It is defined as

dissimilarity from i to j that is not necessarily the same as that from j to i. If

asymmetries are considered as informative, it is important to these interpret the

asymmetries accordingly. As one method for achieving this, AMDS is useful. In

particular AMDS is a visualization method for interpreting asymmetries that exist in

asymmetric dissimilarity data. To date, nimerous AMDS models have been proposed

(Borg and Groenen, 2005; Chino, 2012;Saito and Yadohisa, 2005;Zielman and Heiser,

1996).

In Saito and Yadohisa (2005), AMDS models are classified with Unfolding-type

models introduced as one group of methods. Unfolding was originally proposed for

two-way two-mode dissimilarity data by Coombs (1964). In the results of Unfolding,

coordinates of row objects and column objects are simutaneously estimated although

relationships within coordinates of row objects and column objects are no-meaning,

respectively. Gower (1977) and Constantine and Gower (1978) suggested the ap-

plication of Unfolding to asymmetric dissimilarity data. In their work, each object

has two coordinates; when dissimilarity from object i to object j is interpreted, it

correspond to the distance from the estimated coordinates of row object i to that

of column object j. In other words, the distance from estimated coordinates of row

object i to that of column object j is not necessarily the same as the distance from

estimated coordinates of row object j to that of column object i. Therefore, asym-

metries can be described by applying Unfolding to asymemtric dissimilarity data.
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However, the number of estimated parameters is large for Unfolding. In response

to this, the slide-vector model was proposed, as a special case of Unfolding based

on parsimonious notions (De Leeuw and Heiser, 1982; Zielman and Heiser, 1993).

In the model, one vector called slide-vector is introduced and coordinates of col-

umn objects are described by combinations of coordinates of row objects and this

slide-vector.

Also noted in the introduction, improved information technology has provided us

with substantial amounts of large and complex data. Therefore, asymmetric dis-

similarity data has also become large and complex. For example, brand swithing

data, which is analyzed to reveal competitive relations for customer loyalty, become

large and complex when data is calculated from purchase behavior of e-commerce

web sites. It therefore becomes difficult to interpret asymmetries between objects

because the number of objects is so large. To overcome this problem of scale,

constrained Unfolding and the constrained slide-vector model, which involve the si-

multaneous analysis of clustering and AMDS, have been proposed on a basis of CDS

(Heiser, 1993). Simultaneous analysis of Unfolding and CDS for two-way two-mode

dissimilarity data was proposed by Vera et al. (2013) and called cluster difference

Unfolding (CDU). This method corresponds to two-mode clustering of row objects

and column objects. However, when simultaneous analysis of Unfolding and clus-

tering is applied to asymmetric dissimilarity data, clustering results for both row

and column objects should be the same because it is easier and more natural to

interpret the features. Therefore, we proposed constrained Unfolding subject to in-

dicator matrices of row and column objects being the same. Furthermore, there are

certainly cases in which the number of clusters is large; in such situation, even if con-

strained Unfolding based on CDS is applied to the asymmetric dissimilarity data, it

becomes difficult to interpret the asymmetries between clusters. Therefore, we pro-

pose a method that simultaneously involved the slide-vector model and clustering;

this method is called the constrained slide-vector model and adopts not only one

slide-vector but also several numbers of slide-vectors to more flexibly represent given

asymmetries. Finally, we show that our constrained slide-vector model is considered

a generalization of Unfolding and constrained Unfolding.

In the remaining sections of this chapter, the model, objective function and al-

gorithm of the constrained Unfolding and constrained slide-vector model are shown

in section 3.2 and section 3.3, respectively. Then, in section 3.4, we show relations

between constrained Unfolding and constrained slide-vector model, Unfolding and

constrained slide-vector models, and the slide-vector and constrained slide-vector

models.
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4.2 Constrained Unfolding based on CDS

This section comprise three parts, i.e., a description of the model and objective

function of constrained Unfolding, the property, and the algorithm.

4.2.1 Model and objective function of the constrained Unfolding

In this subsection, we show the model and objective function of constrained Un-

folding. Furthermore, we introduce two types of descriptions for objective functions

of constrained Unfolding as well as the equivalence based on Heiser and Groenen

(1997).

Definition 4.2.1 Model of the constrained Unfolding

Let ∆ = (δij) δij ∈ R+ (i, j = 1, 2, · · · , n) be an asymmetric dissimilarity matrix,

X∗ = (x∗ot) x
∗
ot ∈ R (o = 1, 2, · · · , k; t = 1, 2, · · · , d) and Y ∗ = (y∗ℓt) y

∗
ℓt ∈ R (ℓ =

1, 2, · · · , k; t = 1, 2, · · · , d) be cooridinates of clusters for row-objects and column-

clusters in d dimensions, respectively, where k is the number of clusters for objects

. Here, the constrained Unfolding model is defined as follows:

(∀i, j = 1, 2, · · · , n)(∃!Co; i ∈ Co)(∃!Cℓ; j ∈ Cℓ)(δij = doℓ(X
∗,Y ∗) + εij)

where

doℓ(X
∗,Y ∗) = ∥x∗

o − y∗
ℓ∥ =

[ d∑
t=1

(x∗ot − y∗ℓt)2
] 1

2
,

Co and Cℓ are clusters of objects, respectively, and εij ∈ R (i, j = 1, 2, · · · , n) is

error.

For the constraind Unfolding model, dissimilarity from objects belonging to cluster

o to objects belonging to cluster ℓ is represented by the distance from x∗
o to y∗

ℓ .

Next, we define the first type of objective function of constrained Unfolding, i.e.,

constrained Unfolding I.

Definition 4.2.2 Objective function of the constrained Unfolding I

Given asymmetric dissimilarity data ∆, the number of clusters k, and the number

of low-dimensions d, the objective function of the constrained Unfolding is defined

as follows:

L(X∗,Y ∗,U |∆) =
n∑

i=1

n∑
j=1

k∑
o=1

k∑
ℓ=1

uioujℓ(δij − doℓ(X∗,Y ∗))2

where U = (uio) uio ∈ {0, 1} (i = 1, 2, · · · , n; o = 1, 2, · · · , k) is indicator matrix of

objects. In the constrained Unfolding model, X∗, Y ∗ and U are estimated such that

values of the objective finction is minimized.
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Here, we define the objective function of constrained Unfolding II; we also prove

the equivalence of the objective functions of these constrained Unfolding models.

Definition 4.2.3 The objective function of constrained Unfolding II

Given asymmetric dissimilarity data ∆, the number of clusters of objects k and

the number of low-dimensions d, the objective function of constrained Unfolding II

is defined as follows:

L(X∗,Y ∗,U |∆) =
1

2

∥∥∥W † ⊙ (∆† −D(Q†))
∥∥∥2

where W † = (w†
i†j†

) w†
i†j†
∈ {0, 1} (i†, j† = 1, 2, · · · , 2n) are weight matrix for

dissimilarities

∆† =

[
On ∆

∆T On

]
, and

Q† =

[
UX∗

UY ∗

]
=

[
U On,k

On,k U

][
X∗

Y ∗

]
.

Here, On,k = (0) is n by k matrix. In the constrained Unfolding II, U , X∗ and Y ∗

are estimated such that the value of the objective function is minimized.

Next, we show the equivalence of the objective functions of constrained Unfolding I

and II.

Proposition 4.2.1 Equivalence of constraind Unfolding I and II

Given asymmetric dissimilarity matrix ∆, indicator matrix of objects U , coordi-

nates of cluster centroids of row-objects X∗ and of column-objects Y ∗, respectively,

and the number of low-dimensions d, the following property is satisfied;

n∑
i=1

n∑
j=1

k∑
o=1

k∑
ℓ=1

uioujℓ(δij − doℓ(X∗,Y ∗))2 =
1

2

∥∥∥W † ⊙ (∆† −D(Q†))
∥∥∥2

. (4.1)

Proof. From the right term of Eq (4.1),

1

2

∥∥∥W † ⊙ (∆† −D(Q†))
∥∥∥2

=
1

2

2n∑
i†=1

2n∑
j†=1

w†
i†j†

(δ†
i†j†
− di†j†(Q†))2. (4.2)

From the definition of W † and ∆†, Eq (4.2) is described as follows:

n∑
i=1

n∑
j=1

(δij − dij(UX∗,UY ∗))2 =
n∑

i=1

n∑
j=1

(
δij −

∥∥∥ k∑
o=1

uiox
∗
o −

k∗∑
ℓ=1

ujℓy
∗
ℓ

∥∥∥)2

(4.3)

where x∗
o and y∗

ℓ are row vectors of X∗ and Y ∗, respectively.
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Here, for all i and j, o∗ and ℓ∗ exists such that uio∗ = 1 and uio = 0(o ̸= o∗), and

ujℓ∗ = 1 and ujℓ = 0(ℓ ̸= ℓ∗),respectively from the definition of indicator matrices.

Therefore, i, j part of Eq (4.3) is described as follows:(
δij −

∥∥∥ k∑
o=1

uiox
∗
o −

k∑
ℓ=1

ujℓy
∗
ℓ

∥∥∥)2

=
(
δij − ∥uio∗x∗

o∗ − ujℓ∗y∗
ℓ∗∥

)2

=
(
δij − ∥x∗

o∗ − y∗
ℓ∗∥

)2

=
k∑

o=1

k∑
ℓ=1

uioujℓ

(
δij − ∥x∗

o − y∗
ℓ∥
)2

Therefore, Eq (4.1) is proved.

From proposition 4.2.1, constrained Unfolding is considered as special case of

ordinal MDS. The advantage of describing constrained Unfolding by the objective

function II is that it is easy to derive the majorizing function (De Leeuw, 1994;

Heiser, 1995; Lange, Hunter, and Yang, 2000;Kiers, 2002; Hunter and Lange, 2004)

using the same framework of that of ordinal MDS.

4.2.2 Properties of the constrained Unfolding

In this subsection, we show the decomposition of constrained Unfolding; however,

there is no homogeneity term andWithin-cluster Error SSQ in the objective function

of constrained Unfolding because the distance between the same object does not

become zero. Therefore, the objective function of constrained Unfolding can be

decomposed into two mutually orthogonal terms.

Proposition 4.2.2 Decomposition of the constrained unfolding

Given the objective function of constrained Unfoding, the objective function can be

decomposed as follows:

L(X∗,Y ∗,U |∆) =∥∆−D(UX∗,UY ∗)∥2

=∥∆− PU∆PU∥2 (4.4)

+ ∥PU∆PU −D(UX∗,UY ∗)∥2 (4.5)

where (UTU)−1UT∆U (UTU)−1 is Sokal-Michener dissimilarity matrix (Sokal and

Michener, 1958) and PU = U(UTU )−1UT is a projection matrix.

Proof. The objective function of constrained Unfolding can be decomposed as fol-

lows:

∥∆− PU∆PU + PU∆PU −D(UX∗,UY ∗)∥2

=∥∆− PU∆PU∥2 + ∥PU∆PU −D(UX∗,UY ∗)∥2

+ tr(∆− PU∆PU)
T (PU∆PU −D(UX∗,UY ∗)) (4.6)
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The third term of Eq (4.6) becomes as follows:

tr(∆TPU∆PU)− tr(∆TD(UX∗,UY ∗))

− tr(P T
U ∆TP T

U ∆) + tr(P T
U ∆TP T

U D(UX∗,UY ∗)) (4.7)

Since PU = P T
U and PUPU = PU , the sum of the first term and the third term

in Eq.(4.7) becomes 0. In addition, the sum of the second term and forth term

in Eq. (4.7) becomes 0 from D(UX∗,UY ∗) = UD(X∗,Y ∗)UT . Therefore, this

proposition is proved.

Eq. (4.4) and Eq. (4.5) represent the Among-clusters Error SSQ and the Lack of

spatial fit, respectively. The difference between the decomposition of CDS and con-

strained Unfolding is Within-clusters error SSQ and Lack of homogeneity. In short,

the decomposition of constrained unfolding does not include the Within-clusters

error SSQ and Lack of homogeneity. Furthermore, from the dcomposition, we con-

sider the objective function of constrained Unfolding as simultaneous analysis of

clustering of asymmetric dissimilarity data and Unfolding for the Sokal and Mich-

ener dissimilarities.

4.2.3 Algorithm of the constrained Unfolding

In this subsection, we show the algorithm of constrained Unfolding. These pa-

rameters are estimated on the basis of ALS (Young et al., 1980). The flow of the

proposed algorithm is described as follows.

Algorithm of the constrained Unfolding

Step 0 Set k and d, and initial values of X∗, Y ∗ and U

Step 1 Update X∗ and Y ∗, given U

Step 2 Update U , given X∗ and Y ∗

Step 3 If stop condition is satisfied, stop the algorithm, else return to the Step 1

To update X∗ and Y , we adopt the majorization algorithm (Borg and Groenen,

2005). Next, we derive the majorizing function of the constrained Unfolding model.

Proposition 4.2.3 Majorizing function of the constrained Unfolding

Given objective function of the constrained unfolding, the majorizing function of

the constrained Unfolding is given as follows:

1

2

∥∥∥W † ⊙ (∆† −D(Q†))
∥∥∥2

≤ 1

2
η2δ +

1

2
trQTΦTV ΦQ− trQTΦTB(ΦH)ΦH = LM(Q,H ,Φ|∆†) (4.8)
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where

η2δ =
2n∑

i∗=1

2n∑
j∗=1

w†
i∗j∗δ

†2
i∗j∗

Φ =

[
U On,k

On,k U

]
, Q =

[
X∗

Y ∗

]
,

V =
2n∑

i∗=1

2n∑
j∗=1

w†
i∗j∗(ei∗ − ej∗)(ei∗ − ej∗)

T ,

ei∗ = (ei∗s∗) ei∗s∗ =

{
1 (i∗ = s∗)

0 (i∗ ̸= s∗)
, (i∗, s∗ = 1, 2, · · · , 2n),

B(ΦH) = (bi∗j∗) (i
∗, j∗ = 1, 2, · · · , 2n)

bi∗j∗ =

{
− w†

i∗j∗δ
†
i∗j∗

di∗j∗ (ΦH)
(if i∗ ̸= j∗ and di∗j∗(ΦH) ̸= 0)

0 (if i∗ ̸= j∗ and di∗j∗(ΦH) = 0)

bi∗i∗ = −
n∑

(j∗=1)∧(i∗ ̸=j∗)

bi∗j∗ and

H = (hs†t) hs†t ∈ R (s† = 1, 2, · · · , 2k; t = 1, 2, · · · , d).

Here, LM(Q,H ,Φ|∆†) is called as majorizing function.

Proof. The left term of inequation (4.8) can be described as follows:

1

2

∥∥∥W † ⊙ (∆† −D(Q†))
∥∥∥2

=
1

2

2n∑
i∗=1

2n∑
j∗=1

w†
i∗j∗(δ

†
i∗j∗ − di∗j∗(ΦQ))2

=
1

2

2n∑
i∗=1

2n∑
j∗=1

w†
i∗j∗δ

†2
i∗j∗ +

1

2

2n∑
i∗=1

2n∑
j∗=1

w†
i∗j∗di∗j∗(ΦQ)2 −

2n∑
i∗=1

2n∑
j∗=1

w†
i∗j∗δ

†
i∗j∗di∗j∗(ΦQ)

(4.9)

The second term of Eq. (4.9) is described as follows:

1

2

2n∑
i∗=1

2n∑
j∗=1

w†
i∗j∗di∗j∗(ΦQ)2 =

1

2

2n∑
i∗=1

2n∑
j∗=1

w†
i∗j∗

d∑
t=1

qT
(t)Φ

T (ei∗ − ej∗)(ei∗ − ej∗)
TΦq(t)

=
1

2

2n∑
i∗=1

2n∑
j∗=1

w†
i∗j∗trQ

TΦT (ei∗ − ej∗)(ei∗ − ej∗)
TΦQ

=
1

2
trQTΦT

[ 2n∑
i∗=1

2n∑
j∗=1

w†
i∗j∗(ei∗ − ej∗)(ei∗ − ej∗)

T
]
ΦQ

=
1

2
trQTΦTV ΦQ (4.10)
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where q(t) (t = 1, 2, · · · , d) is column vector of Q.

For the third term of Eq. (4.9), we derive the inequality for −di∗j∗(ΦQ) by using

Cauchy-Schwarz inequality;

d∑
t=1

(ϕT
i∗q(t) − ϕT

j∗q(t))(ϕ
T
i∗h(t) − ϕT

j∗h(t))

≤
[ d∑

t=1

(ϕT
i∗q(t) − ϕT

j∗q(t))
2
] 1

2
[ d∑

t=1

(ϕT
i∗h(t) − ϕT

j∗h(t))
2
] 1

2

=di∗j∗(ΦQ)di∗j∗(ΦH)

⇐⇒ −di∗j∗(ΦQ) ≤−
∑d

t=1(ϕ
T
i∗q(t) − ϕT

j∗q(t))(ϕ
T
i∗h(t) − ϕT

j∗h(t))

di∗j∗(ΦH)
, (4.11)

where ϕi∗ (i∗ = 1, 2, · · · , 2n) is row vecotr of Φ and h(t) is tth column vector of

H . If Q = H, inequality (4.11) satisfies the equality from the property of Cauchy-

Schwarz inequality. Therefore, inequality of the third term of Eq. (4.9) is derived

as follows:

−
2n∑

i∗=1

2n∑
j∗=1

w†
i∗j∗δ

†
i∗j∗di∗j∗(ΦQ)

≤ −
2n∑

i∗=1

2n∑
j∗=1

w†
i∗j∗δ

†
i∗j∗di∗j∗(ΦH)−1

d∑
t=1

(ϕT
i∗q(t) − ϕT

j∗q(t))(ϕ
T
i∗h(t) − ϕT

j∗h(t))

= −
2n∑

i∗=1

2n∑
j∗=1

w†
i∗j∗δ

†
i∗j∗di∗j∗(ΦH)−1

d∑
t=1

qT
(t)Φ

T (ei∗ − ej∗)(ei∗ − ej∗)
TΦh(t)

= −
2n∑

i∗=1

2n∑
j∗=1

w†
i∗j∗δ

†
i∗j∗di∗j∗(ΦH)−1trQTΦT (ei∗ − ej∗)(ei∗ − ej∗)

TΦH

= −trQTΦT
[ 2n∑
i∗=1

2n∑
j∗=1

w†
i∗j∗δ

†
i∗j∗di∗j∗(ΦH)−1(ei∗ − ej∗)(ei∗ − ej∗)

T
]
ΦH

= −trQTΦTB(ΦH)ΦH (4.12)

From (4.11) and (4.12), the majorizing function of the constrained Unfolding can be

derived.

Next, updating formulas for X∗ and Y ∗ are shown based on the majorizing func-

tion.

Proposition 4.2.4 Updating formula of Q

Given Φ and H , updating formula of Q minimizing Eq. (4.8) is derived as

follows:

Q = [ΦTV Φ]+ΨTB(ΦH)ΦH (4.13)

where [ΦTV Φ]+ is the Moore-Penrose inverse of ΦTV Φ.
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Proof. The partial differential of Eq. (4.8) for Q is given as follows:

∂LM(Q,H ,Φ|∆†)

∂Q
= 2ΦTV ΦQ− 2ΦTB(ΦH)ΦH = O

⇐⇒ ΦTV ΦQ = ΦTB(ΦH)ΦH

⇐⇒ Q = [ΦTV Φ]+ΦTB(ΦH)ΦH

Then, algorithm of estimating Q is shown based on the majorizing function.

Algorithm of estimating Q

Step 0 Set iteration number β ← 1, initial value of (β)H , and threshold value ε > 0.

Step 1 Update (β)Q based on Eq. (4.13)

Step 2 (β)Q is substituted into (β+1)H and β ← β + 1

Step 3 if |(β)LM(Q,H ,Φ|∆†)− (β−1)LM(Q,H ,Φ|∆†)| < ε is satisfied, stop, else

back to step 1

where (β)H , (β)Q and (β)LM(Q,H ,Φ| ∆†) are H , Q and a value of the objective

function corresponding to β th iteration, respectively.

In this algorithm, U is estimated by each row vector of U although value of the

objective function depends on the order of estimating row vector of U .

Next, the way of updating ith row vector of U is shown.

Proposition 4.2.5 Updating U

Given X∗, Y ∗ and U without i∗th row vector of U , if updating rule of ith row

vector of U is used, values of the objective function of the constrained Unfolding

does not increase.

ui∗o =

{
1

(
(∀ℓ = 1, 2, · · · , k)(γi∗o(Q) ≤ γi∗ℓ(Q))

)
0 (others)

(4.14)

for o = 1, 2, · · · , k where

γi∗o(Q) =
∑
j ̸=i∗

k∑
ℓ=1

ujℓ(δi∗j − doℓ(X∗,Y ∗))2 +
∑
j ̸=i∗

k∑
ℓ=1

ujℓ(δji∗ − doℓ(X∗,Y ∗))2

+ doo(X
∗,Y ∗).

and o (o = 1, 2, · · · , k).
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Proof. We assume that object i∗ satisfies γio(Q) ≤ γiℓ(Q) for all ℓ = 1, 2, · · · , k. In
the situation, the objective function of the constrained Unfolding can be decomposed

as follows:

n∑
i=1

n∑
j=1

k∑
o=1

k∑
ℓ=1

uioujℓ(δij − doℓ(X∗,Y ∗))2

=
∑
i̸=i∗

k∑
o=1

uio

n∑
j=1

k∑
ℓ=1

ujℓ(δij − doℓ(X∗,Y ∗))2 (4.15)

+
k∑

o=1

ui∗o

n∑
j=1

k∑
ℓ=1

ujℓ(δi∗j − doℓ(X∗,Y ∗))2 (4.16)

Eq. (4.15) is described as follows:

∑
i ̸=i∗

k∑
o=1

uio

n∑
j=1

k∑
ℓ=1

ujℓ(δij − doℓ(X∗,Y ∗))2

=
∑
i ̸=i∗

k∑
o=1

uio
∑
j ̸=i∗

k∑
ℓ=1

ujℓ(δij − doℓ(X∗,Y ∗))2 (4.17)

+
∑
i̸=i∗

k∑
o=1

uio

k∑
ℓ=1

ui∗ℓ(δii∗ − doℓ(X∗,Y ∗))2 (4.18)

Eq. (4.18) can be described as follows:

∑
i̸=i†

k∑
o=1

uio

k∑
ℓ=1

ui†ℓ(δii† − dii†(X∗,Y ∗))2

=
k∑

ℓ=1

ui†ℓ
∑
i ̸=i†

k∑
o=1

uio(δii† − dii†(X∗,Y ∗))2 (4.19)

Eq. (4.16) can be described as follows:

k∑
o=1

ui∗o

n∑
j=1

k∑
ℓ=1

ujℓ(δi∗j − doℓ(X∗,Y ∗))2

=
k∑

o=1

ui∗o

n∑
j ̸=i∗

k∑
ℓ=1

ujℓ(δi∗j − doℓ(X∗,Y ∗))2 (4.20)

+
k∑

o=1

ui∗o

k∑
ℓ=1

ui∗ℓ(δi∗i∗ − doℓ(X∗,Y ∗))2 (4.21)

In short, the objective function of constrained Unfolding can be decomposed into

Eq. (4.17), Eq.(4.19), Eq.(4.20) and Eq. (4.21). The sum of Eq.(4.19), Eq.(4.20),

and Eq.(4.21) is minimized for arbitrarily o (o = 1, 2, · · · , k) from the rule of Eq.

(4.14). In addition, Eq.(4.17) is not affected by update becasue Eq. (4.17) does not

include i∗. Therefore, the proposition is proved.
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Algorithm of updating U

Step 1 i← 1

Step 2 Calcurate γio(Q) for o = 1, 2, · · · , k

Step 3 Update ith row vector of U based on thr rule of Eq. (4.14) among

γio(Q) (o = 1, 2, · · · , k). If the number of o such that uio = 1 is over 1,

one of o is selected randomly.

Step 4 If i = n stop, otherwise, i← i+ 1 back to Step 2

However, the rule given by Eq. (4.14) is affected by the order of i.

4.3 Constrained slide-vector model based on CDS

This section comprises three parts, i.e., a description of the model and objective

function for the constrained slide-vector model, the property, and the algorithm.

4.3.1 Model and objective function of the constrained slide-vector model

In this subsection, we show the model and objective function of the constrained

slide-vector model. Furthermore, we introduce two types of descriptions for the ob-

jective function of the constrained slide-vector model; we then show their equivalence

based on Heiser and Groenen (1997).

Definition 4.3.1 Model of the constrained slide-vector model

Let ∆ = (δij) δij ∈ R+ (i, j = 1, 2, · · · , n) be an asymmetric dissimilarity matrix,

X∗ = (x∗ot) x
∗
ot ∈ R (o = 1, 2, · · · , k; t = 1, 2, · · · , d) and Z = (zst) zst ∈ R (s =

1, 2, · · · ,m; t = 1, 2, · · · , d;m ≤ k) be coordinates of clusters for objects and coor-

dinates of slide-vectors, respectively, where k and m are the number of clusters for

objects and slide-vectors, respectively. Here, the constrained slide-vector model is

defined as follows:

(∀i, j = 1, 2, · · · , n)(∃!Co; i ∈ Co)(∃!Cℓ; j ∈ Cℓ)(∃!s = 1, 2, · · · ,m)

(δij = doℓs(X
∗,X∗ − ΨZ) + εij)

where

doℓs(X
∗,X∗ − ΨZ) = ∥xo − (xℓ − zs)∥ =

[ d∑
t=1

(
x∗ot − (x∗ℓt − zst)

)2] 1
2
,

Co is cluster o of objects, U = (uiℓ), uiℓ ∈ {0, 1} (i = 1, 2, · · · , n; ℓ = 1, 2, · · · , k) is
indicator matrix and Ψ = (ψℓs), ψℓs ∈ {0, 1}, (ℓ = 1, 2, · · · , k; s = 1, 2, · · · ,m) is

indicator matrix for centroids, respectively, and εij ∈ R (i, j = 1, 2, · · · , n) is error.
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From definition 4.3.1, dissimilarity from object i to object j is interpreted by

the distance from xo to xℓ − zs. In the model, there are two types of indicator

matrices; one indicator matrix U is introduced to classify objects, while the other

Ψ is introduced to allocate slide-vectors to clusters. The constrained slide-vector

model includes several slide-vectors, while the original slide-vector model includes

only one slide-vector.

Next, we define the objective function of the constrained slide-vector model I.

Definition 4.3.2 Objective function of constrained slide-vector model I

Given asymmetric dissimilarity data ∆, the number of clusters of objects and

slide-vectors, k and m, respectively, and the number of dimensions d, the objective

function of constrained slide-vectors model is defined as follows:

L(X∗,Z,U ,Ψ |∆) =
n∑

i=1

n∑
j=1

k∑
o=1

k∑
ℓ=1

m∑
s=1

uioujℓψℓs(δij − doℓs(X∗,X∗−ΨZ))2

In the constrained slide-vector model, X∗, Z, U and Ψ are estimated such that the

value of the objective function is minimized.

Next, we define the objective function of another constrained slide-vector model

(i.e., slide-vector moel II), and prove the equivalence of the objective functions of

these constrained slide-vector models.

Definition 4.3.3 The objective function of constrained slide-vector model II

Given asymmetric dissimilarity data ∆, the number of clusters of objects k and

slide-vectors m, respectively, and the number of low-dimensions d, the objective func-

tion of constrained slide-vector model II is defined as follows:

L(X∗,Z,U ,Ψ |∆) =
1

2

∥∥∥W † ⊙ (∆† −D(Q‡))
∥∥∥2

where W † = (w†
i†j†

) w†
i†j†
∈ {0, 1} (i, j = 1, 2, · · · , 2n) are weights for dissimilarities,

∆† =

[
On ∆

∆T On

]
, and

Q‡ =

[
UX∗

UX∗ −UΨZ

]
=

[
U On,m

U −UΨ

][
X∗

Z

]
.

Here, On,m = (0) is n by m matrix. In the constrained slide-vector model, X∗, Z,

U and Ψ are estimated such that the value of the objective function is minimized.

Next, we show the equivalence of the objective functions of the constrained slide-

vector model I and II.
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Proposition 4.3.1 Equivalence of constrained slide-vector model I and II

Given asymmetric dissimilarity matrix ∆, indicator matrix of objects U and slide-

vecotrs Ψ , respectively, coordinates of cluster centroids X∗ and slide-vectors Z, and

the number of low-dimensions d, the following property is satisfied;

1

2

∥∥∥W † ⊙ (∆† −D(Q‡))
∥∥∥2

=
n∑

i=1

n∑
j=1

k∑
o=1

k∑
ℓ=1

m∑
s=1

uioujℓψℓs(δij − doℓs(X∗,X∗ − ΨZ))2 (4.22)

Proof. From the left term of Eq (4.22),

1

2

∥∥∥W † ⊙ (∆† −D(Q‡))
∥∥∥2

=
1

2

2n∑
i∗=1

2n∑
j∗=1

w†
i∗j∗(δ

†
i∗j∗ − di∗j∗(Q‡))2. (4.23)

From the definition of W † and ∆†, Eq (4.23) is described as follows:

n∑
i=1

n∑
j=1

(δij − dij(UX∗,U(X∗ − ΨZ)))2

=
n∑

i=1

n∑
j=1

(
δij −

∥∥∥ k∑
o=1

uiox
∗
o −

( k∑
ℓ=1

ujℓ

(
x∗
ℓ −

m∑
s=1

ψℓszs

))∥∥∥)2

(4.24)

Here, for all i and j, there exists o∗, ℓ∗, uniquely, such that uio∗ = 1 and uio =

0 (o ̸= o∗) and ujℓ∗ = 1 and ujℓ = 0 (ℓ ̸= ℓ∗), respectively, from the definition of

indicator matrix. As the same way, for all i, j and ℓ, there exists s∗, uniquely, such

that ψℓs∗ = 1 and ψℓs∗ = 1. Therefore, i and j part of Eq. (4.23) is descirbed as

follows: (
δij −

∥∥∥ k∑
o=1

uiox
∗
o −

( k∑
ℓ=1

(
ujℓx

∗
ℓ −

m∑
s=1

ψℓszs

))∥∥∥)2

=(δij − ∥uio∗x∗
o∗ − (ujℓ∗x

∗
ℓ∗ − ψℓs∗zs∗)∥)2

=(δij − ∥x∗
o∗ − (x∗

ℓ∗ − zs∗)∥)2

=
k∑

o=1

k∑
ℓ=1

m∑
s=1

uioujℓψℓs(δij − ∥x∗
o∗ − (x∗

ℓ∗ − zs∗)∥)2.

Therefore, the proposition is proved.

From Eq. (4.22), the objective function of the constrained slide-vector model is

considered as special case of ordinal MDS, just as with constrained Unfolding.

4.3.2 Properties of the constrained slide-vector model

In this subsection, we show the decomposition of the objective function of the

constrained slide-vector model. For the decomposition, just as with constrained
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Unfolding, the objective function of the constrained slide-vector model can be de-

composed into two parts, i.e., Among cluster error SSQ and Lack of spatial fit.

The objective function of constrained slide-vector model does not include terms for

Within cluster error SSQ and homogeneity.

Proposition 4.3.2 Decomposition of the objective function of the constrained slide-

vector model

Given the objective function of the constrained slide-vector model, the objective

function can be decomposed as follows:

L(X∗,Z,U ,Ψ |∆) =∥∆−D(UX∗,U(X∗ − ΨZ))∥2

=∥∆− PU∆PU∥2 (4.25)

+ ∥PU∆PU −D(UX∗,U(X∗ − ΨZ))∥2 (4.26)

where (UTU)−1UT∆U (UTU )−1 are Sokal-Michener dissimilarity (Sokal and Mich-

ener, 1958) and PU = U (UTU)−1UT is projection matrix.

Proof. This proof can be conducted in the same way as Proposition 4.2.2.

From the decomposition, we consider objective function of the constrained slide-

vector model as simultaneous analysis of clustering for asymmetric dissimilarity data

and slide-vector model for Sokal-Michener dissimilarities.

4.3.3 Algorithm of the constrained slide-vector model

In this subsection, we show the algorithm of the constrained slide-vector model.

The parameters are estimated on a basis of ALS (Young et al., 1980). The flow of

our proposed algorithm is described as follows.

Algorithm of the constrained slide-vector model

Step 0 Set k, m and d, and initial values of X∗, Z, U , and Ψ

Step 1 Update X∗ and Z, given U and Ψ

Step 2 Update U , given Ψ , X∗ and Z

Step 3 Update Ψ , given X∗, Z and U

Step 4 If stop condition is satisfied, stop the algorithm, else return to the Step 1

To update X∗ and Z, we adopt a majorization algorithm. thus deriving the

majorizing function of the constrained slide-vector model.

Proposition 4.3.3 Majorizing function of the constrained slide-vector model
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Given objective function of the constrained slide-vector model, the majorizing func-

tion of the constrained slide-vector model is given as follows:

1

2

∥∥∥W † ⊙ (∆† −D(Q‡))
∥∥∥2

≤ 1

2
η2δ +

1

2
trQ∗TΦ†TV Φ†Q∗ − trQ∗TΦ†TB(Φ†H)Φ†H = L∗

M(Q∗,H ,Φ†) (4.27)

where

η2δ =
2n∑

i∗=1

2n∑
j∗=1

w†
i∗j∗δ

†2
i∗j∗

Φ† =

[
U On,m

U −UΨ

]
, Q∗ =

[
X∗

Z

]
,

V =
2n∑

i∗=1

2n∑
j∗=1

w†
i∗j∗(ei∗ − ej∗)(ei∗ − ej∗)

T ,

ei∗ = (ei∗s∗) ei∗s∗ =

{
1 (i∗ = s∗)

0 (i∗ ̸= s∗)
, (i∗, s∗ = 1, 2, · · · , 2n),

B(Φ†H) = (bi∗j∗) (i
∗, j∗ = 1, 2, · · · , 2n)

bi∗j∗ =

{
− w†

i∗j∗δ
†
i∗j∗

di∗j∗ (Φ†H)
(if i∗ ̸= j∗ and di∗j∗(Φ

†H) ̸= 0)

0 (if i∗ ̸= j∗ and di∗j∗(Φ
†H) = 0)

bi∗i∗ = −
2n∑

(j∗=1)∧(i∗ ̸=j∗)

bi∗j∗ and

H = (hs†t) hs†t ∈ R (s† = 1, 2, · · · , (k +m); t = 1, 2, · · · , d).

Proof. This proposition is proved in the same way as Proposition 4.2.3.

Next, we show updating formula for X∗ and Z based on the majorizing function.

Proposition 4.3.4 Updating formula of Q‡

Given Φ∗ and H , updating formula of Q‡ minimizing Eq. (4.27) is derived as

follows:

Q‡ = [Φ†TV Φ†]+Φ†TB(Φ†H)Φ†H (4.28)

where [Φ†TV Φ†]+ is the Moore-Penrose inverse of Φ†TV Φ†.

Proof. This proposition is proved as the same way of Proposition 4.2.4.

Then, the algorithm for estimating Q‡ is shown as follows.

Algorithm of updating Q∗

Step 0 Set iteration number β ← 1, initial value of (β)H , and threshold value ε > 0.
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Step 1 Update (β)Q∗ based on Eq. (4.13)

Step 2 (β)Q∗ is substituted into (β+1)H and and β ← β + 1

Step 3 if |(β)L∗
M(Q∗,H ,Φ†| ∆†) − (β−1)L∗

M(Q∗,H ,Φ†| ∆†)| < ε is satisfied, stop,

else back to step 1

where (β)H , (β)Q∗ and (β)LM(Q∗,H ,Φ|∆†) are H , Q∗ and a value of the objective

function corresponding to β th iteration, respectively.

In this algorithm, U is estimated by each row vector of U although value of the

objective function depends on the order of estimating row vector of U .

Next, the way of updating ith row vector of U is shown.

Proposition 4.3.5 Updating formula of U

Given X∗, Z, Ψ and U without i∗th row vector of U , if updating rule of i∗th row

vector of U is used, values of the objective function of the constrained slide-vector

model does not increase.

ui∗o =

{
1

(
(∀ℓ = 1, 2, · · · , k)(γi∗o(Q∗,Ψ ) ≤ γiℓ(Q

∗,Ψ ))
)

0 (others)
(4.29)

where

γio(Q,Ψ ) =
∑
j ̸=i

k∑
ℓ=1

m∑
s=1

ujℓψℓs(δij − doℓs(X∗,X∗ − ΨZ))2

+
∑
j ̸=i

k∑
ℓ=1

m∑
s=1

ujℓψℓs(δji − doℓs(X∗,X∗ − ΨZ))2 + doo(X
∗,X∗ − ΨZ).

and o∗ is the index of cluster for objects.

Proof. This proof can be conducted as the same way of Proposition 4.2.5.

Next, we show how to update U .

Algorithm of updating U

Step 1 i← 1

Step 2 Calcurate γio(Q,Ψ ) for o = 1, 2, · · · , k

Step 3 Update ith row vector ofU based on the rule of Eq.(4.29) among γio(Q,Ψ ) (o =

1, 2, · · · , k). If the number of o such that uio = 1 is over 1, one of o is selected

randomly.

Step 4 If i = n stop, otherwise, i← i+ 1 and back to Step 2
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Note that the rule of Eq. (4.29) is affected by the order of i.

Next, we show the update rule for Ψ . In this algorithm, Ψ is estimated by each

row vector of Ψ although values of the objective function depend on the order of

estimating row vector of Ψ .

Proposition 4.3.6 Updating formula of Ψ

Given X∗, Z, U and Ψ without ℓ∗th vector of Ψ , if following updating rule of

ℓ∗th row vector of Ψ is used, values of the objective function of the constrained

slide-vector model does not increase.

ψℓ∗s =

{
1

(
(∀s∗ = 1, 2, · · · ,m)(κℓs(Q,U) ≤ κℓs∗(Q,U ))

)
0 (others)

(4.30)

where

κℓs(Q,U ) =
n∑

i=1

n∑
j=1

k∑
o=1

uioujℓ(δij − doℓs(X∗,X∗ − ΨZ))2

and s∗ is the index of cluster of centrodis.

Proof. In the situation, the objective function of the constrained slide-vector model

can be decomposed as follows:

k∑
ℓ=1

m∑
s=1

ψℓs

n∑
i=1

n∑
j=1

k∑
o=1

uioujℓ(δij − doℓs(X∗,X∗ − ΨZ))2

=
k∑

ℓ̸=ℓ†

m∑
s=1

ψℓs

n∑
i=1

n∑
j=1

k∑
o=1

uioujℓ(δij − doℓs(X∗,X∗ − ΨZ))2 (4.31)

+
m∑
s=1

ψℓ†s

n∑
i=1

n∑
j=1

k∑
o=1

uioujℓ†(δij − doℓ†s(X∗,X∗ − ΨZ))2 (4.32)

In short, the objective function of constrained slide-vector model can be decomposed

into Eq. (4.31) and Eq. (4.32). From the rule of Eq. (4.30), Eq. (4.32) is

minimized, and Eq. (4.31) is not affected by updating ℓ∗. Therefore, the proposition

is satisfied.

Algorithm of updating Ψ

Step 1 ℓ← 1

Step 2 Calcurate κℓs(Q,U) for all s = 1, 2, · · · ,m

Step 3 Update ℓth row vector of Ψ based on the rule of Eq. (4.30) among

κℓs(Q,U ) (s = 1, 2, · · · ,m). If the number of s such that ψℓs = 1 is over

1, one of s is selected randomly.

Step 4 If ℓ = k stop, otherwise, ℓ← ℓ+ 1 and back to Step 2
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4.4 Relations between constrained methods and existing

methods

The constrained slide-vector model is considered to be a generalization of the

slide-vector model and Unfolding for asymmetric dissimilarity data. Furthermore,

in some situations, the objective functions of the constrained slide-vector model and

constrained Unfolding become equivalent. In this section, we show the following

three relations: (1) the relation between constrained Unfolding and the constrained

slide-vector model; (2) the relation between Unfoldng and the constrained slide-

vecotr model; and (3) the relation between the constrained slide-vector model and

the slide-vector model.

First, we show the relation between constrained Unfoldng and the constrained

slide-vecotr model.

Theorem 4.4.1 Relation between constrained Unfolding and slide-vector model

If m = k for the objective function of constrained slide-vector model, these ob-

jective functions of constrained Unfolding and of constrained slide-vetor model are

equivalent for the asymmetric dissimilarity data.

Proof. From the proposition 4.2.1 and the proposition 4.3.1, the objective function

of definition 4.2.3 and definition 4.3.3 will be compared. The differences between

definition 4.2.3 and definition 4.3.3 is depending on models of coordinates matrices.

Therefore, the following property will be shown.

Y ∈ CU =
{
Y = UY ∗

∣∣∣ U ∈ SI(n, k), Y ∗ ∈ Rk×d
}

(4.33)

⇐⇒Y ∈ CS =
{
U(X∗ − ΨZ)

∣∣∣ U ∈ SI(n, k), Ψ ∈ SI(k,m), X∗ ∈ Rk×d, Z ∈ Rm×d
}

(4.34)

where

SI(n, k) =
{
U
∣∣∣ U = (uio),

k∑
o=1

uio = 1(i = 1, 2, · · · , n), 0 <
n∑

i=1

uio < n(1 < o ≤ k)
}
.

First Eq. (4.33) is assumed and Eq.(4.34) will be proved.

We assumed Y ∈ CU and m = k. From Eq. (4.33),

(∀Y ∈ CU)(∃U ∈ SI(n, k))(∃Y ∗ ∈ Rk×d)(Y = UY ∗).

Here, if k = m, Ψ ∈ SI(k,m) exists such that Ψ = I. Therefore, the following is

satrisfied:

(∀Y ∗ ∈ Rk×d)(∀X∗ ∈ Rk×d)(∃Ψ ∈ SI(k, k))(∃Z ∈ Rk×d)(Y ∗ = X∗ − IZ = X∗ − ΨZ)

because Y ∗,X∗ and Z ∈ Rk×d. Then Y = UY ∗ = U(X∗ − ΨZ) ∈ CS.
Next, Eq.(4.34) is assumed and Eq. (4.33) will be proved.
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We assumed Y ∈ CS. From Eq. (4.34)

(∀Y ∈ CS)(∃U ∈ SI(n, k))(∃X∗ ∈ Rk×d)(∃Ψ ∈ SI(k,m))(∃Z ∈ Rm×d)

(Y = U(X∗ − ΨZ))

Here,

(∀U(X∗ − ΨZ) ∈ CS)(∃Y ∗ ∈ Rk×m)(U (X − ΨZ) = UY ∗).

Therefore, UY ∗ ∈ CU is satisfied.

Next, relation between Unfolding and the constrained slide-vector model is shown.

Theorem 4.4.2 Relation between Unfolding and the constrained slide-vector model

If m = k = n for the objective function of the constrained slide-vector model, these

objective functions of Unfolding and the constrained slide-vector model are equivalent

for the asymmetric dissimilarity data.

Proof. In the same way as proof for theorem 4.4.1, the objective function of Un-

folding and the constrained slide-vector model can be described based on the same

style of the objective functions. Therefore, the following properties will be shown.[
X† ∈ UX = {X = X†|X ∈ Rn×d}

⇐⇒X† ∈ CSX = {X† = UX∗|X∗ ∈ Rk×d,U ∈ SI(n, k)}
]

(4.35)

∧
[
Y † ∈ UY = {Y † = Y | Y ∈ Rn×d}

⇐⇒ Y † ∈ CSY = {Y † = U (X∗ − ΨZ)| U ∈ SI(n, k),

Ψ ∈ SI(k,m), X∗ ∈ Rk×d, Z ∈ Rm×d}
]

(4.36)

First, Eq. (4.35) will be shown.

We assumed X† ∈ UX . If n = k, U ∈ SI(n, k) such that I = U . Therefore,

(∀X† ∈ UX = Rn×d)(∃U ∈ SI(n, k))(∃X∗ ∈ Rn×d)(X† = IX∗ = UX∗).

and X† = UX∗ ∈ CSX .

We assumed X† ∈ CSX . The following property is satisfied:

(∀X† ∈ CSX)(∃U ∈ SI(n, k))(∃X∗ ∈ Rk×d)(X† = UX∗), and

(∀UX∗ ∈ CSX)(∃X ∈ Rn×d)(UX∗ = X).

Therefore, UX∗ ∈ UX .
Next, Eq. (4.36) will be proved.
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We assumed Y † ∈ UY . If n = k = m, there exists that U ∈ SI(n, k), and

Ψ ∈ SI(k,m) such that I = U and I = Ψ , respectively. Therefore, following

property is satified.

(∀Y † ∈ UY )(∃U ∈ SI(n, k))(∃X∗ ∈ Rk×d)(∃Ψ ∈ SI(k,m))(∃Z ∈ Rm×d)

(Y † = X∗ −Z = IX∗ − IIZ = U(X∗ − ΨZ)).

Then, X† ∈ CSY .

We assumed X† ∈ CSY . The following property is satisfied from the definition of

CSY :

(∀Y † ∈ CS)(∃U ∈ SI(n, k))(∃Ψ ∈ SI(k,m))(∃X∗ ∈ Rk×d)(∃Z ∈ Rm×d)

(Y † = U(X∗ − ΨZ)) and

(∀U ∈ SI(n, k))(∀Ψ ∈ SI(k,m))(∀X∗ ∈ Rk×d)(∀Z ∈ Rm×d)(∃Y ∈ Rn×d)

(Y = U(X∗ − ΨZ)).

Therefore Y ∈ UY , and the theorem are proved.

Finally, we show the relation between the constrained slide-vector model and the

slide-vector model.

Theorem 4.4.3 Relation between slide-vector model and constrained slide-vector

model

If m = 1 and n = k, objective functions of constrained slide-vector model and

slide-vector model are equivalent.

Proof. The difference between definition 3.2.6 and definition 4.3.3 is depending on

models of coordinates matrix. Therefore the following properties will be proved.[
X† ∈ CSX = {X† = UX∗| U ∈ SI(n, k), X∗ ∈ Rk×d}

⇐⇒X† ∈ SX = (X† = X|X ∈ Rn×d)
]
∧ (4.37)[

Y † ∈ CSY = {Y † = U(X∗ − ΨZ)| U ∈ SI(n, k), X∗ ∈ Rk×d,Ψ ∈ SI(k,m),

Z ∈ Rm×d}

⇐⇒Y † ∈ SY = {Y † = X − 1zT |X ∈ Rn×d,z ∈ Rd}
]

(4.38)

Eq. (4.37) can be proved as the same way of proof for Eq. (4.35) if n = k. Next,

Eq. (4.38) will be proved.

We assumed Y † ∈ CSY , n = k, and m = 1.

(∀Y † ∈ CSY )(∃U ∈ SI(n, k))(∃X∗ ∈ Rk×d)(∃Ψ ∈ SI(k,m))(∃Z ∈ Rm×d)

(Y † = U(X∗ − ΨZ)) and

(∀U ∈ SI(n, k))(∀Ψ ∈ SI(k,m))(∀X∗ ∈ Rk×d)(∀Z ∈ Rm×d)(∃Y ∈ Rn×d)

(Y = U (X∗ − ΨZ))
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Then, Y † = Y ∈ SY .
We assumed Y † ∈ SY .
Here, if n = k, there exists U ∈ Si(n, k) such that U = I. In addition to that,

if m = 1, Ψ ∈ SI(k,m) must be Ψ = 1k from the defitnion of indicator matrix.

Therefore, if n = k and m = 1,

(∀Y ∈ Rn×d)(∃Z ∈ Rm×d)(∃X∗ ∈ Rn×d)(∃U ∈ SI(n, k))(∃Ψ ∈ SI(k,m))

(Y = X∗ − 1zT = I(X∗ − 1Z))

Then Y † ∈ CSY .

From theorem 4.4.1, theorem 4.4.2, and theorem 4.4.3, the constrained slide-vector

model can be considered a generalization of these Unfolding type methods for asym-

metric dissimilarity data; however, the constrained slide-vector model does not in-

clude CDU (Vera et al., 2013) for asymmetric dissimilarity data.
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Chapter 5

Constrained analysis of

asymmetric data based on

decomposition

5.1 Background of constrained asymmetric MDS based on

decomposition

AMDS is a method for estimating coordinates of objects in low-dimensions from

asymmetric dissimilarity data, where asymmetric dissimilarity is defined as dissim-

ilarity from object i to object j not necessarily being the same dissimilarity from

object j to object i. In AMDS, asymmetries between objects are represented in esti-

mated low-dimensions (Borg and Groenen, 2005; Chino, 2012; Saito and Yadohisa,

2005). Asymmetric dissimilarity data exists in a wide variety of areas; therefore, it

is important to interpret asymmetries between objects using AMDS.

Chino (2012) reviewed AMDS in a narrower sense and classified descriptive AMDS

models into three methods, in particular, augmented models, non-metric distance

models and extend distance models (Chino and Okada, 1996; Chino, 1997). In

short, various AMDS methods have been proposed to describe asymmetries in low-

dimensions. Among them, objective functions of the hill-climbing model (Borg and

Groenen, 2005) and radius model (Okada and Imaizumi, 1987) can be decomposed

into symmetric and skew-symmetric parts. Symmetric parts of these objective func-

tions are equivalent to ordinal MDS for the symmetric part of asymmetric dissimi-

larity data. In contrast, the skew-symmetric parts of these objective functions are

modelized in different manner for skew-symmetric part of asymmetric dissimilarity

data, respectively. Therefore, these methods can be considered as extended mod-

els of ordinal MDS. The interpretation of the asymmetries from described by these

methods is rather straighforward.

In the hill-climbing model, a vector called the slope-vector is used to describe

asymmetries. Therefore, the representation here is similar to that of the slide-vector
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model (Zieltman and Heiser, 1993); however, the interpretation is different. In

hill climbing model, skew-symmetry is represented by notion of non-distance model

although, in the slide-vector model, that is represented by notion of augmented

distance model. If inner product between the slope vector and the difference vector

between two objects tends to be relatively large , the asymmetric relation between

these two objects is considered to be relatively large. On the other hand, if the

inner product tends to be relatively small, the asymmetric relation between these

two objects is considered to be a relatively small. In the radius model, coordinates

and radii are used to represent the symmetric part and skew-symmetric parts. if one

object has a relatively large radius length and the other object has a relatively small

radius length, the relation is considered to be a large asymmetry in this model.

Although these methods are useful for asymmetric dissimilarity data, it becomes

increasingly difficult to interpret the results of these methods as the asymmetric dis-

similarity data grows. To overcome this problem for the interpretation, we propose

two types of simultaneous methods for AMDS and clustering, i.e., the constrained

hill-climbing model and the constrained radius model; these methods are proposed

on a basis of cluster difference scaling (CDS) (Heiser, 1993; Heiser and Groenen,

1997). In the constrained hill-climbing and constrained radius models, relations for

asymmetries between clusters are represented. These objective functions can be

decomposed into symmetric and skew-symmetric parts, the symmetric part being

equivalent to the objective fucntion of CDS for the symmetric part of the asym-

metric dissimilarity data. Here, the symmetric and skew-symmetric parts can be

further decomposed using the Sokal-Michener dissimilarities (Sokal and Michener,

1958) of the symmetric and skew-symmetric parts, respectively. Therefore, the in-

terpretations of these objective functions become relatively straightforward. For the

constrained radius model, the radii are also classified on the basis of the notion of

parsimonious models (Tanioka and Yadohisa, 2016).

For the remainder of this chapter, the model, objective function and algorithm

of the constrained hill-climbing model and constrained radius model are shown in

section 4.2 and section 4.3, respectively. Finally, in section 4.4, we show the relations

between the hill-climbing and constrained hill-climbing models, and the radius and

constrained radius models.

5.2 Constrained hill-climbing model based on CDS

This section comprise three parts, i.e., a description of the model and objective

function for the constrained hill-climbing model, the property and the algorithm.

5.2.1 Model and objective function of the constrained hill-climbing model

In this section, we show the model and objective function of the constrained

hill-climbing model. Furthermore, we introduce two types of descriptions for the

51



objective functions of the constrained hill-climbing model; furthermore, we show

the equivalence based on Heiser and Groenen (1997).

Definition 5.2.1 Model of constrained hill-climbing model

Let∆ be an asymmetric dissimilarity matrix, X∗ = (x∗ot) x
∗
ot ∈ R (o = 1, 2, · · · , k; t =

1, 2, · · · , d) and v = (vt) vt ∈ R (t = 1, 2, · · · , d) be coordinates of clusters and a

slope vector in d dimensions, respectively, where k is the number of clusters for

symmetric part. Here, the model of constrained hill-climbing model is defined as

follows:

(∀i, j = 1, 2, · · · , n)(∃!Co; i ∈ Co)(∃!Cℓ; j ∈ Cℓ)

δij =

{
doℓ(X

∗) + (x∗
o − x∗

ℓ)
Tvdoℓ(X

∗)−1 + εij (o ̸= ℓ)

0 (o = ℓ)

where

doℓ(X
∗) = ∥x∗

o − x∗
ℓ∥ =

[ d∑
t=1

(x∗ot − x∗ℓt)2
] 1

2

Co is cluster o of objects, and εij ∈ R (i, j = 1, 2, · · · , n) is error.

Next, we define the objective function of the constrained hill-climbing model I.

Definition 5.2.2 Objective function of constrained hill-climbing model I

Given an asymmetric dissimilarity data ∆, the number of clusters for objects k,

and the number of low-dimensions d, the objective function of the constrained hill-

climbing model is defined as follows:

L(X∗,v,U |∆) =
∑

(i,j)∈Ω

k∑
o=1

k∑
ℓ=1

uioujℓ

(
δij − (doℓ(X

∗) + (x∗
o − x∗

ℓ)
Tvdoℓ(X

∗)−1)
)2

where

Ω = {(i, j)|
k∑

o=1

k∑
ℓ=1

uioujℓdoℓ(X
∗) ̸= 0 (i, j = 1, 2, · · · , n)}

and U = (uio), uio ∈ {0, 1}, (i = 1, 2, · · · , n; o = 1, 2, · · · , k) is indicator matrix. In

the constrained hill-climbing model, X∗, v and U are estimated such that the value

of the objective function is minimized.

Next, we define another objective function of the constrained hill-climbing model

II, and show the equivalence of these objective functions.
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Definition 5.2.3 Objective function of constrained hill-climbing model II

Given an asymmetric dissimilarity data ∆, the number of clusters k and the num-

ber of low-dimensions d, the objective function of the constrained hill-climbing model

II is defined as follows:

L(X∗,v,U |∆) =
∑

(i,j)∈Ω∗

(
δij −

[
dij(UX∗) + (

k∑
o=1

uiox
∗
o −

k∑
ℓ=1

ujℓx
∗
ℓ)

Tvdij(UX∗)−1
])2

where

dij(UX∗) =
∥∥∥ k∑

o=1

uiox
∗
o −

k∑
ℓ=1

ujℓx
∗
o

∥∥∥ (i, j = 1, 2, · · · , n),

and

Ω∗ = {(i, j)| dij(UX) ̸= 0 (i, j = 1, 2, · · · , n)}

Next, we prove the equivalence of these objective functions.

Proposition 5.2.1 Equivalence of constrained hill-climb model

Given an asymmetric dissimilarity matrix ∆, an indicator matrix of objects U , co-

ordinates of cluster centorids X∗, a slope-vector v, and the number of low-dimensions

d, the following property is satisfied;∑
(i,j)∈Ω

k∑
o=1

k∑
ℓ=1

uioujℓ

(
δij − (doℓ(X

∗) + (xo − xℓ)
Tvdoℓ(X

∗)−1)
)2

=
∑

(i,j)∈Ω∗

(
δij −

[
dij(UX∗) + (

k∑
o=1

uiox
∗
o −

k∑
ℓ=1

ujℓx
∗
ℓ)

Tvdij(UX∗)−1
])

(5.1)

Proof. From the right term of Eq. (5.1),∑
(i,j)∈Ω∗

(
δij −

[
dij(UX∗) + (

k∑
o=1

uiox
∗
o −

k∑
ℓ=1

ujℓx
∗
ℓ)

Tvdij(UX∗)−1
])2

=
∑

(i,j)∈Ω∗

(
δij −

[∥∥∥ k∑
o=1

uiox
∗
o −

k∑
ℓ=1

ujℓx
∗
ℓ

∥∥∥+
( k∑

o=1

uiox
∗
o −

k∑
ℓ=1

ujℓx
∗
ℓ

)T

v
∥∥∥ k∑

o=1

uiox
∗
o −

k∑
ℓ=1

ujℓx
∗
ℓ

∥∥∥−1)2

. (5.2)

Here, for all i and j, there exists o∗, ℓ∗, uniquely, such that uio∗ = 1 and uio =

0 (o ̸= o∗) and ujℓ∗ = 1 and ujℓ = 0 (ℓ ̸= ℓ∗), respectively, from the definition of

indicator matrix. Therefore, i and j part of Eq. (5.2) is as follows;(
δij −

[
∥x∗

o∗ − x∗
ℓ∗∥+ (x∗

o∗ − x∗
ℓ∗)

Tv∥x∗
o∗ − x∗

ℓ∗∥−1
])2

=
k∑

o=1

k∑
ℓ=1

uioujℓ

(
δij −

[
∥x∗

o − x∗
ℓ∥+ (x∗

o − x∗
ℓ)

Tv∥x∗
o − x∗

ℓ∥−1
])2

Therefore, the proposition is proved.
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5.2.2 Properties of the constrained hill-climbing model

In this subsection, we introduce three types of decompositions of the constrained

hill-climbing model. First, we show the decomposition of the objective function of

the constrained hill-climbing model into the symmetric and skew-symmetric parts

of the objective function. From the decomposition, the interpretation of the slope

vector becomes clear as the same way of the hill climbing model.

Figure 5.1: Example of the constrained hill-climbing model

See Figure 5.1. In Figure 5.1, the asymmetric relation between coordinates of

cluster τ , x∗
τ and cluster o x∗

o is smaller than tha between coordinates of cluster τ ,

x∗
τ and cluster ℓ, x∗

ℓ because inner product between slope vector v and x∗
tau − x∗

o

is smaller than that between v and x∗
ℓ − x∗

τ . In addition, in the example, distance

from x∗
τ to x∗

ℓ is closer than that from x∗
ℓ to x∗

τ from the direction of v.

Second, the symmetric part of the objective function can be decomposed into

four parts in the same manner as that of CDS. Third, the skew-symmetric part of

the objective function can also be decomposed into three parts using the Sokal and

Michener dissimilarities.

Proposition 5.2.2 Decomposition of the objective function of the constrained hill-

climbing model

The objective function of the constrained hill-climbing model can be decomposed
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into symmetric part and skew-symmetric part, respectively, as follows:∑
(i,j)∈Ω∗

(
δij −

[
dij(UX∗) +

( k∑
o=1

uiox
∗
o −

k∑
ℓ=1

ujℓx
∗
ℓ

)T

vdij(UX∗)−1
])2

=
∑

(i,j)∈Ω∗

(
sij − dij(UX∗)

)2

(5.3)

+
∑

(i,j)∈Ω∗

(
aij −

( k∑
o=1

uiox
∗
o −

k∑
ℓ=1

ujℓx
∗
ℓ

)T

zdij(UX∗)−1
)2

(5.4)

where

S =
1

2
(∆+∆T ) = (sij) (i, j = 1, 2, · · · , n) and

A =
1

2
(∆−∆T ) = (aij) (i, j = 1, 2, · · · , n)

are symmetric and skew-symmetric parts, respectively.

Proof.∑
(i,j)∈Ω∗

(
δij −

[
dij(UX∗) +

( k∑
o=1

uiox
∗
o −

k∑
ℓ=1

ujℓx
∗
ℓ

)T

vdij(UX∗)−1
])2

=
∑

(i,j)∈Ω∗

(
sij − dij(UX∗) + aij −

( k∑
o=1

uiox
∗
o −

k∑
ℓ=1

ujℓx
∗
ℓ

)T

vdij(UX∗)−1
)2

=
∑

(i,j)∈Ω∗

(
sij − dij(UX∗)

)2

(5.5)

+
∑

(i,j)∈Ω∗

(
aij −

( k∑
o=1

uiox
∗
o −

k∑
ℓ=1

ujℓx
∗
ℓ

)T

vdij(UX∗)−1
)2

(5.6)

+ 2
∑

(i,j)∈Ω∗

(
sij − dij(UX∗)

)(
aij −

( k∑
o=1

uiox
∗
o −

k∑
ℓ=1

ujℓx
∗
ℓ

)T

vdij(UX∗)−1
)
(5.7)

In Eq. (5.7), for arbitrarily (i, j) ∈ Ω, sij − dij(UX∗) = sji − dji(UX∗) since both

sij and dij(UX∗) are symmetric. In addition, for arbitrarily (i, j) ∈ Ω( k∑
o=1

uiox
∗
o −

k∑
ℓ=1

ujℓx
∗
ℓ

)T

vdij(UX∗)−1 = −
( k∑

ℓ=1

ujℓx
∗
ℓ −

k∑
o=1

uiox
∗
o

)T

vdji(UX∗)−1.

and these parts become skew-symmetric. Therefore, the following term becomes skew-

symmetric dissimilarities from Proposition 3.1.3(
aij −

( k∑
o=1

uiox
∗
o −

k∑
ℓ=1

ujℓx
∗
ℓ

)T

vdij(UX∗)−1
)

and Eq. (5.7) becomes 0 from Proposition 3.1.2.

55



Moreover, the symmetric and skew-symmetric parts are further decomposed, re-

spectively. Again, the decomposition of the symmetric part for the constrained

hill-climbing model is equivalent to that of CDS. Both decompositions of the objec-

tive functions of the constrained hill-climbing model for the symmetric and skew-

symmetric parts are obtained using the Sokal and Michener dissimilarities.

Proposition 5.2.3 Decomposition of symmetric part of the constraied hill-climbing

model

Given the symmetric part of the objective function of the constrained hill-climbing

model, the objective function can be decomposed as follows:

L(X∗,U | S) =
∑

(i,j)∈Ω∗

(sij − dij(UX∗))2

=
∑

(i,j)∈Ω∗

∑
o ̸=ℓ

uioujℓ(sij − s̃oℓ)2 (5.8)

+
∑

(i,j)∈Ω∗

k∑
o=1

uioujo(sij − s̃oo)2 (5.9)

+
∑
o̸=ℓ

w̃oℓ(s̃oℓ − doℓ(X∗))2 (5.10)

+
k∑

o=1

w̃oos̃
2
oo (5.11)

where

s̃oℓ =
n∑

i=1

n∑
j=1

uioujℓ
sij
w̃oℓ

and w̃oℓ =
n∑

i=1

n∑
j=1

uioujℓ (o, ℓ = 1, 2, · · · , k),

are Sokal and Michener dissimilaries and weights among clusters, respectively.

Proof. See the Heiser and Groenen (1997).

For the symmetric part of the constrained hill-climbing model’s objective function,

Eq. (5.8), Eq. (5.9), Eq. (5.10) and Eq. (5.11) are called the Among-cluster Error

Sum of Squares (SSQ), Within-cluster Error SSQ, Lack of Spatial fit and Lack of

homogeneity, respectively.

Next, we show the decomposition of the skew-symmetric part of the constrained

hill-climbing model.
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Proposition 5.2.4 Decomposition of skew-symmetric part of the constrained hill-

climbing model

Given the skew-symmetric part of the objective function of the constrained hill-

climbing model, the objective function can be decomposed as follows:

∑
(i,j)∈Ω∗

(
aij −

( k∑
o=1

uiox
∗
o −

k∑
ℓ=1

ujℓx
∗
ℓ

)T

vdij(UX∗)−1
)2

=
∑
o̸=ℓ

∑
(i,j)∈Ω∗

uioujℓ(aij − ãoℓ)2 (5.12)

+
k∑

o=1

∑
(i,j)∈Ω∗

uioujoa
2
ij (5.13)

+
∑
o̸=ℓ

∑
(i,j)∈Ω∗

uioujℓ(ãoℓ − (x∗
o − x∗

ℓ)
Tvdoℓ(X)−1)2 (5.14)

where

ãoℓ =
∑

(i,j)∈Ω∗

uioujℓ
aij
w̃oℓ

, and w̃oℓ =
∑

(i,j)∈Ω∗

uioujℓ (o, ℓ = 1, 2, · · · , k),

are Sokal and Michener dissimilarities for skew-symmetries and weights for clusters,

respectively.

Proof. ∑
(i,j)∈Ω∗

(
aij −

( k∑
o=1

uiox
∗
o −

k∑
ℓ=1

ujℓx
∗
ℓ

)T

vdij(UX∗)−1
)2

=
∑

(i,j)∈Ω∗

k∑
o=1

k∑
ℓ=1

uioujℓ

(
aij − (x∗

o − x∗
ℓ)

Tvdoℓ(X
∗)−1

)2

=
∑

(i,j)∈Ω∗

k∑
o=1

k∑
ℓ=1

uioujℓ

(
aij − ãoℓ + ãoℓ − (x∗

o − x∗
ℓ)

Tvdoℓ(X
∗)−1

)2

=
∑

(i,j)∈Ω∗

k∑
o=1

k∑
ℓ=1

uioujℓ

(
aij − ãoℓ

)2

(5.15)

+
∑

(i,j)∈Ω∗

k∑
o=1

k∑
ℓ=1

uioujℓ

(
ãoℓ − (x∗

o − x∗
ℓ)

Tvdoℓ(X
∗)−1

)2

(5.16)

+ 2
∑

(i,j)∈Ω∗

k∑
o=1

k∑
ℓ=1

uioujℓ

(
aij − ãoℓ

)(
ãoℓ − (x∗

o − x∗
ℓ)

Tvdoℓ(X
∗)−1

)
(5.17)
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Eq. (5.17) is described as follows:

2
∑

(i,j)∈Ω∗

k∑
o=1

k∑
ℓ=1

uioujℓ

(
aij − ãoℓ

)(
ãoℓ − (x∗

o − x∗
ℓ)

Tvdoℓ(X
∗)−1

)

=2
k∑

o=1

k∑
ℓ=1

ãoℓ
∑

(i,j)∈Ω∗

uioujℓaij − 2
k∑

o=1

k∑
ℓ=1

ã2oℓ
∑

(i,j)∈Ω∗

uioujℓ

− 2
k∑

o=1

k∑
ℓ=1

∑
(i,j)∈Ω∗

uioujℓaij(x
∗
o − x∗

ℓ)
Tvdoℓ(X

∗)−1

+ 2
k∑

o=1

k∑
ℓ=1

ãoℓ
∑

(i,j)∈Ω∗

uioujℓ(x
∗
o − x∗

ℓ)
Tvdoℓ(X

∗)−1

=2
k∑

o=1

k∑
ℓ=1

ã2oℓw̃oℓ − 2
k∑

o=1

k∑
ℓ=1

ã2oℓw̃oℓ − 2
k∑

o=1

k∑
ℓ=1

ãoℓw̃oℓ(x
∗
o − x∗

ℓ)
Tvdoℓ(X

∗)−1

+ 2
k∑

o=1

k∑
ℓ=1

ãoℓw̃oℓ(x
∗
o − x∗

ℓ)
Tvdoℓ(X

∗)−1 = 0

Eq. (5.15) can be decomposed into Eq. (5.12 ) and Eq. (5.13). In addition, Eq.

(5.16) can be described as Eq. (5.14 ) by using (x∗
o − x∗

o) = 0 since

ãoo =
n∑

i=1

n∑
j=1

uioujo
aij∑n

i=1

∑n
j=1 uioujo

= n−2
o

n∑
i=1

n∑
j=1

uioujoaij

=n−2
o

∑
i<j

uioujo(aij + aji) = n−2
o

∑
i<j

uioujo(aij − aij) = 0 (5.18)

where no is the number of object belonging to cluster Co.

For the skew-symmetric part of the constrained hill-climbing model’s objective

function, Eq. (5.12), Eq. (5.13) and Eq. (5.14) are called Among-cluster Error

Sum of Squares (SSQ), Within-cluster Error SSQ, Lack of Spatial fit and Lack of

homogeneity, respectively.

From proposition 5.2.3 and proposition 5.2.4, the objective function of the con-

strained hil-climbing model can be decomposed into seven terms. Therefore, Within-

cluster Error SSQ, Among-cluster Error SSQ and Lack of homogeneity for the sym-

metric and skew-symmetric parts indicate terms related to clustering for asym-

metric dissimilarity data; the clustering can consider both the symmetric and skew-

symmetric parts of the asymmetric dissimilarity data. In addition, Lack of spatial fit

for the symmetric and skew-symmetric parts represent MDS for Sokal and Michener

dissimilarities corresponding to symmetric and skew-symmetric parts, respectively.

5.2.3 Algorithm of the constrained hill-climbing model

In this subsection, we show the algorithm of the constrained hill-climbing model.

The parameters are estimated on the basis of ALS (Young et al., 1980). The flow
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of our proposed algorithm is described as follows.

Algorithm of the constrained hill-climbing model

Step 0 Set k and d, and initial values of X∗, v and U

Step 1 Update X∗ and v, given U

Step 2 Update U , given X∗ and v

Step 3 If stop condition is satisfied , stop the algorithm, else return to the Step 1

Here, X∗ and v are estimated by numerical solutions such as the Broyden-

Fletcher-Goldfarb-Shanno method (BFGS) (Nocedal and Wright, 1999).

In this algorithm, U is estimated by each row vector of U , although value of the

objective function depends on the order of estimating row vector of U .

Next, we show how to ith row vector of update U .

Proposition 5.2.5 Updating U

Given X∗, v and U without ith row vector of U , if updating rule of ith row vector

of U is used, the value of the objective function of the constrained slide-vector model

does not increase.

uio =

{
1

(
(∀o∗ = 1, 2, · · · , k)(γio(X∗,v) ≤ γio∗(X

∗,v))
)

0 (others)
(5.19)

(o = 1, 2, · · · , k) where

γio(X
∗,v) =

∑
j ̸=i

k∑
ℓ=1

ujℓ(δij − (doℓ(X
∗) + (x∗

o − x∗
ℓ)

Tvdoℓ(X
∗)−1))2

+
∑
j ̸=i

k∑
ℓ=1

ujℓ(δji − (doℓ(X
∗) + (x∗

o − x∗
ℓ)

Tvdoℓ(X
∗)−1))2

and o∗ is index set of cluster for objects.

Proof. We assumed that object i† is satisfying γi†o(X
∗, z) ≤ γi†o∗(X

∗,v) for all

o∗ = 1, 2, · · · , k.
In the situation, the objective function of the constrained hill-climbing model can

be decomposed as follows:

n∑
i=1

k∑
o=1

uio
∑
j ̸=i

k∑
ℓ=1

ujℓ(δij − (doℓ(X
∗) + (x∗

o − x∗
ℓ)

Tvdoℓ(X
∗)−1))2

=
n∑

i̸=i†

k∑
o=1

uio
∑
j ̸=i

k∑
ℓ=1

ujℓ(δij − (doℓ(X
∗) + (x∗

o − x∗
ℓ)

Tvdoℓ(X
∗)−1))2 (5.20)

+
k∑

o=1

ui†o
∑
j ̸=i†

k∑
ℓ=1

ujℓ(δi†j − (doℓ(X
∗) + (x∗

o − x∗
ℓ)

Tvdoℓ(X
∗)−1))2 (5.21)

59



Eq. (5.20) can be decomposed as follows:

n∑
i ̸=i†

k∑
o=1

uio
∑
j ̸=i

k∑
ℓ=1

ujℓ(δij − (doℓ(X
∗) + (x∗

o − x∗
ℓ)

Tvdoℓ(X
∗)−1))2

=
n∑

i ̸=i†

k∑
o=1

uio
∑

(j ̸=i)∧(j ̸=i†)

k∑
ℓ=1

ujℓ(δij − (doℓ(X
∗) + (x∗

o − x∗
ℓ)

Tvdoℓ(X
∗)−1))2 (5.22)

+
n∑

i̸=i†

k∑
o=1

uio

k∑
ℓ=1

ui†ℓ(δii† − (doℓ(X
∗) + (x∗

o − x∗
ℓ)

Tvdoℓ(X
∗)−1))2 (5.23)

Eq. (5.23) can be described as follows:

n∑
i̸=i†

k∑
o=1

uio

k∑
ℓ=1

ui†ℓ(δii† − (doℓ(X
∗) + (x∗

o − x∗
ℓ)

Tvdoℓ(X
∗)−1))2

=
k∑

ℓ=1

ui†ℓ

n∑
i ̸=i†

k∑
o=1

uio(δii† − (doℓ(X
∗) + (x∗

o − x∗
ℓ)

Tvdoℓ(X
∗)−1))2 (5.24)

Therefore, the objective function of constrained hill-climbing model is decomposed

into Eq. (5.20), Eq. (5.22), and Eq. (5.24). Eq. (5.20) and Eq. (5.24) is minizmied

for arbitrarily o from the rule Eq. (5.19). In addition, Eq. (5.22) is not affected

by the updating rule because Eq. (5.22) does not include part of i†. Therefore, the

proposition is satisfied.

Then, updating algorithm of U is shown.

Algorithm of updating U

Step 1 i← 1

Step 2 Calcurate γio(X
∗,v) for o = 1, 2, · · · , k

Step 3 Update ith row vector ofU based on the rule of Eq.(5.19) among γio(X
∗,v) (o =

1, 2, · · · , k). If the number of o such that uio = 1 is over 0, one of o is selected

randomly.

Step 4 If i = n stop, otherwise, i← i+ 1 and back to Step 2

5.3 Constrained radius model based on CDS

This section comprise three parts, i.e., a description of the model and objective

function for the constrained radius model, the property, and the algorithm.
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5.3.1 Model and objective function of the constrained radius model

In this subsection, we show the model and objective function of the constrained

radius model. Furthermore, we introduce two types of descriptions for the objective

function of the constrained radius model, and show their equivalence based on Heiser

and Groenen (1997).

Definition 5.3.1 Model of constrained radius model

Let ∆ = (δij) δij ∈ R+ (i, j = 1, 2, · · · , n) be an asymmetric dissimilarity matrix,

X∗ = (x∗oℓ) x
∗
ot ∈ R (o = 1, 2, · · · , k; t = 1, 2, · · · , d) and r∗

f = (r∗f ), r
∗
f > 0 (f =

1, 2, · · · ,m;m ≤ k) be coordinate matrix of object clusters in d dimensions and the

length of radii for clusters, respectively, where k and m are the number of clusters

for objects and centroids, respectively. Here, the model of the constrained radius

model is defined as following equation:

(∀i, j = 1, 2, · · · , n)(∃!Co; i ∈ Co)(∃!Cℓ; j ∈ Cℓ)(∃!C∗
f ; o ∈ C∗

f )(∃C∗
q ; ℓ ∈ C∗

q )

(δij = doℓ(X
∗)− r∗f + r∗q + εij)

where

doℓ(X
∗) = ∥x∗

o − x∗
ℓ∥ =

[ d∑
t=1

(x∗ot − x∗ℓt)2
] 1

2
,

Co and C∗
f are clusters for objects and centroids, respectively, and εij ∈ R (i, j =

1, 2, · · · , n) is error.

From the constrained radius model, coordinates of clusters and radii of clusters

are estimated. Furthermore, radius length depend onm(≤ k) from the parsimonious

notion.

Next, we define the objective function of the constrained radius model I.

Definition 5.3.2 Objective function of the constrained radius model I

Given an asymmetric dissimilarity matrix ∆, the number of clusters for objects k

and for centroids m, and the number of low-dimensions d, the objective function of

the constrained radius model I is defined as follows;

L(X∗,r∗,U ,Ψ |∆) =

n∑
i=1

n∑
j=1

k∑
o=1

k∑
ℓ=1

uioujℓ(δij − (doℓ(X
∗)−

m∑
f=1

ψofr
∗
f +

m∑
q=1

ψℓqr
∗
q))

2

subject to r∗f > 0 (f = 1, 2, · · · ,m), where U = (uio) uio ∈ {0, 1} (i = 1, 2, · · · , n; o =
1, 2, · · · , k) and Ψ = (ψof ) ψof ∈ {0, 1} (o = 1, 2, · · · , k; f = 1, 2, · · · ,m). In the

constrained radius model, X∗, r∗, U and Ψ are estimated such that the value of the

objective functin is minimized.
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Next, we define the objective function of another constrained radius model (i.e.,

the constrained radius model II), and show the equivalence of these objective func-

tion.

Definition 5.3.3 Objective function of the constrained radius model II

Given an asymmetric dissimilarity data ∆, the number of object clusters k and

centroids clusters m, respectively, and the number of low-dimensions d, the objective

function of the constrained radius model II is defined as follows;

L(X∗,r∗,U ,Ψ |∆) =
∥∥∥∆− (D(UX∗)− 1nr

∗TΨTUT +UΨr∗1T
n )
∥∥∥2

subject to r∗f > 0 (f = 1, 2, · · · ,m) where

D(UX∗) = (dij(UX∗)), dij(UX∗) =
∥∥∥ k∑

o=1

uiox
∗
o −

k∑
ℓ=1

ujℓx
∗
ℓ

∥∥∥ (i, j = 1, 2, · · · , n),

and 1n = (1) is vector with length of n. In the constraind radius model, X∗, r∗, U

and Ψ are estimated such that the value of the objective function is minimized.

Proposition 5.3.1 Equivalence of constrained radius model I and II

Given an asymmetric dissimilarity matrix ∆, indicator matrices for objects U

and for centroids Ψ , respectively, coordinates of cluster centroids X∗ and radii r∗,

and the number of low-dimensions d, the following property is satisfied;∥∥∥∆− (D(UX∗)− 1nr
∗TΨTUT +UΨr∗1T

n )
∥∥∥2

=
n∑

i=1

n∑
j=1

k∑
o=1

k∑
ℓ=1

uioujℓ(δij − (doℓ(X
∗)−

m∑
f=1

ψofr
∗
f +

m∑
q=1

ψℓqr
∗
q))

2 (5.25)

Proof. From the left term of Eq. (5.25),∥∥∥∆− (D(UX∗)− 1nr
∗TΨTUT +UΨr∗1T

n )
∥∥∥2

=
n∑

i=1

n∑
j=1

(
δij −

(
dij(UX∗)−

k∑
o=1

m∑
f=1

uioψofr
∗
f +

k∑
o=1

m∑
q=1

ujℓψℓqr
∗
q

))2

=
n∑

i=1

n∑
j=1

(
δij −

(
∥

k∑
o=1

uiox
∗
o −

k∑
ℓ=1

uiℓx
∗
ℓ∥ −

k∑
o=1

uio

m∑
f=1

ψofr
∗
f +

k∑
o=1

ujℓ

m∑
q=1

ψℓqr
∗
q

))2

(5.26)

Here, for all i and j, there exists o∗ and ℓ∗, uniquely, such that uio∗ = 1 and

uio = 0 (o ̸= o∗), and ujℓ∗ = 1 and ujℓ = 0 (ℓ ̸= ℓ∗), respectively, from the definition
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of indicator matrix. Therefore i and j part of Eq. (5.26) is described as follows:

(
δij −

(
∥

k∑
o=1

uiox
∗
o −

k∑
ℓ=1

uiℓx
∗
ℓ∥ −

k∑
o=1

uio

m∑
f=1

ψofr
∗
f +

k∑
o=1

ujℓ

m∑
q=1

ψℓqr
∗
q

))2

=
(
δij −

(
∥uio∗x∗

o∗ − ujℓ∗x∗
ℓ∗∥ − uio∗

m∑
f=1

ψo∗fr
∗
f + ujℓ∗

m∑
q=1

ψℓ∗qr
∗
q

))2

=
(
δij −

(
∥x∗

o∗ − x∗
ℓ∗∥ −

m∑
f=1

ψo∗fr
∗
f +

m∑
q=1

ψℓ∗qr
∗
q

))2

=
k∑

o=1

k∑
ℓ=1

uioujℓ

(
δij −

(
∥x∗

o − x∗
ℓ∥ −

m∑
f=1

ψofr
∗
f +

m∑
q=1

ψℓqr
∗
q

))2

(5.27)

From proposition 5.3.1, the constrained radius model can be considered a special

case of the radius model. In short, if X = UX∗ and r = UΨr∗, the radius model

becomes the constrained radius model.

5.3.2 Properties of the constrained radius model

In this subsection, we introduce three types of decompositions of the constrained

radius model. First, we show the decomposition of the objective function of the

constrained radius model into symmetric and skew-symmetric parts. From this de-

composition, the interpretation of radius lengths becomes clear. Therefore, if the

difference of radius lengths between clusters is large, the asymmetric relation be-

tween the two clusters is also interpreted as large. Furthermore, the symmetric part

is equivalent to the objective function of CDS for the symmetric part of asymmetric

dissimilarity data. For the estimation of these parameters, the manner which we

estimate X is the same as that of CDS because X is included only in the sym-

metric part of the objective function for the constrained radius model. Similarly,

the manner of which we estimate r∗ and Ψ depend only on the skew-symmetric

part. Second, the symmetric part of the objective function can be decomposed into

four parts in the same manner as that of CDS. Third, the skew-symmetric part of

the objective function can also be decomposed into three parts using the Sokal and

Michener dissimilarities.

In the remainder of this subsection, we show the indefiniteness of the objective

function for the constrained radius model. From the property, manner in which we

estimate r∗ becomes a non-constrained optimization problem.

Proposition 5.3.2 Decomposition of the objective function of the constrained ra-

dius model

Given the objective function of the constrained radius model, the objective function
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can be decomposed as follows:∥∥∥∆− (D(UX∗)− 1nr
∗TΨTUT +UΨr∗1T

n )
∥∥∥2

=
∥∥∥S −D(UX∗)

∥∥∥2

(5.28)

+
∥∥∥A− (UΨr∗1T

n − 1nr
∗TΨTUT )

∥∥∥2

(5.29)

where

S =(∆+∆T )/2, S = (sij) (i, j = 1, 2, · · · , n) and
A =(∆−∆T )/2, A = (aij) (i, j = 1, 2, · · · , n).

Proof.∥∥∥∆− (D(UX∗)− 1nr
∗TΨTUT +UΨr∗1T

n )
∥∥∥2

=
∥∥∥(∆+∆T )/2 + (∆−∆T )/2− (D(UX∗)− 1nr

∗TΨTUT +UΨr∗1T
n )
∥∥∥2

=
∥∥∥S −D(UX∗)

∥∥∥2

+
∥∥∥A− (UΨr∗1T

n − 1nr
∗TΨTUT )

∥∥∥2

+ 2tr
(
S −D(UX∗)

)T(
A− (UΨr∗1T

n − 1nr
∗TΨTUT

)
(5.30)

In Eq. (5.30), S − D(UX∗) is symmetric matrix since both S and D(UX∗)

are symmetric matrices. In addition, (UΨr∗1T
n − 1nr

∗TΨTUT ) is skew-symmetric

matrix since

(UΨr∗1T
n − 1nr

∗TΨTUT ) = −(UΨr∗1T
n − 1nr

∗TΨTUT )T

Therefore, A− (UΨr∗1T
n − 1nr

∗TΨTUT ) is skew-symmetric matrix from Propo-

sition 3.1.3.

Then, Eq. (5.30) becomes 0 from Proposition 3.1.2.

In the constrained radius model, Eq. (5.28) and Eq. (5.29) are called as symmetric

and skew-symmetric part of the constrained radius model.

There exists a further decomposition of the objective function corresponding to

Eq. (5.28) and Eq. (5.29), respectively. The decomposition of Eq. (5.28) is the

same for proposition 5.2.3; therefore, we show the decomposition of the objective

function corresponding to Eq. (5.29).

Proposition 5.3.3 Decomposition of skew-symetric part of the constrained radius

model
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Given the skew-symmetric part of the objective fucntion of the objective function

of the constrained radius model, the objective function can be decomposed as follows:

∥A− (UΨr∗1T
n − 1nr

∗TΨTUT )∥2

=
∑
o̸=ℓ

∥diag(u(o))[A− PUAPU ]diag(u(ℓ))∥2 (5.31)

+
k∑

o=1

∥diag(u(o))Adiag(u(o))∥2 (5.32)

+ ∥PUAPU − PU(UΨr∗1T
n − 1nr

∗TΨTUT )PU∥2 (5.33)

where PU = U(UTU )−1UT is projection matrix.

Proof. From the same way of proposition Proposition 4.2.2, we have

∥A− (UΨr∗1T
n − 1nr

∗TΨTUT )∥2

=∥A− PUAP + PUAP − (UΨr∗1T
n − 1nr

∗TΨTUT )∥2

=∥A− PUAP ∥2 (5.34)

+ ∥PUAP − (UΨr∗1T
n − 1nr

∗TΨTUT )∥2 (5.35)

Eq. (5.34) can be further decomposed as follows

∥A− PUAPU∥2 =
∑
o̸=ℓ

∥diag(u(o))[A− PUAPU ]diag(u(ℓ))∥2

+
k∑

o=1

∥diag(u(o))[A− PUAPU ]diag(u(o))∥2

From Eq. (5.18),

diag(u(o))PUAPUdiag(u(o)) = On

for any o = 1, 2, · · · , k, this proposition is proved.

For the skew-symmetric part of the objective function, from proposition 5.3.3, Eq.

(5.31), Eq. (5.32) and Eq. (5.33) are called Among-cluster Error SSQ , Within-

cluster Error SSQ and Lack of Spatial fit, respectively.

Next, we show the indefiniteness of the objective function of the constrained radius

model. From the property, the manner in which we estimate r∗ becomes a non-

constrained optimization problem.

Proposition 5.3.4 Indefiniteness of the objective function of constrained radius

model

For the objective function of the constrained radius model, following property is

satisfied:

(∀c ∈ R)
∥∆− (D(UX∗)− 1nr

∗TΨTUT +UΨr∗1T
n )∥2

=∥∆− (D(UX∗)− 1n(r
∗TΨTUT + c1T

n ) + (UΨr∗ + c1n)1
T
n )∥2 (5.36)
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Proof. For any c ∈ R, Eq. (5.36) is described as follows:

∥∆− (D(UX∗)− 1n(r
∗TΨTUT + c1T

n ) + (UΨr∗ + c1n)1
T
n )∥2

=∥∆− (D(UX∗)− 1nr
∗TΨTUT − c1n1

T
n +UΨr∗1T

n + c1n1
T
n )∥2

∥∆− (D(UX∗)− 1nr
∗TΨTUT +UΨr∗1T

n )∥2

5.3.3 Algorithm of the constrained radius model

In this subsection, the algorithm of the constrained radius model is shown. Here,

the parameters are estimated on the basis of ALS (Young et al., 1980). The flow of

our proposed algorithm is described as follows.

Algorithm of the constrained radius model

Step 0 Set k, m and d and initial values of X∗, r∗, U and Ψ

Step 1 Update X∗ based on Eq. (5.28), given U , Ψ and r∗

Step 2 Update r based on Eq. (5.29), given X∗, U and Ψ

Step 3 Update Ψ based on Eq. (5.29), given X∗, U and r∗

Step 4 Update U , given X∗, r∗ and Ψ

Step 5 If stop condition is satisfied, stop the algorithm, else return to the Step 1

From the decomposition of the constrained radius model, when X∗ is estimated,

the estimation only depends on Eq. (5.28). As with estimating X∗, when r∗ is esti-

mated, the estimation only depends on Eq. (5.29); however, estimating U depends

on the objective function of the constrained radius model because both Eq. (5.28)

and Eq. (5.29) include U .

To update X∗, we adopt a majorizing algorithm which we derive from the con-

strained hill-climbing model. The majorizing function is derived depending only on

Eq. (5.28). In short, the majorizing function is equivalent to that of CDS for the

symmetric part of the asymmetric dissimilarity data.

Proposition 5.3.5 Majorizing function of the constrained radius model

Given objective function of the constrained slide-vector model, the majorizing func-

tion of the constrained slide-vector model is derived as follows:∥∥∥S −D(UX∗)
∥∥∥2

≤ η2δ + trX∗TUTV UX∗ − 2trX∗TUTB(UH)UH = LM(X∗,H ,U |S) (5.37)
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where

η2δ =
n∑

i=1

n∑
j=1

s2ij

V =
n∑

i=1

n∑
j=1

(ei − ej)(ei − ej)
T ,

ei = (eiq) eiq =

{
1 (i = q)

0 (i ̸= q)
, (i, q = 1, 2, · · · , n),

B(UH) = (bij) (i, j = 1, 2, · · · , n)

bij =

{
− sij

dij(UH)
(if i ̸= j and dij(UH) ̸= 0)

0 (if i ̸= j and dij(UH) = 0)

bii = −
n∑

(j=1)∧(i ̸=j)

bij and

H = (hot) hot ∈ R (o = 1, 2, · · · , k; t = 1, 2, · · · , d).

Proof. This proorf can be conducted as the same way of Proposition 4.2.3.

Next, updating formula of X∗ is shown based on the majorizing function.

Proposition 5.3.6 Updating formula of X∗

Given U and H , updating formula of X∗ minimizing Eq. (5.37) is derived as

follows:

X∗ = [UTV U ]+UTB(UH)UH (5.38)

where [UTV U ]+ is the Moore-Penrose inverse of UTV U .

Proof.

Then, we show the algorithm for estimating X∗.

Algorithm of estimating X∗

Step 0 Set iteration number β ← 1, initial value of (β)H , and threhold value ε > 0

Step 1 Update (β)X∗ based on Eq.(5.38)

Step 2 (β)X∗ is substituted into (β+1)H and β ← β + 1

Step 3 |(β)LM(X∗,H ,U |S)−(β+1)LM(X∗,H ,U |S)| < ε is satisfied, stop, i← i+1

and else back to Step 1.

where (β)H , (β)Q and (β)LM(X∗,H ,U |S) are H , Q and a value of the objective

function corresponding to βth iteration, respectively.

To estimate r∗, we use numerical solutions such as the BFGS method.

Next, we show how we update ith row vector of U .

67



Proposition 5.3.7 Updating U

Given X∗, r∗ and U without ith row vector of U , if updating rule of ith row vector

of U is used, values of the objective function of the constrained slide-vector model

does not increase.

uio =

{
1

(
(∀o∗ = 1, 2, · · · , k)(γio(X∗, r∗,Ψ ) ≤ γio∗(X

∗, r∗,Ψ )
)

0 (others)
(5.39)

where

γio(X
∗, r∗,Ψ ) =

∑
j ̸=i

k∑
ℓ=1

wijujℓ(δij − (doℓ(X
∗)−

m∑
f=1

ψofrf +
m∑
q=1

ψℓqrq))
2

+
∑
j ̸=i

k∑
ℓ=1

wijujℓ(δji − (doℓ(X
∗)−

m∑
f=1

ψofrf +
m∑
q=1

ψℓqrq))
2

and o∗ is index set of cluster for objects.

Proof. The proof can be conducted as the same way of Proposition 5.2.5.

The updating algorithm of U is shown.

Algorithm of updation U

Step 1 i← 1

Step 2 Calcurate γio(X
∗, r∗,Ψ ) for o = 1, 2, · · · , k

Step 3 Update ith row vector ofU based on the rule of Eq.(5.39) among γio(X
∗, r∗,Ψ ) (o =

1, 2, · · · , k)

Step 4 If i = n stop, otherwise, i← i+ 1 back to Step 2

Next we show how we update ℓth row vector of Ψ .

Proposition 5.3.8 Updating Ψ

Given U , r and Ψ without ℓth row vector of Ψ , if updating rule of Ψ is used,

values of the objective function of the constrained radius model does not increase.

ψof =

{
1

(
(∀f ∗ = 1, 2, · · · ,m)(κof (U , r

∗) ≤ κof∗(U , r∗)
)

0 (others)
(5.40)

where

κof (U , r
∗) =

∑
q ̸=f

k∑
ℓ=1

n∑
i=1

n∑
j=1

wijuioujℓψℓq(aij − (
m∑

f=1

ψofr
∗
f −

m∑
q=1

ψℓqr
∗
q))

2

+
∑
q ̸=f

k∑
ℓ=1

n∑
i=1

n∑
j=1

wijuioujℓψℓq(aji − (
m∑

f=1

ψofr
∗
f −

m∑
q=1

ψℓqr
∗
q))

2

and ℓ∗ is index set of cluster for centroids.
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Proof. This proposition is proved as the same way of updating U .

The updating algorithm of Ψ is shown.

Algorithm of updation Ψ

Step 1 ℓ← 1

Step 2 Calcurate κof (U , r
∗) for f = 1, 2, · · · ,m

Step 3 Update ℓth row vector of Ψ based on the rule of Eq. (5.40) among

κof (U , r
∗) (o = 1, 2, · · · , k). If the number of f such that ψof = 1 is over

1, one of f is selected randomly.

Step 4 If ℓ = k stop, otherwise, ℓ← ℓ+ 1 and back to Step 2

5.4 Relations between constrained method and existing method

In this section, the relation between constrained hill-climbing model and hill-

climbing model, and relation between constrained radius model and radius model

are shown.

Proposition 5.4.1 Relation between constrained hill-climbing model and hill-climbing

model

If n = k for the objective function of constrained hill-climbing model, objective

function for constrained hill-climbing model and hill-climbing model are equivalent.

Proof. From proposition 5.2.1, the difference between the slide-vector model and

constrained slide-vector model depend only on models of coordinates. Therefore, in

this proposition, we will prove following;

X† ∈ H = {X† = X|X ∈ Rn×d}
⇐⇒X† ∈ CH = {X† = UX∗|X∗ ∈ Rk×d, U ∈ SI(n, k)}

where

SI(n, k) = {U | U = (uio),
k∑

o=1

uio = 1 (i = 1, 2, · · · , n),

0 <
n∑

i=1

uio < n (o = 1, 2, · · · , k)}

=⇒ We assumed X† ∈ H. If n = k, there exists U ∈ SI(n, n) such that I = U

from the definition of indicator matrix. Therefore,

(∀X† ∈ H)(∃U ∈ SI(n, n))(∃X∗ ∈ Rn×n)(X† = UX∗)

and X† = UX∗ ∈ CH.
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⇐= We assumed X† ∈ CH. From definition of CH, we have

(∀X† ∈ CH)(∃U ∈ SI(n, k))(∃X∗ ∈ Rk×d)(X† = UX∗).

Then, following property is satisfied;

(∀U ∈ SI(n, k))(∀X∗ ∈ Rk×d)(∃X ∈ Rn×d)(UX∗ = X ∈ H).

Therefore, we have the proposition.

Proposition 5.4.2 Relation between constrained radius model and radius model

If n = k = m for the objective function of constrained radius model, objective

function for constrained radius model and radius model are equivalent.

Proof. From proposition 5.3.1, the difference between the radius and constrained

radius models is depend on models of coordinates and parameters of skew-symmetries.

Therefore, we will prove following;(
X† ∈ H = {X† = X|X ∈ Rn×d}

⇐⇒X† ∈ CH = {X† = UX∗|X∗ ∈ Rk×d, U ∈ SI(n, k)}
)

(5.41)

∧
(
r† ∈ R = {r† = r| r ∈ Rn}

⇐⇒ r† ∈ CR = {r† = UΨr∗| r∗ ∈ Rm, U ∈ SI(n, k), Ψ ∈ SI(k,m)} (5.42)

For Eq. (5.41), there is equivalent to proposition 5.4.1.

Next, Eq. (5.42) will be proved.

=⇒ We assumed r† ∈ R and n = k = m. From the definition of SI, U ∈ SI(n, k)
and Ψ ∈ SI(k,m) exist such that I = U and I = Ψ , respectively. Therefore,

following property is satisfied;

(∀r† ∈ R)(∃I = U ∈ SI(n, k))(∃I = Ψ ∈ SI(k,m))(∃r∗ ∈ Rm)(r† = UΨr∗),

and r† ∈ CR.
⇐= We assumed r† ∈ CR. From the definition of CR, we have

(∀r† ∈ CR)(∃r∗ ∈ Rm)(∃U ∈ SI(n, k))(∃Ψ ∈ SI(k,m))(r† = UΨr∗).

Therefore, following property is satisfied;

(∀r∗ ∈ Rm)(∀U ∈ SI(n, k))(∀Ψ ∈ SI(k,m))(∃r ∈ Rn)(UΨr∗ = r)

and we have r† = UΨr∗ = r ∈ R.
Then, this proposition is satisfied.

From proposition 5.4.1 and proposition 5.4.2, the constrained hill-climbing model

and the constrained radius model are considered as generalization of hill-climbing

model and radius model, respectively.
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Chapter 6

Simulation studies

In this section, the clustering results of the proposed methods, namely, constrained

Unfolding, constrained slide-vector model, constrained hill-climbing model, and con-

strained radius model are shown through numerical simulations. For these methods,

the asymmetric dissimilarity data are assumed to have different structures because

these are different kinds of models. Therefore, three kinds of numerical simula-

tions are conducted each for the constrained slide-vector model, the constrained

hill-climbing model, and the constrained radius model.

6.1 Simulation of constrained AMDS based on Unfolding

In this section, the experimental design of the simulation performed to verify

the clustering results of constrained unfolding and constrained slide-vector model is

shown. Next, the clustering results are compared based on the adjusted rand index

(ARI) values (Hubert and Arabie, 1985).

Here, ARI is defined as follows.

Definition 6.1.1 Adjusted Rand Index

Given two clustering structure C = {C1, C2, · · · , Ck} and V = {V1, V2, · · · V ∗
k } of

objects I = {1, 2, · · · , n} such that

I =
k∪

o=1

Co, Co ∩ Cℓ = ϕ (o ̸= ℓ), I =
k∗∪
o=1

Vo and Vo ∩ Vℓ = ϕ (o ̸= ℓ),

ARI is defined as follows:∑k
o=1

∑k∗

ℓ=1

(
noℓ

2

)
−

[∑k
o=1

(
no·

2

)∑k∗

ℓ=1

(
n·ℓ

2

)]
/

(
n

2

)
1
2

[∑k
o=1

(
no·

2

)
+
∑k∗

ℓ=1

(
n·ℓ

2

)]
−

[∑k
o=1

(
no·

2

)∑k∗

ℓ=1

(
n·ℓ

2

)]
/

(
n

2

)
where noℓ is the number of objects that are belonging to cluster Co and Vℓ, no· is the

number of objects that are belonging to cluster Co and n·ℓ is the number of objects

that are belonging to cluster Vℓ.
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6.1.1 Experimental design of the simulation

In the simulation, artificial asymmetric dissimilarity data with true clustering

structure is generated and then the method is applied to the asymmetric dissimilarity

data. Then, the ARI between the true clustering structure and the clustering result

obtained is calculated. In the simulation, the artificial asymmetric dissimilarity data

with true clustering structure

∆‡ is generated as follows:

∆‡ = D(X†,X† −U †Ψ †Z†)

where X† = (x†it) x†it ∈ R (i = 1, 2, · · · , 150; t = 1, 2) denotes the coordinates

of the objects with the true clustering structure, U † = (uio) uio ∈ {0, 1} (i =

1, 2, · · · , 150; o = 1, 2, · · · , k) is the indicator matrix for objects corresponding to the

true clustering structure, Ψ † = (ψof ) ψof ∈ {0, 1} (o = 1, 2, · · · , k; f = 1, 2, · · · ,m)

is the indicator matrix for centroids with the true clustering structure and Z† =

(zft) zft ∈ Rm×d denotes the slide-vectors with the true clustering structure.

The method of generating these parameters is described below. In the simulation,

the number of objects is set as 150 and the number of dimension is set as 2. X† is

generated as follows:

(o)x‡i1 ∼ N(µo1, 0.5) (i = 1, 2, · · · , no; o = 1, 2, · · · , k)
µo1 = 0, µℓ1 = µ(ℓ−1)1 + 1 (ℓ = 2, 3, · · · , k)

where (o)x‡i1 denotes the cooridnates of object i belonging to cluster o in 1st dimen-

sion, no is the number of objects belonging to cluster o, N is normal distribution

and µo is the mean of cluster o. The way of generating the way of the cooridnates

of the objects in the second dimension depends on the estimated coordinates of the

objects in the first dimension.

(o)x‡i2 ∼ N(µo2, 0.5) (i = 1, 2, · · · , no; o = 1, 2, · · · , k)

µo2 ∼ U(xmin,
2

3
(xmax − xmin)) (o = 1, 2, · · · , k)

where xmin and xmax denote the minimum and maximum values of the coordinates

of the objects in the 1st dimension, respectively and U denotes uniform distribution.

U ‡ is generated based on Factor 1 and Ψ ‡ is generated at random subject to whether

the constraint of indicator matrix is satisfied. Finally, the slide vectors are generated

as follows:

Z† = (zft) zft ∼ U(−1, 1) (f = 1, 2, · · · ,m; t = 1, 2)

To add the true clustering structure to X†, U †, Ψ † and Z†, five factors in this

simulation are set as shown Table. 6.1. The simulation design is based on the studies

of Milligan (1985) and Milligan and Cooper (1988).
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Table 6.1: Factors of numerical simulation for AMDS based on Unfolding

name of these factors the number of levels

Factor 1 cluster sizes 3

Factor 2 the number of clusters 3

Factor 3 the true number of slide-vectors 2 or 3 or 5

Factor 4 noise of dissimilarities 2

Factor 5 Methods 3

Next, we describe these five factors.

Factor 1: cluster sizes

Here, cluster size is defined as the number of objects belonging to the same cluster.

In this simulation, three levels are set based on Milligan and Cooper (1988) as

follows:

level 1: The cluster sizes are equal

level 2: One cluster has half the number of objects, and the other clusters have the

same number of objects.

level 3: One cluster has 20% of the number of objects, and the other clusters have

the same number of objects.

From these levels, the true clustering structure includes three combinations of

cluster sizes. In level 2, if the number of clusters is small, each cluster will be almost

of the same size. On the other hand, if the number of clusters is large, the cluster

sizes are different from each other.

Factor 2: number of clusters

There are three levels in Factor 2 where the number of clusters are 2, 3, or 5.

Factor 3: number of slide-vectors

In this factor, the number of levels depends on the number of clusters. When the

number of clusters is 2, 3 and 5, the number of levels will be 2, 3 and 5, respectively.

Factor 4: noise of dissimilarities

In the factor, there are two levels as follows:

level 1: There is no noise

level 2: Here, 30% of the dissimilarities, i.e. 6750 dissimilarities, out of ∆‡ are

replaced with δ‡ij ∼ U(0, 15)

The purpose of the Factor 4 is to reveal the effect of noise in the proposed methods.

Factor 5: Methods

In this factor, there are three levels, namely, such as constrained Unfolding, con-

strained hill-climbing model and tandem clustering for Unfolding and constrained

two-mode clustering. For two mode clustering, refer to Van Mechelen, et al. (2004).
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Here, the tandem clustering method is described, which consists of the following

two steps.

Tandem clustering

Step 1: Unfolding is applied to asymmetric dissimilarity data ∆‡ and distance

matrix D(X,Y ) is obtained such that the values of the objective function are

minimized.

Step 2: Constrained clustering is applied to D(X,Y ) estimated in Step 1 as

follows:

∥D(X,Y )−UΓUT∥2

where U = (uio) uio ∈ {0, 1} (i = 1, 2, · · · , n; o = 1, 2, · · · , k) denotes the

indicator matrix and Γ = (γoℓ) (o, ℓ =, 1, 2, · · · , k) denotes the centorid matrix

and U and Γ are estimated.

Finally, number of combinations is 180 = 3 levels (Factor 1) × 2 levels (Factor 4)

× 3 levels (Factor 5) × (2 levels + 3 levels + 5 levels (Factor 2 × Factor 3 ) ). For

each element of these combinations, asymmetric dissimilarity data is generated 50

times and the number of initial values is 10.

6.1.2 Simulation results

In this subsection, the results corresponding to the ARI are shown. In particular,

the boxplot for the proposed method and tandem clustering are shown to verify

the effect of constrained unfolding and constrained slide-vector model. Remember

constrained unfolding is equal to the constrained hill-climbing model with m = 1.

Next, the effect of each factor is shown.

Figure 6.1 shows the results of the constrained slide-vector model and tandem

clustering for all situations. The median of ARI corresponding to the constrained

slide-vector model is higher than that for tandem clustering. In addition, the range

of the ARI corresponding to the constrained slide-vector model is lower than that

of tandem clustering. From this, we can confirm that the clustering results of the

constrained slide-vector model are superior to those of tandem clustering. Next, the

effects of the cluster size are shown in Figure 6.2. For all the levels, the results of

the constrained slide-vector model are better than those of tandem clustering. For

the number of clusters, see Figure 6.3. For both the constrained slide-vector model

and tandem clustering, the clustering results tend degrade if the number of clusters

is large. The tendency is the same as that observed by Milligan and Cooper (1988)

and Steinley (2004). Next, the effects of the number of slide vectors on the clustering

results are shown. First, the effects of the number of slide-vectors, when the number

of clusters is 2 , are shown in Figure 6.4. From Figure 6.4, it can be observed that

if the number of slide-vectors is large, the clustering results degrade. The reason
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Figure 6.1: Clustering results for constrained hill climbing model and the tandem cluster-

ing

Figure 6.2: Clustering results for Factor 1 in the simulation
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Figure 6.3: Clustering results for Factor 2 in the simulation

is that if the number of slide-vectors is large for a true structure, the structure of

asymmetric dissimilarity data will no longer be simple and these clustering results

become unstable. However, when the number of clusters are and , these clustering

results are not affected by the number of true slide vectors, as shown in Figure 6.5

and Figure 6.6, respectively. This is because the differences in the true asymmetric

dissimilarities between clusters increase for the data generated in this simulation if

the number of clusters is large.

Finally, the effects on the clustering results due to noise are shown in Figure 6.7.

From Figure 6.7, it can be seen that the clustering results of the constrained slide-

vector model are robust to noise dissimilarities. On the other hand, the results of

tandem clustering are affected by the noise dissimilarities. This is because in the

constrained slide-vector model, the coordinates of clusters are estimated based on

Sokal and Michener dissimilarities. That is, estimated Sokal and Michener dissimi-

larities tend to be close to the true Sokal and Michener dissimilarities even if some

of these asymmetric dissimilarities include noise.

6.2 Simulation of the constrained hill climbing model

In this section, the clustering results of the constrained hill-climbing model are

shown. The experimental design is described as first and these clustering results are
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Figure 6.4: Clustering results for Factor 3 in k = 2

Figure 6.5: Clustering results for Factor 3 in k = 3
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Figure 6.6: Clustering results for Factor 3 in k = 5

Figure 6.7: Clustering results for Factor 4
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shown corresponding to the ARI.

6.2.1 Experimental design of the simulation

Similar to Section 6.1, artificial asymmetric dissimilarity data with a true cluster-

ing structure is generated and then the constrained hill-climbing model is applied to

the asymmetric dissimilarity data to verify the effects of the constrained hill-climbing

model. In the simulation, ARI is adopted to verify the clustering results.

The number of objects is set as 90 and the number of dimensions is set as 2. The

artificial asymmetric dissimilarity data ∆‡ = (δ‡ij) (i, j = 1, 2, · · · , 90) is generated
as follows:

δ‡ij = dij(X
†) + (x†

i − x†
j)

Tvdij(X
†)−1

where X† = (x†
1,x

†
2, · · · ,x

†
90)

T = (x†it) (i = 1, 2, · · · , 90; t = 1, 2) denote the coor-

dinates of objects with the true clustering structure and v = (vt) vt ∈ R (t = 1, 2)

denotes the true slope vector. The method for generating X† is the same as that

described in Section 6.1. We generate v is as follows:

vt ∼ N(0, 1) (t = 1, 2).

In addition, Factor 1, Factor 2, Factor 4, and Factor 5, shown in Table 3, are

adopted in this simulation. While Factor 1, Factor 2, and Factor 4 are the same as

those considered in the simulation of the constrained slide-vector model, the content

of Factor 5 is different because the constrained hill-climbing model is different from

the constrained slide-vector model.

Tandem clustering for the constrained hill-climbing model

Step 1: hill-climbing model is applied to the asymmetric dissimilarity data δ‡ij (i, j =

1, 2, · · · , n) and get dij(X)+(xi−xj)
Tv such that values of the objective func-

tion is minimized

Step 2: Constrained clustering is applied to dij(X)+(xi−xj)
Tv estimated in Step

1 as follows:

n∑
i=1

n∑
j=1

(
dij(X) + (xi − xj)

Tv −
k∑

o=1

k∑
ℓ=1

uioujℓγoℓ

)2

where U = (uio) uio ∈ {0, 1} (i = 1, 2, · · · , n; o = 1, 2, · · · , k) denotes the

indicator matrix of objects and Γ = (γoℓ) γoℓ ∈ R (o, ℓ = 1, 2, · · · , k) denotes
the centroid matrix.

Finally, the number of combinations is 36 = 3levels (Factor 1) × 3 levels (Factor 3)

× 2 levels (Factor 4) × 2 levels (Factor 5). For each element of these combinations,

asymmetric dissimilarity data is generated 50 times and the number of initial values

is 5.
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6.2.2 Simulation results

In this subsection, clustering results of the constrained hill climbing model are

compared to those of tandem clustering based on ARI. Figure 6.8 shows the clus-

tering results of the constrained hill-climbing model and tandem clustering for all

situations. The median and hinge values are almost the same.

Figure 6.8: Clustering results of the constrained hill climbing model

Next, the effects of cluster sizes are verified as shown in Figure 6.9. For level 1,

the results of the constrained hill-climbing model are stable, although the results

of the tandem clustering are not stable. However, in levels 2 and 3, the clustering

results of the constrained hill-climbing model are not stable.

Next, the effects of the number of clusters are shown in Figure 6.10. From Figure

6.10, the clustering results of tandem clustering degrade if the number of clusters is

large, while the clustering results of the constrained hill-climbing model are stable.

Finally, the effects on clustering results due to noise are shown in Figure 6.11. In

conditions when there is noise, the clustering results of tandem clustering are stable,

whereas those of the constrained hill climbing model are not stable.

6.3 Simulation of the constrained radius model

In this section, experimental design and the results of the constrained radius model

are shown similar to Section 6.1 and Section 6.2.
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Figure 6.9: Clustering results of the constrained hill climbing model for Factor 1

Figure 6.10: Clustering results of the constrained hill climbing model for Factor 2

81



Figure 6.11: Clustering results of the constrained hill climbing model for Factor 4

6.3.1 Experimental design of the simulation

In this simulation, artificial asymmetric dissimilarity data with the true structure

is generated and then the constrained radius model is applied to the asymmetric

dissimilarity data.

In the simulation, the artificial asymmetric dissimilarity data with the true struc-

ture ∆‡ is generated as follows:

∆‡ = D(X†)− 1nr
†TΨ †TU †T +U †Ψ ∗r†1T

n

where X† = (x†it) x
†
it ∈ R (i = 1, 2, · · · , 90; t = 1, 2) denotes the coordinates of

objects with the true clustering structure, r† = (r†f ) r
†
f ≤ 0 (f = 1, 2, · · · ,m),

denotes radii for the cluster centorids, U † = (u†io) u
†
io ∈ {0, 1} (i = 1, 2, · · · , 90; o =

1, 2, · · · , k) denotes the indicator matrix for objects, Ψ † = (ψ†
ℓf ) ψ

†
ℓf ∈ {0, 1} (ℓ =

1, 2, · · · , k; f = 1, 2, · · · ,m) denotes the indicator matrix for the centroids and 1n =

(1) denotes a vector of n length.

The method of generating X†, U † and Ψ † is the same as that shown in section

6.1. Here, r† is generated as follows:

r† = (rf ) rf ∼ U(0.5, 1.5) (f = 1, 2, · · · ,m).

In addition, all factors, i.e., Factor 1, Factor 2, Factor 3, Factor 4 and Factor 5

shown in Table 6.1 are adopted in this simulation. However, tandem clustering in
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the constrained radius model is different from the tandem clustering in both the

constrained slide-vector model and the constrained hill-climbing mode. We now

describe tandem clustering for the constrained radius model.

Tandem clustering for the constrained radius model

Step 1: Radius model is applied to the asymmetric dissimilarity data ∆‡ and

D(X)− 1nr
T + r1T

n is obtained such that the values of the objective function

are minimized.

Step 2: Constrained clustering is applied to D(X)−1nr
T +r1T

n estimated in Step

2 as follows,

∥D(X)− 1nr
T + r1T

n −UΓUT∥2

where U = (uio) uio ∈ {0, 1} (i = 1, 2, · · · , n; o = 1, 2, · · · , k) denotes the

indicator matrix and Γ = (γoℓ) γoℓ ∈ R (o, ℓ = 1, 2, · · · , k) denotes the centroid
matrix.

Finally, the number of the combinations is 180 = 3 levels (Factor 1) × 2 levels

(Factor 4) × 3 levels (Factor 5) × (2 levels + 3 levels + 5 levels (Factor 2 × Factor

3 ) ). For each element of these combinations, the asymmetric dissimilarity data is

generated 50 times and the number of initial values is 5.

6.3.2 Simulation results

In this subsection, the clustering results for the constrained radius model corre-

sponding to ARI are shown similar to Section 6.1.2 and 6.2.2.

Figure 6.12 shows the clustering results for the constrained radius model and the

tandem clustering for all situations. From Figure 6.12, it can be seen that the

clustering results of the constrained radius model are superior to those of tandem

clustering in terms of both median and range.

Figure 6.13 shows the effects of cluster sizes on the clustering results. For any

levels, the results of the constrained radius model are superior to those of tandem

clustering; however, the results of the constrained radius model are affected in levels

2 and 3.

Figure 6.14 shows the effects of the number of clusters on the clustering results.

it can be seen from the figure that the results of the constrained radius model are

superior to those of tandem clustering. When the number of clusters is large, the

results of tandem clustering become worse and the tendency is the same as that

described in Milligan and Cooper (1988).

The effects of the number of slide vectors on the clustering results are shown in

Table 6.15, Table 6.16, and Table 6.17. The clustering results of the constrained

radius model are very good. In addition, the clustering results for both are not

affected by the number of radii.
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Figure 6.12: Clustering results of the constrained radius model

Figure 6.13: Clustering results of the constrained radius model for Factor 1
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Figure 6.14: Clustering results of the constrained radius model for Factor 2

Figure 6.15: Clustering results of the constrained radius model for Factor 3 for k = 2
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Figure 6.16: Clustering results of the constrained radius model for Factor 3 for k = 3

Figure 6.17: Clustering results of the constrained radius model for Factor 3 for k = 5
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Finally, effects of noise for these clustering results are shown in Figure 6.18. From

Figure 6.18, it can be seen that the results of the constrained radius model are good

and are not affected by noise. Hence, the constrained radius model is robust to

noise.

Figure 6.18: Clustering results of the constrained radius model for Factor 4
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Chapter 7

Real examples

In this section, the results for real data when using the constrained slide-vector

model, the constrained hill-climbing model, and the constrained radius model are

shown.

7.1 Data description

Here, we evaluate the methods for a real application, namely, the switching data

of Japanese tea bottles. The data were generated from the scan panel data collected

in Tokyo in July 2012; this data was provided by MACROMILL, Inc. The 25 brands

of Japanese tea bottles are listed in Table 7.1, and the switching data are presented

in Table 7.2. Each entry in Table 7.2 τij (i, j = 1, 2, · · · , 25) corresponds to the

frequency of switching from brand i to another brand j. The switching data are

considered to be the similarities. However, AMDS requires asymmetric dissimilarity

data and not similarity data. Therefore, brand switching data are converted into

asymmetric dissimilarity data by using the gravity model (Tobler and Wineburg,

1971) as follows:

δij =
( τi·τ·j
τij + 0.1

)
(i, j = 1, 2, · · · , 25)

where τi· =
∑25

j=1 τij (i = 1, 2, · · · , 25) and τ·j =
∑25

i=1 τij (j = 1, 2, · · · , 25).
In earlier studies, for the application of AMDS to brand switching data, the gravity

model was used (Borg and Groenen, 2005; Heiser and Groenen, 1997; Zielman and

Heiser, 1993).

The purpose of this application is to detect the clustering structure and interpret

the asymmetric relation between clusters. In addition, we compare the results for

the methods visually.
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Table 7.1: Brands and types of Japanese tea bottles (abbreviations shown in parentheses)

Abbreviation Tea bottle brand

1. IG1 Itoen Green tea1

2. 7&i 7&i Green tea

3. IG2 Itoen Green tea2

4. IG3 Itoen Green tea3

5. IG4 Itoen Green tea4

6. IRG Itoen Roasted Green tea

7. ABa Asahi Barley tea

8. SaG Sangaria Green tea

9. KaG Kao Green tea

10. SG1 Suntory Green tea1

11. SG2 Suntory Green tea2

12. SRG Suntory Roasted Green tea

13. SG3 Suntory Green tea3

14. DG Daido Green tea

15. KG Kirin Green tea

16. SO1 Suntory Oolong tea1

17. PO Pokka Oolong tea

18. SO2 Suntory Oolong tea2

19. ABr Asahi Brended tea

20. CBr1 Coca cola brended tea1

21. CBr2 Coca cola brended tea2

22. SBa Suntory Barley tea

23. KaBr Kao Brended tea

24. CBr3 Coca cola Brended tea3

25. KBr Kirin Brended tea

89



Table 7.2: switching data for Japanese tea bottles
1 2 3 4 5 6 7 8 9 10 11 12 13

1.IG1 283 0 0 0 18 0 0 2 2 3 1 2 40

2.7&i 4 56 2 5 0 3 0 0 0 0 0 1 3

3.IG2 5 0 43 0 4 0 0 0 0 1 3 2 4

4.IG3 41 0 3 177 9 9 0 2 0 0 1 4 13

5.IG4 0 0 0 0 18 0 0 0 2 2 3 4 9

6.IRG 10 0 1 0 2 23 0 0 1 0 1 1 3

7.ABa 6 1 4 6 1 2 19 1 1 2 2 0 1

8.SaG 0 0 0 0 0 0 0 24 0 0 0 0 0

9.KaG 0 0 0 0 0 0 0 0 58 0 1 1 3

10.SG1 0 0 0 0 0 0 0 1 0 0 0 0 0

11.SG2 0 0 0 0 0 0 0 1 0 6 14 0 0

12.SRG 0 0 0 0 0 0 0 0 0 4 1 13 0

13.SG3 0 0 0 0 0 0 0 3 0 6 8 5 246

14.DG 0 0 0 0 0 0 0 0 0 0 0 0 0

15.KG 0 0 0 0 0 0 0 0 0 0 0 0 0

16.SO1 0 0 0 0 0 0 0 1 0 0 2 1 0

17.PO 0 0 0 0 0 0 0 0 0 0 0 0 0

18.SO2 0 0 0 0 0 0 0 0 0 0 0 0 0

19.ABr 15 4 10 11 5 2 24 0 0 2 2 1 11

20.CBr1 0 0 0 0 0 0 0 0 0 0 0 0 0

21.CBr2 0 0 0 0 0 0 0 3 0 0 0 0 0

22.SBa 0 0 0 0 0 0 0 0 0 0 2 1 0

23.KaBr 0 0 0 0 0 0 0 0 0 0 0 1 2

24.CBr3 0 0 0 0 0 0 0 5 0 0 0 0 0

25.KBr 0 0 0 0 0 0 0 0 0 0 0 0 0

14 15 16 17 18 19 20 21 22 23 24 25

1.IG1 2 17 4 0 7 0 0 5 4 0 18 2

2.7&i 0 2 0 1 0 0 0 1 0 0 1 0

3.IG2 0 4 1 3 2 0 0 5 2 2 5 3

4.IG3 2 6 0 0 3 0 0 2 1 0 10 0

5.IG4 0 9 0 0 0 0 1 2 0 0 8 0

6.IRG 1 0 2 0 0 0 1 1 0 1 3 0

7.ABa 0 1 1 0 0 0 0 1 1 2 3 3

8.SaG 2 2 0 2 0 0 0 0 0 0 0 0

9.KaG 0 0 3 1 0 0 0 1 0 6 1 1

10.SG1 1 5 0 1 2 0 0 1 0 0 5 5

11.SG2 0 8 0 0 2 0 0 1 0 0 2 0

12.SRG 0 6 0 0 1 0 1 5 0 0 8 0

13.SG3 3 21 7 4 18 0 2 2 1 0 26 1

14.DG 32 1 0 0 0 0 0 0 0 0 0 0

15.KG 0 192 0 0 12 0 0 0 0 0 0 13

16.SO1 0 3 156 1 1 0 0 1 6 0 7 1

17.PO 0 3 0 53 0 0 0 0 0 0 0 0

18.SO2 0 0 0 0 167 0 0 0 0 0 0 0

19.ABr 0 5 0 0 6 137 2 5 0 2 16 2

20.CBr1 0 3 0 0 2 0 22 0 0 0 0 1

21.CBr2 0 13 0 2 5 0 4 114 0 0 0 7

22.SBa 0 1 0 0 0 0 0 2 115 0 2 0

23.KaBr 0 1 2 1 0 0 0 3 2 28 2 2

24.CBr3 2 23 0 0 15 0 7 22 0 0 201 5

25.SKBr 0 0 0 0 6 0 0 0 0 0 0 5
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7.2 Results of the constrained slide-vector model

Before applying the constrained slide-vector model to asymmetric dissimilarity

data, the number of clusters has to be determined. To determine the number of

clusters, first, we set candidates for the number of clusters such as 2, 3, 4 and

5. Then, the constrained slide vector model with m = 1 is applied to the brand

switching data for the case when the number of clusters range from 2 to 5. The

number of initial values are set as 100 in the application and the results such that

the values of the objective function are minimized are adopted for all value of number

of clusters. Figure 7.1 shows the values of the objective function for the constrained

slide vector model.

Figure 7.1: Values of the objective functions for the constrained slide-vector model

From Figure 7.1, it can be seen that the number of clusters is set as 4 because

the difference between the values for k = 4 and k = 5 is smaller than that between

other values.

The results of the constrained slide-vector model are shown in Figure 7.2. The

number of brands belonging to cluster 1 is the largest. From the direction of the

estimated slide vector, asymmetries from cluster 3 to the other clusters are smaller

than the other relations. In fact, the sum of rows corresponding to the elements of

cluster 3 in Table 7.2 tends to be larger than that of the others.

Similarly, the results of slide-vector model and Unfolding are shown in Figure 7.2

and Figure 7.3, respectively. For the constrained slide-vector model, the interpre-

taion is simple. On the other hand, the results of Unfolding and slide-vector model

become difficult to interpret because the number of parameters are very large and

these configurations become complex. In the results of the slide-vector model, al-

though the representation of the slide vector is simple, many brands are located

around (0, 0) in clumps and the interpretation becomes difficult from Figure 7.4.
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Figure 7.2: Results of the constrained slide-vector model
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Figure 7.3: Results of the Unfolding model
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Figure 7.4: Results of the slide-vector model
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7.3 Results of the constrained hill-climbing model

In this section, the results of hill-climbing model are shown. First, to determine the

number of clusters, the values of the objective function are calculated in a manner

similar to that shown in section 7.2 and shown in Figure 7.5. From Figure 7.5, the

number of clusters is set as 4 for the same reason described in Section 7.2.

Figure 7.5: Values of the objective functions for the constrained hill-climbing model

Figure 7.6 shows the result of the constrained hill-climbing model. These cluster

sizes are almost the same way of the result of the constrained slide-vector model.

In terms of the slope vector, the asymmetric relation between cluster 2 and cluster

3 is large because the value of inner product between the difference vector and the

slope vector is larger than those of the others. On the other hand, the asymmetric

relation between cluster 1 and cluster 4 is small because the value of inner product

between the difference vector and the slope vector tends to be smaller than those

of the others. The elements of cluster 3, shown in Figure 7.6 are the same as those

of cluster 3, shown in Figure 7.2. Therefore, the interpretation of the asymmetries

between clusters, shown in Figure 7.6, can be performed as shown in Figure 7.2.

Figure 7.7 shows the results of the hill-climbing model. The interpretation becomes

easier than that shown in Figure 7.4 because the coordinates of the brands in Figure

7.7 are dispersed. However, the interpretation is not too easy because the number

of brands is large.

7.4 Results of the constrained radius model

In this section, the results of the constrained radius model are shown. The number

of clusters will be determined similar to the method described in Section 7.2 and

7.3, Figure 7.8 shows the results of the objective function for the constrained radius

model for each value of the number of clusters. Similar to Section 7.2 and 7.3, the

number of clusters are set as 4.
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Figure 7.6: Result of the constrained hill-climbing model
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Figure 7.7: Result of the hill-climbing model

Figure 7.8: Values of the objective function for the constrained radius model
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Figure 7.9 shows the results of the constrained radius model. The estimated cluster

sizes tend to be almost the same as those of the constrained slide-vector model and

the constrained hill-climbing model. In particular, the brands of cluster 1, shown

in Figure 7.9 are exactly the same as those of cluster 2, shown in Figure 7.6. In

addition, for the interpretation of the asymmetries between clusters from Figure

7.9 becomes change those in both Figure 7.2 and Figure 7.6. In the results of the

constrained radius model, the distances from cluster 2, cluster 3, and cluster 4 to

cluster 1 tend to be small; whereas the distance from cluster 1 to the other clusters

tend to not be small. This is because the number of parameters in the constrained

radius model is large and the model can represent the asymmetries between clusters

in detail.

Figure 7.9: Result of the constrained radius model
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Figure 7.10: Result of the radius model
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Chapter 8

Conclusions

In this study, simultaneous methods for AMDS and clustering were proposed from

two distinct perspectives, one being AMDS based on Unfolding and the other being

AMDS based on the decomposition into symmetric and skew-symmetric parts. From

the formulation, the simultaneous methods based on Unfolding can be considered a

special case of CDS. Further, these objective functions can be decomposed into two

parts, i.e., clustering and MDS terms for these centroids. Then, these methods can

be considered a simultaneous method of clustering and a special case of MDS for

cluster centroids. Conversely, the simultaneous method based on the decomposition

can also be considered a simultaneous method of CDS and the skew-symmetric clus-

tering model. When interpretaion of ordinal AMDS is difficult these simultaneous

methods become useful because asymmetries between clusters are represented based

on concepts of parsimonious models. In addition, from the simulation results, the

effectiveness of these constrained methods is revealed. However, there are several

areas of future work to consider.

First, the way by which weights for pairs of objects are identified should be im-

proved for the above methods. The advantage of dimensional reduction clustering

(e.g., De Soete and Carroll, 1994; Vichi and Kiers, 2001) is that clustering results

are good even if the data include noise. In short, for asymmetric dissimilarity data,

if some of the asymmetric dissimilarities do not have a clear clustering structure,

clustering results of dimensional reduction clustering should be fine; however, in our

proposed methods, the estimation does not work well because the number of param-

eters is very high. To overcome this problem, the number of parameters should be

reduced. For example, weights between clusters are added to these models as the

solution.

Second, the number of clusters and the number of low-dimensions should be de-

termined. As a meaning of determining these hyper parameters, cross validation is

useful. For example, Yamamoto and Hwang (2014), whose work focused on dimen-

sional reduction clustering, adopted cross validation based on Wang (2010). For

determining tuning parameters without considering the number of clusters, cross

validation is useful (e.g., Sun et al., 2012). In addition, the cross validation can be
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applied to determine the weights for terms of these objective functions such that

the clustering result is stable.

Third, although our proposed methods can represent asymmetries between clus-

ters in low-dimensions, it cannot represent asymmetries within clusters because the

objective functions of the simultaneous methods consist of terms for clustering based

on asymmetric dissimilarity data, and not on low-dimensions, and terms for the MDS

of cluster centroids. Therefore, when these coordinates are estimated, the informa-

tion within clusters is already lost in the type of our proposed objective functions.

To overcome this problem, terms for clustering and MDS related to asymmetries

within each cluster should be added to these objective functions as penalty terms.

Fourth, given asymmetric dissimilarity data and external information for the same

objects as multivariate data, it is difficult to interpret relations between these asym-

metries and variables of the multivariate data by using the results of our proposed

simultaneous method. When brand switching data is analyzed, related multivariate

data is given in many cases, and it is important to detect the relations between

the asymmetries and features of brands. Kiers et al. (2005) proposed simultaneous

classification and MDS with external information, although the method proposed

by Kiers et al. (2005) does not consider the asymmetries. Conversely, Vicari (2014)

proposed a clustering model for skew-symmetric data that included external infor-

mation; however, these methods are not based on the MDS model. Therefore, new

simultaneous methods for clustering and AMDS that consider external information

must be proposed.

Fifth, various AMDS models have been proposed, and it is difficult to select the ap-

propriate AMDS model among AMDS models even though these AMDS models are

characterized based on such common features as Unfolding type and decomposition.

Therefore, we need to identify criteria for selecting such AMDS models. However,

there is no criterion for selecting AMDS models and the simultaneous method for

clustering and AMDS also inherit this problems. A Monte Carlo simulation should

also be conducted in various situations to verify clustering results based on the Ad-

justed Rand Index (Hubert and Arabie, 1985). In short, although it is difficult to

select one model from the various AMDS models for the meaning of fitting between

models and data, it is possible to select models of these simultaneous methods for

clustering and AMDS through the clustering results because these clustering results

have the same structure regardless of AMDS models.

Finally, clustering reuslts of the proposed methods should be evaluated through

the real data, although we confirmed that the clustering results is superior to the

results of tandem clustering via Monte Carlo Simulation. It is difficult to evaluate the

performance of the clustering results via real data because it is difficult to determine

the clustering structure of real data. Therefore, it needs to compare the clustering

results of the proposed methods to that of tandem clustering for various real data

to validate the properties of the proposed methods.
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