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1

Chapter 1

Introduction

1.1 Background

Engineering design problems in real-world situations usually consist of a set of controllable

parameters and quality measures of the candidate designs. Taking a vehicle design as an ex-

ample, engine control parameters, body shape and topology of the vehicle and tire size can be

controllable design parameters. As quality measures of the vehicle design, fuel economy, CO2

emission, accelerating performance and total mass can be readily considered. Engineers have to

tackle the problem by exploring the candidates of the best design with better quality measure.

Difficulties may arise in their exploration of the better designs, due to massiveness of the number

of design parameters and tradeoff among plural quality measures. Moreover, once they found the

candidate designs, and then they will suffer from how they should choose the best design in mul-

tiple, conflicting or competing quality measures. Such a kind of problems can be mathematically

defined and solved as multiple criteria decision making (MCDM) problems.

Engineering design proceeds from the requirement definition to conceptual design stage, fi-

nally the detailed design. Figure 1.1 illustrates general example of engineering design process.

Abovementioned MCDM problems usually occur in the early stage, especially in conceptual

design stage. For example, in a vehicle design, how to improve the fuel efficiency under limita-

tion of the development cost must be deliberated and determined at the conceptual design phase.

Since a lot of design candidates would exist in the early state of development, unpromising de-

signs should be discarded to efficiently advance the development [1]. Furthermore, Asiedu et al.

[2] claimed that over 70% of the total life cycle cost of a product was committed at the early

design stage. The conceptual design stage would be very important for such a reason. It is im-

portant to understand what kinds of design candidates exist and focus on promising one in the

early state of the design process. This is the essence of conceptual design.
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Specify the design requirements�
 　functions, performance, constraintsRequirement Definition
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Detailed Design

Test Production

Evaluation

Mass Production

Determine how to achieve the requirements�
 　function structures and procedures

Specify the details of the design �
 　shape, size, ... “Design” Stage �

Fig. 1.1 General example of the engineering design process

1.2 Objectives

As mentioned in Section 1.1, we have following difficulties in tackling the real-world engi-

neering design problem:

1. Finding better candidates

As there are huge number of design parameters and the plural quality measures conflict

each other, it is difficult to find better designs in a reasonable time.

2. Choosing the best design from the candidates

As there are varieties of candidates and their feature spaces are high-dimensional, it is hard

to scrutinize and compare the candidates one by one.

Objective of this thesis is solving above two issues and achieve the effective design explo-

ration and the decision making support in engineering design. This work provides the analytical

framework to solve them. Proposing framework consists of the following two parts:

1. Multiobjective optimization framework for design exploration

In order to obtain better designs with many different varieties, novel framework of multi-

objective optimization is proposed and developed.

2. Design mode analysis

Efficient analytical framework to classify the design patterns and quantitatively extract the

characteristics of representative designs is proposed and developed.



1.3　 Outline of the Dissertation 3

With the proposing methodologies, decision makers (engineers, product designers) are expected

to obtain the characteristics of the representative and promising designs, and it will support their

efficient and stable decision making in the early stage of the engineering design.

1.3 Outline of the Dissertation

The remainder of this dissertation is organized as follows. After this chapter, in Chapter 2, the

concept of design exploration and optimization for MCDM is introduced. The background and

motivation to develop the multiobjective optimization framework (described in Chapter 3) and

decision support tool (described in Chapter 4) are described.

Chapter 3 is dedicated to multiobjective optimization framework to obtain better designs with

many different varieties. Its concept, general framework and implementation examples using

existing popular optimization algorithms are described. The effectiveness of the proposed frame-

work is validated through the numerical experiments using the mathematical benchmark prob-

lems.

In Chapter 4, design mode analysis, which is analytical method for design pattern classification

and feature extraction is investigated. First, the basic concept of ”design mode” is defined. And

then the general framework of design mode analysis is introduced. The procedure of design mode

framework is described through the popular mutiobjective optimization problem, a multiobjective

knapsack problem. After that, as an example of the real-world engineering design problems,

the conceptual design of hybrid rocket engine design are analyzed using design mode analysis.

Finally, as an extension of application field of proposed method, fNIRS (functional Near-Infrared

Spectroscopy) data, which is the time-series data of the hemodynamic responses of oxy- and

deoxy-hemoglobin (Hb) in human brain, is also analyzed using design mode analysis. How to

apply the time-series data to the proposed method (representation of the data and interpretation

of design mode) is described and its possibility to examine brain’s activity is discussed.

Chapter 6 summarizes the overall main point of this dissertation and concludes it. Several

directions for future research are also discussed in this chapter.
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Chapter 2

Design Exploration and Optimization
for Multiple-Criteria Decision Making

2.1 Multiobjective Optimization in Multiple-Criteria Decision Mak-
ing

Multiple-criteria decision making (MCDM) [3] is a class of problems from which we make

decisions among multiple and conflicting criteria. Since there is no unique (best) decision in

MCDM problems, they are solved by seeking a set of available alternatives. After the alterna-

tives are obtained, decision maker (DM) chooses their preferred decisions. In this procedure

a set of alternatives are represented as a Pareto solution set. This procedure is also known as

multiobjective optimization. Nondominated solutions are the ones that are not dominated in all

objectives (criteria) by some other solution. Multiobjective optimization algorithms derive good

approximations to the Pareto optimal solutions, which cannot be further improved.

Numerical optimization aims to maximize or minimize an objective function, subject to con-

straints on the possible values of the decision variables. From an engineering standpoint, the

objective function is a metric that measures the performance or quality of the designed engineer-

ing system, which is influenced by the decision variables. The constraints can then be regarded

as design requirements to be satisfied.

In many real-world engineering problems, decisions must satisfy several types of performance

measures while meeting numerous design requirements. Situations of conflicting performance

metrics, which typify real-world problems, are termed multi-objective optimization problems

(MOPs). Because an MOP solution cannot simultaneously minimize or maximize all objectives,

MOP processes construct tradeoff curves among objectives, which are then provided to decision

makers who select the solution that satisfies their own requirements. The general formulation of
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MOPs is given below:

minimize F (x) = (f1(x), . . . , fm(x))T

subject to x ∈ S (2.1)

where F (x) is an objective vector consisting of m-objective functions fi : R⋉ → R for all

i ∈ {1, . . . ,m}. S ⊂ R⋉ is called the decision variable space defined as:

S = {x ∈ R⋉ | gj(x) ≤ 0(j = 1, . . . , l),

hk(x) = 0(k = 1, . . . , p)} (2.2)

Here, gj(x) and hk(x) are inequality and equality constraints, respectively. As mentioned above,

due to the tradeoff among the conflicting objectives in MOPs, no solution in S will simultane-

ously minimize all objectives. Therefore, we solve the MOP using the concept of Pareto opti-

mality [4, 5]. Pareto optimality that is valid for minimization problems is defined in general, as

shown below.

Definition 1: Pareto Dominance

Given x1,x2(x1 ̸= x2) ∈ S, x1 is said to dominate x2 with respect to fi(x1) ≤ fi(x2)(∀ i =

1, . . . ,m), and fi(x1) < fi(x2) for at least one i = 1, . . . ,m.

Definition 2: Pareto Optimality

Let x0 ∈ S. We say that x0 is Pareto optimal when there are no other solutions in S that

dominate x0.

Because MOPs typically admit multiple Pareto-optimal solutions, they should present all avail-

able solutions to decision makers. However, the computation of all Pareto-optimal solutions is

extremely time intensive. Therefore, reducing the time of approximating the Pareto solutions

has become an important goal of multi-objective optimization algorithms. The accuracy of the

approximated Pareto solutions can be evaluated from their proximity and from the diversity of

their solutions. In particular, diversity is represented by both ”uniformity”and“ spread.”High

diversity implies a wide variety of available solutions. Well-approximated solutions guide deci-

sion makers toward better solutions in the objective space. Because multi-objective evolutionary

algorithms (MOEAs) exploit multiple-points searching, they can obtain highly diverse solution

sets in a single run, and are widely used to solve MOPs.
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2.2 Design Exploration for Multiple-Criteria Decision Making

Engineers (decision makers) can derive the varieties of designs by exploring the candidates

of the best design with better quality measure, using multiobjective optimization methodologies.

Figure 2.1 illustrates this procedure.

f1(x) 

f2(x) 

x1 

x3 

x2 

Decision space Objective space 

Design Exploration using Multiobjective Optimization: 
 Finding the decision variables set with better objective function values 

Making designs 
Performance 
  evaluation 

Decision making:  Choose the best design. 

x = (x1, x2, …, xd) f1(x), f2(x), …, fm(x) 
decision variables 	 objective functions	

Fig. 2.1 Framework of design exploration and decision making

Once the solutions have been properly converged after the design exploration, the next step is

to make decisions from them. However, it is difficult to choose a best compromise in multiple

and conflicting objectives without any information about the target problems which aid our de-

cision making. To solve this problem, many researches proposed effective use of optimization

results and improved our understanding of target problems. Obayashi et al. [6, 7] proposed the

framework of multiobjective design exploration (MODE). MODE consists of the Kriging Model,

multiobjective genetic algorithm, analysis of variance and a self-organizing map. It can widely

explore decision space and derive many Pareto solutions (alternatives) within a reasonable time

using the Kriging meta-modelling of objective functions. The tradeoff information in multiple

objectives and decision space characteristics are roughly grasped by visualizing the decision and

objective spaces using data mining methodologies such as self-organizing maps.

On the other hand, Oyama et al. [8, 9] used the proper orthogonal decomposition (POD) to

decision variables of the airfoil shape design, and revealed that any designs can be decomposed
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into the mean vector and the fluctuation vector which is expressed by the linear sum of normalized

eigenvectors and orthogonal base vectors. One of the advantages of their approach is that we can

understand the representative design types and the parameters which are important to construct

them from large and high-dimensional data set, by analyzing the fluctuation vector. Moreover,

it is notable that they focused on decision space of Pareto solutions, but the objective space.

In engineering design, the objective function value is just an performance metric of obtained

design. Of course it is important to quantitatively evaluate the quality of optimized designs, but

the engineers would rather be focused on their characteristics in decision space, for example,

”which decision variables are dominant in the obtained designs,” or ”how many design varieties

are derived in Pareto solution set,” as shown in Figure 2.2. Decision space analysis would give

us efficient design strategies.

f1(x) 

f2(x) 

Decision space 

Objective space 

Low-compression engine 
Narrow tires 

Lightweight body 
High battery capacity 

Acceleration 
  Performance 

Fuel Economy 

Fig. 2.2 Decision space analysis of Pareto solution set

To wrap up, this research assumes that following processes are very important in order to

achieve satisfactory decision making in engineering design:

1. Multiobjective optimization to derive the wide varieties of designs

2. Decision space analysis to obtain the knowledge about the target design problem

This work assumes the entire framework of design exploration and analysis can be expressed as

illustrated in Figure 2.3. First of all, decision maker (or an engineer) formulate the target design

problem as an optimization problem, with the input of design specification and the constraints.

Then, design exploration is performed to obtain the candidate designs. Note that traditional
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experimental design can be still effective for the design exploration. It can also be used for

the initial value generation of multiobjective optimization. Once the candidates are obtained,

they are analyzed by design mode analysis, and finally the representative design patterns, their

characteristics and design strategy which tells us how to realize them are fed back to decision

maker.

Modeling� Multiobjective �
Optimization �

Candidate designs �Design spec. �
Constraints �

Design Mode �
Analysis�

Experimental�
Design �

Decision 
Maker�

Design variables�
Performance metrics �

Representative design patterns�
Design strategy�

Design 
Exploration �

Fig. 2.3 Entire framework of design exploration and analysis

In this dissertation, taking above two important processes into consideration, (1) novel mul-

tiobjective optimization framework to obtain the widely-spread and well-converged Pareto

solutions are developed. And then, inspired by the work of Oyama et al., (2) the concept of the

fluctuation vector is extended and a new concept—design mode—is incorpolated. Based on this

concept, ”design mode analysis” which is an analytical framework to find the design modes

and make an effective use of them is proposed and developed. It consists of data clustering

method and principal component analysis, and expected to extract the representative design types

and their characteristics. These information will aid our decision making.
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Chapter 3

Development of Multiobjective
Optimization Framework

3.1 Introduction

Several available MOEAs offer superior uniformity, spread, and proximity of solutions. The

dominance-based framework, implemented by the nondominated sorting genetic algorithm II

(NSGA-II) [10], has been widely applied and extended to many real-world problems. NSGA-II

is one of the popular MOEA frameworks available [11].

The preference-based framework obtains a solution set within a certain region of the Pareto

solutions. Preference information, which defines the converging area, is often represented by ref-

erence points that are specified by the decision maker before optimization. The reference-point-

based NSGA-II, proposed by Deb et al. [12], is among the most popular implementations of this

framework. If decision makers’preferences are well clarified before optimization, optimal solu-

tions are rapidly obtained. If the preferences of the decision maker are not clearly specified, the

preference-based framework should be avoided because it may generate nonuniform solutions.

Many-objective problems are adequately solved by indicator-based frameworks [13]. Here,

searching in high-dimensional objective spaces is advanced by an indicator such as a distance

measure or hypervolume [14]. The indicator-based framework has been popularized by the

indicator-based evolutionary algorithm [15], S-metric selection evolutionary multi-objective al-

gorithm [16][17], and HypE [18]. The majority of research based on indicator-based frameworks

has focused on reducing the computational cost of hypervolumes in many-objective problems.

Another efficient MOEA implementation is the decomposition-based framework. This frame-

work, introduced by Zhang et al. [19], adopts a multi-objective evolutionary algorithm based

on decomposition (MOEA/D). This algorithm uses a scalarization function and decomposes the
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multi-objective problem into several single-objective problems, which are solved using informa-

tion from neighboring problems. This decomposition-based framework effectively improves all

performance metrics of the Pareto solutions, i.e., proximity, uniformity, and spread. MOEA/D is

one of efficient MOEAs available [11].

The hybridization approach, which integrates several algorithms with different features, also

effectively improves solution diversity and proximity. Martinez et al. [20] improved the solu-

tions of MOEA/D by hybridizing the MOEA algorithm the Nelder-Mead algorithm [21]. In the

hybridization scheme of Bosman [22], the existing MOEA is integrated with the multi-objective

gradient-based optimization algorithm. These research efforts have improved the MOEA search

by combining it with local search algorithms. Conversely, Okuda et al. [23] proposed the

distributed-cooperation scheme (DC-scheme), which spreads the Pareto solutions. By combin-

ing MOEA with a single-objective evolutionary algorithm (SOEA), the DC-scheme seeks both

the nondominated and optimal solutions for each objective. Okuda et al. demonstrated that the

DC-scheme derived more widely spread solutions than conventional MOEAs. However, because

the search is biased to spread the solutions from an early stage, proximity speed is reduced.

From these results, we conclude that MOEAs must properly balance diversity and proximity.

Ishibuchi et al. [24] tackled this issue by improving the mating scheme of the NSGA-II algo-

rithm. They developed the similarity-based mating scheme, which they incorporated into the

NSGA-II algorithm to solve the multi-objective 0/1 knapsack problem, and demonstrated the

improved diversity performance of their scheme. As an other example, TP+PLS algorithm [25]

uses two phase search idea. It sequentially hybridizes two algorithms from the dominance-based

and scalarization-based algorithms. Two-phase local search (TPLS) [26] is utilized to perform

a series of scalarizations and to obtain the good initial nondominated solutions. Then they are

further improved by Pareto local search (PLS) using the Pareto dominance criterion in the lo-

cal search [25]. The TP+PLS search scheme reveals that the two-phase search paradigm with

different search objective in each phase is effective in hybridization approach.

The hybridization approach is advantageous in that, unlike other algorithms, each algorithm is

functionally specialized by its search characteristic; consequently, each algorithm requires minor

modifications. In this paper, we propose a new hybridization scheme that balances diversity

and proximity, and obtains well-approximated and widely spread solutions. The features of our

proposed scheme are listed below:

• Two search phases that separately improve proximity and diversity.

• The first phase improves the search proximity by a preference-based algorithm.
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• The second phase searches for optimal solutions to each objective (referred to as“extreme

points”) and spreads the solutions using the DC-scheme.

Our proposed scheme aims to improve the proximity and diversity of Pareto solutions. Whereas

conventional MOEAs derive Pareto solutions by a single algorithm, we aim toward a general,

versatile, and easily implementable hybrid search scheme that can incorporate newly developed

algorithms for easily improved search performance.

The remainder of this paper is organized as follows: In Section 3.2, we introduce the gener-

alized framework of our search scheme, and describe its application to conventional MOEAs.

In Section 3.3, we implement our proposed scheme in two ways, and evaluate its performance

on continuous MOPs. The paper concludes with Section 3.4. Note that we focus on solving

continuous MOPs.

3.2 Proposed MOEA search scheme for improving proximity and
spread

This section first conceptualizes our proposed scheme. We then introduce its framework, and

finally its application to conventional MOEAs.

3.2.1 Concept

As mentioned above, diversity embraces both uniformity and spread, both of which can be

improved by the DC-scheme [23]. Because the DC-scheme uses both MOEA and SOEA, it gen-

erates multiple subpopulations from the original population. Specifically, for k objectives, the

search population is divided into k + 1 subpopulations—one MOEA population and k SOEA

populations. In this scheme, the MOEA population searches multiple-objective Pareto solutions

and SOEA populations explore the extreme points. Moreover, to spread the MOEA population,

some solutions from the SOEA and MOEA populations are exchanged at specified intervals.

The SOEA improves the spread of solutions, whereas the MOEA and the solution exchange be-

tween SOEA and MOEA improve the uniformity of solutions. However, because searching in

the DC-scheme is biased toward improving the diversity of the population from an early stage,

it delivers poorer proximity than conventional MOEAs. To improve diversity while maintaining

good proximity, our proposed scheme divides the search into two phases. The first phase accel-

erates proximity and the second improves diversity. Figure 3.1 illustrates our proposed scheme.
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Fig. 3.1 Concept of Proposed Search Scheme

In this work the author determine the generalized framework of the algorithm using proposed

search scheme and give representative implementation examples. The performance of two typical

implementations using NSGA-II and MOEA/D are tested on recent test suites, and the parameter

effects of the search-phase switching criterion are studied.

3.2.2 General Framework

Here, the general framework of our proposed search scheme based on the abovementioned

concepts is defined. The two search phases are implemented in three algorithms with different

search characteristics, each assigned a different search objective.

First Phase

The first phase of the proposed scheme accelerates the proximity of Pareto solutions. For

this purpose, we can guide the MOEA search by the measured distance to the Pareto solutions.

However, in many real-world MOPs, the distance between the optimum front and the search

population is not readily determinable because the Pareto solutions are unknown. Our proposed

scheme, instead, uses a reference point, which is specified by the decision maker within the

objective function space, and which can be located in either the feasible or infeasible regions.

Because reference-point-based MOEAs prioritize solutions nearby the reference point, solutions

tend to converge in that locality. The first phase can adopt any type of reference-point-based or

preference-based MOEAs [12][27][28][29] can be applied in the first phase.



3.2　 Proposed MOEA search scheme for improving proximity and spread 15

Second Phase

The second phase adopts the DC-scheme [23]. Subsequent to the first phase in a k-objective

problem, the population is divided into one MOEA subpopulation and k SOEA subpopula-

tions. Because the DC-scheme requires no specific base algorithm, we can apply any SOEA

and MOEA. The DC-scheme for a bi-objective problem is illustrated in Figure 3.2. In the DC-

scheme, the MOEA and SOEA populations search for Pareto solutions in a parallel manner, and

exchange their elite individuals at predefined intervals. Here, an elite individual has the best

objective value (fi) in the SOEA subpopulation. The elite individuals in the MOEA subpopula-

tion are the nondominated solutions with the best objective values (fi). Hence, in a k-objective

problem, the MOEA population contains at least k elite solutions.

Fig. 3.2 DC-scheme

Criteria for Search Phase Switching

In our framework, one of the most critical design decisions is when to switch the search phase.

Because the search phase should automatically switch when the solutions have converged, we

require a proximity indicator. For this purpose, Lopez Jaimes et al. [30] developed the multiple

resolution multi-objective genetic algorithm (MRMOGA), wherein the indicator is the average

ratio of the number of solutions in the parent set that are dominated by an individual. However, if

an individual in the parent set dominates many solutions, this indicator increases and the search

continues, even when few“ effective”individuals that can accelerate the search are generated.

To overcome this problem, the proximity indicator in our scheme is the average number of par-

ent individuals that are dominated by each newly generated individual. This indicator represents
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the effectiveness of newly generated individuals in enhancing the search. If the indicator equals

1.0, each new individual dominates one parent individual. A lower value indicates that the search

is converging. The average value of this indicator is then computed over gcheck generations. If

the following equation is satisfied, we conclude that the search has converged:

gcheck∑
i=1

µi

gcheck
≤ ε (3.1)

Here, µi is the average number of parents dominated by each newly generated individual during

the i-th generation, and ε is the indicator threshold. Because this threshold may depend on the

target problem, it is investigated in a later section. The search phase of the proposed scheme is

switched once Equation (3.1) is satisfied.

Proposed Search Scheme

Abovementioned reference-point-based search is performed to improve the proximity, and the

search phase switching criterion is periodically checked. If the population converged, then the

population obtained by the first phase would be further improved by DC-scheme regarding the

spread as the second phase search. Figure 3.3 illustrates the search procedure of our proposed

framework.

f1 

f2 

Convergence	  
Criterion �

N = NM + mNS 

Population size: N�

1st	  Phase	 2nd	  Phase	

Optimize f1 

Optimize f2 

Optimize f1 and f2 

Population 
 division 

Converge near a reference point 

Fig. 3.3 Search procedure of the proposed search scheme

The search process of our proposed scheme is outlined in Algorithm 3.1. Algorithm 3.1 as-

sumes that N = NM +
∑m

k=1NSk. Line 21 preserves the nondominated solutions explored thus

far in the external population of fixed size. The effects of the external population on search per-

formance are discussed later (see numerical experimental section). Moreover, the external pop-

ulation update scheme depends on the MOEA implementation chosen for the proposed scheme

and the individual selection method (Line 11 in Algorithm 3.1). Both methods are described

below. The following two subsections present the implementations of our proposed scheme.
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Algorithm 3.1 Proposed search scheme� �
1: Initialize a population P with N individuals

2: Initialize a reference point

3: for i = 0 to g

4: Perform a single generation of reference-point-based MOEA

5: if i mod gcheck = 0
∧

Equation (3.1) = true

6: r := i+ 1

7: break

8: end if

9: end for

10: Initialize the external population EP := P

11: Select NM individuals from P and add them to PM

12: for k = 1 to m

13: Select the top NSk individuals in fk from P and add them to PSk.

14: end for

15: for i = r to g

16: Perform a single generation of MOEA with the population PM

17: Perform a single generation of SOEA with the population PSk (k = 1, . . . ,m)

18: if i mod gcheck = 0

19: Exchange the elite individuals between PM and PSk (k = 1, . . . ,m)

20: end if

21: Update EP

22: end for� �
3.2.3 Application to the Dominance-Based Algorithm

In this subsection, we apply our proposed scheme to conventional algorithms. We adopt a

dominance-based MOEA called the NSGA-II algorithm. Traditional dominance-based MOEAs,

such as the strength Pareto evolutionary algorithm 2 (SPEA2) [31], the generalized differential

evolution 3 (GDE3) [32], and simulated-annealing-based algorithms [33], are also applicable.

The SOEA is the distributed genetic algorithm (DGA) [34].

Modifications to NSGA-II

The first phase of our scheme requires a reference-point-based MOEA, here adapted from an

ordinary dominance-based algorithm. Specifically, we specify the distance from the reference

point as the mating selection criterion, and modify the mating scheme of the original NSGA-II.

The method is detailed below.
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Algorithm 3.2 Modified mating selection procedure (population size = N )� �
1: Sort the N individuals in the parent population P in the ascending order of their Euclidean

distance from the reference point.

2: Select the top N
2 individuals in P and add them to the search population M .

3: Select N
2 individuals by tournament selection based on their rank, and add them to M .

4: Perform the evolutionary operations (selection, crossover, and mutation) of NSGA-II using M

as the mating pool.� �
Line 2 in Algorithm 3.2 copies the N

2 individuals closest to the reference point to M . Note

that probabilistic methods, such as tournament selection, do not guarantee selection of these

individuals. By copying them to M , we guide the search population toward convergence near

the reference point. In addition, because the tournament selection step at Line 3 is based on

fitness rank, the search is directed toward the reference point while preserving the diversity of

the search population. If two individuals have the same rank, the algorithm selects the individual

with the smallest Euclidean distance. Moreover, if two individuals share both rank and Euclidean

distance, one of them is randomly chosen.

Here, the location of the reference point becomes important. If the reference point is located in

a feasible region, the proximity may decrease when the population overtakes the reference point.

To counteract this decline, the distance to the reference point is set negative when the feasible

reference point is overtaken by the population. Consequently, the search guides the population

away from the reference point. This check is performed at each generation. We refer to this

algorithm as the reference-point-based mating NSGA-II (RM-NSGA-II).

Distributed Genetic Algorithm

DGA, first proposed by Tanase et al [34], is a parallel implementation of the genetic algorithm

(GA) [35]. DGA reduces the number of iterations required for optimum solution searching by

splitting the population into subpopulations, called islands. The original GA is implemented on

each subpopulation. At predefined intervals, islands exchange some of their individuals (this

operation is referred to as migration). The number of migrating individuals is determined by

the migration rate. DGA adopts a ring migration topology with random destinations, where

each subpopulation is assigned a random destination during each migration interval. Premature

convergence is prevented by an elite-preservation strategy. Specifically, at each generation, the

elite individuals (the best-fit individuals in each objective) are preserved in an elite archive, and

are merged with the search population during the selection.
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Implementation of the Proposed Search Scheme

In our proposed scheme, the abovementioned search algorithms are incorporated into a new

hybrid algorithm. The search flow proceeds via Algorithm 3.1, presented earlier. In the first

phase, the search scheme is implemented by the RM-NSGA-II algorithm. In the second phase,

the SOEA and MOEA populations are managed by DGA and NSGA-II, respectively. Line 11

of Algorithm 3.1 uses the nondominated sorting scheme of the original NSGA-II to extract the

NSGA-II population PM from population P . Hence, NM nondominated solutions are moved

from P to PM . The selection method of the DGA population is described in subsection 3.2.2.

The effectiveness of NSGA-II implemented in our proposed scheme is discussed in Section 3.3.

3.2.4 Application to the Decomposition-based Algorithm

Decomposition-based MOEAs have recently attracted much interest due to their excellent per-

formance on many-objective, high-dimensional, multimodal, and other complex problems with

lower computational complexity than conventional MOEAs [36]. Decomposition-based MOEAs

originated with Zhang et al. ’s MOEA/D algorithm [19]. This framework has become widely

incorporated into other EAs, such as particle swarm optimization (PSO) [37] and differential

evolution (DE) [38], and the original MOEA/D has been improved [39][40]. In this section, we

design an MOEA/D-based hybrid algorithm for implementing our proposed search scheme.

Framework of MOEA/D

To realize a reference point in our MOEA/D, we adopt the Tchebycheff aggregation approach.

The multi-objective problems are decomposed into the following scalar single-objective problem

[19]:

minimize ste(x | λj , z∗) = max
1≤i≤m

{λj
i |fi(x)− z∗i |}

subject to x ∈ S (3.2)

where z∗ = (z∗1 , . . . , z
∗
m)T is the reference point. The reference point of the original MOEA/D is

a set of extreme points for each objective, i.e., z∗i = min{fi(x) | x ∈ S}. In Equation (3.2), λj

is an m-dimensional weight vector, where j = 1 . . . N . When the weight vectors are uniformly

distributed, each vector component receives a value from { 0
H , 1

H , . . . , HH } subject to |λ| = 1,

where H is the number of problem divisions. N is then computed as N = Cm−1
H+m−1. ste(x |

λj , z∗) is the Tchebycheff scalarizing function with the weight vector λj and the reference point

z∗.
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Randomly chosen individuals are recombined from neighboring subproblems. Neighbors are

determined by the similarity of the weight vector of each subproblem. The reference point is

updated by the generated individuals, and the population is updated from the generated and

neighboring individuals. If a newly generated individual defeats its neighbors, it replaces all

of them.

Implementation of the Proposed Search Scheme

The first phase uses a MOEA/D with a user-specified reference point. The original MOEA/D

automatically sets and updates the reference point. In this paper, the reference point is fixed to

ensure consistency with the NSGA-II-based algorithm designed in the previous section. In the

second phase, the SOEA and MOEA are DGA and the original MOEA/D, respectively. Hence,

our proposed scheme was designed with a MOEA/D-based hybrid algorithm. When initializing

the MOEA population in the second phase, the MOEA/D population PM is randomly extracted

from population P , which transfers NM solutions from P to PM . The selection method of the

DGA population is described in subsection 3.2.2. Moreover, similar to RM-NSGA-II, the weight

vectors are rendered negative when the population overtakes a feasible reference point, allowing

the population to escape from the reference locality. This check is performed at each generation.

The external population is updated according to the generation alternation scheme of the original

MOEA/D, as shown below:
Algorithm 3.3 Update scheme of the external population� �

1: for allxnew generated in a single generation

2: Select an individual x ∈ EP .

3: Compare xnew with x using the Tchebycheff scalar function.

4: ifxnew is better than x

5: Update x and the neighboring individuals of x in EP .

6: end if

7: end for� �
The effectiveness of MOEA/D implemented in our proposed search scheme is evaluated in

Section 3.3.

3.3 Numerical Experiments

In this section, we verify the effectiveness of our proposed scheme by applying the two above-

mentioned implementations to multi-objective continuous test problems.
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Table 3.1 Properties of problems WFG1–WFG9
Problem Obj. Separability Modality Bias Geometry
WFG1 f1:M separable unimodal polynomial, flat convex, mixed
WFG2 f1:M−1 non-separable unimodal — convex, disconnected

fM non-separable multimodal
WFG3 f1:M non-separable unimodal — linear, degenerate
WFG4 f1:M separable multimodal — concave
WFG5 f1:M separable deceptive — concave
WFG6 f1:M non-separable unimodal — concave
WFG7 f1:M separable unimodal parameter dependent concave
WFG8 f1:M non-separable unimodal parameter dependent concave
WFG9 f1:M non-separable multimodal, deceptive parameter dependent concave

3.3.1 WFG Toolkit

Our search scheme is tested using the WFG toolkit, a set of continuous and scalable test prob-

lems defined in terms of a simple underlying problem. The toolkit also specifies a fitness space,

and a series of composable and configurable transformations, enabling the addition of arbitrary

levels of complexity to the test problem [41][42]. The toolkit contains nine typical problems,

WFG1–WFG9 [41], whose properties are listed in Table 3.1. We formulate WFG1–WFG9 as

both bi- and tri-objective problems. In both formulations, we set 20 distance-related parameters

and 4 position-related parameters.

3.3.2 Performance Metric

The performance of MOEAs is quantified by the inverted generational distance (IGD) [43],

hypervolume [14] [44] spread [41], and coverage [45]. Here, we adopt the IGD, defined as the

average distance between each Pareto optimal front solution and the closest obtained solution, as

a performance index. This metric is suitable for assessing both proximity and diversity. Let P ∗

be a set of uniform distributed points in the objective space along the Pareto optimal front, and

P be a nondominated front obtained by a MOEA. The IGD value is computed as

IGD(P ∗, P ) =

∑
v∈P ∗

d(v, P )

|P ∗|
(3.3)

where d(v, P ) is the minimum Euclidean distance between the solutions of the Pareto optimal

front and the solution in P , v. As the IGD approaches 0, the solutions in P approach the Pareto

optimal front.
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3.3.3 Dominance-Based Algorithm: NSGA-II

We first tested the NSGA-II-based hybrid version of our search scheme on the WFG toolkit

functions WFG1–WFG9. The aims of this experiment are listed below:

• To study effects of the parameters for switching the search phase on search performance.

• To compare our algorithm with the original NSGA-II.

• To determine how search performance is affected by the reference point location (for two

separate reference point scenarios—within feasible and infeasible regions).

• To study the effect of an external population.

• To compare the computational cost of the proposed search scheme with the original algo-

rithm.

We ran three algorithms (the original NSGA-II, the hybrid algorithm with an external population,

and the hybrid algorithm with no external population) on the bi- and tri-objective WFG test

problems.

Experimental Setup

The population sizes of the three algorithms were set to 240 and 300 in the bi-objective cases

and tri-objective problems, respectively. The same sizes were selected for the external popula-

tions. The maximum number of generations was set to 750 and 1000 in the bi- and tri-objective

problems, respectively. We also simulated binary crossover (SBX) and polynomial mutation [46].

In the first phase of both hybrid algorithms, the proximity was checked at intervals of 25 gen-

erations (gcheck = 25). gcheck may also depend on the problem and affect the convergence time,

but it behaves similarly with the threshold of the search-phase-switching criterion ε. Therefore

we fix the gcheck setting and study the threshold value ε in this paper. Here ε was varied as 0.50,

0.10. 0.05, 0.01. The reference point was set to (f1, f2) = (0, 0) and (f1, f2, f3) = (0, 0, 0) in

infeasible locations, and to (f1, f2) = (2, 4) and (f1, f2, f3) = (2, 4, 6) in feasible locations.

For all tests, the NSGA-II population size in the second phase was set to 120; thus the DGA

population size was 60 in every objective. Each DGA population was divided into islands of 10

individuals (giving six islands per DGA population). Every five generations, the DGA exchanged

five individuals among six islands. The best-fit individual on each island was preserved as the

elite individual. A tournament size of 4 was assigned in the survival selection scheme of DGA.
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Moreover, every 25 generations, the NSGA-II population exchanged the best-fit individual in

each objective with the DGA population.

To compare the computational cost of each algorithm, all the numerical simulations were per-

formed on a PC with Intel Core 2 Duo 1.6 GHz and 4 GB of DDR3 memory.

Results

Tables 3.2 and 3.3, present the IGD means and standard deviations at various thresholds of the

switching criterion, ε, in the bi- and tri-objective WFG problems, respectively. The columns titled

“ suspended”list the IGD mean and standard deviation of the original algorithm computed at

the mean number of generations when the first search phase of the hybrid algorithm terminated.

Note that the hybrid algorithm switches its search phase according to the proposed stopping

criterion. In order to compare the accuracy of the obtained solutions of the hybrid algorithm with

the original one, the original algorithm was suspended at the mean number of generations in the

first phase of the hybrid one.

The number of generations at first phase termination is listed for different thresholds of the

switching criterion in Tables 3.4 and 3.5. The column titled“pct”shows the ratio of generations

in the first-phase search to the maximum number of generations in the entire search. We observe

that the optimum threshold depends on the problem. In addition, adjusting the threshold controls

the balance between the first- and second-phase generations.

The IGD of our proposed search scheme is improved by an external population, especially

in tri-objective problems. Our hybrid algorithm with an external population reduces the mean

IGD relative to the original NSGA-II in problems WFG1, WFG3, WFG4, and WFG6. The

three algorithms yield approximately the same performance in WFG2. However, our proposed

scheme performs worse than the original NSGA-II in the tri-objective WFG5, WFG7, and WFG9

problems, and in both the bi- and tri-objective WFG8 problems. The standard deviations of the

IGDs reveal that the proposed scheme is more robust than the original.

According to the results, the performance of our proposed scheme is insensitive to the location

of the reference point. Although the reference points (f1, f2) = (2, 4) and (f1, f2, f3) = (2, 4, 6)

are easily overtaken by the search population early in the first-phase search, assigning a negative

sign to the reference point distance prevents the population from becoming trapped in the refer-

ence region. For each algorithm applied to the tri-objective case of WFG1, the nondominated

solutions yielded by the lowest IGD run are presented in Fig. 3.4. From this figure, we observe

that after the first phase, the converged area differs for each reference point. However, the overall

performance of our proposed scheme is not significantly altered. Successful and unsuccessful
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Table 3.2 IGD values of the solutions found by the original NSGA-II and NSGA-II with the
proposed search scheme, in the bi-objective case. Standard deviations are given in parentheses.

With Proposed Search Scheme
Reference Point (f1, f2) = (0, 0) Reference Point (f1, f2) = (2, 4)

Problem External ε = 0.5 ε = 0.1 ε = 0.05 ε = 0.01 ε = 0.5 ε = 0.1 ε = 0.05 ε = 0.01 Original
Population 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd suspended final

WFG1 False 1.83 0.17 1.82 0.17 1.82 0.17 1.80 0.17 2.45 0.17 2.47 0.17 2.47 0.17 2.47 0.17 2.14 1.73
(0.02) (0.00) (0.02) (0.00) (0.02) (0.00) (0.09) (0.00) (0.14) (0.01) (0.11) (0.01) (0.11) (0.01) (0.11) (0.01) (0.06) (0.04)

True 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

WFG2 False 0.19 0.12 0.18 0.12 0.18 0.12 0.19 0.13 0.19 0.12 0.19 0.12 0.19 0.12 0.19 0.12 0.12 0.12
(0.01) (0.00) (0.01) (0.00) (0.01) (0.00) (0.01) (0.03) (0.02) (0.00) (0.02) (0.00) (0.02) (0.00) (0.02) (0.02) (0.00) (0.00)

True 0.12 0.12 0.12 0.13 0.12 0.12 0.12 0.12
(0.00) (0.00) (0.00) (0.03) (0.00) (0.00) (0.00) (0.02)

WFG3 False 0.73 0.20 0.71 0.20 0.70 0.20 0.54 0.27 0.34 0.20 0.32 0.20 0.30 0.20 0.24 0.22 0.30 0.21
(0.05) (0.00) (0.06) (0.00) (0.06) (0.00) (0.07) (0.13) (0.02) (0.00) (0.03) (0.00) (0.03) (0.00) (0.04) (0.04) (0.02) (0.00)

True 0.19 0.19 0.19 0.27 0.19 0.19 0.19 0.22
(0.00) (0.00) (0.00) (0.13) (0.00) (0.00) (0.00) (0.04)

WFG4 False 0.07 0.01 0.04 0.01 0.02 0.01 0.01 0.01 0.06 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01
(0.01) (0.00) (0.01) (0.00) (0.01) (0.00) (0.00) (0.00) (0.03) (0.00) (0.01) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

True 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

WFG5 False 0.10 0.07 0.08 0.07 0.08 0.07 0.07 0.07 0.13 0.07 0.10 0.07 0.08 0.07 0.07 0.07 0.07 0.07
(0.01) (0.00) (0.01) (0.00) (0.00) (0.00) (0.00) (0.00) (0.05) (0.00) (0.04) (0.00) (0.01) (0.00) (0.00) (0.00) (0.00) (0.00)

True 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

WFG6 False 0.07 0.02 0.05 0.02 0.03 0.02 0.02 0.02 0.31 0.03 0.30 0.03 0.28 0.03 0.12 0.03 0.03 0.02
(0.02) (0.01) (0.02) (0.01) (0.02) (0.02) (0.02) (0.02) (0.08) (0.02) (0.09) (0.02) (0.11) (0.02) (0.17) (0.02) (0.02) (0.02)

True 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03
(0.01) (0.01) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

WFG7 False 0.09 0.01 0.08 0.01 0.07 0.01 0.01 0.01 0.12 0.01 0.10 0.01 0.09 0.01 0.03 0.01 0.03 0.03
(0.02) (0.00) (0.02) (0.00) (0.02) (0.00) (0.01) (0.00) (0.03) (0.00) (0.03) (0.00) (0.02) (0.00) (0.01) (0.00) (0.01) (0.01)

True 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.01)

WFG8 False 0.21 0.07 0.17 0.17 0.17 0.17 0.17 0.17 0.18 0.04 0.17 0.17 0.17 0.17 0.17 0.17 0.05 0.04
(0.10) (0.06) (0.07) (0.07) (0.07) (0.07) (0.07) (0.07) (0.03) (0.01) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.02) (0.02)

True 0.05 0.17 0.17 0.17 0.04 0.17 0.17 0.17
(0.05) (0.07) (0.07) (0.07) (0.01) (0.03) (0.03) (0.03)

WFG9 False 0.04 0.01 0.02 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
(0.01) (0.00) (0.01) (0.00) (0.00) (0.00) (0.00) (0.00) (0.01) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

True 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

runs of our proposed scheme are further discussed in subsection 3.3.5.

3.3.4 Decomposition-Based Algorithm: MOEA/D

We then tested our proposed scheme using the MOEA/D-based hybrid algorithm on WFG1–

WFG9. The aims of this experiment are listed below:

• To study the effects of the parameters for switching the search phase on search perfor-

mance.

• To compare our algorithm with the original MOEA/D.

• To determine the effect of an external population.

• To compare the computational cost of the proposed search scheme with the original algo-

rithm.

As before, we ran three algorithms (the original MOEA/D, the hybrid algorithm with an external

population, and the hybrid algorithm with no external population) on the bi- and tri-objective

WFG test problems.
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Table 3.3 IGD values of the solutions found by the original NSGA-II and NSGA-II with the
proposed search scheme, in the tri-objective case. Standard deviations are given in parentheses.

With Proposed Search Scheme
Reference Point (f1, f2, f3) = (0, 0, 0) Reference Point (f1, f2, f3) = (2, 4, 6)

Problem External ε = 0.5 ε = 0.1 ε = 0.05 ε = 0.01 ε = 0.5 ε = 0.1 ε = 0.05 ε = 0.01 Original
Population 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd suspended final

WFG1 False 1.71 0.58 1.69 0.58 1.67 0.59 1.64 0.58 2.45 0.61 2.45 0.61 2.45 0.61 2.45 0.58 1.89 1.46
(0.04) (0.05) (0.04) (0.05) (0.04) (0.06) (0.03) (0.06) (0.02) (0.13) (0.02) (0.13) (0.02) (0.13) (0.02) (0.04) (0.06) (0.03)

True 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55
(0.06) (0.06) (0.06) (0.06) (0.04) (0.04) (0.04) (0.05)

WFG2 False 0.38 0.22 0.41 0.22 0.43 0.21 0.42 0.38 0.39 0.29 0.39 0.27 0.39 0.28 0.37 0.36 0.27 0.20
(0.08) (0.05) (0.12) (0.05) (0.10) (0.05) (0.11) (0.11) (0.05) (0.09) (0.04) (0.08) (0.04) (0.09) (0.07) (0.09) (0.09) (0.09)

True 0.20 0.20 0.20 0.38 0.27 0.27 0.27 0.35
(0.06) (0.06) (0.05) (0.11) (0.09) (0.09) (0.09) (0.09)

WFG3 False 0.29 0.02 0.26 0.02 0.24 0.02 0.11 0.02 0.27 0.02 0.27 0.02 0.27 0.02 0.20 0.02 0.02 0.01
(0.07) (0.00) (0.05) (0.00) (0.05) (0.00) (0.05) (0.02) (0.04) (0.00) (0.04) (0.00) (0.04) (0.00) (0.07) (0.00) (0.01) (0.01)

True 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
(0.00) (0.00) (0.00) (0.02) (0.00) (0.00) (0.00) (0.00)

WFG4 False 0.35 0.21 0.31 0.21 0.34 0.21 0.46 0.45 0.40 0.22 0.29 0.20 0.29 0.21 0.44 0.44 0.24 0.16
(0.03) (0.03) (0.02) (0.03) (0.03) (0.04) (0.01) (0.03) (0.04) (0.04) (0.03) (0.03) (0.04) (0.02) (0.05) (0.05) (0.02) (0.03)

True 0.14 0.14 0.15 0.45 0.15 0.16 0.14 0.44
(0.02) (0.02) (0.03) (0.04) (0.03) (0.03) (0.02) (0.05)

WFG5 False 0.46 0.27 0.39 0.27 0.39 0.27 0.39 0.28 0.43 0.27 0.42 0.28 0.43 0.27 0.48 0.27 0.26 0.18
(0.04) (0.01) (0.05) (0.02) (0.05) (0.01) (0.08) (0.02) (0.04) (0.01) (0.05) (0.02) (0.07) (0.01) (0.20) (0.03) (0.02) (0.01)

True 0.20 0.20 0.20 0.21 0.20 0.20 0.21 0.20
(0.01) (0.01) (0.01) (0.03) (0.01) (0.01) (0.01) (0.01)

WFG6 False 0.45 0.24 0.39 0.24 0.38 0.25 0.39 0.38 0.43 0.24 0.31 0.24 0.27 0.25 0.21 0.19 0.38 0.19
(0.05) (0.01) (0.07) (0.01) (0.07) (0.03) (0.48) (0.48) (0.07) (0.03) (0.10) (0.03) (0.10) (0.02) (0.13) (0.05) (0.05) (0.02)

True 0.18 0.18 0.18 0.34 0.18 0.18 0.17 0.18
(0.02) (0.02) (0.02) (0.50) (0.03) (0.03) (0.03) (0.04)

WFG7 False 0.48 0.35 0.50 0.35 0.50 0.35 0.48 0.47 0.51 0.35 0.48 0.34 0.47 0.34 0.36 0.36 0.36 0.26
(0.02) (0.02) (0.03) (0.02) (0.03) (0.02) (0.03) (0.04) (0.04) (0.02) (0.04) (0.02) (0.05) (0.02) (0.04) (0.03) (0.02) (0.01)

True 0.29 0.29 0.29 0.46 0.28 0.29 0.28 0.35
(0.02) (0.01) (0.01) (0.06) (0.02) (0.02) (0.02) (0.04)

WFG8 False 0.92 0.64 0.89 0.71 0.85 0.72 0.79 0.79 0.73 0.44 0.52 0.50 0.51 0.51 0.51 0.51 0.47 0.26
(0.04) (0.15) (0.04) (0.07) (0.03) (0.04) (0.02) (0.02) (0.07) (0.13) (0.18) (0.17) (0.19) (0.19) (0.19) (0.19) (0.03) (0.02)

True 0.59 0.66 0.67 0.79 0.36 0.46 0.50 0.51
(0.17) (0.11) (0.09) (0.02) (0.16) (0.20) (0.18) (0.19)

WFG9 False 0.27 0.25 0.26 0.24 0.26 0.24 0.41 0.43 0.24 0.23 0.21 0.23 0.20 0.23 0.15 0.15 0.20 0.15
(0.03) (0.03) (0.05) (0.02) (0.05) (0.02) (0.27) (0.25) (0.03) (0.02) (0.04) (0.02) (0.04) (0.02) (0.01) (0.01) (0.02) (0.01)

True 0.18 0.18 0.18 0.41 0.17 0.17 0.17 0.15
(0.02) (0.02) (0.02) (0.27) (0.01) (0.02) (0.02) (0.01)

Table 3.4 Number of generations when the first phase of NSGA-II was terminated in the pro-
posed scheme, in the bi-objective case.“ pct”denotes the ratio of generations in the first-phase
search to the maximum number of generations.

With Proposed Search Scheme
Reference Point (f1, f2) = (0, 0) Reference Point (f1, f2) = (2, 4)

Problem ε = 0.5 ε = 0.1 ε = 0.05 ε = 0.01 ε = 0.5 ε = 0.1 ε = 0.05 ε = 0.01

#gen pct #gen pct #gen pct #gen pct #gen pct #gen pct #gen pct #gen pct
WFG1 129 17.2 132 17.6 136 18.1 148 19.8 148 19.8 153 20.3 154 20.6 164 21.9
WFG2 80 10.7 118 15.7 176 23.4 524 69.8 78 10.3 110 14.7 143 19.0 439 58.6
WFG3 51 6.8 78 10.3 103 13.7 508 67.7 52 6.9 88 11.7 132 17.6 608 81.1
WFG4 50 6.7 79 10.6 127 16.9 488 65.0 51 6.8 97 12.9 166 22.1 602 80.3
WFG5 49 6.6 70 9.3 82 10.9 332 44.2 50 6.7 77 10.2 99 13.2 399 53.3
WFG6 51 6.8 83 11.0 138 18.3 640 85.4 76 10.1 105 14.0 130 17.3 363 48.3
WFG7 50 6.7 63 8.3 81 10.8 563 75.0 50 6.7 75 10.0 94 12.6 565 75.4
WFG8 319 42.6 750 100.0 750 100.0 750 100.0 404 53.9 750 100.0 750 100.0 750 100.0
WFG9 48 6.4 87 11.6 133 17.7 584 77.8 50 6.7 88 11.7 123 16.3 507 67.6

Experimental Setup

The parameter settings were identical to those in the NSGA-II experiment (subsection 3.3).

However, since the effect of reference point location had been clarified in the previous exper-

iment, it was not assessed here. Therefore, the reference point was fixed to (f1, f2) = (0, 0)

and (f1, f2, f3) = (0, 0, 0). Notably, the code of MOEA/D was written by ourselves, and its
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Table 3.5 Number of the generation when the first phase of NSGA-II with the proposed search
scheme was terminated, in tri-objective case. ’pct’ represents the ratio of 1st-phase search to the
maximum number of generations.

With Proposed Search Scheme
Reference Point (f1, f2) = (0, 0, 0) Reference Point (f1, f2) = (2, 4, 6)

Problem ε = 0.5 ε = 0.1 ε = 0.05 ε = 0.01 ε = 0.5 ε = 0.1 ε = 0.05 ε = 0.01

#gen pct #gen pct #gen pct #gen pct #gen pct #gen pct #gen pct #gen pct
WFG1 131 13.1 135 13.5 142 14.2 156 15.6 153 15 153 15.3 156 15.6 163 16.3
WFG2 50 5.0 86 8.6 131 13.1 958 95.8 50 5.0 78 7.8 104 10.4 918 91.8
WFG3 49 4.9 73 7.3 98 9.8 606 60.6 50 5.0 81 8.1 113 11.3 486 48.6
WFG4 25 2.5 50 5.0 100 10.0 997 99.7 25 2.5 55 5.5 100 10.0 1000 100.0
WFG5 25 2.5 50 5.0 58 5.8 268 26.8 25 2.5 50 5.0 79 7.9 278 27.8
WFG6 25 2.5 51 5.1 69 6.9 646 64.6 28 2.8 58 5.8 86 8.6 902 90.2
WFG7 25 2.5 50 5.0 55 5.5 962 96.2 25 2.5 50 5.0 73 7.3 960 96.0
WFG8 25 2.5 53 5.3 167 16.7 1000 100.0 25 2.5 278 27.8 949 94.9 1000 100.0
WFG9 25 2.5 50 5.0 50 5.0 725 72.5 25 2.5 50 5.0 53 5.3 1000 100.0

(a) 2-phase NSGA-II
without EP (1st phase),
Reference: (0, 0, 0)

(b) 2-phase NSGA-II
with EP (1st phase),
Reference: (0, 0, 0)

(c) 2-phase NSGA-II
without EP (1st phase),
Reference: (2, 4, 6)

(d) 2-phase NSGA-II
with EP (1st phase),
Reference: (2, 4, 6)

(e) 2-phase NSGA-II
without EP (2nd
phase), Reference: (0,
0, 0)

(f) 2-phase NSGA-II
with EP (2nd phase),
Reference: (0, 0, 0)

(g) 2-phase NSGA-II
without EP (2nd
phase), Reference: (2,
4, 6)

(h) 2-phase NSGA-II
with EP (2nd phase),
Reference: (2, 4, 6)

Fig. 3.4 Plots of the nondominated solutions with the lowest IGD-metric in 30 runs, with two
different reference point settings, for the tri-objective WFG1.

performance was verified by comparison with jMetal [47] implementation of MOEA/D.
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Results

The IGD means and standard deviations at various thresholds ε of the switching criterion are

displayed in Tables 3.6 and 3.7 for the bi- and tri-objective WFG problems, respectively. Table

3.8 presents the number of generations when the first phase of the search terminates at different

thresholds of search-phase switching.

Table 3.6 IGD values of the solutions found by the original MOEA/D and MOEA/D in the
proposed search scheme, for the bi-objective case. Standard deviations are given in parentheses.

With Proposed Search Scheme
Problem External ε = 0.5 ε = 0.1 ε = 0.05 ε = 0.01 Original

Population 1st 2nd 1st 2nd 1st 2nd 1st 2nd suspended final
WFG1 False 0.38 0.34 0.28 0.27 0.25 0.25 0.24 0.22 1.94 1.51

(0.13) (0.19) (0.07) (0.11) (0.06) (0.11) (0.05) (0.09) (0.08) (0.17)
True 0.37 0.28 0.25 0.24

(0.12) (0.07) (0.06) (0.05)
WFG2 False 0.18 0.13 0.15 0.13 0.14 0.13 0.14 0.13 0.30 0.24

(0.05) (0.01) (0.03) (0.01) (0.02) (0.01) (0.02) (0.01) (0.15) (0.16)
True 0.18 0.15 0.14 0.14

(0.05) (0.03) (0.02) (0.02)
WFG3 False 0.22 0.20 0.22 0.20 0.21 0.20 0.21 0.20 0.57 0.20

(0.02) (0.01) (0.01) (0.00) (0.01) (0.00) (0.01) (0.00) (0.07) (0.00)
True 0.20 0.20 0.20 0.20

(0.01) (0.01) (0.01) (0.00)
WFG4 False 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.03 0.01

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.01) (0.00)
True 0.01 0.01 0.01 0.01

(0.00) (0.00) (0.00) (0.00)
WFG5 False 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.13 0.07

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.04) (0.00)
True 0.07 0.07 0.07 0.07

(0.00) (0.00) (0.00) (0.00)
WFG6 False 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.10 0.35 0.12

(0.09) (0.09) (0.09) (0.09) (0.09) (0.09) (0.09) (0.09) (0.17) (0.09)
True 0.11 0.11 0.11 0.11

(0.09) (0.09) (0.09) (0.09)
WFG7 False 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.17 0.01

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.04) (0.01)
True 0.01 0.01 0.01 0.01

(0.00) (0.00) (0.00) (0.00)
WFG8 False 0.18 0.22 0.17 0.21 0.16 0.16 0.16 0.16 0.53 0.46

(0.11) (0.23) (0.10) (0.23) (0.10) (0.12) (0.10) (0.12) (0.16) (0.20)
True 0.17 0.17 0.18 0.17

(0.10) (0.11) (0.11) (0.11)
WFG9 False 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.04 0.01

(0.02) (0.01) (0.02) (0.01) (0.02) (0.01) (0.02) (0.01) (0.03) (0.01)
True 0.03 0.03 0.03 0.02

(0.02) (0.02) (0.02) (0.02)

Again, the external population improves the mean IGD of our proposed search scheme, espe-
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Table 3.7 IGD values of the solutions found by the original MOEA/D and MOEA/D in the
proposed search scheme, for the tri-objective case. Standard deviations are given in parentheses.

With Proposed Search Scheme
Problem External ε = 0.5 ε = 0.1 ε = 0.05 ε = 0.01 Original

Population 1st 2nd 1st 2nd 1st 2nd 1st 2nd suspended final
WFG1 False 0.74 0.45 0.69 0.43 0.67 0.42 0.68 0.41 1.52 0.81

(0.11) (0.08) (0.15) (0.07) (0.15) (0.05) (0.15) (0.04) (0.09) (0.12)
True 0.49 0.46 0.44 0.44

(0.07) (0.06) (0.06) (0.06)
WFG2 False 0.59 0.45 0.64 0.50 0.64 0.51 0.65 0.53 0.56 0.57

(0.12) (0.11) (0.10) (0.12) (0.10) (0.12) (0.10) (0.13) (0.11) (0.10)
True 0.55 0.63 0.63 0.64

(0.13) (0.10) (0.10) (0.10)
WFG3 False 0.10 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.23 0.03

(0.04) (0.00) (0.02) (0.00) (0.02) (0.00) (0.02) (0.00) (0.07) (0.00)
True 0.04 0.03 0.03 0.03

(0.02) (0.01) (0.01) (0.01)
WFG4 False 0.19 0.35 0.19 0.35 0.19 0.35 0.19 0.35 0.23 0.21

(0.02) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.03) (0.00)
True 0.19 0.19 0.19 0.19

(0.01) (0.01) (0.01) (0.01)
WFG5 False 0.23 0.29 0.20 0.29 0.20 0.29 0.20 0.29 0.28 0.19

(0.02) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.05) (0.00)
True 0.22 0.20 0.20 0.20

(0.01) (0.00) (0.00) (0.00)
WFG6 False 0.34 0.32 0.28 0.32 0.28 0.32 0.28 0.32 0.46 0.27

(0.09) (0.06) (0.08) (0.06) (0.08) (0.06) (0.08) (0.06) (0.21) (0.08)
True 0.30 0.27 0.27 0.27

(0.08) (0.08) (0.08) (0.08)
WFG7 False 0.22 0.27 0.18 0.27 0.18 0.27 0.18 0.27 0.20 0.16

(0.04) (0.00) (0.01) (0.00) (0.01) (0.00) (0.01) (0.00) (0.03) (0.00)
True 0.20 0.19 0.18 0.18

(0.02) (0.01) (0.01) (0.01)
WFG8 False 0.40 0.41 0.40 0.40 0.39 0.41 0.39 0.41 0.68 0.50

(0.16) (0.14) (0.16) (0.14) (0.16) (0.14) (0.17) (0.14) (0.23) (0.24)
True 0.38 0.38 0.38 0.37

(0.15) (0.15) (0.15) (0.15)
WFG9 False 0.24 0.27 0.21 0.28 0.21 0.28 0.21 0.27 0.24 0.20

(0.05) (0.03) (0.03) (0.02) (0.03) (0.02) (0.03) (0.02) (0.09) (0.08)
True 0.23 0.21 0.21 0.21

(0.03) (0.02) (0.02) (0.02)

cially in the tri-objective cases. In the WFG1, WFG2, WFG4, WFG6, and WFG8 problems, our

proposed search scheme with the hybrid algorithm and an external population achieves a lower

mean IGD than the original MOEA/D. The performances of the three algorithms are approx-

imately equal in the WFG3 problem. The proposed scheme performs worse than the original

algorithm in the tri-objective WFG5 and WGF7 problems, and in the bi- and tri-objective WFG9

problems. As found for the NSGA-II-based algorithm, the proposed scheme is more robust (ex-
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Table 3.8 Number of generations at termination of the first phase of the proposed scheme in
the MOEA/D-based implementations.“ pct”denotes the ratio of generation number in the first
phase search to the maximum number of generations.

Bi-objective Tri-objective
With Proposed Search Scheme With Proposed Search Scheme

Problem ε = 0.5 ε = 0.1 ε = 0.05 ε = 0.01 ε = 0.5 ε = 0.1 ε = 0.05 ε = 0.01

#gen pct #gen pct #gen pct #gen pct #gen pct #gen pct #gen pct #gen pct
WFG1 229 30.6 272 36.2 278 37.1 288 38.3 178 17.8 212 21.2 222 22.2 223 22.3
WFG2 72 9.6 134 17.9 149 19.9 163 21.7 457 45.7 729 72.9 756 75.6 790 79.0
WFG3 50 6.7 58 7.8 64 8.6 68 9.0 27 2.7 50 5.0 50 5.0 50 5.0
WFG4 50 6.7 58 7.7 62 8.2 66 8.8 39 3.9 50 5.0 50 5.0 50 5.0
WFG5 50 6.7 50 6.7 50 6.7 51 6.8 27 2.7 50 5.0 50 5.0 50 5.0
WFG6 50 6.7 52 6.9 54 7.2 57 7.6 27 2.7 50 5.0 50 5.0 50 5.0
WFG7 87 11.6 106 14.1 108 14.3 114 15.2 38 3.8 53 5.3 53 5.3 63 6.3
WFG8 80 10.7 118 15.7 125 16.7 143 19.0 49 4.9 53 5.3 55 5.5 59 5.9
WFG9 48 6.4 57 7.6 59 7.9 62 8.2 28 2.8 50 5.0 50 5.0 52 5.2

hibits lower IGD standard deviation) than the original algorithm. The search behavior of our

proposed scheme is discussed in subsection 3.3.5.

3.3.5 Discussions

NSGA-II-based implementation

First, we discuss the search behavior of the NSGA-II-based implementation of the proposed

search scheme. Figures 3.5, 3.7, and 3.6 depict the nondominated fronts, for which our search

scheme improves the IGD values when applied to the bi- and tri-objective WFG1 problems and

the bi-objective WFG7 problem, respectively. In these figures, the original NSGA-II, NSGA-II

implemented in our search scheme, and NSGA-II implemented in our proposed search scheme

with an external population, are respectively labeled“NSGA-II,”“2-phase NSGA-II,”and“2-

phase NSGA-II with EP.”Figure 3.8 depicts the run for which the IGD value is worsened by our

scheme, when applied to the tri-objective WFG7 problem. As shown in Figures 3.5, 3.6 and 3.7,

the populations of our proposed scheme converge near the Pareto solutions during the first phase.

Moreover, in the second phase, the populations spread more widely than in the original algorithm.

Spread is limited in the original algorithm because proximity and diversity are simultaneously

implemented from an early stage of the search. Our search strategy, proximity searching followed

by population spreading, works very well in the WFG1 and bi-objective WFG7 problems.

In Figure 3.8, the original NSGA-II algorithm yields a better population spread than our search

scheme using the hybrid algorithm. Therefore, the performance of our proposed scheme is de-

graded by inadequate searching by the SOEA population in the second phase. We infer that the

spread of the population affects the searching ability of SOEA, because the ability to find the
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(a) NSGA-II (stopped at 132-th
gen.)

(b) NSGA-II

(c) 2-phase NSGA-II without EP
(1st phase)

(d) 2-phase NSGA-II without EP
(2nd phase)

(e) 2-phase NSGA-II with EP (1st
phase)

(f) 2-phase NSGA-II with EP (2nd
phase)

Fig. 3.5 Plots of the nondominated solutions with the lowest IGD-metric in 30 runs of NS-
GA-II and NSGA-II in the proposed search scheme (with/without external population), for the
bi-objective WFG1.

extreme point depends on the performance of SOEA.

Figure 3.9 shows the final solutions obtained by the best runs of the proposed search scheme
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(a) NSGA-II (stopped at 563-th
gen.)

(b) NSGA-II

(c) 2-phase NSGA-II without EP
(1st phase)

(d) 2-phase NSGA-II without EP
(2nd phase)

(e) 2-phase NSGA-II with EP (1st
phase)

(f) 2-phase NSGA-II with EP (2nd
phase)

Fig. 3.6 Plots of the nondominated solutions with the lowest IGD-metric in 30 runs of NS-
GA-II and NSGA-II in the proposed search scheme (with/without external population), for the
bi-objective WFG7.

(with the external population) and the original algorithm in tri-objective WFG8. In the figures, the

areas near the f1-extreme point (indicated as ’B’) and the f2-extreme point (indicated as ’A’) are
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(a) NSGA-II (stopped at 50-th
gen.)

(b) NSGA-II

(c) 2-phase NSGA-II without EP
(1st phase)

(d) 2-phase NSGA-II without EP
(2nd phase)

(e) 2-phase NSGA-II with EP (1st
phase)

(f) 2-phase NSGA-II with EP (2nd
phase)

Fig. 3.7 Plots of the nondominated solutions with the lowest IGD-metric in 30 runs of NS-
GA-II and NSGA-II with the proposed search scheme (with/without external population), for
tri-objective WFG1.

enlarged. From Figure 3.9, it can be revealed that in the best run our search scheme successfully

obtains the extreme point in a single objective function, while the original one can not find it.
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(a) NSGA-II (stopped at 50-th
gen.)

(b) NSGA-II

(c) 2-phase NSGA-II without EP
(1st phase)

(d) 2-phase NSGA-II without EP
(2nd phase)

(e) 2-phase NSGA-II with EP (1st
phase)

(f) 2-phase NSGA-II with EP (2nd
phase)

Fig. 3.8 Plots of the nondominated solutions with the lowest IGD-metric in 30 runs of NS-
GA-II and NSGA-II with the proposed search scheme (with/without external population), for
tri-objective WFG7.

This could be more effective in many objective problems, because the search ability of MOEA

was degraded by the increase in the number of objectives [48]. This finding is illustrated in the
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behavior of the tri-objective WFG7, WFG8, and WFG9 solutions. To improve the performance

of the second search phase, we must apply a stronger single-objective algorithm to the SOEA

population. For the WFG5 problem, the IGD values are lower than in other problems regardless

of algorithm used, and our proposed scheme performs worse than the original algorithm. This

behavior occurs because WFG5 is an easy problem and should be solved by the original NSGA-

II, rather than by our proposed search scheme. In fact, this problem is deceptive but not complex

(see Table 3.1).

 0
 1

 2

 0  1  2  3  4

 0
 1
 2
 3
 4
 5
 6

f3

Pareto front
NSGA-II

f1f2

f3

 0
 1

 2

 0  1  2  3  4

 0
 1
 2
 3
 4
 5
 6

f3

Pareto front
NSGA-II

f1f2

f3

 0
 1

 2

 0  1  2  3  4

 0
 1
 2
 3
 4
 5
 6

f3

Pareto front
NSGA-II

f1f2

f3
A	

B	

A	 B	

(a) NSGA-II

 0
 1

 2

 0  1  2  3  4

 0
 1
 2
 3
 4
 5
 6

f3

Pareto front
2phase NSGA-II with EP (2nd)

f1f2

f3

 0
 1

 2

 0  1  2  3  4

 0
 1
 2
 3
 4
 5
 6

f3

Pareto front
2phase NSGA-II with EP (2nd)

f1f2

f3

 0
 1

 2

 0  1  2  3  4

 0
 1
 2
 3
 4
 5
 6

f3

Pareto front
2phase NSGA-II with EP (2nd)

f1f2

f3
A	

B	

A	 B	

(b) 2-phase NSGA-II with EP

Fig. 3.9 Plots of the nondominated solutions with the lowest IGD-metric in 30 runs of NS-
GA-II and NSGA-II with the proposed search scheme (with external population), for tri-objective
WFG8.

Regardless of the success of our proposed scheme, the external population improved the cov-

erage. Furthermore, in the absence of an external population, the coverage may be poorer than

in the original NSGA-II, because the SOEA subpopulation in the second phase of our proposed

scheme does not explore the Pareto solutions, unlike the single MOEA in the original algorithm.

Thus, we recommend using an external population with our proposed scheme.

MOEA/D-based implementation

We now discuss the search behavior of the MOEA/D-based implementations of our proposed

scheme.
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The distributions of the final solutions obtained in the run scoring the lowest IGD are plotted

in figures 3.10 and 3.11. Results are shown for each algorithm (i.e., original MOEA/D, hybrid

algorithm with no external population, and the hybrid algorithm with an external population).

In these figures, the original MOEA/D, MOEA/D implemented in our proposed search scheme,

and MOEA/D implemented in our proposed scheme with an external population are labeled

“MOEA/D, ”“ 2-phase MOEA/D,”and ”2-phase MOEA/D with EP.”
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(a) MOEA/D (stopped at 223-th
gen.)

(b) MOEA/D

(c) 2-phase MOEA/D with EP (1st
phase)

(d) 2-phase MOEA/D without EP
(2nd phase)

(e) 2-phase MOEA/D without EP
(1st phase)

(f) 2-phase MOEA/D with EP
(2nd phase)

Fig. 3.10 Plots of the nondominated solutions with the lowest IGD-metric in 30 runs of
MOEA/D and MOEA/D in the proposed search scheme (with/without external population), for
the tri-objective WFG1.
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(a) MOEA/D (stopped at 50-th
gen.)

(b) MOEA/D

(c) 2-phase MOEA/D without EP
(1st phase)

(d) 2-phase MOEA/D without EP
(2nd phase)

(e) 2-phase MOEA/D with EP (1st
phase)

(f) 2-phase MOEA/D with EP
(2nd phase)

Fig. 3.11 Plots of the nondominated solutions with the lowest IGD-metric in 30 runs of
MOEA/D and MOEA/D in the proposed search scheme (with/without external population), for
the tri-objective WFG9.

As demonstrated in Figure 3.10, our proposed search scheme improves the IGD values from

those of the original algorithm in the tri-objective WFG1 problem. In the tri-objective WFG9
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problem, where the IGD value is degraded from that of the original MOEA/D, our proposed

scheme fails (Figure 3.11). Figure 3.10 reveals that the population of our proposed search scheme

converges near the Pareto solutions during the first phase, and spreads more widely during the

second phase than in the original algorithm. In contract to the NSGA-II case, the first phase

spreads the population more widely than in the original MOEA/D. This occurs because the

MOEA/D framework is unmodified in the first phase, whereas the mating scheme of NSGA-

II is modified in that phase. In the WFG1 problem, the performance of our proposed scheme is

improved over the original MOEA/D because the DC-scheme enables a wider population spread.

In Figure 3.11, although our proposed search method yields a poorer IGD than the original

algorithm, we observe no significant difference between the population spreads among the three

algorithms. However, the distribution of the nondominated solutions was more uniform in the

original MOEA/D. This behavior is expected because the original MOEA/D decomposes the

multi-objective problem into uniformly distributed subproblems, whereas population division by

our proposed scheme at the beginning of the second phase is nonuniform. To overcome this prob-

lem, a more efficient updating scheme could be applied to the external population. Alternatively,

uniformity could be considered in the SOEA implementation. Similar to the NSGA-II case, the

easy WFG5 problem should be solved by the original MOEA/D rather than by our proposed

scheme.

Comparison of the computational cost

CPU times of the proposed search scheme (with external population) and the original algorithm

on NSGA-II are shown in Table 3.9 and 3.10.

Table 3.9 CPU time [sec] (mean value of 30 runs) of the original NSGA-II and NSGA-II with
the proposed search scheme, in the bi-objective case. (’NA’ indicates overall evaluations were
consumed in the first phase, so that the second phase search was not performed.)

With Proposed Search Scheme
Problem Original ε = 0.5 ε = 0.1 ε = 0.05 ε = 0.01

1st 2nd Total 1st 2nd Total 1st 2nd Total 1st 2nd Total
WFG1 10.50 1.63 8.53 10.16 1.68 8.51 10.19 1.74 8.48 10.22 1.83 8.43 10.26
WFG2 7.26 1.10 7.24 8.34 1.75 6.85 8.60 2.71 6.24 8.95 8.41 3.10 11.51
WFG3 10.45 0.82 8.36 9.19 1.37 8.08 9.45 1.89 7.79 9.68 10.64 4.07 14.71
WFG4 10.82 0.81 9.06 9.87 1.40 8.72 10.12 2.38 8.12 10.51 10.17 4.16 14.33
WFG5 10.93 0.85 9.19 10.04 1.30 8.92 10.21 1.54 8.78 10.32 7.07 6.07 13.14
WFG6 10.99 0.81 8.82 9.63 1.44 8.46 9.91 2.57 7.82 10.39 13.34 3.06 16.40
WFG7 14.97 1.14 14.49 15.64 1.47 14.27 15.74 1.96 13.97 15.93 14.86 5.67 20.53
WFG8 6.73 3.86 5.03 8.89 9.34 NA 9.34 9.34 NA 9.34 9.34 NA 9.34
WFG9 16.26 1.13 16.78 17.91 2.16 15.94 18.10 3.44 14.90 18.34 16.46 7.16 23.61



3.3　 Numerical Experiments 39

Table 3.10 CPU time [sec] (mean value of 30 runs) of the original NSGA-II and NSGA-II with
the proposed search scheme, in the tri-objective case. (’NA’ indicates overall evaluations were
consumed in the first phase, so that the second phase search was not performed.)

With Proposed Search Scheme
Problem Original ε = 0.5 ε = 0.1 ε = 0.05 ε = 0.01

1st 2nd Total 1st 2nd Total 1st 2nd Total 1st 2nd Total
WFG1 27.14 3.42 21.55 24.97 3.74 21.39 25.13 3.78 21.35 25.13 4.44 21.07 25.51
WFG2 20.75 1.24 18.59 19.83 2.42 18.04 20.47 3.99 17.23 21.22 32.89 6.69 39.58
WFG3 25.84 1.53 18.11 19.64 2.42 17.71 20.13 3.41 17.25 20.66 24.24 8.86 33.10
WFG4 31.02 0.93 24.11 25.04 1.94 23.31 25.25 3.96 22.04 25.99 41.55 2.92 44.47
WFG5 32.36 0.97 23.90 24.87 2.07 23.33 25.41 2.40 23.17 25.57 12.20 19.32 31.52
WFG6 30.61 0.92 21.95 22.87 2.04 21.47 23.50 2.83 21.13 23.95 29.03 10.68 39.71
WFG7 36.91 1.14 35.84 36.98 2.37 34.83 37.20 2.61 34.68 37.29 47.73 17.07 64.80
WFG8 20.30 0.82 21.78 22.60 1.88 21.20 23.07 6.20 18.49 24.69 38.28 NA 38.28
WFG9 39.85 1.22 41.85 43.07 2.60 40.65 43.25 2.60 40.64 43.24 39.36 29.79 69.15

It can be seen that the proposed search scheme based on NSGA-II requires more CPU time

than the original one when the threshold value ϵ get lower. It indicates that the CPU time of the

proposed search scheme depends on the proportion of the first phase execution on the overall

search. The first phase algorithm RM-NSGA-II needs extra CPU time to calculate the distance

and use it in the mating operation to the reference point compared to the original one. Moreover,

since the computational complexity of DGA is lower than NSGA-II because it does not calculate

the crowding distance, the second phase search is preferred to be increased in terms of the time

complexity.

On the other hand, in the case of MOEA/D (the CPU times are summarized in Table 3.11 and

3.12), the time complexity of the proposed search scheme is determined purely by the second

phase search, DC-scheme, because the original algorithm is used in the first phase search (except

for checking the convergence in the first phase). As MOEA/D solves single optimization sub-

problems simultaneously at each iteration, there are no significant difference between DGA and

MOEA/D. In this case, DC-scheme, which applies the individual migration between the SOEA

populations and MOEA population, is computationally heavier than the original algorithm, so

that the proposed search scheme is computationally more expensive than the original algorithm.

But we expect that this difference in time complexity is not so serious if the proposed method

is applied to the problem with computationally expensive objective functions, which we often

encounter in real-world applications.

As the summary, the CPU time improvement of the proposed algorithm against the original one

depends on the time complexity of the base algorithm used in each search phase. Especially, if

the MOEA population has lower computational complexity, the CPU time of our search scheme
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Table 3.11 CPU time [sec] (mean value of 30 runs) of the original MOEA/D and MOEA/D with
the proposed search scheme, in the bi-objective case. (’NA’ indicates overall evaluations were
consumed in the first phase, so that the second phase search was not performed.)

With Proposed Search Scheme
Problem Original ε = 0.5 ε = 0.1 ε = 0.05 ε = 0.01

1st 2nd Total 1st 2nd Total 1st 2nd Total 1st 2nd Total
WFG1 4.15 1.15 4.04 5.19 1.28 3.83 5.11 1.31 3.79 5.09 1.33 3.75 5.08
WFG2 3.13 0.28 4.12 4.40 0.44 3.83 4.27 0.53 3.67 4.20 0.58 3.58 4.16
WFG3 3.43 0.24 4.80 5.04 0.28 4.74 5.02 0.29 4.73 5.02 0.31 4.70 5.01
WFG4 4.08 0.28 5.76 6.04 0.32 5.71 6.03 0.35 5.66 6.01 0.37 5.63 6.00
WFG5 3.69 0.26 5.15 5.41 0.26 5.15 5.41 0.26 5.16 5.41 0.26 5.15 5.41
WFG6 3.90 0.27 5.44 5.71 0.29 5.41 5.70 0.30 5.41 5.70 0.32 5.38 5.70
WFG7 7.89 0.89 10.63 11.52 1.09 10.33 11.42 1.12 10.25 11.37 1.15 10.21 11.36
WFG8 4.06 0.44 5.58 6.02 0.63 5.34 5.97 0.66 5.28 5.94 0.73 5.19 5.92
WFG9 9.49 0.63 13.32 13.95 0.66 13.28 13.94 0.68 13.21 13.90 0.75 13.10 13.85

Table 3.12 CPU time [sec] (mean value of 30 runs) of the original MOEA/D and MOEA/D with
the proposed search scheme, in the tri-objective case. (’NA’ indicates overall evaluations were
consumed in the first phase, so that the second phase search was not performed.)

With Proposed Search Scheme
Problem Original ε = 0.5 ε = 0.1 ε = 0.05 ε = 0.01

1st 2nd Total 1st 2nd Total 1st 2nd Total 1st 2nd Total
WFG1 7.47 1.32 11.31 12.63 1.52 11.10 12.62 1.53 11.09 12.63 1.60 10.99 12.59
WFG2 6.69 2.63 6.92 9.55 4.01 4.63 8.64 4.13 4.49 8.62 4.23 4.60 8.83
WFG3 6.57 0.21 10.96 11.18 0.37 10.88 11.25 0.37 10.89 11.26 0.37 10.89 11.26
WFG4 7.80 0.36 13.78 14.15 0.43 13.66 14.09 0.43 13.67 14.10 0.43 13.67 14.10
WFG5 7.12 0.24 12.48 12.71 0.40 12.23 12.63 0.40 12.24 12.64 0.40 12.24 12.64
WFG6 7.05 0.23 11.76 12.00 0.38 11.33 11.71 0.38 11.35 11.72 0.38 11.33 11.71
WFG7 15.57 0.59 27.10 27.69 0.78 26.73 27.51 0.82 26.61 27.44 0.92 26.45 27.37
WFG8 8.97 0.46 14.40 14.87 0.50 14.34 14.84 0.52 14.31 14.82 0.54 14.28 14.82
WFG9 15.95 0.49 31.15 31.64 0.83 30.47 31.31 0.83 30.44 31.27 0.85 30.42 31.27

is worse than the original one.

Summary of the experiments

The results of the numerical experiments are summarized below:

• Our proposed search scheme performs at least as well as the original algorithm in the

WFG1, WFG2, WFG3, WFG4, and WFG6 problems.

• The original algorithm outperforms our proposed scheme in the WFG5, WFG7, WFG8,

and WFG9 problems.

• Because WFG5 is an easy problem, it should be solved by the original algorithm rather

than by our proposed scheme.
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• To correct the poor performance of our proposed scheme in certain problems, we should

improve the search performance in the SOEA implementation. Specifically, we need to

consider novel and stronger algorithms for searching the SOEA population.

• An external population improves the coverage of our proposed search scheme.

In summary, our proposed search scheme demonstrates higher diversity and better proximity than

conventional MOEAs.

3.4 Summary of this chapter

The popularity of MOPs stems from their wide variety of solutions presented to decision mak-

ers. Such varying solutions are more useful when they are well approximated and widely spread.

For this purpose, the author proposed a novel search scheme for MOEAs that improves the diver-

sity and proximity of Pareto solutions. The proposed scheme comprises two phases, each using

a different type of EA. The first phase enables rapid convergence to the Pareto solutions, and

the second phase spreads the search population. In the first phase, rapid proximity is achieved

by a user-specified reference point; in the second phase, solutions are spread by a DC-scheme

proposed by Okuda et al.[23].

The proposed scheme was applied to a dominance-based algorithm (NSGA-II), and a decomposition-

based algorithm (MOEA/D). To verify the effectiveness of our proposed search scheme, both

implementations were tested on the WFG test suite. The results showed that for WFG1, WFG2,

WFG3, WFG4, and WFG6, the proposed search scheme was superior to the original algorithm.

Conversely, the original algorithm outperformed our scheme in WFG5, WFG7, WFG8, and

WFG9. In cases of inferior performance by our proposed scheme, it was observed that the SOEA

population for each objective did not search the extreme point during the second phase. Hence,

it could be concluded that the overall performance of our scheme crucially depended on the al-

gorithm applied to the SOEA population. Moreover, it was verified that an external population

improved the coverage of our proposed search scheme. Different SOEA implementations should

be investigated in additional studies.

A major contribution of our research is the development of a versatile search scheme, which is

applicable to any type of MOEA. Finally, it has been showed that the performance of conventional

MOEA could be easily improved by hybridization with an appropriate SOEA.
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Chapter 4

Design Mode Analysis

4.1 Introduction: What is ”design mode” ?

Decision variables are defined as a set of parameters that determine the solutions to optimiza-

tion problems. In product design problems, for example, they frequently represent size, weight,

and shape of the product. Objective functions indicate the goal of the product design, such as

performance and cost of the target product. Decision variables and objective functions form the

decision space and the objective space, respectively, as shown in Figure 4.1. In general, the op-

timization process explores the decision space with the aim of minimizing or maximizing the

objective functions. Many multiobjective evolutionary algorithms aim to improve the diversity

and convergence of the nondominated solutions, especially in the objective space [19, 49]. How-

x1	

x2	

F1	

F2	 F(x*)	

x*! P
F	

Decision space	 Objective space	

Fig. 4.1 Representation of decision space and objective space

ever, in product design problems, the design is also characterized by the decision variables. For

example, if mass of the product is successfully minimized, and the characteristics of the decision

variables of the optimum solutions are analyzed, a weight-saving design strategy of the product

may be achieved.

In this study, we incorporate the“design mode”concept as an essential perspective in decision
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space analysis. This concept is derived from principal component analysis (PCA) in statistics,

proper orthogonal decomposition (POD). These methods are mathematically same (the word

”PCA” is used in this work) and extract the dominant characteristics of the target dataset by de-

composing high-dimensional data into low-dimensional descriptions using a set of principal com-

ponent vectors, whose directions correspond to maximal variance among the variables. Oyama

et al. [8, 9] applied PCA in their analysis of airfoil shape design, and reported its effectiveness.

They focused on designing the shape of the product, seeking the principal airfoil shapes that form

the Pareto solutions.

In this study, we generalize and extend the concept to deal with all types of decision parameters

in the product design. Directions indicated by principal component vectors also tell us how to

change the decision variables to construct the designs in the given data set. Besides, contribution

ratio of each decision variable to the principal component vectors shows how important that

variable is in creating the designs. We assume that the principal component vector gives us

important information in the engineering design, and define it as ”design mode.” The analytical

framework based on the design mode is also proposed.

Let X(i) = (x1, . . . , xm) ∈ R⋗ to be a decision variable of the i-th Pareto solution, and

X = (X(1), . . . , X(N)) be a Pareto solution set of size N . In PCA, the following optimization

problem is solved, and the vector w that maximizes the variation in the decision variables is

selected:

max
∥w∥=1

Var[wTX] = max
∥w∥=1

wTVar(X)w (4.1)

where the matrix Var(X) = C is the covariance matrix of the dataset X . Let λ1 ≥ λ2 ≥

· · · ≥ λm be eigenvalues of C, and vj be their corresponding eigenvectors. The k-th principal

component Y (i,k) of the data X(i) is then represented by

Y (i,k) = vkX
(i) (4.2)

The original dataset can be decompoed into a low-dimensional representation by selecting a

certain number of the principal components. The most useful contribution of PCA to the Pareto

dataset is that the entire Pareto dataset can be approximated by the mean vector of the dataset and

a linear combination of a specified number of eigenvectors:

X(i) ≃ u+

p∑
k=1

αkvk (4.3)

A useful criterion for choosing the number of components is the cumulative proportion of the

variance P , defined below. This metric indicates the extent to which each principal component
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explains the original dataset.

P =

∑p
i=1 λi∑m
i=1 λi

(4.4)

From the axes associated with each eigenvector, we construct a meaningful new decision space.

Here we define each eigenvector as ”design mode.” Along the axes indicated by the design

modes, we examine the features of the obtained solutions. To analyze the correlation between

the axis of the decision variable xj in the original decision space and the new axis indicated by

the k-th design mode, we calculate the component loading:

rkj =

√
λk

sj
vkj (4.5)

where sj is the variance of the xj , and vkj is the j-th element of eigenvector vk. The component

loading specifies the importance of the decision variable xj in constructing the k-th principal

component. Note that if PCA is executed on a standardized dataset, the covariance matrix C is

equivalent to the correlation matrix of X . In this case, u = 0 and sj = 1.

This section has revealed some important facts of design mode analysis.

• Applying PCA to a Pareto set enables the extraction of dominant designs and decision

variables.

• Pareto solutions can be approximated by the mean vector of the dataset and a linear com-

bination of a certain number of eigenvectors.

• Each eigenvector forms a meaningful new axis in the decision space, and correlations

between the original and new axes are quantitatively evaluated by the component loadings.

4.2 Framework of design mode analysis

In the above subsections, we explained the concept of the design mode. Here, we explain the

framework of design mode analysis. The main procedures of the design mode analysis are (1)

generate the dataset, (2) cluster the dataset, (3) perform PCA, and (4-1) perform correlation

analysis or (4-2) construct new design. The proposed framework is illustrated in Figure 4.2.

The differences of our proposed approach from the conventional method by Oyama et. al are

the following points:

1. Data clustering process is incorporated into the analysis.
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Fig. 4.2 Framework of design mode analysis

2. Design mode characterization is achieved by studying the component loading of each de-

sign mode.
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The following subsections provide detailed descriptions of each step in the framework.

4.2.1 Generating the dataset

As a first step in our proposed analysis, we consider how to generate the dataset (design ex-

amples). One of the easiest ways to generate them is to use statistical sampling methods such as

Latin hypercube sampling. Representative designs can also be supplied by an expert engineer.

How the dataset should be generated depends on the objective of the design mode analysis. For

example, if the engineer desires a uniform, equal study of the design space characteristics, sta-

tistical sampling is preferred. Otherwise, if the aim is to elucidate the design methodology of an

expert, many design examples constructed by the experts must be collected. In this study, we in-

vestigate the characteristics of the decision space around the Pareto solution set, and then obtain

the solutions by EMO. Note that our proposed framework does not determine the data generation

method. The multiobjective optimization is nothing more than one of the best tools to generate

characteristic designs.

4.2.2 Clustering the dataset

By incorporating data clustering as data preprocessing, we can obtain reliably-distinguished

design modes. Data clustering for the Pareto solution set can be applied to either decision or the

objective space. However, since design mode analysis is conducted on the decision space, clus-

tering should ideally be performed on the decision space. Data clustering was not considered in

the conventional method proposed by Oyama et al. [8, 9]. However, since data clustering screens

all the input designs and divides them into representative designs and their similar counterparts,

its inclusion is advantageous. Meanwhile, any of the data clustering methods are suitable. In this

study, we adopt k-means clustering, which divides the dataset into k clusters. Each datum is then

assigned to the cluster with the nearest mean vector.

4.2.3 Principal component analysis on the dataset

Once the clustering process is complete, each cluster is subjected to PCA. Different design

modes are expected to be derived from each cluster. Moreover, the mean vector of each cluster is

the representative design of each cluster, and all solutions in each cluster are approximated by a

linear combination of the design modes (eigenvectors), in the coordinate system whose origin is

the mean vector.
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4.2.4 Correlation analysis

Having obtained the design modes in each cluster, we study each design mode by referring

to the component loadings. This process identifies the dominant decision variable in the design

mode, thereby revealing the important factors in creating new designs in each cluster. Decision

variables that make low contributions to the design mode can be eliminated from the variables,

and instead set as constants. The component loadings characterize the design modes and give us

their features. This process was also not considered in the conventional method, and it will give

us useful information about the target problem.

4.2.5 Constructing new design

Our proposed method, called design mode analysis, is employed as an analytical tool as well

as a design support tool. Since most designs in each cluster can be approximated in the decision

space formed by design modes, we can easily generate new designs with the same features in this

space, using Equation (4.3). Note that designs sharing characteristics with a specific design are

not easily created by random sampling in the original decision space, especially if that decision

space is high dimensional. We summarize the proposed framework in the pseudo code shown in

Algorithm 4.1.

Algorithm 4.1 Design mode analysis� �
1: Generate a design data set X = (X(1), . . . , X(N)) of size N .

2: Divide the data set into H clusters by using data clustering.

3: for i = 1 to H

4: Extract the design mode vk = (vk1, vk2, . . . , vkm) by applying the PCA (k = 1, . . . , N ) on
i-th

5: Calculate and study the component loading rk = (rk1, rk2, . . . , rkm) for each vk using

rkj =
√

λk

sj
vkj .

6: Choose a base design b from the i-th cluster, or calculate a mean vector instead of it.

7: Choose a number of design modes p used for generating new designs.

8: Generate a new design X ′ based on X ′ = b +
∑p

k=1 αkvk. Coefficient αk is an arbitrary
constant.

9: end for� �
The following subsection demonstrates the effectiveness of each step in our proposed method

through a series of experiments.
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4.3 Case study—multiobjective 0/1 knapsack problem

In this subsection, our proposed design mode analysis method is applied to the multiobjective

0/1 knapsack problem (MOKP). The effectiveness of the method is investigated in terms of the

following outcomes.

• Each design mode characterizes the dataset.

• Data clustering process effectively distinguishes the design modes.

• Any design in each cluster is approximated by the mean design and a linear combination

of the design modes in the cluster.

• Our proposed method can be applied to binary-valued problems.

4.3.1 Experimental setup

The target design problem, MOKP, is a multiobjective extension of the classic 0/1 knapsack

problem (KP), a kind of NP-complete combinatorial problem. When we try to pack the items,

which have own values and weights, into the knapsacks with the capacity constraints, it is im-

portant to choose the items so as to maximize the total profit of the items put into knapsacks,

because we can not pick all the items. This is popularly known as the classic KP in combinatorial

optimization, and often appears in real-world decision-making problems in various fields, such as

production scheduling, portfolio management, and so on. Figure 4.3 illustrates the classic KP. In

KP, the binary decision variable is used to indicate whether each item is included in the knapsack

or not, and the total profit of the items packed into the knapsack is defined as a objective func-

tion. The objective is to find a subset of the items with total weight not exceeding the knapsack

capacity, while maximizing the total profit. MOKP is a extended form of KP whose number of

the knapsack is simply increased.

1	 2	 3	 4	

Weight	

Profit	

4 kg	 2 kg	 5 kg	 3 kg	

Capacity: < 10kg	
$100	 $2	 $120	 $10	

…	Item	

…	

…	

Choose items	

Fig. 4.3 Knapsack problem
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The k-objective MOKP with N decision variables is formulated as

maximize fi(x) =
N∑
j=1

xjp(i,j), xj ∈ {0, 1} (4.6)

subject to gi(x) =

N∑
j=1

xjw(i,j) ≤ Wi, 1 ≤ i ≤ k

where p(i,j) indicates the profit of j-th item in calculating the function value for the i-th knapsack.

In the constraint function, w(i,j) is the weight, and Wi is the upper limit value of w(i,j). The test

case is the 2KP50-11 dataset selected from MCDMlib [50], a collection of datasets available

for testing various multiobjective optimization problems. The study constitutes a bi-objective

(two-knapsack) problem with 50 decision variables (items). These items in each knapsack are

weighted the same, but their profits differ.

The nondominated solution set of 2KP50-11 is obtained by nondominated sorting genetic al-

gorithm II (NSGA-II) [49], one of the most efficient MOEAs. Two-point crossover (crossover

rate = 1.0), and bit-flip mutation (mutation rate = 1/chromosome length) are used. Population

size is set at 120. A single run of NSGA-II is terminated after 1000 generations, and 30 runs of

NSGA-II are executed. Setting of the crossover and mutation rate used here follows the practice

in [19, 49]. Population size and the number of generations are empirically chosen (not optimized)

here. Although the choice of the genetic algorithm parameters (population size, number of gener-

ations, crossover and mutation rates) may result in different optimum solutions, it is out of focus

of our study to adjust and study the parameter setting. The multiobjective optimization is nothing

more than the tool to generate the data set to be analyzed.

It should be noted that MOKP comprises binary-valued decision variables. Since PCA exe-

cutes on real-valued variables, we must assume that the binary variables are continuous [0, 1]

when applying PCA to the solution dataset of MOKP.

4.3.2 Results and discussion

Figure 4.4 shows the nondominated solutions obtained by NSGA-II. After deleting the over-

lapped data obtained in the 30 runs, we obtained 53 solutions. PCA was also executed on the

decision variables of the nondominated solutions set. The results of running PCA on MOKP

nondominated solutions set are summarized in Table 4.1. The original dataset can be explained

if the cumulative proportion of explained variance is ≥ 0.8. In this case, the first eight design

modes are essential to explain the dataset. To visualize the characteristics of the design modes,

the component loadings are calculated and plotted in Figure 4.5. The component loadings of ele-
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Fig. 4.4 Nondominated solutions obtained by NSGA-II

ments with zero variance are plotted as zero, because Equation (4.5) is noncalculable when sj =

0. To interpret this distribution, we check each element; if the absolute value of the i-th element

in k-th design mode is large, then packing or discarding the i-th item strongly affects the k-th

design mode. Each design mode has a unique distribution of its component loadings, indicating

that several strategies can pack the items into two knapsacks while maximizing the profits.

Table 4.1 Summary of running PCA on a MOKP nondominated solution set
Design mode (i) 1 2 3 4 5 6 7 8 9 10
Standard deviation (

√
λi) 0.92 0.76 0.59 0.54 0.48 0.46 0.43 0.41 0.39 0.37

Proportion of variance 0.25 0.17 0.10 0.08 0.07 0.06 0.05 0.05 0.04 0.04
Cumulative proportion 0.25 0.41 0.51 0.60 0.66 0.72 0.78 0.83 0.87 0.91
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Fig. 4.5 Distribution of the component loadings (Modes 1 to 8)

Next, to evaluate the effectiveness of the data clustering, k-means clustering was performed

on the dataset, yielding three clusters (k = 3). Figure 4.7 plots these clusters in the objective

space. Here, the first design mode is the design mode corresponding to the eigenvector with the
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maximum eigenvalue. Following PCA, a different design mode (i.e., the first design mode) was

obtained for each cluster and for the entire dataset, as shown in the component loading plots of

Figure 4.6. Thus, it appears that data clustering distinguishes the design modes.
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Fig. 4.7 Three clusters obtained by k-means clustering

If PCA successfully extracts the design modes of each cluster, any design in any cluster can

be approximated by the mean design, and a linear combination of the design modes within the

cluster. To verify this assumption, we approximated the nondominated solution set by its mean

vector and effective design mode vectors (sufficiently many to achieve cumulative proportion of

the variance ≥ 0.80). The procedure for approximating the solution set is shown below.

Design Approximation Method:

1. Choose a target design X(i) = (xi1, . . . , xim) from the dataset X = (X(1), . . . , X(N)) .

2. Choose p eigenvectors so as to satisfy cumulative proportion of the variance P ≥ 0.80.
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3. Find optimum coefficients αj (j = 1 . . . p) of the approximated design calculated by Equa-

tion (4.3) so as to minimize the sum of squared error (SSE) between the target and approx-

imated design in decision space:
m∑
k=1

(x′ik − xik)
2 (4.7)

where xik is k-th decision variable of i-th design in the dataset, and x′ik is approximated

design of xik. Note that if there are the constraints in decision variables of the original

dataset, they should be add to Equation (4.7).

As an example, consider a target design in the solution with a maximum f1 value of (f1, f2) =

(637, 362), and assume that the design belongs in Cluster 1. To obtain the approximation error

in the objective space, we must evaluate the objective function value of the approximated design.

However, the solution obtained by the abovementioned approximation method can be real valued.

To evaluate the objective function values of MOKP, the approximated decision variables should

be converted to binary values. In this experiment, the approximated variable is round off to the

closest whole number. If the integer lies outside of [0, 1], it is assumed as 0 or 1. If it is smaller

than 0, it is assumed as 0. In the same way, if it is larger than 1, it is assumed as 1.

Results of the design approximation are summarized in Table 4.2, where g is the constraint

value in Equation (4.6). SSE is the approximated error in the decision space defined by Equa-

tion (4.7). Dh is the Hamming distance between the target and the approximated design in the

decision space. Df is the Euclidean distance between the target and the approximated design in

the objective space, and p is the number of design modes used in the approximation. We trialed

designs approximated in two different ways. First, PCA was applied to all solutions, and the de-

sign was approximated by the mean vector and the design modes of all solutions. Second, PCA

and design approximation were executed on the dataset of Cluster 1. The results of both trials are

listed for comparison in Table 4.2. Moreover, the approximated designs in the objective space

are plotted in Fig. 4.8.

Table 4.2 Summary of design approximation using design modes
f1 f2 g SSE Dh Df p

Target design 637 362 187 - - - -
Mean design (of all the solutions) 510 369 154 5.02E+00 5 127.19 -
Mean design (of Cluster 1) 684 508 212 3.14E+00 5 153.38 -
Approximated design (using design mode of all the solutions) 543 327 156 9.03E+00 1 100.31 8
Approximated design (using design mode of Cluster 1) 637 362 187 3.40E−01 0 0.00 7

Table 4.2 indicates that the target design was successfully approximated from the data in Clus-

ter 1 alone (SSE = 3.40E−01, Dh = 0 ). When the approximation was built from all solutions,



54 Chapter 4　Design Mode Analysis

300 

400 

500 

600 

700 

300 400 500 600 700 

f 2	

f1	

All solutions 
f1max 
Mean of all 
Approximated by all 
Cluster 1 
Mean of C1 
Approximated by C1 

Fig. 4.8 Plots of approximated designs in objective space

the SSE was an order of magnitude greater. These results are also evident in the plots of Figure

4.8.

To ensure that data clustering effectively distinguishes the design modes, we analyzed the per-

formance of the approximated design. In this analysis, we adjusted the size of each eigenvector

before adding it to the mean vector. The upper charts in Figure 4.9 show the distributions of

the elements of the mean and target designs, while the lower charts show the distributions of the

elements of the modal eigenvectors built into the approximation.

To approximate the target design, elements of the mean design whose values differ from the

target values should be altered when the eigenvectors are added. The directions of the altered el-

ements are indicated by arrows on the charts. For instance, observe the 37th variable emphasized

by the hatched pattern in Figure 4.9(a) and 4.9(b). In the design approximation without data clus-

tering (Figure 4.9(a)), the magnitude of the 37th variable is very much smaller (±0.1) than that

obtained after data clustering (Figure 4.9(b).). In this case, a larger coefficient αj (j = 1 . . . p)

is required to successfully approximate the 37th variable. However, an appropriate coefficient

for a single variable is difficult to determine, because the coefficient affects all other elements.

Conversely, in the design approximated from the clustered data, the lacking element of the mean

design compared to the target design is compensated by the corresponding element of the eigen-

vectors. These results show that data clustering is effective for extracting the design modes

precisely.

This case study also highlights the importance of the granularity of analysis in our proposed

design mode analysis. In the absence of clustering, we assume that some decision variables
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(a) Without clustering (PCA is performed on the entire solutions)
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Fig. 4.9 Distribution of eigenvectors in design approximation of f1-max solution

contribute negligibly to the design. Thus, a granularity exists in the design mode extraction.

Data clustering increases the granularity of the design modes. Watanabe et al. [51]. proposed an

interactive granularity control method, which is applicable to our proposed design mode analysis.
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4.4 Granularity in the design mode analysis

In the above case study, we introduced the concept of“ granularity” in the design mode

analysis. The granularity of the design mode extraction required by DM depends on the situation.

For example, if the researcher is interested in the characteristics of specific clusters, he may divide

the dataset into several clusters, and characterize the clusters by PCA. At the beginning of the

analysis, the characteristics of the decision space can be coarsely determined by imposing a low

granularity. Once the design mode has been refined, a high granularity is expected. Focusing on

granularity, this subsection proposes a more general framework for our design mode analysis.

Following Watanabe et al. [51], we adopted a hierarchical approach. The proposed framework

iterates binary clustering and PCA, and approximates a design for each cluster. Differently from

Watanabe et al., we controlled the granularity of the design mode analysis by the accuracy of the

approximated design. Our proposed framework is illustrated in Figure 4.10.
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Fig. 4.10 Proposed framework of design mode analysis focusing on granularity

The analysis began with a single cluster comprising the given design dataset. For each cluster,

design modes were extracted by PCA, and an approximate design was constructed. Thus, we

obtain the design modes and approximation error in each cluster. Although the approximation

was executed on the decision space, the objective function values of the approximated decision

variables were evaluated, and the approximation error in the objective space was also calculated.

The design approximation process is discussed in 4.3.2. If the design modes are successfully

derived, any design can be approximated by a linear combination of the design modes, as shown

in Equation (4.3). In this equation, the base design is the mean vector of the cluster, but the base

design can be any design in the cluster, provided that it retains the average or representative char-

acteristics in its own cluster. The easiest way to choose the representative design is to calculate
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the mean vector and set it as a base.

Once the design approximation is complete, DM checks whether the analysis has adequately

converged, or whether analysis should be continued. The convergence is evaluated by the errors

in the decision and objective spaces. DM may specify a threshold for each approximation error.

If high quality design modes or design strategies are obtained, DM can terminate the analysis.

Otherwise, the design modes are refined by dividing each cluster into new two clusters, and

progressing to the next granularity layer. Note that PCA and clustering are not performed on

clusters of a single data size. In this case, the cluster is inherited by the next layer.

The abovementioned procedures yield design modes at any level of granularity.

4.5 Case study—Conceptual Design of Hybrid Rocket Engine

In this section, our proposed design mode analysis method is applied and tested on the concep-

tual design of a hybrid rocket engine. This problem, one of the most useful real-world optimiza-

tion problems for testing the performance of optimization algorithms [52], was first proposed by

Oyama et al. [53]. The executable software for objective function evaluation is available from

the website [54].

4.5.1 Problem definition

Hybrid rocket engine is the rocket engine in which propellant is stored in two different kinds

of phases. It is becoming increasingly popular with its advantage of low environmental impact,

flexible thrust control by throttling, and reduced chemical explosion hazard. In the hybrid rocket

engine, the thrust and the engine design are strongly correlated because it obtains the thrust by

combustion in the boundary layer diffusion flame. Thus, it is important and difficult to design the

solid fuel geometry and the oxidizer supply system.

The investigated hybrid rocket comprises four parts: a payload, an oxidizer tank, a thrust

chamber, and a nozzle. The thrust of the hybrid rocket is developed by combustion in a turbulent

boundary layer in the thrust chamber. The thrust is also affected by the oxidizer and mass/fuel

ratio. The latter is determined by the fuel parameters, namely, the oxidizer, fuel length, and initial

port radius. Hybrid rocket design problems constitute two-objective optimization problems, in

which the fuel parameters must be optimized in order to maximize the altitude gained while

minimizing the gross weight. A schematic of the hybrid rocket is shown in Figure 4.11.

Here, the six-dimensional decision space comprises the initial mass flow of the oxidizer ṁoxi(0)

[kg/s], fuel length Lfuel [m], initial port radius rport(0) [m], combustion time tburn [s], initial
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Fig. 4.11 Schematic of the hybrid rocket

pressure in the combustion chamber Pcc(0) [MPa], and aperture ratio of nozzle ϵ. The two objec-

tive functions aim to simultaneously maximize the altitude Hmax [km] and minimize the gross

vehicle weight Mtot(0) [kg]. The following equation of motion is assumed in the flight analysis:

a(t) =
T (t)−D(t)

Mtot(t)
− g (4.8)

where a(t) is acceleration at time t, T (t) is the thrust [N], D(t) is the total drag [N], and g[m/s2]

is gravitational acceleration. The following equation relates the thrust T (t) to the aperture ratio

of the nozzle ϵ, and the pressure in the combustion chamber Pcc(0) [MPa]:

T (t) = ηT
[
λṁprop(t)ue + (Pe − Pa)Ae

]
(4.9)

where η is the total thrust loss coefficient, and λ is the momentum loss coefficient, embodying

the effect of friction (¡1) at the nozzle exit. ṁprop(t) is the mass flow of propellant, and ue and

Pe denote the velocity and pressure at the nozzle exit, respectively. Pa denotes the atmospheric

pressure at flight altitude, and Ae is the area of nozzle exit.

The drag D(t) is decomposed into the pressure drag Dp(t) and the friction drag Df (t). The

parameters ṁprop(t), Dp(t), and Df (t) are not described because of space limitations. For details

on these parameters, the reader is referred to [53, 54].
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The gross weight Mtot(t) is estimated by

Mtot(t) = Men(t) +Mpay(t) +Mex(t) (4.10)

Men(t) = Moxi(t) +Mfuel(t) +Mres(t) +Mch(t) (4.11)

Mex(t) =
3

2
Men(t) (4.12)

Moxi(t) =

∫ tburn

0
ṁoxi(t)dt (4.13)

Mfuel(t) =

∫ tburn

0
ṁfuel(t)dt (4.14)

Mres = ρVres (4.15)

Mch = ρVch (4.16)

where Mpay and Men are payload weight and engine weights, respectively. Moxi is the total

mass of the oxidizer, and Mfuel is the total fuel mass. The mass of the oxidizer tank, combustion

chamber, and other equipment are denoted Mres, Mch, and Mex, respectively. Vres and Vch are the

integrated volumes of a material for the oxidizer tank and the combustion chamber, respectively.

Given Equations (4.10 – 4.16), we define the multiobjective optimization problem of the hybrid

rocket engine design as

maximize f1 = Hmax

minimize f2 = Mtot(0) (4.17)

subject to :

1.0 ≤ ṁoxi(0) ≤ 30.0

1.0 ≤ Lfuel ≤ 10.0

10.0 ≤ rport(0) ≤ 200.0

15.0 ≤ tburn ≤ 35.0

3.0 ≤ Pcc(0) ≤ 4.0

5.0 ≤ ϵ ≤ 7.0

Here, ηT and Mpay are set to 1.0 and 50 [kg], respectively. ṁoxi(0), Lfuel, Pch, and Pres are

assumed as constants. That is, this design problem seeks the most lightweight rocket that does

not compromise the flight altitude.

4.5.2 Multiobjective optimization

In this subsection, the dataset is the nondominated solution set of the hybrid rocket engine

design problem. The solutions are derived by NSGA-II. The population size is set at 120. The



60 Chapter 4　Design Mode Analysis

analysis assumes a simulated binary crossover (SBX) with a crossover rate of 1.0, and a poly-

nomial mutation with a mutation rate of 1/(chromosome length). The decision variable vector

of a single solution is represented as X = [ṁoxi(0), Lfuel, rport(0), tburn, Pcc(0), ϵ] in NSGA-II.

Each decision variable is binary coded with a length of 20 bits, giving a chromosome length

of 120. A single run of NSGA-II is terminated after 188 generations. The objective function

was calculated 22680 times, yielding 120 solutions. Setting of the crossover and mutation rate

used here follows the practice in [19, 49]. Population size, the number of generations, and other

genetic parameters are empirically chosen here. The parameter study to obtain appropriate pa-

rameter setting is dismissed because it is out of focus of our study to improve the accuracy of

optimization. The obtained nondominated solutions are plotted in Figure 4.12.
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Fig. 4.12 Nondominated solution set of hybrid rocket engine design problem

Intuitively, more fuel will achieve higher altitude; however, fuel increases the weight of the

rocket. The weight-altitude tradeoff is evident in Figure 4.12, but is difficult to visualize in

the six-dimensional decision space. For this reason, our design mode analysis is effective for

analyzing the characteristics of high-dimensional decision spaces.

4.5.3 Design mode analysis

In this subsection, we extract the decision space characteristics of the nondominated solutions

of the hybrid rocket engine design, and derive an appropriate design strategy using our proposed

design mode analysis (described in subsection 4.4). Prior to running the PCA, we first pre-process

the decision variables of the hybrid rocket design to normalize its mean and variance. Thus, PCA

is performed based on the correlations matrix. The data set should be normalized when the range
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and scale of variables is different each other. Otherwise, as in the case of MOKP, the covariance

matrix is used for PCA to preserve variance without normalization of the data set.

The base of the approximated design is set to the mean vector of each cluster, where binary

clustering is performed by the k-means method with cluster size 2. The distance metric in k-

means clustering is the Euclidean distance. The error in the design approximated in the decision

space is the sum of squares of the relative error (SSRE):

m∑
k=1

(x′k − xik)
2

x2ik
(4.18)

where xik is the k-th decision variable of the i-th design in the dataset, and x′ik is the approxi-

mated design of xik. Moreover, the PCA is also performed on the correlation matrix. The SSRE

is minimized by the optimization algrithm (i.e., sequential least squares programming) [55].

On the other hand, if some decision variables are integer values, we regard them as real-

valued variables, through the design mode analysis. When the designs generated based on the

design modes are evaluated on the objective space, their variables, which are originally the integer

values, should be rounded off to the closest whole number.

The pseudo code of the extended framework of design mode analysis is shown in Algorithm

4.2.
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Algorithm 4.2 Design mode analysis focusing on granularity� �
1: Generate a design data set C(1)

1 = (X(1), . . . , X(N)) of size N .

2: Scale the data set such that all decision variables have zero mean and unit variance.

3: Initialize total approximation error E = ∞.

4: Set a threshold η for E.

5: Initialize layer counter i = 1.

6: while E > η

7: Initialize the number of clusters in current layer H = 2i − 1.

8: Initialize the counter of the clusters in new layer k = 1.is an arbitrary constant.

9: Initialize E = 0.

10: for j = 1 to H

11: Extract the design mode by applying the PCA on C
(i)
j .

12: Calculate the component loading for each design mode.

13: Choose a base design from C
(i)
j , or calculate a mean vector of C(i)

j .

14: Choose p design modes so as to satisfy cumulative proportion of the variance P ≥ 0.80.

15: Perform Design Approximation (mentioned above) for all the designs in C
(i)
j .

16: Add E
(i)
j (approximation error for C(i)

j ) to the total error: E = E + E
(i)
j .

17: Divide the cluster C(i)
j into two clusters C(i+1)

k and C
(i+1)
k+1 by using data clustering.

18: k = k + 2

19: end for

20: i = i+ 1.

21: end while� �
4.5.4 Results and discussion

Figure 4.13 plots the history of the error in the decision space at each layer of the design

approximation. Although the accuracy worsens in the second and third layer relative to the

first layer, it gradually improves as the layers are refined. This indicates that data clustering

contributes to design mode classification, and improves the accuracy of the approximated design.

This trend is emphasized in the objective space. Figure 4.14 plots the history of the error in the

objective space at each layer, evaluated as the average Euclidean distance between each real and

approximated design.

Figure 4.15 plots the histories of the average number of clusters (circle-plotted curve) and

the average cluster size (average number of designs within each cluster, indicated by the triangle-

plotted curve). While the analysis can be continued until the number of clusters equals the dataset

size, such refinement is nonsensical because PCA cannot be performed on a single datum. In-



4.5　 Case study—Conceptual Design of Hybrid Rocket Engine 63

stead, we stipulate that our proposed analysis be continued while the dataset size is larger than

the dimension of the decision variables. In this case, since the decision space is six-dimensional,

the analysis is meaningful up to the 5th layer. Figure 4.16 indicates the original and approxi-

mated designs of each cluster at each layer. In these plots,“ Cx-y”denotes the y-th cluster

at the x-th layer. Notably, the designs around C2-2 in the 2nd layer are almost exactly retained

in passing through the 3rd to the 4th layer, possibly because these designs have distinguishable

characteristics.

For a detailed characterization of each cluster, we consider the component loadings of each

cluster. For illustrative purposes, we investigate the mode-1 component loadings only, although

each cluster yielded multiple design modes. The mode-1 component loadings of each cluster

at each layer are plotted in Figure 4.17. The component loading, denoted ri, represents the

correlation between the design mode and decision variable. If ri is large, the design mode is

highly correlated with decision variable xi.
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Fig. 4.13 History of the accuracy of the approximated decision variables

r1 and r2 are excessively high in the first layer. Since x1 and x2 denote the initial mass flow

of the oxidizer ṁoxi(0) and the fuel length Lfuel, respectively, these two parameters are expected

to dominate in this problem. To obtain variable designs on nondominated solution sets, we can

alter both parameters along the first design mode. Here, the first design mode is the design

mode corresponding to the eigenvector with the maximum eigenvalue. It should be noted that

both parameters should be aligned in the same direction because their component loadings have

the same sign. This yields the design mode obtained in the first layer. When we create the

new design, at first we choose the base design, and then modify its decision variables along the

direction indicated by each design mode (the eigenvector obtained by PCA). The component

loadings represent the correlations between the decision variables and each design mode. The
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Fig. 4.14 History of the accuracy of the approximated objective function values
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Fig. 4.15 History of the number of clusters in each layer

sign of the component loading means the direction of each decision variable on the axis indicated

by the design mode. In the case of the first layer, r1, r2, r5 and r6 are positive values, but r3 and

r4 are negative values. This indicates that if the decision variables x1, x2, x5 and x6 are changed

to the positive direction, x3 and x4 should be moved into the negative direction, in the first design

mode.

In the second layer, each cluster appears to yield different design modes. However, the dis-

tribution from r3 to r6 is almost identical between the two clusters, and since the component

loadings of r1 and r2 in the clusters are merely opposite in sign, we can regard the design modes

in the clusters as unchanged from the first layer. Thus, when the dataset is divided by x1 and x2,

the characteristics of the resulting clusters are almost identical, suggesting that binary clustering

is uninformative at the second layer. This explains why the accuracy of design approximation

deteriorates in the second layer.

In the third layer, C3-2 and C3-4 are negatively correlated with x1 and x2, but differ in their
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Fig. 4.16 Approximated solutions of each cluster in each layer
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Fig. 4.17 Mode-1 component loadings of the each cluster at each layer

correlations with x3 and x4. For example, C3-4 yields a new design mode that reverses the sign

of x1, x2, x3, and x4 from positive to negative. While the first and second layers revealed only

that x1 and x2 are dominant, different design modes for each cluster are revealed in the third
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layer. Moreover, the component loadings of C3-3 and C2-2 appear very similar, although the

characteristics of C3-3 are expected to dominate over those of C2-2.

In layers 1–3, the component loadings of the higher modes (relative to r1 and r2) are com-

paratively low. However, different design modes can be extracted by increasing the granularity.

In cluster C4-4 (layer 4), the component loading of r3 becomes relatively high, while r1 and r2

become opposite in sign (x3 is an initial port radius rport(0)). Thus, C4-4 may provide a design

strategy that the decision parameter x1 should be changed to the negative direction, and at the

same time x2 and x3 should be modified in the positive direction. We conclude that unique design

modes are obtained at the 4th layer.

From the experiments in this section, we infer that

• The deeper the layer, the better the approximation accuracy (observed in Figure 4.13 and

4.14).

• The design mode is characterized by the component loading distributions of each mode.

• In the hybrid rocket design problem, the initial mass flow of oxidizer and the fuel length

dominate the Pareto

• Different design modes are revealed as the granularity is increased. In cluster C4-4, the

initial port radius of port exhibits a higher component loading than in other clusters.

A remarkable outcome of this study is that new designs with the same characteristics as a speci-

fied design mode are obtained. The design mode provides its own design strategy. The character-

istics of each design mode are easily understood by investigating their component loadings. The

proposed framework is especially useful when the design problem has a huge number of decision

variables, because it isolates the important parameters and specifies how their values should be

altered.

A priority of our future study is to improve the data clustering process. The current framework

adopts binary clustering, which does not always perform to the required standard. To realize more

effective clustering, we require a scheme that automatically determines an appropriate number

of clusters. Ineffective clustering generates many clusters with identical characteristics. The

distance metric of the data clustering should also be reviewed. For example, the Mahalanobis

distance, which is based on correlations among the dataset, may improve the data classification.
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4.6 Feature analysis of the design modes obtained

Here we confirm what types of design modes are derived on the hybrid rocket engine design

through our proposed design mode analysis. We focus on the C1-1 (equals the entire dataset).

Table 4.3 shows the summary of design mode obtained in C1-1. We think the effective design

modes are from mode 1 to mode 3 because the cumulative proportion of the variance attains 0.80

when the mode-3 vector is used.

Table 4.3 Summary of design mode analysis on C1-1
Design mode (i) 1 2 3 4 5 6
Standard deviation (

√
λi) 1.52 1.22 0.99 0.84 0.70 0.18

Proportion of variance 0.38 0.25 0.16 0.12 0.08 0.01
Cumulative proportion 0.38 0.63 0.80 0.91 0.99 1.00

Fig. 4.18 shows the distribution of the component score of each design mode and the objec-

tive function values. The horizontal axis shows each solution numbered in ascending order of

objective function values. The component score is the projection of the data along the principal

component direction (each design mode). We can easily understand that the mode 1 significantly

affects the objective function values. Moreover, it is interesting that the solution with the mini-

mum objective function values is very distinctive from other solutions in mode 2. It seems to be

characteristic design in this problem and may be difficult to represent it without using the mode-2

vector.
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Fig. 4.18 Distribution of component score (mode 1 - 3) and the objective function values in
C1-1

In order to know which decision variables are dominant in this design problem, the component

loading of each design mode is analyzed, as shown in Table 4.4 and Fig. 4.19. Here, ri is the i-th

element of component loading of each mode, and shows correlation with decision variable xi.

The results show that each design mode is correlated with different decision variables from each
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other. As mentioned above, in this problem, mode 1 is dominant. From the component loading

of mode 1, we can understand that the decision variables x1 and x2 is highly correlated. It can be

expected that we can easily make any designs on the nondominated solution set by changing the

x1 and x2 along the direction indicated by the mode-1 vector.

Table 4.4 Component loadings
Mode (i) 1 2 3 Correlated xi

r1 0.75 0.06 -0.28 initial mass flow of an oxidizer ṁoxi(0) [kg/sec]
r2 0.70 0.03 -0.24 fuel length Lfuel [m]
r3 -0.16 0.66 -0.19 initial radius of a port rport(0) [m]
r4 -0.15 -0.20 -0.82 combustion time tburn [sec]
r5 0.02 -0.59 0.09 initial pressure in combustion chamber Pcc(0) [MPa]
r6 0.18 0.05 0.09 aperture ratio of nozzle ϵ [-]
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Fig. 4.19 Distributions of component loadings and correlated decision variables

Next, to see the response on the objective space when the decision variables are changed along

each design mode, new solutions are generated and evaluated based on the design modes. The

mean vector u is used as a base design, and its decision variable is changed by adding the each

design mode vector in positive and negative direction. Each solution Xk
±σ along the design mode

k is generated by:

Xk
±σ = u±

 s1 · · · 0
...

. . .
...

0 · · · sm

vk (4.19)

where vk is the k-th design mode vector (eigenvector), and si is standard deviation of the deci-

sion variable xi. The solutions generated here are evaluated on the objective space (fi(Xk
±σ) is

calculated) and plotted in Fig. 4.20.

The response in the objective space along the mode-1 direction reveals that we can generate

the higher altitude designs by changing the decision variables on the positive direction of mode-1
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Fig. 4.20 Response in objective space when the decision variables are changed in each design
mode direction

vector. In this case, mode-1 vector suggests us to increase the initial mass flow of an oxidizer

and fuel length. On the other hand, if the decision variables are changed on mode-1 negative

direction, lightweight designs are obtained.

Parameter change in mode-2 direction does not affect the objective function values, although

it can be sensitive in other objective functions which was not considered here.

Mode-3 direction, which is correlated with combustion time, can affect the objective function

values. The oxidizer weight is found by integration of the mass flow of an oxidizer with integral

range of [0, tburn]. The fuel weight is also found by integration of the mass flow of fuel, with the

same integral range. If the combustion time is decreased, the oxidizer weight and the fuel weight

are decreased. Mode-3 vector is negatively correlated with the combustion time as shown in

Table 4.4. The combustion time can theoretically affect the total mass of the rocket. It has been

verified that the design mode analysis could successfully extract the dominant decision variables,

and different types of design mode are obtained by our proposed analysis method.

Here, three typical design modes are obtained in this design problem:

[I] Averaging the nondominated solution set

Well-balanced design in the altitude and the total gross vehicle weight is obtained.

[II] Increasing or decreasing the initial mass flow of an oxidizer and fuel length

Higher altitude designs or lightweight designs are obtained.

[III] Increasing or decreasing the combustion time
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The total gross vehicle weight can be controlled.

We can easily make decisions by choosing preferable design modes depending on the situation.

4.7 Summary of this chapter

A design mode analysis of Pareto solution sets that supports human decision making was

proposed and developed. The design mode of the Pareto solution set was extracted by PCA. It

was demonstrated that any design in the Pareto set could be represented by a linear combination

of the eigenvectors of the base design. From this finding, the author developed a hierarchical

framework for design mode analysis, in which the granularity of the extracted design modes

determines the accuracy of the approximated design. The effectiveness of the proposed method

was tested on the conceptual design problem of the hybrid rocket engine. It was found that the

extracted design modes depended on the granularity of the analysis. The proposed method will

support human decision making in engineering design problems.
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Chapter 5

Application to Time-series Analysis of
fNIRS Data

5.1 Introduction

The design mode analysis has its origin in engineering design problem, but its framework

is general and versatile. Especially, the case studies described above dealt with non-time series

data. In this section the proposed method is applied to time-series data analysis, taking functional

near-infrared spectroscopy (fNIRS) data as an example. How to adopt the proposed method to

time-series data (data representation, setup for data clustering and interpretation of design mode)

is discussed.

5.2 fNIRS measurement and analysis

fNIRS allows us to monitor and visualize the blood flow in human brain, by measuring the

hemodynamic responses of oxy- and deoxy-hemoglobin (Hb). Multiple probes to detect oxy-

and deoxy-Hb change [mM mm] are placed on the head as shown in Figure 5.1. fNIRS measure-

ment is becoming popular with its advantage of non-invasive, easy to use and low cost. Many

researches focus on the development of analytical methods to statistically reveal the functional

activities of the brain and human brain networks by finding brain activation patterns in the time-

series oxy- and deoxy-Hb change [56].

In the fNIRS measurement, we observe the Hb change while human subject is performing

some tasks as an stimuli for the brain activities. It should be noted that we have to insert some

rest period prior to the task period in order to detect the baseline of the signal and derive the

brain response to the task, because fNIRS can measure only the relative change of Hb but the
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Fig. 5.1 fNIRS measurement

absolute value of Hb concentrations. Thus, in the measuring period, the rest and task periods are

alternated several times. This experimental design is called a block design [57], and illustrated in

Figure 5.2. This research also uses it for the experiment.
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Fig. 5.2 A block design used for the experiment in this research
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5.3 Analysis of fNIRS data, as a ROI determination problem

Since the multichannel fNIRS system enables us the plural real-time data acquisitions within a

single measurement, another difficulty arises when we deal with these multichannel fNIRS sig-

nals; which channels should we focus on? At the beginning of the analysis, we have to determine

the region-of-interest (ROI) channels that are considered to be worth to analyze. Generally, there

are three reasons to determine ROI channels; (1) workload reduction for statistical tests, (2) re-

ducing Type I error by limiting the number of the statistical tests to a few ROIs and (3) limiting

the region to be analyzed, where is functionally defined on the basis of some other information

[58]. ROIs should be defined with a structural or functional perspectives. The simplest way to

define the structural ROIs is to relate manually the fNIRS channel map with anatomically defined

brain regions. It is considered to be a theoretical approach. Functional ROIs can be identified by

finding meaningful activation patterns within the fNIRS signals obtained from the same individ-

ual, that is, a data-driven approach. As mentioned above, fNIRS has poor spatial resolution, it is

difficult to correctly make the correlation between the channel maps and the brain regions. That

is why, a data-driven approach is effective to its advantage. ROIs should be discussed with both

approaches that complement each other.

One of the most important things to take the data-driven approach is to roughly grasp response

patterns of blood flow change (fNIRS signals). Once we found them, each pattern could be

related with any brain function or region. However, it is very difficult to extract the representative

patterns from the multiple (many subjects’) and high-dimensional (multichannel) dataset such as

fNIRS signals, through one by one consideration of each data.

With this background, we try to apply our proposed design mode analysis to fNIRS dataset, in

order to analyze the multiple-channel blood flow changes and determine the ROIs.

5.4 How can the design mode interpreted in fNIRS data analysis?

The essence of the proposed design mode analysis is that it decomposes the dataset into the

mean vector and the linear combination of several orthogonal basis vectors (eigenvector, referred

to as design mode in this research). The mean vector indicates the representative base structure

of dataset (or each cluster of it), and each design mode characterizes the perturbation to the base

structure in order to represent any data in the given dataset.

Here, the following interpretations are assumed in application of design mode analysis to the

fNIRS data analysis:
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• The mean vector (signal) of each cluster obtained by the design mode analysis can be

associated with the functional activity of the brain. (Each cluster may be related to any

brain function.)

• The eigenvector (design mode) of each cluster can be the fluctuation affected by the mean

vector of other cluster.

These assumptions are based on the idea of brain functional localization and functional connec-

tivity among them. Figure 5.3 illustrates them.
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Fig. 5.3 Interpretation of design mode analysis of fNIRS dataset

Experiments and discussions in this chapter examine the possibility of the design mode analy-

sis as an analytical tool for exploring the brain function network.

5.5 Design mode analysis on fNIRS data

The following subsections describe the application example of design mode analysis to the

fNIRS data.

5.5.1 Data representation of fNIRS signal

Design mode analysis requires the dataset to be a set of design variables. Let y(t) is the oxy-

or deoxy-Hb change [mM mm] at time t, and then a fNIRS signal Y with sample time ∆t is

represented as:

Y = (y(t0), y(t1), . . . , y(tn+1)) (ti = t0 + i∆t) (5.1)

Here it should be noted that the baseline of y(t) depends on the situation (i.e., person, experi-

mental environment, and the type of tasks), because fNIRS detect anything more than the relative
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change of oxy- or deoxy Hb. For this reason, the difference y(t + ∆t) − y(t) is calculated and

defined as a design variable in design mode analysis. A set of design variables X is represented

as follows:

X = (x1, x2, . . . , xn) = (y(t1)− y(t0), y(t2)− y(t1), . . . , y(tn+1)− y(tn)) (5.2)

By this representation, the baseline dependency could be canceled.

5.5.2 Distance metric for data clustering

As the design mode analysis includes the data clustering process in its framework, the distance

metric to evaluate the similarity between two fNIRS signals is required. In this research, dynamic

time warping (DTW) [59] is employed as a distance measure, because it can handle time shifting

and scaling even if the signal may vary in time or speed. DTW finds an optimal match of two

signals by dynamic programming, allowing time-domain stretching and shrinking. The algorithm

of DTW is shown below:
Algorithm 5.1 Dynamic time warping [60]� �

1: Let A = (a1, a2, . . . , am) and B = (b1, b2, . . . , bm) are the time-series signals.

2: DTW(ϕ, ϕ) = 0

3: DTW(A,ϕ) = DTW(ϕ,B) = ∞

4: DTW(A,B) = dist(a1, b1)

+min


DTW(A, (b2, b3, . . . , bm))

DTW((a2, a3, . . . , an), B)

DTW((a2, a3, . . . , an), (b2, b3, . . . , bm))� �
where dist(ai, bj) is the distance between two elements ai and bj , and any types of distance

measure can be used. This research employed L1 distance |ai − bj |.

5.5.3 Experiments to obtain the fNIRS dataset

To obtain the fNIRS dataset, the experiment is performed using fNIRS measurement system

ETG-7100 (Hitachi Medical Corporation). Five probes (24 channels × 3 probes and 22 channels

× 2 probes, totally 116 channels) are placed according to international 10/20 system as shown in

Figure 5.4.

The cerebral blood flow change are measured during stereopsis. The experimental design is

shown below. Figure 5.5 also illustrates the procedure of the experiment.

1. Start of the experiment: Rest for 30 sec.
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Fig. 5.4 Channel assignment

2. Task period: Repeat the following two steps for 60 sec.

(a) Rest for 2 sec.

(b) Gaze at stereogram sheet. If it is recognized as stereoscopic image, back to (a). The

number of the sheet recognized is counted. 10 sec has passed with no recognition,

back to (a).

3. End of the experiment: Rest for 50 sec.
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Fig. 5.5 Experimental design for stereoscopic task

Room temperature and humidity were kept at 21.1 – 23.9 [degC] and 28 – 46 [%] respectively,

through the experiment.
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5.5.4 Setup for numerical experiments

For the design mode analysis, the fNIRS signal during the task period is extracted and rep-

resented as decision variables. As the task period is 60 sec and the sampling period is 0.1 sec,

the number of decision variables is 600. For a single person data, 116-channels data can be to-

tally obtained, but the data with experimental error (warned by measurement system ETG-7100)

would be eliminated. DTW distance is utilized for the distance measure in k-means data cluster-

ing and the approximation error of design approximation. In Section 4.3.2, SSE is used as the

approximation error, but the DTW distance is substituted for it in the case of fNIRS data analysis.

5.5.5 Results and discussions

Figure 5.6 shows the fNIRS data clusters after the design mode analysis. A dataset consists of

96-channel signals of a single subject (20 channels are removed due to the experimental error).
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Fig. 5.6 Clusters obtained by design mode analysis (Note that each signal is plotted by cumula-
tively summing each design variables xi.)

It can be seen that similar waveforms are gathered within each cluster. Here, 8 clusters in layer

4 (C4-1 to C4-8) are examined based on the framework of design mode analysis. First of all, the

channel distribution of each cluster is represented in Figure 5.7. In Chapter 4 author revealed that

the characteristics of each cluster could be analyzed by examining the mean vector and design

mode (eigenvector) obtained by design mode analysis. In the same way, each cluster of fNIRS
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Channel map of each cluster at 4th layer �
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Fig. 5.7 Channel distribution of 8 clusters in layer 4

signal will be analyzed with the mean vector and the design modes. For the mean vector (mean

signal), it is expected that the average response to the stimuli may be associated with some kind

of brain activities.

In this experiment, the cerebral blood flow change were measured during stereopsis, so that

the cerebral region related with the visual tasks should organize the cluster. Once the visual

information is given, it is first processed in visual cortex located in occipital area. Then, it takes

either of two different passage, dorsal visual pathway and ventral visual pathway. Dorsal pathway

is considered to be related with depth perception and motion, while ventral pathway is associated

with recognizing color information [61]. Figure 5.8 shows the mean signals and channel maps of

three cluster C4-1, C4-4, and C4-6. In C4-1 and C4-4, the mean signals are rising. Channel maps

seem to be express the brain activity pathway from the visual cortex to the dorsal visual pathway.

On the other hand, C4-4 seem to be the cluster of signals along the ventral visual pathway.

Moreover, the relationship between the channel map of C4-3 and C4-8 and the functional

areas of brain are supposed in Figure 5.9. The right inferior frontal gyrus which adopts attentional

control [62], and frontal association area, organ of decision of action and prediction, are indicated

in Figure 5.9. C4-3 is possibly related to the right inferior frontal gyrus because of its channel

distribution. Its mean signal is also rising. With the same reason, C4-8 have the potential to
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Fig. 5.8 Channel map and mean vector (C4-1, C4-4, C4-6)

associated with frontal association area.
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Fig. 5.9 Channel map and mean vector (C4-3 and C4-8)

Secondly, in order to investigate the assumption that the design mode each cluster can be

the fluctuation affected by the mean vector of other cluster, for each design mode of a cluster,

the nearest mean vector will be found among all the clusters. The DTW distance was used to

measure closeness. If the design mode that is close to the mean vector of other cluster exists, it

may have possibility to be the fluctuation caused by other brain activity. C4-1 dataset is chosen

as an example of this analysis. Figure 5.10 is the result of the analysis. For the first and second
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Fig. 5.10 Characterization example of design mode (C4-1)

mode, the nearest mean vector have been found within C4-1, their own cluster. It may be one of

the components of C4-1 dataset. However, for the third and fourth design mode, the nearest mean

vector exist in other cluster, C4-5 and C4-3, respectively. They may be the fluctuations from the

response of C4-5 and C4-3. Another assumption that there are brain network between the C4-5

and C4-3 and the C4-1 cluster may arise.

As such observations on the mean vector and the channel distribution of each cluster are a

matter of speculation, statistical tests should be applied for the sake of theoretical righteousness

(although it is beyond the focus of this research). However they make us more conscious for

generating hypotheses from the dataset.

5.5.6 Summary of this chapter

This chapter demonstrated the another face of proposed design mode analysis, especially on

time series data. fNIRS dataset is chosen for this application, and how to incorporate the design

mode analysis into the time series data, data representation, interpretation of the mean vector and

design mode are discussed. The following conclusion is obtained through the discussion in this

chapter:

• Time series data can be analyzed with the framework of design mode analysis proposed in

this disseration.

• The mean vector and design mode may be characterized from the point of the brain func-
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tions and network.

• We can easily choose ROI channels where the correlations were found by design mode

analysis.
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Chapter 6

Conclusions

6.1 Contributions

Real-world engineering design problem usually faces multiple conflicting criteria and high-

dimensional decision variables. At an early stage of development, especially at the conceptual

design, it is necessary to grasp the possible design candidates and extract promising one, for

efficiency of development process. For such background, the following important tools were

proposed and analyzed:

[I] Development of novel evolutionary multiobjective optimization (EMO) framework to

obtain the abundant variety of candidate design.

Concept: Novel search scheme to obtain well-converged and well-spread Pareto solutions

were proposed and developed.

Effectiveness: Its effectiveness was verified on the mathematical complex optimization

problems (WFG test suites).

Versatility: Its general versatility was verified through implementation of proposed frame-

work using two popular MOEAs, NSGA-II and MOEA/D. Even if a new algorithm is

developed, we can easily improve its performance by incorporating proposed EMO

framework.

[II] Development of design mode analysis to extract the representative design patterns

from the candidates and analyze their characteristics.

Concept: New concept ”design mode” was incorporated. The essence is that any designs

in dataset can be represented by base (mean) design and a linear combination of the

orthogonal basis vector, design mode. We can analyze the target design problem by
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decomposing them into the mean vector and the orthogonal basis vector (an eigen-

vector was used in this work).

Effectiveness: Its effectiveness was verified thorough two engineering design problem,

multiobjective knapsack problem and the conceptual design of hybrid rocket engine.

Both cases revealed that we could extract the representative design patterns and got

design strategies from the design mode obtained.

Versatility: As an another application, time series data of fNIRS was analyzed using pro-

posed design mode analysis. How to incorporate the time series data into the pro-

posed method, was introduced. The proposed design mode analysis can handle both

non-time series and time series data without modifying the original framework. En-

gineers will easily use them in their own problems.

6.2 Future work

[I] Development of novel evolutionary multiobjective optimization (EMO) framework to

obtain the abundant variety of candidate design.

Implementation using other base algorithms: In this dissertation, NSGA-II or MOEA/D

were used for MOEA population, and DGA was used for SOEA population. Other

popular algorithms should be implemented and verified for the sake of higher versa-

tility.

Application to many-objective problems: Only two or three objective cases were investi-

gated in this work. In case of the real-world problems, many objective functions may

exist. The proposed framework should be verified on many-objective cases.

[II] Development of design mode analysis to extract the representative design patterns

from the candidates and analyze their characteristics.

Improvement of data clustering process: The current form of the design mode analysis di-

vide each cluster into two new clusters. However two clusters is not always true. The

automatic determination of the cluster size or other type of the clustering method

which does not requires its determination should be investigated.

Evaluation of distance measure: Distance measure is very important in the proposed method

because it is used in both data clustering and design approximation. Changing dis-
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tance measure may lead to different analytical results. Its effect should be further

discussed.
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