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Abstract

Coding and decoding for multiuser communication systems are investigated. In this disserta-

tion, we consider two channel models in multiuser communication systems: multiple-access

adder channel (MAAC) and two-way relay channel (TWRC).

For MAAC, we propose a coding scheme of (k + 1)-ary error-correcting signature

codes. It is used to detect the status of users in MAAC, even in the presence of channel

noise. The main coding scheme is presented that given a signature matrix A and a difference

matrix D = D+−D− a priori, we obtain a larger signature matrix by replacing each element

in Hadamard matrix with A, or D+, or D− depending on the values of elements and their

locations in Hadamard matrix. The set of rows of the proposed matrix gives an error-

correcting signature code. Introducing the difference matrix makes it possible to construct

the error-correcting signature code whose sum rate is increased with an increase in the order

of Hadamard matrix. We give binary and non-binary signature codes. They are the best

error-correcting signature codes for MAAC, in the sense that they have highest sum rates

known.
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For TWRC, we propose a low-complexity two-user turbo decoding scheme when turbo

codes are applied in two users. Simplified sum trellis is provided for two-user iterative

decoding at the relay to decrease the decoding complexity. It is obtained by removing one

of the states in a pair of mutual symmetrical states from a sum trellis. For the Gaussian

TWRC, decoding based on simplified sum trellis reduces the decoding complexity to half

of that with the sum trellis, and does not degrade decoding performance since two output

sequences from the pair of mutual symmetrical states are the same. For the fading TWRC,

the transition probability density function from a state to next state in simplified sum trellis

is approximately computed. The approximate decoding algorithm preserves low decoding

complexity over the Gaussian TWRC, without much performance degradation.
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Chapter 1

Introduction

This chapter introduces two channel models in multiuser communications, multiple-access

adder channel and two-way relay channel. Our contributions to multiple-access adder channel

and two-way relay channel are briefly introduced.

1.1 Multiuser Communications

While traditional problems in communications concentrate on how one can efficiently trans-

mit information between two users (known as point to point communication), in many prac-

tical situations information is communicated among several users over the common commu-

nication medium. Such multiuser communication systems exist in satellite networks, mobile

communication networks, and wireless local area networks.

1



2 1.1. Multiuser Communications

The field of multiuser communications started with Claude Shannon’s paper [1] on

two-way channels. Since then, research on multiuser communications has been an extremely

active research area, and has seen a large number of fundamental contributions, covering,

not only the two-way channel studied in [1], but also “many-to-one” multiple access channel,

“one-to-many” broadcast channel, interference channel, relay channel, and any combinations

of these, such as two-way relay channel.

In this dissertation, we focus on two channel models in multiuser communication

systems: multiple-access adder channel and two-way relay channel.

1.1.1 Multiple-Access Adder Channel (MAAC)

�

�����������	


������������	�

Figure 1.1: Multiple-access adder channel.

Suppose T mobile phone users are simultaneously transmitting signals to a common

base station as in Fig. 1.1. This is known as the multiple-access adder channel (MAAC).

2



Chapter 1. Introduction 3

At the base station, the received signal is the superimposed signals from different users. To

realize reliable communication, it is necessary for base station to recover T users’ messages

from the mixed signals, even in the presence of noise. Multiuser information theory [2] shows

that multiuser coding can realize reliable communication for MAAC and has a higher total

rate of transmission than traditional channel multiplexing techniques such as time-division.

The researches on multiuser coding for MAAC widely investigated in past three

decades, can be divided into two cases. The first case is the multiuser codes under the

assumption that all the users are active [6–11]. Another case is the multiuser codes sup-

porting a varying number of users [12–14]. To support a varying number of users, all the

users share a common all-zero codeword. When a user is idle or unactive, it is equivalent to

transmitting the all-zero codeword.

Signature code is a special kind of multiuser codes supporting a varying number of

users. Especially, for each user in the MAAC, two codewords are assigned, a common all-

zero codeword and a user-specific non-zero codeword. When the user is active, its specific

non-zero codeword is transmitted. The set of non-zero codewords is called as a signature

code, if the sums of codewords from any sub-set of the set are distinct. The signature code

can be used to identify the active users in MAAC. It is also can be used for fault diagnosis for

multiprocessor systems, joint monitoring and routing in wireless sensor networks, location

detection in hostile environments.

Signature code is related to the well-known problem of sum-distinct set and coin-

weighting [15–17, 20] in additive number theory. These codes have no capability to correct

3



4 1.1. Multiuser Communications

errors, and only can be used for noiseless MAAC. Binary and non-binary error-correcting

signature codes [25] [26] are constructed from Hadamard matrix. However, the sum rates

of previous error-correcting codes are not increased with increase of code length. In this

dissertation, we focus on the construction of error-correcting signature codes for MAAC

with higher sum rate.

1.1.2 Two-Way Relay Channel (TWRC)

In this section, we consider another channel model in multiuser communication system: two-

way relay channel (TWRC). Fig. 1.2 gives an example of TWRC, where two earth stations

(users) exchange information via satellite (relay). There is no direct communication link

between two earth stations.

�����

�����������	
��

���������

�����������	
�


Figure 1.2: Two-way relay channel.

4



Chapter 1. Introduction 5

In TWRC, we investigate a two-time-slot transmission protocol to exchange packet

once. In the first time slot, two users simultaneously transmit signals to relay, in the second

time slot, the relay decodes the superimposed signal, and broadcasts an XORed message of

two users’ message. If the XORed message is successfully received for the two users, the

users can decode the opposite user’s message by an XOR operation of the local message and

received XORed message. In this dissertation, we also focus on the decoding for TWRC.

1.2 Our Contributions

1.2.1 Contributions to Coding for MAAC

We now briefly introduce our contributions to coding for MAAC. We aim at the construction

of error-correcting signature codes to detect the status of users for MAAC, even in the

presence of channel noise.

The main coding scheme we present in Chapter 4 is as follows:

Given a signature matrix A and a difference matrix D = D+ − D− a priori, we

obtain a larger signature matrix by replacing each element in Hadamard matrix

with A, or D+, or D− depending on the values of elements and their locations in

Hadamard matrix. The set of rows of proposed matrix gives an error-correcting

signature code.

5



6 1.2. Our Contributions

In this coding scheme, we extend the recursive coding scheme in Chapter 3 into a

more general case as follows:

(1) the proposed signature code is qδ/2-decodable signature code;

(2) signature matrix A is arbitrary, that is, code length, capability of error correction,

number of users, binary or non-binary are arbitrary.

(3) when the number of rows of difference matrix D is larger than that of signature

matrix A, the sum rate of the proposed signature code is increased with an increase in the

order of Hadamard matrix.

We give binary and non-binary signature codes from the coding scheme. They are

the best codes for MAAC,in the sense that they have highest sum rates known.

1.2.2 Contributions to Decoding for TWRC

In TWRC, we apply turbo codes for two users. For two-user turbo decoding at the relay,

component decoder decodes the superimposed signal based on a sum trellis which has high

decoding complexity. In this dissertation, we aim to decrease the complexity of two-user

turbo decoding scheme. Simplified sum trellis are constructed to decrease the decoding

complexity of two-user turbo decoding.

The main contributions to decoding for TWRC we present in Chapter 5 and 6 are as

follows:

6



Chapter 1. Introduction 7

For Gaussian TWRC, simplified sum trellis is obtained by removing one of the states

in a pair of mutual symmetrical states from a sum trellis. This removal reduces the decoding

complexity to half of that with the sum trellis, and does not degrade decoding performance

since two output sequences from the pair of mutual symmetrical states are the same.

For fading TWRC, the transition probability density function from a state to next

state in simplified sum trellis is approximately computed. The approximate decoding algo-

rithm preserves low decoding complexity over Gaussian TWRC, without much performance

degradation.

The remaining part of this dissertation is organized as follows. In Chapter 2, we

give preliminary of signature codes for MAAC. In Chapter 3, a recursive construction of

error-correcting signature codes for MAAC is described. In Chapter 4, we give a family

of error-correcting signature codes for MAAC with higher sum rate than that of codes in

Chapter3. In Chapter 5, a low complexity two-user turbo decoding scheme for Gaussian

TWRC is described. In Chapter 6, the low complexity two-user turbo decoding scheme is

extended to fading TWRC. Finally, in Chapter 7, we close this dissertation by remarking

some comments.

7



Chapter 2

Preliminary: Signature Codes for

MAAC

This chapter describes the noiseless and noise MAAC, discusses how a signature code used

for noiseless and noise MAAC to identify the status of users. Some notations and definitions

are given.

2.1 Noiseless and Noise MAAC

A noiseless MAAC depicted in Fig. 2.1 is described as follows: with T users, the input

alphabet to the noiseless MAAC is an integer set K △
= {0, 1, 2, . . . , k}, where k is a positive

integer. Let Zi ∈ K, i = 1, 2, . . . , T , be the channel inputs. Assume that Zi maintain bit and

8



Chapter 2. Preliminary: Signature Codes for MAAC 9

1 0 1{ , , , }Z k∈ …

2 0 1{ , , , }Z k∈ …

0 1{ , , , }TZ k∈ …

1 2 TZZ ZY + +…+=

�

Figure 2.1: Noiseless multiple-access adder channel.

word synchronization. The channel output Y is given by

Y = Z1 + Z2 + · · · + ZT ,

where “+” denotes the real-number addition. Clearly the output Y belongs to {0, 1, . . . , kT}.

1Z

2Z

TZ

1 2 TZZ ZY + +…+=

�

�

�

��

�

�

�

��

Y ′

���������	

����

	

���
�	����


��
����

�����������
�	����

�

Zi ∈ {0, 1, 2, · · · , k}, (i = 1, 2, · · · , T )

Figure 2.2: Noisy multiple-access adder channel.

A MAAC disturbed by noise, often called a noisy MAAC [6] [11], is regarded as

the noiseless MAAC cascaded with a discrete memoryless channel (Fig. 2.2). The discrete

9



10 2.2. Signature Codes for MAAC

memoryless channel is (kT+1)-ary input and (kT+1)-ary output, and is completely described

by transition probabilities for all the possible input-output pairs (i, j), 0 ≤ i, j ≤ kT .

Multiuser coding is used for MAAC so that T users can communicate with a common

receiver, even in the presence of noise. For noiseless MAAC, multiuser uniquely decodable

codes are investigated in [6–10]. For noisy MAAC, multiuser error-correcting codes are

studied in [6]. Non-binary multiuser error-correcting codes are further investigated in [11].

However, these codes [6–11] are under the assumption that all the users must be active. If the

receiver do not know which users are idle in advance, then there exists a decoding ambiguity.

Also, the sum rates of multiuser error-correcting codes in [6] [11] are not increased with an

increase in the code length.

To support a varying number of users over the MAAC, all T users share a zero

codeword 0n and no-transmission (idle) of the ith user corresponds to sending 0n, where 0n

is an all-zero row vector with length n. Multiuser codes in [13,14] with all the users sharing a

common zero codeword 0n are studied to identify the active users for noisy MAAC. However,

these codes guarantees unique identification of active users with constraint on the number

of active users not exceeding m, where m ≪ T .

2.2 Signature Codes for MAAC

In this section, we study another multiuser code to identify arbitrary number of active users

for MAAC. Specifically, for the ith user, two codewords are assigned, a common all-zero

10



Chapter 2. Preliminary: Signature Codes for MAAC 11

1 0 1{ , }b ∈

0 1{ , }Tb ∈

�

�

�

11sb

y22 sb

TTb s

2 0 1{ , }b ∈

e

1s

2s

Ts

Figure 2.3: T -user transmission system with signature code over MAAC.

codeword 0n and a special non-zero codeword si. The set of non-zero codewords S =

{s1, s2, . . . , sT}, si ∈ Kn is called a signature code, where all the 2T possible sums
T∑

i=1

bisi

are distinct, where bi ∈ {0, 1}.

Let bi ∈ {0, 1} presents the status of ith user. The received vector is

y =
T∑

i=1

bisi + e = bX + e, (2.1)

where e is error vector, b = [b1, . . . , bT ], and X is T × n signature matrix as

X =



s1

s2

...

sT


. (2.2)

Definition 1 Let the weight of n-vector y = [y1, y2, . . . , yn] is

w(y) =
n∑

i=1

|yi|, (2.3)

11



12 2.2. Signature Codes for MAAC

where yi is an integer. The distance between two vectors y and y′ is defined by

d(y,y′) = w(y − y′). (2.4)

2

Definition 2 For any positive integer δ, for any non-zero T -vector u ∈ {−1, 0, 1}T , if

w(uX) ≥ δ, (2.5)

set S is a δ-decodable signature code, and matrix X is a δ-decodable signature matrix over

K. 2

We denote δ-decodable (k + 1)-ary signature code (matrix) with code length (the

number of columns) n and cardinality (the number of rows) T
△
= |S| by

(n, δ, T )k − signature code (matrix).

The sum rate of the signature code is

R = T/n.

By Definition 2, the δ-decodable signature code implies that all possible 2T sums of

transmitted vectors satisfy

d

(
T∑

i=1

bisi,

T∑
i=1

b′isi

)
≥ δ

for any two distinct T -vectors b = [b1, b2, . . . , bT ] and b′ = [b′1, b
′
2, . . . , b

′
T ], where bi, b

′
i ∈ {0, 1}.

12



Chapter 2. Preliminary: Signature Codes for MAAC 13

According to multiuser coding [6] [11], a δ-decodable signature code (matrix) for a

noisy MAAC can correct errors if the weight of errors

w(e) ≤ ⌊(δ − 1)/2⌋

where notation ⌊p⌋ stands for the greatest integer less than or equal to p. The (n, δ = 1, T )k-

code in [15–21] is said to be uniquely decodable, and is used for the noiseless MAAC.

To have a clear understanding of signature code for MAAC, two examples of binary

(k = 1) code are given below. The first code is for four users binary noiseless MAAC. The

second code is for three users binary noisy MAAC, and is capable of correcting single error

caused by channel noise.

Example 2.1 ( [15]) The set

S = {101, 011, 110, 001}

is a (3, 1, 4)1-signature code. The uniquely decodability (δ = 1) of S can be observed from

the fact that the 16 sums of codewords are distinct (see Table. 2.1). Thus, the decoder can

uniquely determine the status bi from the received vector y.

This (3, 1, 4)1-signature code can be used for a four-user binary noiseless MAAC. The

rate of the signature code is

R =
4

3
.

2

13



14 2.2. Signature Codes for MAAC

Table 2.1: The decoding table for the (3, 1, 4)1-signature code.

b b1s1 b2s2 b3s3 b4s4

4∑
i=1

bisi

0000 000 000 000 000 000

0001 000 000 000 001 001

0010 000 000 110 000 110

0011 000 000 110 001 111

0100 000 011 000 000 011

0101 000 011 000 001 012

0110 000 011 110 000 121

0111 000 011 110 001 122

1000 101 000 000 000 101

1001 101 000 000 001 102

1010 101 000 110 000 211

1011 101 000 110 001 212

1100 101 011 000 000 112

1101 101 011 000 001 113

1110 101 011 110 000 222

1111 101 011 110 001 223

14



Chapter 2. Preliminary: Signature Codes for MAAC 15

Table 2.2: The decoding table for the (6, 4, 3)1-signature code.

b b1s
⋆
1 b2s

⋆
2 b1s

⋆
3

3∑
i=1

bis
⋆
i

000 000000 000000 000000 000000

001 000000 000000 110110 110110

010 000000 011011 000000 011011

011 000000 011011 110110 121121

100 101101 000000 000000 101101

101 101101 000000 110110 211211

110 101101 011011 000000 112112

111 101101 011011 110110 222222

15



16 2.2. Signature Codes for MAAC

Example 2.2 The set

S⋆ = {101101, 011011, 110110}

is a (6, 4, 3)1-signature code. The rate of the signature code is

R =
3

6
=

1

2
.

The decoding table of S⋆ is given in Table 2.2. It is verified that distance between every pair

of sums of codewords in Table 2.2 is greater than or equal to 4, i.e., δ = 4. Thus, the code is

4-decodable, and is used for three users binary noisy MAAC. This (6, 4, 3)1-signature code

is capable of correcting all error patterns of single error over a block of three digits. 2

The signature codes are originally investigated as the problems of sum-distinct set

and coin-weighting in additive number theory then applied to MAAC [15–21]. The binary

signature code is equivalent to Cantor’s sum-distinct set [15] and Lindström’s coin weighing

design [16]. Martirosyan [17] gives recursive construction of binary signature code with

arbitrary code length. Mow [18] gives a generalized approach to construct binary signature

code. The non-binary signature code was originally considered by Jevtić [19], and extended

to arbitrary code length in [21]. The above signature codes are all recursively constructed.

However, for each recursion, signature code preserves UD. Thus, these signature codes have

no capability to correct errors, and only can be used for noiseless MAAC. Thus, a signature

code designed to correct errors caused by channel noise and to identify status of users is

required for noisy MAAC.

Binary error-correcting signature codes [25] [26] are constructed from Hadamard ma-

16



Chapter 2. Preliminary: Signature Codes for MAAC 17

trix, whose orthogonality provides the decodability of binary error-correcting signature code.

However, the sum rates of previous error-correcting signature codes are not high. Also, for

non-binary code, it is difficult to find such an orthogonal matrix.

In Chapter 3, we will give a recursive construction of (k + 1)-ary error-correcting

signature codes. In Chapter 4, we will give a generalized construction of (k + 1)-ary error-

correcting signature codes for MAAC. Binary and non-binary error-correcting signature codes

have higher sum rate than that of binary codes in [25] [26] and non-binary code in Chapter 3.

2.3 Notations and Definitions

In this section, Kronecker product and Hadamard matrix are introduced which will be useful

for constructing error-correcting signature code in the following chapters.

Kronecker product [43, p. 114] Let A = [aij] be an m×m matrix and B = [bij] is an n×n

matrix over any field, the Kronecker product of A and B is the mn × mn matrix obtained

from A by replacing every entry aij with matrix aijB. This product is written as A ⊗ B.

For example if

A =

 1 0

1 −1

 and B =

 1 0

0 1


17



18 2.3. Notations and Definitions

we have

A ⊗ B =



1 0 0 0

0 1 0 0

1 0 −1 0

0 1 0 −1


.

It is proved that

(A ⊗ B)(W ⊗ X) = (AW ) ⊗ (BX). (2.6)

Hadamard matrix [24, pp. 44-54,p. 422] A Hadamard matrix Hq of order q is a q×q matrix

with elements either −1 or 1, and is defined by

HqH
T
q = qI (2.7)

where “T” implies the transposed matrix and I is the q × q identity matrix. In the other

words, distinct rows of Hq are orthogonal, and the real inner product of any row with itself

is q. Hadamard matrix Hq exists only for q being 1, 2, or a multiple of 4.

The (Sylvester-type) Hadamard matrix is recursively constructed in :

H2j =

 H2j−1 H2j−1

H2j−1 −H2j−1

 (2.8)

where H1 = [1]. Obviously, in H2j , all the elements of the first row and the first column are

+1’s.

18



Chapter 2. Preliminary: Signature Codes for MAAC 19

For instance,

j = 2 : H4 =



1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1


. (2.9)

Moreover, it is easy to see that multiplying any row or column by −1 for Hq changes

a Hadamard matrix into another. Thus, without loss of generality, we can assume that all

the elements of the first row and the first column are +1’s. Such a Hadamard matrix is

called normalized.

Let hij and hkj be the elements in any two distinct rows hi and hk of Hq. The

normalized Hadamard matrix has the following properties.

a) For Hq(q ≥ 2), the row hi (i > 1) has q/2 elements of +1’s and q/2 elements of

−1’s. This implies that, for a given i,

∑
{j|hij=1}

hij =
q

2
,

∑
{j|hij=−1}

hij = −q

2
, i > 1. (2.10)

b) For given k and i (k ̸= i ̸= 1), among elements hkj(j = 1, 2, . . . , q) whose column

indices j satisfy hij = 1, there are q/4 elements of +1’s and q/4 elements of −1’s. This

implies that, for a given i and k,

∑
{j|hij=1}

hkj = 0,
∑

{j|hij=−1}

hkj = 0, i ̸= k ̸= 1. (2.11)

19



20 2.3. Notations and Definitions

Proof: Let

∑
{j|hij=1,hkj=1}

hijhkj = a;
∑

{j|hij=1,hkj=−1}

hijhkj = b;

∑
{j|hij=−1,hkj=1}

hijhkj = c;
∑

{j|hij=−1,hkj=−1}

hijhkj = d.

For the vector hi, we rewrite (2.10) as

a − b + c − d = 0. (2.12)

For the vector hk, it also follows

a + b − c − d = 0. (2.13)

Since the distinct rows in Hadamard matrix are orthogonal (2.7), we have that

a + b + c + d = 0. (2.14)

Combining (2.12), (2.13), and (2.14), we have that

a + b = 0, c + d = 0. (2.15)

This complete the proof. 2

20



Chapter 3

Recursive Construction of

Error-Correcting Signature Codes for

MAAC

Binary error-correcting signature codes are constructed in [25] [26] from Hadamard matrix,

whose orthogonality provides the decodability of the codes. However, for non-binary code,

it is difficult to find such an orthogonal matrix.

In this chapter, the first trial of (k +1)-ary error-correcting signature code for MAAC

is given. The idea is from the recursive construction of (k+1)-ary UD signature code in [19].

By taking a submatrix of (k + 1)-ary UD signature matrix in [19], the (k + 1)-ary error-

correcting signature code is recursively constructed from a trivial (k +1)-ary signature code.

21



22 3.1. (k+1)-Ary Signature Code

The signature code’s decoding procedure is also given, which consists of error correction and

user identification.

3.1 (k+1)-Ary Signature Code

3.1.1 Encoder

We now examine the recursive construction of a (k + 1)-ary signature matrix.

For any integer k, let ℓ = ⌊log2 k⌋ and a = [20, 21, · · · , 2ℓ−1, k]. Starting with (ℓ+1)×1

matrix

X1 = aT, (3.1)

jth matrix Xj for j ≥ 2 is recursively produced by Xj−1 as follows:

Xj =


Xj−1 (0Tj−1)

T
Xj−1

0nj−1 k knj−1

Xj−1 (kTj−1)T X̄j−1

 . (3.2)

The expressions in (3.2) are given as follows:

(a) kp = k1p, where 1p is the p-vector whose p components are all one.

(b) Tj and nj are the numbers of the rows and the columns in matrix Xj.

(c) X̄j−1 = (kTj−1)
T
1nj−1 − Xj−1.

22



Chapter 3. Recursive Construction of Error-Correcting Signature Codes for MAAC 23

From (3.2), note that the number of rows Tj and columns nj obey recursion

Tj = 2Tj−1 + 1, T1 = ℓ + 1 (3.3)

nj = 2nj−1 + 1, n1 = 1 (3.4)

for all j ≥ 2. Therefore, it follows that

Tj = 2j−1ℓ + 2j − 1 (3.5)

nj = 2j − 1, j ≥ 1. (3.6)

Let H ′
j be the (2j −1)×(2j −1) sub-matrix of Hadamard matrix Hj of (2.8), obtained

by deleting the first column and the first row. For example, from the H4 of (2.9), we have

that

H ′
4 =


−1 1 −1

1 −1 −1

−1 −1 1

 . (3.7)

The following lemma reveals that product XjH
′T
j is a block diagonal matrix with block

sub-matrices on the diagonal and all the zero matrices on the blocks off the diagonal.

23



24 3.1. (k+1)-Ary Signature Code

Lemma 1 The product of Xj and H ′T
j is

XjH
′T
j = −2j−1



aT O · · · O

O A · · · O

...
...

. . .
...

O O · · · A


△
= −2j−1diag{aT, A, . . . , A︸ ︷︷ ︸

2j−1−1

} (3.8)

where

A =

 k 0

(kℓ+1)T − aT aT

 (3.9)

and O is the rectangular zero matrices of suitable sizes. 2

Proof: From Xj of (3.2), we introduce a (Tj + 1) × (nj + 1) matrix

Kj
△
=

 k knj

(kTj)T X̄j − Xj

 = kJ −

 0 0nj

(0Tj)T 2Xj

 (3.10)

where J denotes a (Tj + 1) × (nj + 1) matrix and each of the elements is one.

To investigate XjH
′T
j , we first consider product KjH

T
j . Since the number of 1’s and

−1’s are the same in every row of matrix Hj, except for the first row [24], it follows that

JHT
j = [(nj + 1)(1Tj+1)T O].

Thus, the product of Kj and HT
j is

KjH
T
j =

 (nj + 1)k 0nj

gT −2XjH
′
j

 (3.11)
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Chapter 3. Recursive Construction of Error-Correcting Signature Codes for MAAC 25

where gT = (nj + 1)(kTj)T − 2Xj(1
Tj)T.

On the other hand, from (3.2) and (3.10), we observe that

Kj =

 Kj−1 Kj−1

Kj−1 −Kj−1

 . (3.12)

Thus, it follows that

KjH
T
j = 2

 Kj−1H
T
j−1 O

O Kj−1H
T
j−1


= . . .

= 2jdiag{A, . . . , A︸ ︷︷ ︸
2j−1

} (3.13)

where

A
△
=

1

2
K1H

T
1 =

 k 0

(kℓ+1)T − aT aT

 . (3.14)

By comparing (3.11) and (3.13) and deleting the first row and the first column of

KjH
T
j , we obtain (3.8). This proves the lemma. 2

Recall that the set that is a collection of rows of matrix X1 of (3.1), i.e., aT, is a

uniquely decodable (δ1 = 1) signature code [19], i.e., w(uaT) ≥ 1 for any non-zero vector

u ∈ {−1, 0, 1}ℓ+1. We now show that matrix Xj of (3.2) gives a 2j−1-decodable signature

code.

Theorem 1 Set Sj that is a collection of rows of matrix Xj of (3.2), is a

(nj = 2j − 1, δj = 2j−1, Tj = 2j−1ℓ + 2j − 1)k-signature code

25



26 3.1. (k+1)-Ary Signature Code

with minimum distance 2j−1. 2

Proof: Each of the elements in Xj obviously belongs to K, and Tj and nj are given in

(3.5) and (3.6).

Next we prove that Sj is 2j−1-decodable, i.e.,

w(uXj) ≥ 2j−1

for u ̸= 0Tj and u ∈ {−1, 0, 1}Tj .

From (3.8) in Lemma 1, we have

uXjH
′T
j = −u2j−1diag{aT, A, . . . , A︸ ︷︷ ︸

2j−1−1

}. (3.15)

Let u = [u1, v2, u3, . . . , v(2j−2), u(2j−1)], where ui ∈ {−1, 0, 1}ℓ+1, i = 1, 3, . . . , 2j − 1,

and vi ∈ {−1, 0, 1}, i = 2, 4, . . . , 2j − 2. Let ϕi and h′
ti be the ith component in vectors uXj

and h′
t (the tth row of H ′

j). The absolute value of the tth component in vector uXjH
′T
j is

|
nj∑
i=1

ϕih
′
ti| =


2j−1|uta

T|, when t is odd,

2j−1|vtk + ut+1((k
ℓ+1)T − aT)|, else.

(3.16)

Since u ̸= 0Tj by assumption, at least one non-zero element exists, such that for

t0 ∈ {1, 2, . . . , 2j−1}, either ut0 ̸= 0ℓ+1 or vt0 ̸= 0. We consider two cases.

Case 1. [u1, u3, . . . , u(2j−1)] ̸= 0(l+1)2j−1
, i.e., t0 is odd.

In this case, |
∑nj

i=1 ϕih
′
t0i| = 2j−1|ut0a

T| ≥ 2j−1.

Case 2. [u1, u3, . . . , u(2j−1)] = 0(l+1)2j−1
, and [v2, v4, . . . , v(2j−2)] ̸= 02j−1−1, i.e., t0 is even.
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Chapter 3. Recursive Construction of Error-Correcting Signature Codes for MAAC 27

In this case, |
∑nj

i=1 ϕih
′
t0i| = 2j−1|vt0k| ≥ 2j−1.

Also, since all elements of H ′
j are either −1 or +1, it follows that

w(uXj) =

nj∑
i=1

|ϕi| =

nj∑
i=1

|ϕih
′
t0i|

≥ |
nj∑
i=1

ϕih
′
t0i| ≥ 2j−1. (3.17)

Hence, set Sj is a 2j−1-decodable signature code.

We still must show that the minimum distance of signature code Sj is 2j−1. It is

sufficient to show that there is a vector of u ∈ {−1, 0, 1}Tj such that the equality in w(uXj) ≥

2j−1 holds. Since the first row in Xj has 2j−1 weight, vector u = [1, 0, . . . , . . . , 0] with

w(u) = 1 has the desired property. This proves the theorem. 2

We show an example to understand the construction procedure.

Example 3.1 Let k = 2. Obviously ℓ = ⌊log2 2⌋ = 1. The first matrix is X1 = [1 2]T.

The second matrix is

X2 =



1 0 1

2 0 2

0 2 2

1 2 1

2 2 0


, (3.18)

which gives (3, 2, 5)2-signature code S2 = {101, 202, 022, 121, 220}.
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28 3.1. (k+1)-Ary Signature Code

The third matrix is

X3 =



1 0 1 0 1 0 1

2 0 2 0 2 0 2

0 2 2 0 0 2 2

1 2 1 0 1 2 1

2 2 0 0 2 2 0

0 0 0 2 2 2 2

1 0 1 2 1 2 1

2 0 2 2 0 2 0

0 2 2 2 2 0 0

1 2 1 2 1 0 1

2 2 0 2 0 0 2



,

which gives (7, 4, 11)2-signature code

S3 = { 1010101, 2020202, 0220022, 1210121, 2200220,

0002222, 1012121, 2022020, 0222200, 1212101, 2202002}.

2

3.1.2 Decoding Rule

We now give the decoding rule of the (k + 1)-ary signature code. Consider a Tj-user MAAC

system with signature code Sj that is associated with signature matrix Xj of (3.2). Let the
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ith user status be bi ∈ {0, 1}, (i = 1, 2, . . . , Tj). Assume that the channel is disturbed by

the additive noise, and error vector e has weight w(e) ≤ ⌊(2j−1 − 1)/2⌋. Then the decoder

receives vector

y =

Tj∑
i=1

bisi + e = bXj + e (3.19)

where b
△
= [b1, b2, . . . , bTj

] and si ∈ Sj.

The decoding of the (k + 1)-ary signature code includes two steps: error correction

and user identification.

(Error correction) After multiplying y by matrix H ′T
j , by Lemma 1 we have

yH ′T
j = bXjH

′T
j + eH ′T

j

= −b2j−1diag{aT, A, . . . , A} + eH ′T
j . (3.20)

If e is a zero vector (noiseless, i.e., w(e) = 0), then the elements of yH ′T
j are multiples

of 2j−1, including zero.

If e has a weight, i.e., w(e) ̸= 0, then some elements of yH ′T
j are not equal to the

multiple of 2j−1 due to noise e. Note that in (3.20), the weight of each element of eH ′T
j is

not greater than ⌊(2j−1 − 1)/2⌋, since w(e) ≤ ⌊(2j−1 − 1)/2⌋ by assumption and the element

of H ′T
j is either 1 or −1. Thus, we correct these errors in yH ′T

j simply by replacing these

elements with the nearest multiple of 2j−1. Specifically, let ζt be the tth component in vector

29
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yH ′T
j , and

rt
△
= ζt modulo 2j−1, 0 ≤ rt < 2j−1 (3.21)

where residue rt is non-negative. Then error correction is carried out as follows:

ζt ← ζt, if rt = 0

ζt ← ζt − rt, if 0 < rt ≤ ⌊2j−1−1
2

⌋

ζt ← ζt + 2j−1 − rt, if ⌊2j−1−1
2

⌋ < rt < 2j−1.

(3.22)

(User identification) The status of the users is detected after the error correction of (3.22).

The corrected version of yH ′T
j is now reasonably represented by the same notation as yH ′T

j :

− 1

2j−1
[ζ1, ζ2, . . . , ζnj

]
△
= − 1

2j−1
yH ′T

j

= b diag{aT, A, . . . , A}. (3.23)

To explain the decoding of (3.23), observe A of (3.9). Let [η1, η2]
△
= [c, v]A. Binary

vector v can be decoded, since X1 = aT is uniquely decodable [19]. After v is found, it

follows that c = (η1 + η2 − v(kℓ+1)
T
)/k. Based on this observation, from (3.23) we have the

following detected status of users:

a) Binary vector [b(ℓ+2)i+1, . . . , b(ℓ+2)i+ℓ+1] is decoded from the value of −ζ2i−1/2
j−1,

i = 0, 1, 2, . . . , 2j−1 − 1, since X1 = aT is uniquely decodable.

b) Bit b(ℓ+2)i is detected:

b(ℓ+2)i = −(ζ2i−1/2
j−1 + ζ2i/2

j−1 + [b(ℓ+2)i+1, . . . , b(ℓ+2)i+ℓ+1][(k
ℓ+1)T])/k (3.24)

i = 1, 2, . . . , 2j−1 − 1.
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By the above decoding rule, the decoder can correct the transmission errors caused by the

channel noise and uniquely resolve the received superimposed vector into the transmitted

codewords that is the status of the corresponding users.

Note that the decoding operation only requires the multiplication of received signal

y by binary matrix H ′
j (see (3.20)), the modulo operation of the components of yH ′

j (see

(4.32)), and the integral division for user detection (see a), b) above).

Example 3.2 In this example, we apply the decoding rule to (7, 4, 11)2-signature code S3

(Example 3.1) as follows:

Assume that the status of users is given by

[b1, b2, . . . , b11] = [0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1]

where users 2, 3, 6, 7, 8, and 11 are active. When the channel is disturbed by error vector

e = [1, 0, 0, 0, 0, 0, 0], the received vector is

y = s2 + s3 + s6 + s7 + s8 + s11 + e

= [8, 4, 7, 8, 5, 8, 9].

By multiplying vector y with matrix H ′T
3 , we get

yH ′T
3 = [8, 4, 7, 8, 5, 8, 9]H ′T

3

= [−9,−7,−1,−11,−13, 1,−9]. (3.25)

By changing the elements in (3.25) into the nearest multiple of 4, we have the corrected

version of [−8,−8, 0,−12,−12, 0,−8].
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Moreover, when divided by −4, the above vector becomes [2, 2, 0, 3, 3, 0, 2]. The ele-

ments in the vector with odd indices are mapped by a decoding table, since X1 = aT = [1, 2]T

is uniquely decodable. The table is 0 → 00, 1 → 10, 2 → 01, 3 → 11. Therefore, we have

[b1, b2] = [0, 1]

[b4, b5] = [0, 0]

[b7, b8] = [1, 1]

[b10, b11] = [0, 1].

From (3.24), it follows that

b3 = (2 + 0 − [b4, b5][2, 2]T)/2 = 1

b6 = (3 + 3 − [b7, b8][2, 2]T)/2 = 1

b9 = (0 + 2 − [b10, b11][2, 2]T)/2 = 0.

Thus, decoding with error correction and user identification has been successfully completed.

2

3.2 Binary Signature Code

In this section, we propose a recursive construction of a binary signature code.

For j ≥ 0, let Xj be the jth binary square matrix of order 2j. The first matrix is

X0 = [1]. (3.26)
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For each j ≥ 1, Xj is constructed from Xj−1 of order 2j−1 by recursion

Xj =


Xj−1 Xj−1

Xj−1 X̄j−1

 , (3.27)

where matrix X̄j−1 indicates the complement of Xj−1, defined by

X̄j−1 = J − Xj−1.

Here J is a 2j−1 × 2j−1 square matrix, and each element is one.

Theorem 2 Set Sj, composed of rows of matrix Xj of (3.27), is a

(nj = 2j, δj = 2j−1, Tj = 2j)1-signature code

with minimum distance 2j−1. 2

The proof of Theorem 2 resembles that of Theorem 1.

Note that the (k+1)-ary signature code in Theorem 1 can be deduced to a binary (2j−

1, 2j−1, 2j − 1)1-signature code when k = 1. Theorem 2 gives another binary (2j, 2j−1, 2j)1-

signature code.

The decoding scheme of the binary signature code in Theorem 2 is omitted because

it resembles that of non-binary code in Section 3.1.2.
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3.3 Conclusion

We gave recursive construction of (k+1)-ary error-correcting signature code to identify users

for MAAC, even in the presence of channel noise. Our recursion is originally from a trivial

signature code. In the (j−1)th recursion, from a signature code with minimum distance of

2j−2, we obtained a longer and larger signature code with minimum distance of 2j−1. We

also described the signature code’s decoding procedure, which consists of error correction

and user identification.

It is obviously that there are some constraints in the proposed code, such as capability

of error correction, the code length and the number of users multiplying by the number of

recursion, low sum rate since its particular recursive scheme. Nevertheless, the structure of

coding matrix in this chapter leads us to obtain a more generalized coding scheme without

these constraints.
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Chapter 4

A Family of Error-Correcting

Signature Codes for MAAC

In this chapter, we propose a generalized coding scheme of (k+1)-ary error-correcting signa-

ture codes for noisy MAAC. Given a signature matrix A and a difference matrix D = D+−D−

a priori, we obtain a larger signature matrix by replacing each element in Hadamard matrix

with A, or D+, or D− depending on the values of elements and their locations in Hadamard

matrix. The set of rows of proposed matrix gives an error-correcting signature code. Intro-

ducing the difference matrix makes it possible to construct error-correcting signature code

whose sum rate is increased with an increase in the order of Hadamard matrix. We give

either binary or non-binary signature codes.

This coding scheme extends the recursive coding scheme into a more general case as
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36 4.1. Main Theorem

follows:

(1) the proposed signature code is qδ/2-decodable signature code;

(2) signature matrix A is arbitrary, that is, code length, capability of error correction,

number of users, binary or non-binary are arbitrary.

(3) when the number of rows of difference matrix D is larger than that of signature

matrix A, the sum rate of the proposed signature code is increased with an increase in the

order of Hadamard matrix.

4.1 Main Theorem

In this section, we give a coding scheme of error-correcting signature code.

Before going on, some notations are prepared. Matrix D whose elements belong to

K± △
= {0,±1,±2, . . . ,±k} is referred to as difference matrix which can be expressed by a

difference form as D = D+−D−, where D+ and D− are component matrices whose elements

belong to K. Let dij, d+
ij and d−

ij be the elements of matrix D, D+ and D−, respectively.

Given any difference matrix D, we can always set

d+
ij = dij, d−

ij = 0, if dij ≥ 0

d+
ij = 0, d−

ij = |dij|, if dij < 0.

(4.1)

Definition 3 For any positive integer δ, Td × n matrix D is a δ-decodable difference matrix
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over K± if it holds

w(uD) ≥ δ (4.2)

for any non-zero T -vector u ∈ {−1, 0, 1}Td . 2

We denote by ⟨n, δ, Td⟩k a δ-decodable (2k+1)-ary difference matrix with the number

of columns n and the number of rows Td. An ⟨n, 1, Td⟩k-difference matrix is said to be UD.

Then, we give a definition of matrix-selection product which is an operation to obtain

a larger block matrix from smaller matrices.

Definition 4 Let A be a Ta × n signature matrix, D be a Td × n difference matrix, and Hq

be a q × q normalized Hadamard matrix (q ≥ 2). We define matrix-selection product

Hq⊗̄[A|D] , Xq

=


X11 . . . X1q

...
...

Xq1 . . . Xqq

 (4.3)

where

Xij , hij⊗̄[A|D] =


A, if i = 1

D+, if i > 1, hij = 1

D−, if i > 1, hij = −1.

(4.4)

2

Note that Xq is a (Ta + (q − 1)Td) × qn matrix.
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38 4.1. Main Theorem

Definition 5 Let Φ = [ϕ1, . . . , ϕq] be a qn-vector, where ϕj is an n-vector. The block

multiplication of qn-vector Φ and q-vector hk is defined as

Φ £ hT
k ,

q∑
j=1

ϕjhkj. (4.5)

2

Lemma 2 The block multiplication of (Ta + (q − 1)Td) × qn matrix Xq of (4.3) and q × q

matrix HT
q is a (Ta + (q − 1)Td) × qn matrix

Xq £ HT
q =

q

2



2A Oa . . . Oa

(D+ + D−) D
... Od

...
...

. . .
...

(D+ + D−) Od
... D


(4.6)

where Oa is a Ta × n zero matrix, and Od is a Td × n zero matrix.

Proof : The submatrix in Xq £ HT
q is

Mik , (hi⊗̄[A|D]) £ hT
k

= [Xi1, Xi2, . . . , Xiq] £ hT
k

=

q∑
j=1

Xijhkj, 1 ≤ i, k ≤ q. (4.7)

For i = 1, it follows that

M1k =


q∑

j=1

Ah1j = qA, k = 1, i = 1

q∑
j=1

Ahkj = Oa, k = 2, . . . , q, i = 1,

(4.8)
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Chapter 4. A Family of Error-Correcting Signature Codes for MAAC 39

since X1j = A.

For a given i, 1 < i ≤ q, we have that

Mik =

q∑
j=1

hij⊗̄[A|D]hkj

=

q∑
j=1

hkjD
sign(hij)

= D+ ·
∑

{j|hij=1}

hkj + D− ·
∑

{j|hij=−1}

hkj

=


(q/2)(D+ + D−), k = 1, 1 < i ≤ q

(q/2)D, k = i, 1 < k ≤ q, 1 < i ≤ q

Od, k ̸= i, 1 < k ≤ q, 1 < i ≤ q

(4.9)

where sign(·) is a function that extracts the sign of an integer number. The second equality

in (4.9) is due to that

Mi,k=i = D+ ·
∑

{j|hij=1}

hk=i,j + D− ·
∑

{j|hij=−1}

hk=i,j

=
q

2
D+ − q

2
D− =

q

2
D. (4.10)

The third equality in (4.9) is set up by (2.11). This proves the lemma. 2

The following theorem gives a qδ/2-decodable signature code from matrix Xq.

Theorem 3 For any two non-zero vectors ua ∈ {−1, 0, 1}Ta and ud ∈ {−1, 0, 1}Td , if ma-

trices A and D satisfy that

w(uaA) ≥ δa (4.11)

w(udD) ≥ δd (4.12)
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40 4.1. Main Theorem

set Sq that is a collection of rows of matrix Xq of (4.3) is a

(qn, qδ/2, Ta + (q − 1)Td)k-signature code,

where δ = min{2δa, δd}. 2

Proof : Let T = Ta + (q − 1)Td, we prove that set Sq is qδ/2-decodable, i.e.

w(uXq) ≥ qδ/2 (4.13)

for u ∈ {−1, 0, 1}T and u ̸= 0T .

Let uXq = [ϕ1,ϕ2, . . . , ϕq], where ϕi is an n-vector. From (4.5), we have that

uXq £ HT
q =[ϕ1,ϕ2, . . . , ϕq] £ HT

q (4.14)

=[

q∑
j=1

h1jϕj, . . . ,

q∑
j=1

hijϕj, . . . ,

q∑
j=1

hqjϕj].

Let u = [u1,u2, . . . , uq], where u1 ∈ {−1, 0, 1}Ta and ur ∈ {−1, 0, 1}Td , r = 2, . . . , q.

Multiplying (4.6) by u, and comparing with (4.14), we have that

w(

q∑
j=1

hijϕj)

=


q
2
w(2u1A + (

q∑
r=2

ur)(D
+ + D−)), i = 1

q
2
w(uiD), i > 1.

(4.15)

Since u ̸= 0T by assumption, there exists at least one i0, so that ui0=1 ̸= 0Ta or

ui0 ̸= 0Td for i0 ∈ {2, . . . , q}.
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Case 1. ui0=1 ̸= 0Ta , [u2, . . . , uq] = 0T−Ta . In this case, from (4.11), we have that

w(

q∑
j=1

h1jϕj) =
q

2
w(2u1A) ≥ q

2
2δa ≥ q

2
δ (4.16)

Case 2. ui0 ̸= 0Td , 1 < i0 ≤ q. In this case, from (4.12), we have that

w(

q∑
j=1

hi0jϕj) =
q

2
w(ui0D) ≥ q

2
δd ≥ q

2
δ, 1 < i0 ≤ q. (4.17)

Since all the elements of Hq are either −1 or 1, it follows that

w(uXq) =

q∑
j=1

w(ϕj) =

q∑
j=1

w(hi0jϕj)

≥ w(

q∑
j=1

hi0jϕj) ≥
q

2
δ. (4.18)

This proves the theorem. 2

Remark 1 The coding scheme in Theorem 3 is a generalization of the recursive coding

scheme in Chapter 3 where the recursive matrix can be rewritten as matrix Hq⊗̄[A|D] with

the first row and first column removed, where

A = D+ =

 0 0

(0ℓ+1)T aT

 and D− =

 k k

(kℓ+1)T (kℓ+1)T − aT

 . (4.19)

From Theorem 1, the sum rate of the code in Chapter 3 is

2j−1ℓ + 2j − 1

2j − 1
= 1 +

2j−1ℓ

2j − 1
≤ (1 + ℓ)

where (1 + ℓ) is the sum rate of the original signature matrix aT. It is obviously that the

sum rate is decreased with an increase of code length (2j − 1).
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42 4.1. Main Theorem

Let A′ = (D′)+ = D− and (D′)− = A, the matrix Hq⊗̄[A′|D′] can also give an error-

correcting signature code. Since Ta′ = Td′ , the sum rate of the code retains with an increase

of the code length.

In the next remark, we demonstrate that our coding scheme in Theorem 3 can obtain

codes whose sum rate are increased with the increase of the code length.

Remark 2 To illustrate the point of our work, let us examine further the coding scheme of

(4.3). Let Hq be a Sylvester-type Hadamard matrix. Then we have Hq = Hq/2⊗H2. With q

be replaced with 2q, (4.3) becomes

X2q = H2q⊗̄[A|D]

= (Hq ⊗ H2)⊗̄[A|D]

= Hq⊗̄[X2|D2] (4.20)

where X2 = H2⊗̄[A|D] is a (2n, δ, Ta +Td)k-signature matrix, and D2 = H2 ⊗D. It is shown

in (4.20) that, when a (2n, δ, Ta +Td)k-signature code S2 is given a priori, a (q · 2n, q · δ, Ta +

(2q − 1)Td)k-signature code S2q is generated by Hadamard matrix Hq. The sum rate of S2q

is

R(S2q) =
Ta + (2q − 1)Td

q(2n)

=
Ta + Td

2n
+

(1 − 1/q)(Td − Ta)

2n

= R(S2) +
(1 − 1/q)(Td − Ta)

2n
. (4.21)

Turning now to (4.20), a simple implementation of X2q may be given by H2q⊗̄[A|A].
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In this special case, signature matrix H2q⊗̄[A|A] is formed by replacing elements +1 with

A and −1 with Oa(D
−) in Hadamard matrix (see (4.4)) without any distinction between

element +1’s in the first row and the remaining rows. For example of k = 1, signature

matrix H2q⊗̄[A|A] reduces to the binary error-correcting signature matrices in [25] [26].

This results in that the code parameters of (q2n, qδ, q2Ta)k-signature matrix H2q⊗̄[A|A]

is exactly q-times of (2n, δ, 2Ta)k-signature matrix H2⊗̄[A|A] without any increase of sum

rate. The same phenomenon can be observed in the conventional error-correcting coding for

MAAC [6] [11] [12].

The coding scheme in this paper seems similar to the implementation above and the

conventional works [6] [11] [12], in the sense that code length and error-correction capability

is improved by a multiple of q. However, we here try to support as many users as possible

by employing the difference matrix D = D+ −D−, instead of A, in the rows except the first

row. As a result, if Td > Ta, it is possible to construct code S2q whose sum rate of (4.21) is

increased with an increase in the value of q. This will be discussed in the following section.

Although δa, δd in Theorem 3 are any positive integer, hereafter we consider only the

case of δa = 1, δd = 1, i.e. δ = min{2δa, δd} = 1. 2

4.2 (k + 1)-Ary Signature Codes

In this section, we give a UD (δa = 1) signature matrix A and a UD (δd = 1) difference

matrix D. From Theorem 3, two (k + 1)-ary q/2-decodable signature codes are obtained.
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44 4.2. (k + 1)-Ary Signature Codes

4.2.1 Signature Code with Code Length 2jq

For any integer k, let ℓ = ⌊log2 k⌋, and 1 × (ℓ + 1) matrix a = [20, 21, · · · , 2ℓ−1, k]. We note

that matrix aT is UD signature matrix [19], i.e. w(uaT) ≥ 1 with u ̸= 0ℓ+1, u ∈ {−1, 0, 1}ℓ+1.

From aT, UD difference matrix and UD signature matrix are given following.

Lemma 3 Let D(0) = aT, for any non-negtive integer j, matrix

D(j) =


D(j−1) D(j−1)

D(j−1) −D(j−1)

I(j−1) O(j−1)

 (4.22)

is a ⟨2j, δj
d = 1, T j

d = j2j−1 +(ℓ+1)2j⟩k-difference matrix, where I(j) is 2j ×2j identity matrix

and O(j) is 2j × 2j all-zero matrix. 2

The proof of Lemma 3 is omitted since it resembles the proof in [6]. Note that when

k = 1, (4.22) reduces to the difference matrix constructed by Cantor [15] and Chang [6].

Construction I Let X
(0)
2 = aT. From UD difference matrix D(j) of (4.22), by Theorem 3,

set S(j)
q that is a collection of rows of matrix

X(j)
q = Hq⊗̄[X

(j−1)
2 |D(j−1)], j ≥ 1 (4.23)

is a (2j−1q, q/2, q(j−1)2j−2+q(ℓ+1)2j−1− 2j−1 + 1)k- signature code. 2

Note that set S(j)
2 that is a collection of rows of matrix

X
(j)
q=2 = H2⊗̄[X

(j−1)
2 |D(j−1)]
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is a (2j−1, 1, T j
a = (j − 1)2j−1 + (ℓ + 1)2j − 2j−1 + 1)k-signature matrix. We have that

T j
d − T j

a = 2j − 1.

Table 1 gives signature codes with k = 2 and j ≤ 4 by Construction I. We give an

example of (8, 4, 16)2-signature code in Table 1 in detail.

Example 4.1 Let k = 2, ℓ = 1, and a = [1, 2]. From (4.22) and (4.23), we have

D(0) = X
(0)
2 =

 1

2

 . (4.24)

From Construction I, the set S(1)
8 that is a collection of rows of matrix X

(1)
8 = H8⊗̄[X

(0)
2 |D(0)]

(see in pp. 47) is a (8, 4, 16)2-signature code. 2

4.2.2 Signature Code with Code Length 2jq − 1

In this section, we give a q/2-decodable (k+1)-ary signature code with code length (2jq−1).

Construction II Let X̃
(1)
2 = [(0(ℓ+1))T, aT]. Set S̃(j)

q is a collection of rows of a matrix that

formed by removing the first all-zero column of

X̃(j)
q = Hq⊗̄[X̃

(j−1)
2 |(−D(j−1))], j ≥ 2. (4.25)

By Theorem 3, S̃(j)
q is a

(2j−1q − 1, q/2, q(j − 1)2j−2 + q(ℓ + 1)2j−1 − 2j−1 − ℓ)k-signature code. 2
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X
(1)
8 =



1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

1 0 1 0 1 0 1 0

2 0 2 0 2 0 2 0

1 1 0 0 1 1 0 0

2 2 0 0 2 2 0 0

1 0 0 1 1 0 0 1

2 0 0 2 2 0 0 2

1 1 1 1 0 0 0 0

2 2 2 2 0 0 0 0

1 0 1 0 0 1 0 1

2 0 2 0 0 2 0 2

1 1 0 0 0 0 1 1

2 2 0 0 0 0 2 2

1 0 0 1 0 1 1 0

2 0 0 2 0 2 2 0


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Note that when k = 1, S̃(j)
q=2 reduces to the UD binary signature code in [15], and

when k ≥ 1, S̃(j)
q=2 reduces to the UD signature code in [19].

4.3 Binary Signature Codes

From Construction I and II, when k = 1, binary signature codes are provided with code

length 2jq and 2jq − 1. In this section, we give the construction of binary signature code

with code length extending to qn or qn − 1, where n is a positive integer.

Before the construction, we recall the UD signature code [17] and UD difference

matrix [7] with arbitrary length n.

An arbitrary positive integer n is represented as the binary form

n =
r∑

j=0

nj2
j (4.26)

where r = ⌊log2n⌋, and nj ∈ {0, 1}, j = 0, 1, . . . , r.

From [17], for arbitrary code length n, (n, δa = 1, Ta(n))1-signature matrix An has

the number of users

Ta(n) =
r∑

j=1

nj[j2
j−1 +

j−1∑
i=0

ni2
i + 1] + n0. (4.27)

From [7], for arbitrary code length n, ⟨n, δd = 1, Td(n)⟩1-difference matrix Dn over

{−1, 0, 1} has the number of users

Td(n) = r2r + n −
r−1∑
j=0

|nj − 1|(j + 2)2j−1. (4.28)
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4.3.1 Binary Signature Code with Code Length qn

Construction III For any positive integer n, from Ta(n) × n UD binary signature matrix

An in [17], and Td(n) × n UD difference matrix Dn in [7], by Theorem 3, set of Sn
q that is a

collection of rows of matrix

Xn
q = Hq⊗̄[An|Dn]

is a (qn, q/2, Ta(n) + (q − 1)Td(n))1-signature code. 2

Note that when n = 2j, Sn
q is the signature code S(j)

q in Construction I with k = 1.

4.3.2 Binary Signature Code with Code Length qn − 1

Construction IV For any positive integer n, let Ãn = [(0Ta(n−1))T, An−1]. Set S̃n
q is a

collection of rows of a matrix that formed by removing the first all-zero column of

X̃(j)
q = Hq⊗̄[X̃

(j−1)
2 |(−D(j−1))], j ≥ 2. (4.29)

By Theorem 3, set S̃n
q is a (qn − 1, q/2, Ta(n − 1) + (q − 1)Td(n))1-signature code. 2

Note that when n = 2j − 1, S̃n
q is signature code S̃

(j)
q in Construction II with k = 1.

4.4 Decoding Rule

The construction in Theorem 3 reduces the decoding problem for error-correcting codes to

the δa-decodable signature matrix and δd-decodable difference matrix. We now give the
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decoding rule of the (k + 1)-ary error-correcting signature code.

Consider a T -user MAAC system with signature code Sq that is associated with

signature matrix Xq. Assume that the channel is disturbed by the additive noise, and error

vector e has weight w(e) ≤ ⌊(q/2 − 1)/2⌋. From (2.1), the decoder receives vector

y = bXq + e. (4.30)

The decoding of the (k + 1)-ary signature code includes two steps: error correction

and user identification.

(Error correction) After block multiplying y by matrix HT
q , by Lemma 2 we have

y £ HT
q = bXq £ HT

q + e £ HT
q

=
qb

2



2A Oa . . . Oa

(D+ + D−) D
... Od

...
...

. . .
...

(D+ + D−) Od
... D


+e £ HT

q . (4.31)

If e is a zero vector (noiseless, i.e., w(e) = 0), then the elements of y £ HT
q are

multiples of q/2, including zero.

If e has a weight, i.e., w(e) ̸= 0, then some elements of y £ HT
q are not equal to the

multiple of q/2 due to noise e. Note that in (4.31), the weight of each element of e £ HT
q is
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not greater than ⌊(q/2 − 1)/2⌋, since w(e) ≤ ⌊(q/2 − 1)/2⌋ by assumption and the element

of HT
q is either 1 or −1. Thus, we correct these errors in y £ HT

q simply by replacing these

elements with the nearest multiple of q/2. Specifically, let ζt be the t-th component in vector

y £ HT
q , and

rt
△
= ζt modulo q/2, 0 ≤ rt < q/2 (4.32)

where residue rt is non-negative. Then error correction is carried out as follows:

ζt ← ζt, if rt = 0

ζt ← ζt − rt, if 0 < rt ≤ ⌊ q/2−1
2

⌋

ζt ← ζt + 2j−1 − rt, if ⌊ q/2−1
2

⌋ < rt < q/2.

(4.33)

(User identification) The status of the users is detected after the error correction of (4.33).

The corrected version of y £ HT
q is now reasonably represented by the same notation as

y £ HT
q :

2

q
[ζ1, ζ2, . . . , ζqn]

△
=

2

q
y £ HT

q

= b



2A Oa . . . Oa

(D+ + D−) D
... Od

...
...

. . .
...

(D+ + D−) Od
... D


. (4.34)

Since A is δa-decodable signature matrix and D is δd-decodable difference matrix,

decoding table can be obtained. Then, we have the following detected status of users:
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a) Binary vector [bTa+iTd+1, . . . , bTa+(i+1)Td
] is decoded from the value of 2

q
[ζ(i+1)n, . . . , ζ(i+2)n],

i = 0, 1, . . . , (q − 2), by the decoding table of D.

b) Let

ya=
1

q
[ζ1, . . . , ζn]

− 1

2

q−2∑
i=0

[bTa+iTd+1,. . . ,bTa+(i+1)Td
](D+ + D−)), (4.35)

binary vector [b1, . . . , bTa ] is decoded from ya by the decoding table of A.

By the above decoding rule, the decoder can correct the transmission errors caused by

the channel noise and uniquely resolve the received superimposed vector into the transmitted

codewords that is the status of the corresponding users.

Note that the decoding operation only requires the block multiplication of received

signal y by binary matrix HT
q (see (4.31)), the modulo operation of the components of y£HT

q

(see (4.32)), and the mapping operation based on the decoding table for user detection (see

a), b) above).

Example 4.2 In this example, we apply the decoding rule to (8, 4, 16)2-signature code S1
8

(Example 4.1) as follows:

Assume that the status of users is given by

[b1, b2, . . . , b11] = [0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0]

where users 2, 3, 6, 7, 8, 11, 13, and 14 are active. When the channel is disturbed by error
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vector e = [1, 0, 0, 0, 0, 0, 0, 0], the received vector is

y = s2 + s3 + s6 + s7 + s8 + s11 + s13 + s14 + e

= [13, 7, 4, 5, 8, 5, 6, 9].

(Error correction) By block multiplying vector y with matrix HT
8 , we get

y £ HT
8 = [13, 7, 4, 5, 8, 5, 6, 9]HT

8

= [57, 5, 9, 13, 1, 5, 13, 1]. (4.36)

By changing the elements in (4.36) into the nearest multiple of 4, we have the corrected

version of [56, 4, 8, 12, 0, 4, 12, 0].

(User identification) Moreover, when divided by 4, the above vector becomes [14, 1, 2, 3,

0, 1, 3, 0]. The elements [b3, . . . , b16] are mapped by a decoding table, since D0 = aT = [1, 2]T

is uniquely decodable. The table is 0 → 00, 1 → 10, 2 → 01, 3 → 11. Therefore, we have

[b3, b4] = [1, 0],

[b5, b6] = [0, 1],

[b7, b8] = [1, 1],

[b9, b10] = [0, 0],

[b11, b12] = [1, 0],

[b13, b14] = [1, 1],

[b15, b16] = [0, 0].
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Since the elements in D0 are all positive, it follows that D−
0 = 0 and D+ + D− = D.

Thus, from (4.35), we have that

ya =
1

8
ζ1 −

1

2

6∑
i=0

[b3+2i, b4+2i](D
+ + D−)

=
56

8
ζ1 −

10

2
= 2.

Since X0
2 = D0, we decode [b1, b2] the decoding table of D0 and have

[b1, b2] = [0, 1].

Thus, decoding with error correction and user identification has been successfully

completed. 2

4.5 Conclusion

In this chapter, we proposed a coding scheme of (k + 1)-ary error-correcting signature codes

for noisy MAAC. Given a signature matrix A and a difference matrix D = D+−D− a priori,

we obtain a larger signature matrix by replacing each element in Hadamard matrix with A,

or D+, or D− depending on the values of elements and their locations in Hadamard matrix.

The set of rows of proposed matrix gives an error-correcting signature code. Introducing the

difference matrix makes it possible to construct error-correcting signature code whose sum

rate is increased with an increase in the order of Hadamard matrix. We gave either binary

or non-binary signature codes with higher sum rates than previous codes.
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Chapter 5

Two-User Turbo Decoding with

Simplified Sum Trellis for Gaussian

TWRC

5.1 Introduction

In the previous chapters, we discuss signature codes for MAAC, in the later chapters, we

consider the decoding problems for TWRC.

Relay networks, as an efficient strategy to improve cell-edge user performance, have

attracted significant attention. TWRC as shown in 5.1 is a fundamental network structure of

much interest to the wireless communications research community. Physical-layer network
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1S 2S

R

Figure 5.1: Two-way relay channel.

coding (PNC) [28], which is a network coding method [29] applying for a physical layer,

exchanges messages between two users with the help of a relay. The message exchange

consists of two phases: first, two users simultaneously transmit signals to a relay node;

second, the relay detects the superimposed signal, and broadcasts an XORed message of two

users’ messages. Each user can decode the opposite user’s message by an XOR operation of

the local message and received XORed message.

Theoretical analysis shows that the PNC scheme improves the throughput perfor-

mance of a wireless network [30], and achieves a higher maximum sum-rate than that of

the four-time-slot transmission scheme due to two-time-slot transmission [31–33]. For prac-

tical application of PNC at the relay, several transmission protocols, such as amplification

forward [34] [35] and denoise-and-forward protocols [36], have been proposed at the relay.

The maximum a posteriori estimation and minimum mean square error (MMSE) estimation,

etc., are investigated to estimate the XORed message [37]. In the TWRC, modulation with

a 5-ary constellation is also investigated [38]. In the above schemes, however, channel coding
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is not taken into account.

In combination with channel coding, PNC can achieve more reliable communication.

A joint channel decoding network coding scheme is presented in [39]. The relay decodes

the superimposed signal to the soft information, i.e. a posteriori probability (APP), of the

arithmetic sum of the two users’ messages, and transforms it to the XORed codeword.

In [39], when the repeat-accumulate code is employed, a decoder at the relay is provided

by extending the belief propagation algorithm for the traditional point-to-point channel to

the TWRC. On the other hand, the Viterbi algorithm for the TWRC is investigated when

convolutional code is used [40]. The two-user trellis is given by combining the trellises of

two convolutional codes of two users, where the state set is a Kronecker product of two

state sets of convolutional codes. Furthermore, a reduced-state trellis is given based on

a state set formed by an XOR operation of two state sets of convolutional codes [40–42].

However, the decoding with the reduced-state trellis is to directly obtain the XORed message

without distinguishing the three values of the arithmetic sum, which degrades the decoding

performance and is not suitable for iterative decoding.

In this chapter, we combine binary turbo coding with PNC in Gaussian TWRC.

We propose a two-user turbo decoding scheme with a simplified sum trellis. For two-user

iterative decoding at the relay, the component decoder with its simplified sum trellis decodes

the superimposed signal to the arithmetic sum of two users’ messages. The simplified sum

trellis is obtained by removing one of the states in a pair of mutual symmetrical states from

a sum trellis. This removal reduces the decoding complexity to half of that with the sum
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trellis, and does not degrade decoding performance over AWGN channel since two output

sequences from the pair of mutual symmetrical states are the same.

5.2 System Model

5.2.1 Encoder

Consider a wireless TWRC, where two users S1 and S2 communicate with each other through

a single relay R (Fig. 5.2). It is assumed that all nodes are half duplex, i.e. a node cannot

receive and transmit simultaneously. The channel from user S1 (S2) to relay R is additional

white Gaussian noise (AWGN) channel.

We employ two of the same binary turbo encoders in TWRC. Let ui = (ui,1, ..., ui,K),

ui,k ∈ {0, 1}, be the message of user Si, i = 1, 2, and ci = (ci,1, ..., ci,N), ci,n ∈ {0, 1}, be the

transmitted codeword, whose parity part is the output of the component encoders (recursive

systematic convolutional (RSC) encoders: RSCs P and Q). For transmission, we will favor

ci,k ∈ {+1,−1} over ci,k ∈ {0, 1} under the mapping {0 ↔ +1, 1 ↔ −1}.

Consider a two-phase transmission protocol: at the first phase, two users S1 and S2

transmit c1 and c2 simultaneously to the relay R (Fig. 5.2). Thus, the received signal at

relay R has a superposition form

yR = c1 + c2 + z (5.1)

where z = (z1, ..., zN) is noise whose element zn is a zero-mean Gaussian noise with variance
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Figure 5.2: System model of turbo codes in two-way relay channel.

σ2.

At the relay, a two-user turbo decoding estimates APPs P((u1,k + u2,k) = v | yR) of

the arithmetic sum of two users’ messages, where v = 0, 1, 2, and gives the estimation of

̂(u1 + u2). The network-coded information bit, i.e. the estimation of XOR of u1,k and u2,k,

is

̂(u1,k ⊕ u2,k) =



0, if P((u1,k + u2,k) = 0|yR)

+P((u1,k + u2,k) = 2|yR)

≥ P((u1,k + u2,k) = 1|yR)

1, otherwise.

(5.2)

At the second phase, the relay broadcasts ̂(u1 ⊕ u2) to the two users. Each user can

decode the opposite user’s message by XOR operation of the local message and received

network-coded message. Here, we focus on the decoding at the relay, and ignore the second
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Figure 5.3: Iterative decoder in two-way relay channel.

phase.

5.2.2 Iterative Decoding

To estimate APPs P((u1,k+u2,k) | yR), the relay performs an iterative decoding based on two

component decoders, typically BCJR decoders. As shown in Fig. 5.3, the iterative decoder

has the same structure as a traditional iterative decoder except that the information carried

out in this iterative decoder is non-binary, i.e. three possible values: 0, 1, 2. Accordingly,

component decoder P estimates APPs P((u1,k+u2,k)|yu,yp, Pp,k), and component decoder Q

estimates APPs P((u1,k +u2,k)|y′
u,yq, Pq,k). Here yu is the received superimposed systematic

vector, y′
u is the interleaved version of the superimposed systematic vector, and yp (yq) is

the received superimposed vector of the two parity-vectors from RSCs P (Q) of users 1 and

2. Pp,k = P((u1,k + u2,k) = v), v = 0, 1, 2, is the priori information of decoder P , which is

the extrinsic information received from decoder Q.
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By BCJR algorithm with trellis, we have [43]

P((u1,k + u2,k) = v|yu,yp, Pp,k) =
∑

(u1,k+u2,k)=v

p((a, b) → (ã, b̃),yu,yp) (5.3)

where (a, b) and (ã, b̃) are states in the trellis at times k and k + 1, respectively (see be-

low). Function p((a, b) → (ã, b̃), (yu, yp)) is the probability density function over the edge

e((a, b), (ã, b̃)) in the trellis from (a, b) to (ã, b̃). The trellis used in the iterative decoding

will be given in the next section.

5.3 Simplified Sum Trellis for Gaussian TWRC

In this section, we propose the construction of simplified sum trellis at the relay. The

simplified sum trellis is obtained by removing one of the states in pair of mutual symmetrical

states from a sum trellis.

5.3.1 Sum Trellis

Before proceeding, we describe a sum trellis [40] of component decoder P in Fig. 5.3 in this

section. A similar approach would give the trellis of Q. A simplified version of the trellis,

which is obtained from the sum trellis, will be given in Sect. 5.3.2. Note that the sum trellis

in [40] is for two-user convolutional decoding with the Viterbi algorithm.

First, we describe trellis T of RSC P . Let the state set of trellis T be A = {al|l =

1, 2, ..., 2L}, al ∈ {0, 1}L, where L is the number of the memory cells of encoder P . For
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Figure 5.4: The relation between successor states (outputs) from mutual symmetrical states

(a, b) and (b, a), (b ̸= a).

input bit u ∈ {0, 1} at state a ∈ A at time k, the output is ũ = σ(a, u), and the successor

state at time k + 1 is ã = µ(a, u), where σ and µ are the edge function and state function,

respectively, based on the encoder. Connecting the state a at time k and the state ã at time

k + 1, we can obtain an edge e(a, ã) in the trellis.

The trellis, denoted by two-user sum trellis Tsum, used in decoder P in Fig. 5.3 is a

joint description of RSCs P of two users, since the input (output) information of component

decoder P correspond to the arithmetic sum of output (input) messages of RSCs P of two

users. Accordingly, the state set of two-user sum trellis Tsum is Asum = {(al, bn)|l, n =

1, 2, ..., 2L}, where al ∈ A is from the state set of user 1, and bn ∈ A is from the state

set of user 2. For state (a, b) with input (u1 + u2) ∈ {0, 1, 2}, the output is (σ(a, u1) +

σ(b, u2)) ∈ {0, 1, 2}, and the successor state at time k + 1 is (µ(a, u1), µ(b, u2)) (Fig. 5.4).

62



Chapter 5. Two-User Turbo Decoding with Simplified Sum Trellis for Gaussian TWRC 63
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Figure 5.5: An example of forming a simplified sum trellis Γssm.

(a). An RSC encoder. (b). The trellis of the RSC encoder.

(c). The sum trellis Tsum. (d). The simplified sum trellis Γssm.

63



64 5.3. Simplified Sum Trellis for Gaussian TWRC

))0,(),0,(( aa µµ

))1,(),0,(( aa µµ

))0,(),1,(( aa µµ

))1,(),1,(( aa µµ

)0,()0,( aa σσ +

}

21 uu +

),( aa
)1,()1,( aa σσ +

)1,()0,( aa σσ +

)0,()1,( aa σσ +

Figure 5.6: The relation between successor states (outputs) from self symmetrical states

(a,a).

Note that, for each state, there are four edges corresponding to four possible inputs because

of u1, u2 ∈ {0, 1}. Throughout all the states and inputs, two-user sum trellis Tsum is obtained

with the number of M2 states and the number of 4M2 edges, where M = 2L.

We give an example of a sum trellis. An RSC encoder with L = 2 memory cells is

given in Fig. 5.5(a) with its trellis in Fig. 5.5(b). Consider two states, for instance, 00 and

10, of user 1 and 2, respectively. For the state 00 in user 1, one of two successor states is

00 with input u1 = 0 and output ũ1 = 0. Similarly, for the state 10 in user 2, one of two

successor states is 01 with input u2 = 1 and output ũ2 = 0. Note that in Fig. 5.5(b), the

two pairs of input u and output ũ of a state are labeled at the right side of the trellis at the

same line level of the state. The first and second input-output pairs correspond to the first

and second edges originated from the state.

To obtain the sum trellis of Fig. 5.5(c), we combine two state sets (Fig. 5.5(b)) of the

two users to produce the state set of the sum trellis. For instance, we combine the state 00
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in user 1 and the state 10 in user 2 to produce the state 0010. Their successor states in the

sum trellis are also a combination of successor states of users 1 and 2. For instance, one of

the four successor states is 0001 with input u1 +u2 = 1 and output ũ1 + ũ2 = 0 (see the first

edge from the state 0010). For the state 0010, the four input-output pairs of 10 01 21 12,

corresponding to the first to forth edges, are labeled at the right side at the same line level

of state 0010 in the sum trellis.

5.3.2 Simplified Sum Trellis

We are ready to give a simplified sum trellis, which is equivalent to the sum trellis above.

Removing partial states from the sum trellis reduces the decoding complexity without any

degradation of decoding performance.

In sum trellis Tsum, two states (a, b) and (a′, b′), where a, b,a′, b′ ∈ A, are symmet-

rical, if a = b′ and b = a′. There exist two types of symmetrical states. We consider the

states (a, b) and (b,a) to be mutual symmetrical if a ̸= b. When a = b, the state is called

self symmetrical. For state (a, b), (a ̸= b), there always exists a mutual symmetrical state

(b,a) in Tsum, since the two turbo encoders are the same for the two users by assumption.

This means that the mutual symmetrical states are in-pair in the trellis. Note that the self

symmetrical state is itself, and is not in-pair.

In the following, we show that removing one of the states in a pair of mutual symmet-

rical states from the sum trellis produces an equivalent and simplified trellis. Let’s consider

65



66 5.3. Simplified Sum Trellis for Gaussian TWRC

only the situation of a ̸= b. Look at the relation between successor states (or outputs) from

mutual symmetrical states (a, b) and (b, a) (Fig. 5.4). It is obvious from Fig. 5.4 that for

u1 + u2 = 0 or 2, their successor states are (mutual or self-) symmetrical, and their outputs

are the same. For u1 +u2 = 1, successor state (µ(a, u1 = 0), µ(b, u2 = 1)) from state (a, b) is

symmetrical to successor state (µ(b, u1 = 1), µ(a, u2 = 0)) from state (b, a). The output of

(a, b) is equal to that of (b, a), i.e. σ(a, u1 = 0)+σ(b, u2 = 1) = σ(b, u1 = 1)+σ(a, u2 = 0).

The remaining two successor states are also symmetrical.

This observation tells us that at time k for every edge from state (a, b), there exists

an edge that has the same output from its mutual symmetrical state (b,a). Moreover, the

corresponding successor states at time k + 1 are also self or mutual symmetrical. When the

successor state is self symmetrical, the two successor states are in fact a single state. When

the successor state is mutual symmetrical, as we stated above, the two outputs from the two

mutual symmetrical states are also the same. As a result, for input (k + 1)-th to (K + 1)-th

bits in a given message sequence, the output sequence from (a, b) at time k is identical to

that from (b, a) at time k. It is known [44] that two trellises are equivalent if they generate

the same code, which is the set of all possible output sequences. This means that we can

remove one of the states in a pair of mutual symmetrical states at time k from the sum-trellis

Tsum. This is also true for all the times, i.e. k = 1, 2, . . . , K.

After removing the partial states discussed above, we turn to discussing the edges.

We show that the number of edges originated from self symmetrical state becomes three, and

the number of edges originated from mutual symmetrical state is still four. As we stated, any
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state (a, b) at time k in the sum trellis has four edges corresponding to four possible inputs

u1 + u2, u1, u2 ∈ {0, 1}. Since one of the states in a pair of symmetrical states is removed,

the edges originated from the removed states at time k are deleted. When a successor state

at time k+1 is removed, the corresponding edge from the state (a, b) is moved to connect to

the mutual symmetrical state of the successor state at time K + 1. We discuss the following

two cases.

When a = b, i.e. the case of the self symmetrical state (a,a), among its four successor

states (Fig. 5.6), there exist two states at time k + 1 that are always self symmetrical. The

others are mutual symmetrical. Since one of the states in a pair of mutual symmetrical states

at time k + 1 is removed, the edge is moved to connect to the remaining one. Since the two

edges have the same inputs and outputs, the two edges are merged to a single edge. This

means that the number of edges from the self symmetrical state is three.

When a ̸= b, i.e. the case of the mutual symmetrical state (a, b), symmetrical state

does not exist among its four successor states (µ(b, u1), µ(a, u2)), u1, u2 ∈ {0, 1}. Therefore,

the number of edges from mutual symmetrical states is still four. Note that there probably

exist two different edges e((a, b), (ã, b̃)) and e′((a, b), (ã, b̃)), (a ̸= b), which originate from

the same state and connect to the same successor state, since their inputs (outputs) are

different.

In summary of the above discussion, we give the steps to simplify the sum trellis.

First, remove one of the states in a pair of symmetrical states from the sum trellis. Second,

remove the four edges originated from each of the removed states at time k. Third, move
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Table 5.1: The number of states and edges in Tsum and Γssm.

Tsum Γssm

M
state edge state edge

M2 4M2 M(M + 1)/2 2M(M − 1) + 3M

2 4 16 3 10

4 16 64 10 36

8 64 256 36 136

16 246 1024 136 528

the edges, connected to the removed state at time k + 1 , to its mutual state at time k + 1.

Fourth, merge the two edges between a self symmetrical state at time k and a same state at

time k + 1. We finally deduce the sum trellis to a simplified sum trellis Γssm.

Table 5.1 gives the numbers of states and edges in the simplified sum trellis. In the sum

trellis, the number of the self symmetrical state (a,a), a ∈ A, is M = |A|. The rest are the

number of M2−M mutual symmetrical states. By removing half of the mutual symmetrical

states, the total number of states in the simplified sum trellis becomes M(M + 1)/2. The

number of edges in the trellis is ((M2 −M)/2) ∗ 4+M ∗ 3. We see that the number of states

and edges in the simplified sum trellis Γssm is nearly half in sum trellis Tsum. This means

that nearly half of the computational complexity can be decreased when decoding at the

relay is with Γssm. In addition, four examples of state numbers and edge numbers in Tsum
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and Γssm are given for M = 2 to 16 in Table 5.1.

Figure 5.5(d) is an example of a simplified sum trellis obtained from the sum trellis

of Fig. 5.5(c). In the sum trellis of Fig. 5.5(c), there are four self symmetrical states and

six pairs of mutual symmetrical states. Removing one of the states in a pair of symmetrical

states reduces the number of states to 10 (see the left side of the trellis in Fig. 5.5(d)). Edges

originated from the removed states at the left side are removed. For the removed states at

the right side, the edges connected to the state are moved to connect to its symmetrical state.

For instance, the edges e(0000, 1000), e(0001, 1000), e(0101, 1000) are moved to connect to

state 0010, denoted by e′(0000, 0010), e′(0001, 0010), e′(0101, 0010). For the self symmetrical

state, its two edges are merged. For instance, for state 0000, the two edges e(0000, 0010) and

e′(0000, 0010) are merged to a single edge e(0000, 0010). By the way, there are two edges

between states 0001 and 0010, and two edges between states 1011 and 0111.

Remark: The simplified sum trellis is different from the reduced-state trellis in [40]. The

reduced-state trellis is given based on a simple state combination, i.e. forming a state set by

an XOR operation of two state sets of two users’ codes [40–42]. Also, the input (output) is

the XOR of the two inputs (outputs) of two users. This means that the decoding with the

reduced-state trellis is to directly obtain the XORed messages without distinguishing three

values of the arithmetic sum. Therefore, the trellis degrades the decoding performance, and

is not suitable for iterative decoding. In our work on the simplified sum trellis, although

we remove one of the states in a pair of mutual symmetrical states, the simplified one is

equivalent to the sum trellis without any degradation of the decoding performance, and is
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suitable for iterative decoding.

5.4 Simulation

In this section, we give the performance evaluation of the proposed two-user turbo decoding

scheme with the simplified sum trellis. We only focus on the evaluation of bit error rate

(BER) of decoded bit u1⊕u2 at the relay. In the simulation, SNR per user is 1/σ2 (the total

transmit power of the two users is 2, and the average power of each one is 1). The message

length is 4096 bits.

Before proceeding, let’s first evaluate the BER performance of the two-user decoding

with convolutional code (i.e. the component code of the turbo code) over AWGN channel.

The polynomial of the convolutional code used at sources S1 and S2 is (g0, g1) = (13, 15)8,

where g0 and g1 are the feedback polynomial and the forward polynomial in octal form [43],

respectively. In the decoder at relay R, the decoding is based on the BCJR algorithm with

the simplified sum trellis, and but without any iterations. In Fig. 5.7, we see that the BER

with the simplified sum trellis is the same as that with the sum trellis. We verify that the

simplification of sum trellis does not degrade any decoding performance of BER. Moreover,

for comparison we give the BER with the reduced-state trellis in [40]. We observe that the

proposed scheme outperforms that with reduced-state trellis, e.g. by about 0.8 dB gain at

the BER of 10−5. The degradation of reduced-state trellis is due to that the decoding with

the trellis is to obtain the XORed messages without distinguishing the three values of the
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Figure 5.7: BERs of decoded bit u1 ⊕ u2 with the reduced-state trellis [40], sum trellis, and

simplified one at the relay with convolutional code (AWGN).

arithmetic sum.

Let us now return to the two-user turbo decoding. In Fig. 5.8, we give a BER

performance of the two-user turbo decoding scheme with the simplified sum trellis when

TWRC is AWGN channel. The polynomial of component codes of the turbo code is also

(g0, g1) = (13, 15)8. We see that the BER of the proposed scheme is the same as that of

the decoding scheme with the sum trellis, although the decoding complexity of the proposed

scheme is nearly half of the conventional one as we stated in Sect. 5.3.2. In addition, we

give BER of a two-user decoding with MMSE estimation [37] for comparison. We observe

that the proposed scheme outperforms the MMSE scheme by about 0.6 dB at BER of 10−5.

Note that in the MMSE scheme, the relay estimates the superimposed signal to sum c1 + c2
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Figure 5.8: BERs of decoded bit u1 ⊕ u2 with the sum trellis and simplified one and with

MMSE [37] at the relay with turbo code (AWGN).

of two codewords, and decodes it to network-coded message u1 ⊕ u2.

5.5 Conclusion

We combined binary turbo coding to PNC in the TWRC. We proposed a two-user turbo

decoding scheme with a simplified sum trellis. For two-user iterative decoding at the relay,

the component decoder decodes the superimposed signal to the arithmetic sum of two users’

messages. For the two-user decoding, we employed a simplified sum trellis, which is obtained

by removing one of the states in a pair of mutual symmetrical states from a sum trellis. This

removal reduces the decoding complexity to half of that with the sum trellis, and does not
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degrade decoding performance over AWGN channel since two output sequences from the

pair of mutual symmetrical states are the same.
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Chapter 6

Two-User Turbo Decoding with

Simplified Sum Trellis for Fading

TWRC

6.1 Introduction

In the Gaussian TWRC channel model, the received signal is assumed to be affected only by a

constant attenuation and a constant delay. In wireless communications, digital transmission

often needs a more elaborate model, since it may be necessary to account for propagation

vagaries, referred to as“ fading,”which affect the signal strength. It may either be due

to multipath propagation, referred to as multipath induced fading, or due to shadowing
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from obstacles affecting the wave propagation, sometimes referred to as shadow fading. The

fading may vary with time, geographical position or radio frequency, and is often modeled

as a random process. A fading channel is a communication channel comprising fading. In

this chapter, we consider the two-user turbo decoding for fading TWRC.

Now we give the model of fading TWRC. Consider the fading TWRC, where h1 (h2)

is the channel coefficient between relay R and user S1 (S2). The received signal at the relay

is

yR = h1c1 + h2c2 + z (6.1)

where c1, c2 ∈ {+1,−1} are transmitted signal which are either the systematical bits u1, u2

or the parity bits ũ1, ũ2 (see Fig. 5.5).

When the channel coefficients h1 and h2 are known, for the Gaussian noise z, the

channel transition probability density function at relay R is given by

p(yR|(c1, c2), h1, h2) =
1

√
2πσ2

exp

−
(yR − (h1c1 + h2c2))

2

2σ2

 . (6.2)

We observe that

h1c1 + h2c2 =


h1 − h2, if c1 + c2 = 0+

−h1 + h2, if c1 + c2 = 0−.

(6.3)

Generally, h1 − h2 ̸= −h1 + h2, if h1 ̸= h2. Thus, in (6.3) we distinguish these two cases:

c1 = 1, c2 = −1 (i.e. c1 + c2 = 0+) and c1 = −1, c2 = 1 (i.e. c1 + c2 = 0−).
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Recall that the sum trellis and the simplified one in Section 5.3 are for the Gaussian

TWRC (h1 = h2 = 1), where h1c1+h2c2 is always equal to 0 in both cases above. Since in the

two trellises constructed for Gaussian TWRC, these two cases are not distinguished. They

can not be directly applied to fading TWRC. A modification of these trellises are required.

In this chapter, we propose a two-user turbo decoding algorithm for fading TWRC.

A modified simplified sum trellis for fading TWRC is obtained distinguishing the cases of

c1 = 1, c2 = −1 and c1 = −1, c2 = 1. The transition probability density function from a state

to next state in simplified sum trellis is approximately computed. The approximate decod-

ing algorithm preserves low complexity over Gaussian TWRC, without much performance

degradation.

6.2 Simplified Sum Trellis for Fading TWRC

Let the edge in trellises, connecting the state (a, b) at time k and the state (ã, b̃) at time

k + 1, be with input u1 + u2 and output ũ1 + ũ2. For simplicity, we refer the edge whose

input is u1 + u2 = 1 or output is ũ1 + ũ2 = 1 to 1-in-edge. Since c1, c2 are transmitted signal

which is associated with either the systematical bits u1, u2 or the parity bits ũ1, ũ2, the cases

of c1 + c2 = 0+ (0−) means input u1 + u2 = 1+ (1−) or output ũ1 + ũ2 = 1+ (1−). Similarly,

we refer the edge whose input is u1 + u2 = 1+ (1−) or output is ũ1 + ũ2 = 1+ (1−) to 1+

(1−)-in-edge.

To apply the sum trellis in Section 5.3 to fading TWRC, a modification is to simply
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distinguish 1-in-edge into 1+-in-edge or 1−-in-edge. Moreover, similar to the simplification

on the sum trellis in Section 5.3, we have a simplification for fading as follows: First, remove

one of the states in a pair of symmetrical states from the sum trellis. Second, for the edges

originated from each of the removed states at time k, move the 1-in-edges to the symmetrical

state at time k, and remove the remaining edges. Lastly, move the edges, connected to the

removed state at time k + 1, to its mutual state at time k + 1. As a result, we deduce the

sum trellis for fading to a modified sum trellis.

Note that for fading TWRC the 1-in-edge is moved to its symmetrical state, while

for Gaussian TWRC the edges originated from the removed states are all removed. If there

exists a 1-in-edge from a state at k to a state at k + 1, there definitely exists a parallel

1-in-edge between these two states. In fact, one of these parallel is 1+-in-edge, and the other

is 1−-in-edge, since input u1 + u2 (or output ũ1 + ũ1) of these two edges are same.

Decoding with the modified sum trellis does not degrade any performance, but still

has a high decoding complexity since the number of edges in the trellis has not been deduced

much. Next, for the purpose of low complexity, we describe a two-user approximate decoding

algorithm with the modified sum trellis.

Generally, the algorithm is similar to one stated in Sect. 5.3 with the exception of

computing the transition probability density function of the two parallel edges. Let the 1+-

in-edge be labeled by ((u1, u2), (ũ1, ũ2)). The 1−-in-edge is then labeled by ((u2, u1), (ũ2, ũ1)).

Over a block fading channel with independent noise, for the 1+-in-edge, the channel transition

probability density function of two symbols, i.e. u1h1 +u2h2 and ũ1h1 + ũ2h2 within a block,
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is the product of ones of two single-symbols (see (6.2)). That is

p(yu, yp|(u1, u2), (ũ1, ũ2), h1, h2) = p(yu|(u1, u2), h1, h2)p(yp|(ũ1, ũ2), h1, h2). (6.4)

Also, for the 1−-in-edge, we have

p(yu, yp|(u2, u1), (ũ2, ũ1), h1, h2) = p(yu|(u2, u1), h1, h2)p(yp|(ũ2, ũ1), h1, h2). (6.5)

We compute the transition probability density function from state (a, b) to the state (ã, b̃)

in BCJR algorithm by choosing the higher one between the parallel edges, i.e.

p(yu, yp|(a, b) → (ã, b̃), h1, h2)

= max{p(yu, yp|(u1, u2), (ũ1, ũ2), h1, h2), p(yu, yp|(u2, u1), (ũ2, ũ1), h1, h2)}. (6.6)

Due to this approximation, decoding with the modified sum trellis results in a little

degradation of performance (see Figs. 6.1 and 6.2). Fortunately, the decoding complexity

with the reduced sum trellis is almost the same as that with the simplified sum trellis in

Section 5.3.2 since the two parallel edges in the modified sum trellis are viewed as a single

edge in decoding procedure. To summarize, the approximate decoding algorithm for fading

TWRC can be seen as a decoding with the simplified sum trellis in Section 5.3.2 with the

transition probability density function of 1-in-edge being approximated by (6.6).

6.3 Simulation

In this section, we give BER performance of the two-user approximate decoding algorithm

with the simplified sum trellis over block Rayleigh fading TWRC, where with a block, the
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Figure 6.1: BERs of decoded bit u1 ⊕ u2 with the reduced-state trellis [40], sum trellis, and

simplified one at the relay with convolutional code (Rayleigh fading TWRC).

channel coefficients are constant.

In our simulation, we assume that fading coefficients are perfect known at the relay.

The block length is set to 2. In Fig. 6.1, we give the BERs of convolutional code’s BCJR

decoding, with the same code polynomial as in Fig. 5.7. Indeed, our decoding scheme still

outperforms the conventional one, even over fading channel. Figure 6.2 shows the BERs of

two-user turbo decoding. In both Figs. 6.1 and 6.2, we see that BERs with the simplified sum

trellis degrade, compared with those with the sum trellis for fading. Note that the decoding

with the simplified sum trellis preserves a low complexity, as we illustrated in Table 5.1.
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Figure 6.2: BERs of decoded bit u1 ⊕ u2 with the sum trellis and simplified one at the relay

(Rayleigh fading TWRC).

6.4 Conclusion

In this chapter, we proposed a two-user turbo decoding algorithm for fading TWRC. The

simplified sum trellis for fading TWRC distinguish the cases of c1 = 1, c2 = −1 and c1 =

−1, c2 = 1. The transition probability density function from a state to next state in simplified

sum trellis is approximately computed. The approximate decoding algorithm preserves low

complexity over Gaussian TWRC, without much performance degradation.
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Chapter 7

Concluding Remarks

Coding and decoding for multiuser communication systems are investigated. In this dis-

sertation, we considered two channel models: multiple-access adder channel (MAAC) and

two-way relay channel (TWRC).

For MAAC, we proposed a coding scheme of (k + 1)-ary error-correcting signature

codes for noisy MAAC. The main coding scheme is presented that given a signature matrix

A and a difference matrix D = D+ − D− a priori, we obtained a larger signature matrix by

replacing each element in Hadamard matrix with A, or D+, or D− depending on the values

of elements and their locations in Hadamard matrix. The set of rows of proposed matrix

gave an error-correcting signature code. Introducing the difference matrix makes it possible

to construct error-correcting signature code whose sum rate is increased with an increase in

the order of Hadamard matrix. We gave binary and non-binary signature codes. They are

81



82

the best codes for MAAC, in the sense that they have highest sum rates known.

For TWRC, we proposed a low-complexity two-user turbo decoding scheme when

turbo codes are applied in two users. Simplified sum trellis is provided for two-user iterative

decoding at the relay to decrease the decoding complexity. It is obtained by removing

one of the states in a pair of mutual symmetrical states from a sum trellis. For Gaussian

TWRC, decoding based on simplified sum trellis reduces the decoding complexity to half

of that with the sum trellis, and does not degrade decoding performance since two output

sequences from the pair of mutual symmetrical states are the same. For fading TWRC, the

transition probability density function from a state to next state in simplified sum trellis

is approximately computed. The approximate decoding algorithm preserves low decoding

complexity over Gaussian TWRC, without much performance degradation.

There are a lot of open problems on error-correcting signature coding for noisy MAAC

that seem to deserve further investigation. The most interesting one is the following problem:

For given k, n and δ, what is the bound of maximum number of tolerate users for MAAC,

and how to construct a signature code to approach the bound of maximum number.
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