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1 Introduction

The purpose of the present thesis is to investigate the mathematical struc-
tures of combinatorial optimization problems on flow-networks from various
view points. The combinatorial optimization problems on flow-networks
form the most typical and the most important class in vast field of combi-
natorial optimization problems. Lots of problems in engineering and social
science can be described by the terminology of graph theory, so the opti-
mization problems on flow-networks arises in the various fields of science
and engineering.

The main results of the present thesis are divided into two parts. The
first part deals with the maximum flow problem. We formulate the maximal
flow problem as the LP or the IP problem and discuss the duality between
the flows and the cutset in terms of the LP formulation of the maximum flow
problem. Further, we determine the universal Gröbner basis associated with
the maximum flow problem. The second part consists of the results on the
eigenvalue problem of matrices with values in Min-Plus algebra. Although
the first part and the second part of the thesis are both concerned with
networks on graphs, it seems that they are mutually independent.

In the first part of the present thesis, we deals with the maximum flow
problem formulated as the linear programming (LP) problem or the integer
programming (IP) problems. The LP problem is the problem of minimizing
(or maximizing) a linear form subject to the constraints consisting of linear
equalities and inequalities; if the values of the variables in the LP problem
are restricted to integers, the LP problem is called the IP problem. If an
optimization problem on the flow-network is formulated as the LP or the
IP problem, it can be solved by the general algorithms for the LP or the
IP problem. However, for the many of the famous optimization problems
on flow-networks, efficient and specified combinatorial algorithms have been
developed. Such algorithms solve the problems much faster than the general
LP or IP algorithms. Then what is the significance of the formulation of the
combinatorial optimization problems as the LP or the IP problems? One of
the major advantages of the formulation of the combinatorial optimization
problem as the LP or the IP problem is the flexibility for the change of con-
straints. We will pay a little attention to such practical advantages of the
LP or the IP formulation. We will take notice of the other advantage of the
formulation. Once the combinatorial optimization problems is formulated
as the LP or the IP problem, one can use the technique from the algebra or
geometry in order to analyze the structure of the problems. In the present
thesis, we investigate the structures of various kinds of optimization prob-
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lems on the flow-networks using various tools from algebra or geometry. In
such investigation, the formulation of problems on flow-networks as the LP
or the IP problems play an important role.

In the first part of the present thesis, we focus on the maximum flow
problem which is a well-known optimization problem on flow-networks. The
maximum flow problem is the problem for finding the flow such that the
flow value is maximal among the flows subject to the capacity restriction
and the flow conservation laws. There are various combinatorial algorithms
for solving the maximum flow problems as follows: The augmenting path
algorithm due to Ford and Fulkerson [11] is the first one and most popular;
the preflow-push algorithm due to Goldberg and Tarjan [14] is the latest and
probably the most efficient one. The max-flow min-cutset theorem which is
one of the most famous results in the theory of flow-network problem sug-
gests the duality between flows and cutsets. In the present thesis we give
a formulation of the maximum flow problem as an LP problem and try to
explain the duality between the flows and cutsets from the view point of
LP duality. We have seen only by computational experiments that the LP
dual for the maximum flow problem returns the binary vector expressing
the min-cut and min-cutset as the optimal solution but we have not yet
obtained the rigorous proof of the result. Especially we do not know the
reason why the LP dual of the maximum flow problem returns the binary
vector as the optimal solution. Next we clarify the mathematical structure
of the maximum flow problem in some sense through the Gröbner basis asso-
ciated with the problem. The notion of the Gröbner basis together with the
algorithm for its construction were introduced by Buchberger [5] in 1960’s
in order to solve various problems in the polynomial ideal theory [6]. Since
then lots of algorithms based on the Gröbner basis have been exploited for
solving various kinds of problems in the polynomial ideal theory and im-
plemented to computer algebra systems [6]. Therefore the Gröbner basis
becomes indispensable not only to the polynomial ideal theory but also to
the development of computer algebra. We are mainly interested in the ap-
plication of Gröbner basis technique to combinatorial optimization problems
[21, 29]. In the application to combinatorial optimization problems, the key
technique is Conti-Traverso’s algorithm [6, 7, 22] for solving integer program-
ming (IP) problems. In the algorithm, Gröbner basis of toric ideals play a
crucial role. In order to do such investigation, we give another formulation
of the maximum flow problem as the LP problem slightly different from
the above LP formulation. Moreover, we have given the characterization
of the universal Gröbner basis associated with the maximum flow problems
by combinatorial property of the graph. We have proved that the universal
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Gröbner basis of toric ideal associated with our formulation of the maximum
flow problem as the IP problems consists of binomials corresponding to all
incidence vectors of circuits and s-t paths of the digraph. Our result directly
follows from the well known results on toric ideals associated with incidence
matrices of digraphs in combination with the properties of “Lawrence lift-
ing”. In addition to the main result, we have obtained some results on the
toric ideal associated with the reduced incidence matrices. We prove that
the kernel lattice of the reduced incidence matrices are generated by inci-
dence vectors of s-t directed paths under some assumption for the digraph;
by using this observation , we determine the generators of the toric ideal
associated with reduced incidence matrices of digraphs. It is known that
the computation of Gröbner basis by using Buchberger’s algorithm takes a
tremendously long time and consumes a huge amount of storage space. In
fact, computational experiments show that computation of the Gröbner ba-
sis of toric ideals associated with the maximum flow problem takes too much
time even for the problems with particularly small size [21]. In order to ver-
ify the efficiency of our results in computing Gröbner basis of toric ideals
associated with maximum flow problem, we have to develop the efficient al-
gorithm for enumerating paths and circuits of digraphs and implement it to
a suitable computer algebra system. However, we do not know the efficient
algorithm for such enumeration. We will remain such kind of investigation
for the future study.

In the second part of the present thesis, we focus on the eigenvalue prob-
lem of matrices with entries in min-plus algebra. Min-Plus algebra is the set
of all real numbers and the element the infinity with the binary operations
“min” and “+”. It is one of many idempotent semirings, and has been stud-
ied in various fields of mathematics. Many of theorems and techniques that
we use in usual linear algebra seems to have analogues in linear algebra over
min-plus algebra. Moreover, Min-Plus algebra may seems to fit well with
the algorithm of the network optimization problems. However, such kind of
investigation have not yet exploited sufficiently. In the present thesis, we
consider the eigenvalue problem of matrices with entries in min-plus algebra
and characterize the eigenvalues and corresponding eigenvectors using the
terminology of the network theory on digraphs. First we define the network
associated with the matrix with entries in min-plus algebra. Then, we show
that the minimal average weight of the circuits in the network become the
eigenvalue of the matrix. Also we show that the corresponding eigenvectors
appears as the column vectors of the minimal weight matrix of the speci-
fied network which is obtained from the original network by subtracting the
minimal average weights from the weight of every edges. Further, we prove
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under some assumption that the minimal average weight of the network is
the unique eigenvalue of the matrix. Finally we refer to the coincidence
between the right eigenvalue and the left eigenvalue.

The present thesis is organized as follows: In section 2, we give a brief
review of graph theory, and introduce some of the network optimization
problem. In section 3, we give the definition of the LP problem, especially
the definition of the standard form LP problem and the IP problem and we
also give the definition of the dual problem. In section 4, we formulate some
of the network optimization problem as the standard form LP problem. We
explain the relation between the maxflow and the mincutset through the
LP duality. In section 5, we give some basic notations and terminologies
for polynomial ideal theory and give the definition of the Gröbner basis.
We prove the first main result asserting that the universal Gröbner basis of
toric ideal associated with the maximum flow problem consists of binomials
corresponding to the incidence vectors of all circuits and s-t paths of the
digraph. In section 6, we discuss the eigenvalue problem of matrices with
entries in Min-Plus algebra. We determine the eigenvalues and the eigen-
vectors belonging to the eigenvalues. The second main result of the thesis
is described in terms of the terminology of the network theory on graphs.
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2 Network Flows

2.1 Digraphs

A directed graph or, for short, a digraph G consists of the finite sets V and
E; an element v ∈ V is called a vertex and an element e ∈ E is called an
edge of G. The edge e ∈ E can be expressed as an ordered pair e = (vi, vj)
of vertices vi, vj ∈ V . We introdece the maps ∂− : E → V and ∂+ : E → V
by ∂−(e) = vi, ∂+(e) = vj for e = (vi, vj); vertices vi and vj are called the
tail and the head of the edge e = (vi, vj) respectively; vertices vi and vj

are simply called the end-vertices of e = (vi, vj). If distinct edges e and e′

have two end-vertices in common, then one of the cases (i) ∂−(e) = ∂−(e′)
and ∂+(e) = ∂+(e′) or (ii) ∂−(e) = ∂+(e′) and ∂+(e) = ∂−(e′) occurs; in
the former case, edges e and e′ are called parallel edges and latter case,
they are called antiparallel edges. An edge with just one end vertex, that
is, ∂−(e) = ∂+(e) holds is called a loop. A graph without loops, parallel
edges and antiparallel edges is called simple. A sequence of vertices W =
(vi0 , vi1 , . . . , vil) in G is called a walk if (vik−1

, vik) ∈ E or (vik , vik−1
) ∈ E for

k = 1, . . . , l. Vertices vi0 and vil are respectively called an initial vertex and a
terminal vertex of the walk W . Edges eik = (vik−1

, vik) or eik = (vik , vik−1
) in

the walk are called a forward edge or a backward edge according to whether
eik = (vik−1

, vik) or eik = (vik , vik−1
). A walk W is called directed if all the

edges in W are forward edges. A walk T is called a trail if the edges in
T are pairwise distinct. A walk P is called a path if the vertices in P are
pairwise distinct except the initial vertex and the terminal vertex. A path
with the initial vertex vi0 and with the terminal vertex vil is called a vi0-vil

path. If the initial vertex and the terminal vertex of the path is identical,
then the path is called closed; a closed path is called a circuit. Henceforth,
we sometimes express walks, paths and circuits in terms of the sequence of
edges. For example, we write the walk (vi0 , vi1 , . . . , vil) with eik = (vik−1

, vik)
or (vik , vik−1

) as W = (ei1 , ei2 , . . . , eil). We express directed walks, directed
paths and directed circuits in terms of the alternating sequence of vertices
and edges. For the directed walk (vi0 , vi1 , . . . , vil) with eik = (vik−1

, vik), we
write W = (vi0 , ei1 , vi1 , . . . , eil , vil).

Definition 2.1. Let E = {e1, . . . , em} be a set of edges in a digraph G.
(1) Let W = (ei1 , . . . , eil) be a directed walk expressed in terms of the
sequence of edges. We define the incidence vector ω = (ω1, . . . , ωm) of W
as follows:

(i) If eik ∈ E is included j times in the directed walk W, then we set
ωik = j.
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(ii) If eik ∈ E is not included in the directed walk W, then we set ωik = 0.

(2) Let P = (ei1 , . . . , eil) be a path expressed in terms of the sequence of
edges. Then edges in the path P is divided into the disjoint union of a set of
forward edges P+ and a set of backward edges P−. We define the incidence
vector p = (p1, . . . , pm) of a path P by

pk =


+1 if ek ∈ P+

−1 if ek ∈ P−

0 if ek ̸∈ P .

In particular, if all entries of the incidence vector p of the path P are non-
negative, then the path P is called directed.

Definition 2.2. Let G = (V,E) be a digraph with vertex set V = {v1, . . . , vn}
and edge set E = {e1, . . . , em}.
(1) We define the adjacency matrix A = (aij) ∈ Rn×n of G by

aij =
{

1 if (vi, vj) ∈ E
0 if (vi, vj) ̸∈ E .

(2) We define the incidence matrix Q = (qik) ∈ Rn×m of G by

qik =


+1 if ∂+(ek) = vi

−1 if ∂−(ek) = vi

0 otherwise .

2.2 Minimum Cost Flow Problem

Let G = (V,E) be a digraph with n vertices and m edges. We assign a
positive integer c(e) to each edge e ∈ E; c(e) is called the capacity of the
edge e. We also assign a positive integer δ(e) to each edge e ∈ E in addition
to the capacity; δ(e) is called the cost of the edge e. Moreover, we assign
the integer d(v) to each vertex v ∈ V with

∑
v∈V d(v) = 0; d(v) is called the

demand. The quadruple N = (G, c, δ, d) is called a network on G associated
with the minimum cost flow problem. A flow on the network N is the
function f on E satisfying the following conditions (i) and (ii):

(i) The capacity constraint 0 ≤ uk := f(ek) ≤ ck := c(ek) for all k =
1, . . . ,m.

(ii) The demand condition at each vertex:∑
∂+(ek)=vi

uk −
∑

∂−(ek)=vi

uk = d(vi) (vi ∈ V ) .
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The minimum cost flow problem is the problem for finding the flow u =
(u1, u2, . . . , um) such that the cost

∑
ek∈E δ(ek)uk is minimal. That is, the

minimum cost flow problem is formulated as follows:

minimize
∑
ek∈E

δ(ek)uk

subject to
∑

∂+(ek)=vi

uk −
∑

∂−(ek)=vi

uk = d(vi) (vi ∈ V )

0 ≤ uk ≤ ck (k = 1, 2, · · · ,m)

2.3 Shortest Path Problem

Let G = (V,E) be a digraph with the set of vertices V = {v1, v2, . . . , vn}
and the set of edges E = {e1, e2, . . . , em}. We assign a positive integer w(e)
to each edge e ∈ E; w(e) is called the weight of the edge e. Moreover, we
specify the vertices s = v1 (the source) and t = vm (the sink). The quadruple
N = (G,w, s, t) is called a network on G associated with the shortest path
problem.

Definition 2.3. Let N be a network associated with the shortest path
problem and let P = (ei1 , ei2 , . . . , eil) be a directed path. The length ℓ(P )
of the path P is the number l of edges in P ; the weight σ(P ) of the path P
is the sum of weights of edges in P :

σ(P ) =
l∑

k=1

w(eik) .

For a circuit C, we define the length ℓ(C) and the weight σ(C) of C in the
same way as for paths.

The shortest path problem is the problem for finding the s-t directed
path whose weight is minimal in the network N .

2.4 Maximum Flow Problem

Let G = (V,E) be a digraph with the set of vertices V = {v1, v2, . . . , vn}
and the set of edges E = {e1, e2, . . . , em}. The digraph G has the source
s = v1 and the sink t = vm, and each edge e ∈ E has the capacity c(e); the
quadruple N = (G, c, s, t) is called a network associated with the maximum
flow problem. A flow on the network N is the function f on E satisfying
the following conditions (i) and (ii):
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(i) The capacity constraint 0 ≤ uk := f(ek) ≤ ck := c(ek) for all k =
1, . . . ,m.

(ii) The flow conservation law at each vertex except for the source s and
the sink t: ∑

∂+(ek)=vi

uk =
∑

∂−(ek)=vi

uk (vi ∈ V \{s, t}) .

It follows from the flow conservation law that we have

τ(u) =
∑

∂−(ek)=s

uk =
∑

∂+(ek)=t

uk .

τ(u) is called the flow value of the flow u = (u1, u2, . . . , um). The maximum
flow problem is the problem for finding the flow such that the flow value is
maximal. That is, the maximum flow problem is formulated as follows:

maximize τ(u) =
∑

∂−(ek)=s

uk =
∑

∂+(ek)=t

uk

subject to
∑

∂+(ek)=vi

uk −
∑

∂−(ek)=vi

uk = 0 (vi ∈ V \{s, t})

0 ≤ uk ≤ ck (j = 1, 2, · · · ,m)

We explain the Maxflow-Mincutset theorem which is well-known theorem
that describe the duality in the flow network. If a vertex set V is divided
into the disjoint union V = Φ ⊔ (V \ Φ) and s ∈ Φ, t ∈ V \ Φ, then the set
Φ is called a cut. The set of edges Ψ whose elements ek satisfy ∂−(ek) ∈ Φ
and ∂+(ek) ∈ V \ Φ is called the cutset of the cut Φ.

Definition 2.4.
(1) For a cut Φ ⊂ V = {v1, . . . , vn} of a digraph G = (V,E), we define the
incidence vector φ = (φ1, . . . , φn) of Φ by

φi =
{

1 vi ∈ Φ
0 vi ∈ V \ Φ .

(2) For a cutset Ψ ⊂ E = {e1, . . . , em} of a digraph G = (V,E), we define
the incidence vector ψ = (ψ1, . . . , ψm) of Ψ by

ψi =
{

1 ei ∈ Ψ
0 ei ∈ E \ Ψ .
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Let ψ = (ψ1, . . . , ψm) be the incidence vector of a cutset Ψ. Then the
capacity σ(Ψ) of Ψ is defined as

σ(Ψ) =
m∑

k=1

ψkc(ek) .

If the capacity σ(Ψ) of the cutset Ψ satisfies the inequality σ(Ψ) ≤ σ(Ψ′)
for the capacity σ(Ψ′) of an arbitrary cutset Ψ′, then the cutset Ψ is called
minimal.

Theorem 2.5 (Maxflow-Mincutset Theorem, [1, 12, 19]).
In the network N associated with the maximium flow problem, the max-
imam flow value in N is equal to the capacity of the minimal cutset in
N .

3 LP Problem and IP Problem

3.1 The Standard Form of LP and IP

Definition 3.1 (LP Problem and IP Problem).
(1) Let A = (aij) ∈ Rm×n be an m × n matrix with entries in R and let
b ∈ Rm c ∈ Rn be column vectors. The linear programming (LP) problem
in the standard form is the problem of finding the column vector x ∈ Rn

≥0

with non-negative entries satisfying the condition Ax = b and minimizes
the linear form tcx = c1x1 + · · · + cnxn. We write this LP problem simply
as:

minimize tcx

subject to Ax = b, x ∈ Rn
≥0 .

(3.1)

(2) Let A = (aij) ∈ Zm×n be an m × n matrix, b ∈ Zm be a column vector
with integer entries and c ∈ Rn be a column vector with real entries. The
integer programing (IP) problem in the standard form is the problem of find-
ing the column vector x ∈ Zn

≥0 with non-negative integer-entries satisfying
Ax = b and minimize tcx. We also write this IP problem simply as:

minimize tcx

subject to Ax = b, x ∈ Zn
≥0 .

(3.2)

The vector x subject to the condition is called the feasible solution. If a
value of the objective function tcx which is obtained by the feasible solution
x is minimal, then the feasible solution x is called the optimal solution. The
minimal value tcx is called the optimal value.
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3.2 Dual Problem

Definition 3.2 (Dual Problem).
For the LP problem formulated as (3.1), its dual problem is writen as

maximize tby

subject to tAy ≤ c, y ∈ Rm .
(3.3)

If we consider the objective function of (3.1) from minimization to maxi-
mization, we can write its dual problem as follows:

minimize tby

subject to tAy ≥ c, y ∈ Rm .
(3.4)

The following theorem shows the relation between the LP problem and
its dual problem.

Theorem 3.3 (Duality Theorem, [2, 13]).
We consider the LP problem in the standard form (3.1) and its dual problem
(3.3). If either the LP problem or its dual problem has the optimal solution,
then the other also has a optimal solution and their optimal value coinside.

4 Network Flows and LP Problem

4.1 Minimum Cost Flow and Shortest Path as LP

First, we show the formulation of the minimum cost flow problem as the
LP problem. Let N = (G, c, δ, d) be a network associated with the min-
imum cost flow problem on the digraph G with n vertices and m edges,
and let Q ∈ Rn×m be the incidence matrix of G. In order to formu-
late the minimum cost flow problem as the LP problem in the standard
form (3.1), we introduce the vector c whose kth entry is equal to the ca-
pacity of the edge ek: c = (c(e1), c(e2), . . . , c(em)). Similarly we intro-
duce the vector of the cost δ = (δ(e1), δ(e2), . . . , δ(em)), the vector of
the demand d = (d(v1), d(v2), . . . , d(vn)) and the vector of the flow u =
(u(e1), u(e2), . . . , u(em)). Then we can formulate the minimum cost flow
problem as the LP problem:

minimize tδu
subject to Qu = d

0 ≤ u ≤ c, u ∈ Rm
≥0 .

(4.1)
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Next, we formulate the shortest path problem as LP problem from view
point of the minimum cost flow problem. We specify the source s = v1 and
the sink t = vm in the network N = (G, c, δ, d) associated with the minimum
cost flow problem. Moreover we define capacities and demands as follows:

(i) Capacities ck = 1 for all ek ∈ E.

(ii) Demands ds = −1, dt = 1 and di = 0 for all vi ∈ V \ {s, t}.

Under these setting, we find a flow u with minimal cost
∑

ek∈E δkuk subject
to the capacity constraint (i) and the flow conservation law (ii) as follows:

(i) 0 ≤ uk ≤ ck = 1 for all k = 1, . . . ,m.

(ii)
∑

∂+(ek)=vi
uk −

∑
∂−(ek)=vi

uk = di for all vi ∈ V .

The shortest path problem is formulated as LP problem as follows:

minimize tδu
subject to Qu = d

0 ≤ u ≤ 1, u ∈ Rm
≥0 .

(4.2)

Here, the vector d = t(−1, 0, . . . , 0, 1) ∈ Rm and the vector 1 = t(1, 1, . . . , 1) ∈
Rn. Since all entries of the constants in (4.2) are integers, all entries uk of
the feasible solution u are also integers by the Integral Flow Theorem [20].
So the value of uk subject to the capacity constraint is equal to 0 or 1
for all k = 1, . . . ,m. Then, we can construct the sequence of the edges
P = (ei1 , . . . , eil) by picking out the edge eik corresponding to the entry
uik = 1 of the feasible solution u in the digraph G. By the demand con-
dition, the sequence P contain at least one egde ei with ∂−(ei) = s and at
least one egde ej with ∂+(ej) = s. The optimal solution u′ of (4.2) is the
solution whose cost is minimal in the feasible solutions u. So the sequece of
edges P ′ which is derived from the optimal solution u′ does not contain the
circuit, and it become the incidence vector of the s-t shortest path.

4.2 Maximum Flow Problem and Its Dual

In this section, we clarify the duality between flows and cutsets in the max-
imum flow problem through the LP problem.
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4.2.1 Maximum Flow Problem as LP

Let N = (G, c, s, t) be a network associated with the maximum flow problem
on the digraph G with n vertices and m edges. The source s and the sink t
are specified vertices in V and each edge e ∈ E is endowed with the capacity
c(e). In order to formulate the maximum flow problem as LP problem, we
define a digraph G = (V, E) with E = E ∪ {e0} and e0 = (t, s). We assume
that the capacity of the edge e0 is a high value enough and u0 is the flow on
e0. Then we can consider that a flow t(tu, u0) on the network N satisfies the
flow conservation law. The maximum flow problem is reduced as follows:

maximize tτ ′
(

u
u0

)
subject to Q

(
u
u0

)
= 0

0 ≤ u ≤ c .

(4.3)

Here, the matrix Q is the incidence matrix of the digraph G and coefficients
τ ′ = (τ ′

1, . . . , τ
′
m, τ ′

0) are given by

τ ′
i =

{
1 i = 0
0 otherwise .

We rewrite this formulation (4.3) to the standard form as (3.1) by introduc-
ing slack variables v = c − u:

maximize
(
tτ ′, t0

) u
u0

v


subject to

(
Q O

Im0 Im

)u
u0

v

 =
(
0
c

)
t(tu, u0,

tv) ≥ 0 .

(4.4)

Here, O is the n×m zero-matrix, Im is the m×m identity matrix and Im0

is the m × (m + 1) matrix defined as

[Im0 ]ij =
{

1 if i = j
0 if i ̸= j .

12



4.2.2 Dual of Maximum Flow Problem

We have the dual problem of the maximum flow problem which is formulated
as LP problem (4.4) as follows:

minimize
(
t0, tc

)
·
(

x
y

)
subject to

(
tQ tIm0

O Im

)(
x
y

)
≥

(
τ ′

0

)
x ∈ Rn , y ∈ Rm .

(4.5)

Computational experiment shows that the dual problem (4.5) computes a
binary vector as the optimal solution, which presents the min-cut and min-
cutset [28]. The vector y becomes the incidence vector of the minimal cutset
and the vector x becomes the incidence vector of the cut which is determined
by the minimal cutset in the optimal solution of (4.5).

5 Maximum Flow Problem with Gröbner Basis

5.1 Gröbner Basis

The theory of the Gröbner basis has been developed and has fruitful ap-
plications. For example, [6, 7, 16, 17, 22]. Some definitions and theorems
which play an important role in our study are shown in this section.

5.1.1 Polynomial Rings and Ideaals

In this subsection, we state some of the basic definitions and notations on
polynomial ideal theory that are necessary for describing the Gröbner basis,
which is one of the main theme of the present thesis.

For a natural number n, a monomial in the collection of variables x1, . . . , xn

is a product xα1
1 xα2

2 · · ·xαn
n with non-negative integers α1, . . . , αn. Introduc-

ing a vector of exponents α = (α1, . . . , αn) ∈ Zn
≥0 which is called a multi-

index, we denote x¸ = xα1
1 xα2

2 · · ·xαn
n . If K is any field, a polynomial in

x1, . . . , xn is a finite linear combination of monomials with coefficients in K,
that is, a polynomial f in x1, . . . , xn with coefficients in K has the following
form:

f =
∑

¸

c¸x¸ .

Here, c¸ ∈ K for each multi-index α. We denote by K[x] = K[x1, . . . , xn]
the set of all polynomials in x1, . . . , xn with coefficients in K. K[x] becomes

13



a commutative ring with respect to the usual addition and the multiplica-
tion.

Definition 5.1. A non-empty subset I ⊂ K[x1, . . . , xn] is called an ideal of
the ring K[x1, . . . , xn] if it satisfies the following conditions:

(1) For f, g ∈ I, we have f + g ∈ I.

(2) For f ∈ I and p ∈ K[x1, . . . , xn], we have pf ∈ I.

Definition 5.2. Let f1, . . . , fs ∈ K[x1, . . . , xn]. We define a subset 〈f1, . . . , fs〉 ⊂
K[x1, . . . , xn] by

〈f1, . . . , fs〉 = {p1f1 + · · · + psfs|p1, . . . , ps ∈ K[x]}.

It follows that 〈f1, . . . , fs〉 becomes an ideal of K[x1, . . . , xn], which is
called the ideal (finitely) generated by polynomials f1, . . . , fs. Further,
the celebrated Hilbert Basis Theorem asserts that an arbitrary ideal of
K[x1, . . . , xn] is generated by a finite number of polynomials.

5.1.2 Monomial Orders

In the previouce subsection 5.1.1, we discussed the notion of polynomial rings
in one and several variables. A polynomial is expressed as the sum of the
monomials with coefficients. In this subsection, we introduce some monomial
orders that determine how we arrange monomials in the polynomial.

Definition 5.3 (Monomial Order).
A monomial order in K[x1, . . . , xn] is a binary relation ≻ on the set of mono-
mials M(x) = {x¸|α ∈ Zn

≥0} ⊂ K[x1, . . . , xn] that satisfies the following
three conditions:

(1) ≻ is a total (linear) ordering relation, that is, for every pair of mono-
mials x¸ and x˛, exactly one of the three statements x¸ ≻ x˛ , x¸ =
x˛ , x¸ ≺ x˛ holds.

(2) ≻ is compatible with the multiplication in K[x1, · · · , xn], in the sense
that if x¸ ≻ x˛ and x‚ is any monomial, then we have x¸x‚ =
x¸+‚ ≻ x˛+‚ = x˛x‚ .

(3) ≻ is a well-ordering, that is, every non-empty collection of monomials
has the smallest element with respect to the order ≻.

Since a monomial x¸ is one to one correspondence with its exponents
α = (α1, . . . , αn) ∈ Zn

≥0, a monomial order is identified with the total well-
ordering ≻ on the set Zn

≥0 of multi-indices, compatible with the addition:

14



(2)’ If α > β and any γ ∈ Z≥0, we have α + γ > β + γ.

We give some examples of monomial orders as follows.

Definition 5.4 (Lexicographic Order).
Let x¸ and x˛ be monomials in K[x1, · · · , xn]. We say x¸ ≻lex x˛ if in the
difference α − β ∈ Zn, the left-most non-zero entry is positive.

Definition 5.5 (Graded Lexicographic Order).
Let x¸ and x˛ be monomials in K[x1, . . . , xn]. We say x¸ ≻grlex x˛ if　∑n

i=1 αi >
∑n

i=1 βi, or, if
∑n

i=1 αi =
∑n

i=1 βi and x¸ ≻lex x˛.

Definition 5.6 (Graded Reverse Lexicographic Order).
Let x¸ and x˛ be monomials in K[x1, . . . , xn]. We say x¸ ≻grevlex x˛ if∑n

i=1 αi >
∑n

i=1 βi, or, if
∑n

i=1 αi =
∑n

i=1 βi and in the difference α − β ∈
Zn, the right-most non-zero entry is negative.

Definition 5.7 (Weight Order).
Let w = (w1, . . . , wn) be a vector in Rn

≥0, and let x¸ and x˛ be monomials
in K[x1, . . . , xn]. Monomial order ≻w is called a weight order with respect
to w when the following statements hold.

(∗) If w · α > w · β then x¸ ≻ x˛ .

Here, “·” is the inner product of vectors. In addition to the condition (∗),
we impose the following condition:

(∗∗) If w · α = w · β then x¸ ≻′ x˛

with a suitable monomial order ≻′.

For example, graded lexicographic order is one of the weight order with
respect to w = (1, · · · , 1) and provided that lexicographic order is taken as
≻′.

Definition 5.8 (Block Order).
Let ≻1 be a monomial order on K[x1, . . . , xn], and ≻2 be a monomial order
on K[y1, . . . , ym]. Moreover, let x¸ and x˛ be monomials in K[x1, . . . , xn],
and let y¸′

and y˛′
be monomials in K[y1, . . . , ym]. Define the monomial

order ≻= (≻1,≻2) on K[x1, . . . , xn, y1, . . . , ym] such that x¸y¸′ ≻ x˛y˛′
if

the one of the following case (i) or (ii) hold:

(i) x¸ ≻1 x˛.
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(ii) x¸ = x˛ and y¸′ ≻2 y˛′
.

The order ≻= (≻1,≻2) become a monomial order and called the block order.

Monomial orders define the leading term of the polynomial as in the
following definition (4).

Definition 5.9. Let ≻ be a monomial order on K[x1, . . . , xn] and f =∑
¸ c¸x¸ be a non-zero polynomial in K[x1, . . . , xn].

(1) The multidegree of f is defined as

multideg(f) = max{α ∈ Zn
≥0 : c¸ ̸= 0},

where the maximum is taken with respect to ≻.
(2) The leading coefficient of f is defined as

LC(f) = cmultideg(f) ∈ K .

(3) The leading monomial of f is defined as

LM(f) = xmultideg(f) .

(4) The leading term of f is defined as

LT(f) = LC(f) · LM(f) .

5.1.3 Gröbner Bases

Definition 5.10 (Gröbner Bases).
Fix a monomial order ≻ on K[x1, . . . , xn], and let I ⊂ K[x1, . . . , xn] be
an ideal. A Gröbner basis of I with respect to ≻ is a finite collection of
polynomials G = {g1, . . . , gt} ⊂ I such that for every non-zero f ∈ I it
follows that LT(f) is divisible by LT(gi) for some i.

Definition 5.11 (Reduced Gröbner Bases).
A reduced Gröbner basis of I ⊂ K[x1, . . . , xn] is a Gröbner basis G of I such
that for all distinct p, q ∈ G, no monomial appearing in p is a maultiple of
LT(q).

The Gröbner basis is a generator of the ideal in the sense that the re-
mainder or the normal form of a polynomial with respect to the Gröbner
base is uniquely determined. The precise description of the statement is
given in the following proposition.
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Proposition 5.12 ([6]). Let G = {g1, . . . , gs} be a Gröbner basis with
respect to a certain term order of an ideal I ⊂ K[x1, . . . , xn] and f ∈
K[x1, . . . , xn]. Assume that they exist a decomposition of f such that f =
g + r and that the following statements (1) and (2) hold:

(1) g ∈ I.

(2) No term in r is divisible by any of LT(g1), . . . , LT(gs).

Then the decomposition is uniquely determined.

The polynomial r in the proposition 5.12 can be regarded as the remain-
der on division of f by G and it is usually called the normal form of f with
respect to the Grönbner base G and written as r = f

G .

Corollary 5.13 ([6]). Let G = {g1, . . . , gs} be a Gröbner basis for an ideal
I ⊂ K[x1, . . . , xn] and let f ∈ K[x1, . . . , xn]. Then f ∈ I if and only if
f
G = 0.

5.2 Lattices and Toric Ideals

5.2.1 Lattices and Lattice Bases

To define a toric ideal, we need the notion of a lattice.

Definition 5.14. A non-empty subset L ⊂ Zn is called an integral lattice
if it satisfies the following conditions:

(1) For a, b ∈ L, we have a + b ∈ L.

(2) For a ∈ L and λ ∈ Z, we have λa ∈ L.

A finite subset {a1, . . . , ad} ⊂ L is called a lattice basis of L, if an
arbitrary element u ∈ L is expressed uniquely in a linear combination as
u = λ1a1 + · · · + λdad with λ1, . . . , λd ∈ Z. It is known that every integral
lattices have lattice basis; although the lattice basis are not unique for the
given integral lattice, the number of elements in the lattice basis is uniquely
determined. Let A = (aij) ∈ Zm×n be an m × n matrix with entries in Z.
We define the Z-kernel KerZ(A) of A by

KerZ(A) = {u ∈ Zn|Au = 0}.

KerZ(A) gives a class of integral lattices which plays an important part in
main result. For u = (u1, . . . , un) ∈ Zn，we define the support of u by
supp(u) = {i | ui ̸= 0}.
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Definition 5.15 (Elementary Vectors).
Let L be an integral lattice in Zn. Then u ∈ L is called an elementary
vector of the lattice L if it satisfies the following conditions:

(1) supp(u) is minimal with respect to the inclusion.

(2) Non-zero elements of u are relatively prime.

5.2.2 Toric Ideals

We note that an arbitrary element u ∈ Zn can be written uniquely as
u = u+ − u−, where u+ and u− both have non-negative entries and have
disjoint supports.

Definition 5.16 (Toric Ideals).
Let A ∈ Zm×n be an m × n matrix with entries in Z. The toric ideal IA

associated with A is defined by the ideal generated by all binomials of the
form xu+ − xu−

for u = u+ − u− ∈ KerZ(A) such that

IA = 〈xu+ − xu− | u ∈ KerZ(A)〉 ⊂ K[x1, . . . , xn] .

5.3 Lawrence Lifting and Universal Gröbner Bases

5.3.1 Elementary Binomials, Graver Bases and Universal Gröbner
Bases

Definition 5.17 (Elemantry Binomials).
Let IA be a toric ideal associated with A ∈ Zm×n. The binomial xu+−xu− ∈
IA is called an elementary binomial of the ideal IA, if u = u+ − u− is an
elementary vector in KerZ(A). The set of all elementary binomials of IA is
denoted by EA.

Definition 5.18 (Universal Gröbner Bases).
The union of all reduced Gröbner bases of IA with respect to every term
orders is called the universal Gröbner basis of IA and denoted by UA.

There exist the infinite number of term orders. It is proved, however,
that number of term orders that have different Gröbner basis for the given
ideal are finite, the universal Gröbner basis of an ideal becomes a finite set.

Theorem 5.19 ([22]). Let IA be a toric ideal. It follows that

EA ⊆ UA .
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Definition 5.20 (Unimodular Matrices).
An m× n matrix A ∈ Zm×n with rank d(≤ m, n) is called unimodular if all
non-zero d × d minors of A have the same absolute value.

Theorem 5.21 ([22]). Let A be a unimodular integer matrix. It follows
that

EA = UA .

5.3.2 Lawrence Lifting

Definition 5.22. Let A ∈ Zm×n be a m×n matrix. Define an (m+n)×2n
enlarged matrix Λ(A) of the following form

Λ(A) =
(

A O
In In

)
.

Here, In is the n × n identity matrix and O is the m × n zero-matrix. The
matrix Λ(A) is called the Lawrence lifting of A.

It follows from Definition 5.22 that

KerZ(Λ(A)) = {t(tu,−tu)|u ∈ KerZ(A)} .

Then it can be seen that the KerZ(A) and KerZ(Λ(A)) are isomorphic integer
lattices. Note that the toric ideal IA and IΛ(A) associated with the Lawrence
lifting are quite different. The toric ideal IΛ(A) is of the form:

IΛ(A) = 〈xu+
yu− − xu−

yu+ |u ∈ KerZ(A)〉 ⊂ K[x, y] .

5.4 Maximum Flow Problem with Gröbner Bases

5.4.1 Conti-Traverso’s Algorithm for IP

We consider the case where all coefficients of the standard form of the IP
problem (3.2) are non-negative integers, i.e., Au = b with A ∈ Zm×n

≥ , u ∈
Zn
≥ and b ∈ Zm

≥ . We introduce indeterminates z1, . . . , zm for each Au = b
and exponentiate to obtain an equality

zai1u1+···+ainun
i = zbi

i (i = 1, . . . ,m)

Multiplying the left and right hand sides of these equation, and rearranging
the exponents, we get equality as follows:

n∏
j=1

(
m∏

i=1

z
aij

i )uj =
m∏

i=1

zbi
i .
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Then we express monomials fj =
∏m

i=1 z
aij

i . We introduce indeterminates
x1, . . . , xn and consider the ideal

I = 〈f1 − x1, . . . , fn − xn〉 ⊂ K[z1, . . . , zm, x1, . . . , xn] .

In order to solve the IP problem by using the Gröbner basis, we have to
compute the Gröbner basis G of the above ideal I with respect to the mono-
mial order which is adapted to the IP problem. We define the monomial
order adapted to the IP problem as follows.

Definition 5.23 (Monomial Order Adapted to IP).
An adapted oarder of the LP problem ≻ip on K[z1, . . . , zm, x1, . . . , xn] is
obtained by the following procedure:

(i) Introduce a suitable monomial order ≻1 in K[z1, . . . , zm].

(ii) Introduce the weight order ≻w in K[x1, . . . , xn] using w as the weight.

(iii) Define ≻ip in K[z1, . . . , zm, x1, . . . , xn] as the block order ≻ip= (≻1

,≻w).

In order to solve the IP problems, we have to express f = zb1
1 · · · zbm

m

as the monomial of f1, . . . , fn. Since the adapted order is the elimination
order with respect to the variables z1, . . . , zm, the IP problem has a feasible
solution if and only if the normal form f

G is a monomial in K[x1, . . . , xn].
If f

G is the monomial in K[x1, . . . , xn], then it follows immediately from
Definition 5.23 (ii) of the adapted order, the exponent of the normal form
gives an optimal solution for the IP problem. Consequently we have the
algorithm for solving IP problems with all aij , bi ≥ 0.
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Algorithm 5.24 (Conti-Traverso).

Input : A, b, w, an adapted monomial order ≻ip

Output : an optimal solution of u, as long as it exists

Step1 : fj :=
m∏

i=1

z
aij

i , I := 〈f1 − x1, . . . , fn − xn〉

Calculate G := Gröbner basis of I with respect to ≻ip

Step2 : f :=
m∏

i=1

zbi
i

Calculate g := f
G

Step3 : IF g ∈ K[x1, . . . , xn] THEN

its exponent vector gives a solution
ELSE there is no solution

Next we show a toric version of the above algorithm.

Algorithm 5.25 (Conti-Traverso Toric Version).

Input : A, b, w, an adapted monomial order ≻ip

Output : an optimal solution of u∗, as long as it exists

Step1 : IA := 〈xu+ − xu− |u ∈ KerZ(A)〉
Calculate G := Gröbner basis of IA with respect to ≻ip

Step2 : one of the feasible solutions u0

Calculate xu0
G = xu∗

its exponent vector u∗ gives a solution

5.4.2 Maximum Flow Problem as IP

In this subsection, we discuss the maximum flow problem by using the Conti-
Traverso algoritm. We will give a slightly diferent formulation of the maxi-
mum flow problem from (4.4) in order to apply the Conti-Traverso algoritm.
Let N = (G, c, s, t) be a network associated with the maximum flow problem
on the digraph G with n vertices and m edges. The source s and the sink t
are specifyed vertices and each edge e is endowed with the capacity c(e). In
what follows, we consider the following assumptions on G:

(A1) G is connected and has no loops.
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(A2) G has no (s, t) edges and has no edges whose tail is t or head is s.

Expressing Q̃ = Q̃+−Q̃− with (0, 1) matrices Q̃+ and Q̃−, introducing slack
variables v = c−u and rewriting the objective function from maximization
to minimization, we can formulate the maximum flow problem as the IP
problem as follows:

minimize tτv

subject to
(

Q̃+ Q̃−

In In

)(
u
v

)
=

(
Q̃−c

c

)
t(tu, tv) ≥ t0 .

(5.1)

Here, In is the n×n identity matrix. We denote by A the matrix coefficients
appeared in the constraint, i.e.,

A =
(

Q̃+ Q̃−

In In

)
.

By this formulation, it can be solved by using the Gröbner basis technique
of toric ideals through Conti-Traverso’s algorithm.

5.4.3 Generators of Toric Ideals

For the general toric ideal IM associated with a matrix M ∈ Zm×n, it is
known that a set of generators of IM is computed by using Hosten-Sturmfels’
algorithm [18]. The following proposition presents one of the special case
to compute the set of generators of IM without using Hosten-Sturmfels’
algorithm.

Proposition 5.26 ([23]). Let M ∈ Zm×n be an integer matrix. If there
exists a lattice vector v ∈ KerZ(M) whose all entries are positive, then the
toric ideal IM is generated by the binomials corresponding to a lattice basis
v1, . . . , vk of the KerZ(M). Thus we have

IM = 〈xv+
i − xv−

i | i = 1, 2, . . . , k〉 .

In subsection 5.4.5, we will give the characterization of a set of generators
of the toric ideal I

eQ
associated with the reduced incidence matrix Q̃ of the

digraph G.
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5.4.4 Circuit and Cocircuit

We consider a digraph G = (V,E) with n vertices and m edges. For a circuit
C in G, we denote by C+ the set of forward edges and denote by C− the
set of backward edges of C. A minimal set of edges C∗ ⊂ E that makes the
graph G disconnected is called a cocircuit. So, the cocircuit C∗ divides the
graph G into the two connected components G+ and G−. The cocircuit C∗

is divided into the disjoint union C∗ = C∗+ ⊔ C∗− : edges in C∗+ have the
tail in G+ and the head in G−; the edges in C∗− have the tail in G− and
the head in G+.

Definition 5.27.
(1) For a circuit C ⊂ E of a digraph G = (V,E) with vertex set V =
{v1, . . . , vn} and edge set E = {e1, . . . , em}, we define the incidence vector
γ = (γ1, . . . , γm) of C by

γk =


+1 if ek ∈ C+

−1 if ek ∈ C−

0 if ek ̸∈ C

A circuit C is directed if and only if all entries of the incidence vector γ of
the circuit C are non-negative.
(2) We define the incidence vector γ∗ of a cocircuit C∗ ⊂ E in the same way
as the definition of the incidence vector of a circuit.
(3) The circuit space L of G is defined as the subspace of Qm generated by
incidence vectors of the circuits of G. The cocircuit space L⊥ of G is defined
as the subspace of Qm generated by incidence vectors of the cocircuits of G.

The following proposition show that the circuit space L and the cocircuit
space L⊥ are orthgonal and complemental.

Proposition 5.28 ([2]). Let G = (V,E) be a digraph. The cocircuit space
L⊥ is the orthogonal complement of the circuit space L. More precisely, the
circuit space and the cocircuit space can be characterized as L = Ker(Q)
and L⊥ = Im(tQ), respectively by the incidence matrix Q.

Let M ⊂ Qm be a subspace. A nonzero vector x ∈ M is called an ele-
mentary vector of M if its support is minimal with respect to the inclusion,
i.e., the vectors with strictly smaller support are not contained in M .

Proposition 5.29 ([2]). Let L, L⊥ ⊂ Qm denote the circuit and the cocir-
cuit space of G respectively. Then a vector x ∈ Qm is an elementary vector
of L if and only if it is a scalar multiple of an incidence vector of a circuit.
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Also, elementary vectors of the cocircuit space L⊥ can be characterized as
scalar multiples of of incidence vectors of cocircuits.

It follows the above proposition that the toric ideal associated with the
Lawrence lifting of the incidence matrix of a graph is minimally generated
by binomials corresponding to all incidence vectors of the circuits [3].

5.4.5 Universal Gröbner Bases Associated with the Maximum
Flow Problam

We consider the maximum flow problem on the network N = (G, c, s, t).
We assume (A1) and (A2) in Sebsection 5.4.2. So we allow the existence of
parallel and anti-parallel edges. In 5.4.2, we formulate the maximum flow
problem as the IP problem as follows:

minimize tτv

subject to
(

Q̃+ Q̃−

In In

)(
u
v

)
=

(
Q̃−c

c

)
(5.2)

It follows from the definition that the toric ideal IA associated with the
matrix coefficients A of (5.2) becomes

IA = 〈xu+
yu− − xu−

yu+ |u ∈ KerZ(Q̃)〉 ,

which is proved to be identical with the toric ideal associated with the
Lawrence lifting

Λ(Q̃) =
(

Q̃ 0
In In

)
of Q̃. It is well known that the incidence matrix Q of a graph is totally
unimodular, so the matrix Q̃ is also totally unimodular. Further, by a
straightforward computation, we can prove that the Lawrence type matrix
Λ(Q̃) is totally unimodular. This implies that Theorem 5.21 can be applied
to the ideal IA = I

Λ( eQ)
. Thus we have

EA = UA .

It can be seen that the computation of the universal Gröbner basis UA of
IA is to determin the set of all elementary binomials EA of IA. Thus we are
ready to prove the main theorem.

Theorem 5.30 ([26]). Let IA be the toric ideal associated with the matrix
coefficients A of (5.2). Then the universal Gröbner basis of IA consists of
binomials corresponding to all incidence vectors of circuits and s-t paths of
G.
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Proof. A key idea of the proof is to construct a digraph Ĝ = (V̂ , Ê)
from the digraph G = (V,E) by the following procedure: Let V = {v1(=
s), v2, . . . , vm(= t)} be the set of vertices of G. We make a new vertex v̂1

by identifying the source s with the sink t in V . We define the new ver-
tex set V̂ by V̂ = {v̂1, v2, . . . , vm−1}. Next, we define the new edge set
Ê = {ê1, . . . , ên} by the following incidence relations:

∂−(êi) =
{

v̂1 if ∂−(ei) = s
vj if ∂−(ei) = vj (vj ̸= s)

,

∂+(êi) =
{

v̂1 if ∂+(ei) = t
vj if ∂+(ei) = vj (vj ̸= t)

,

where E = {e1, e2, . . . , en} denotes the edge set of G. The simple example
above illustrates the above construction.
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ê1

Q
Q

Q
Q

Q
Q

Q
QQs

ê2
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Figure 1: the new digraph

It follows from the assumption that the digraph G has no (s, t) edges and
no loops that the new digraph Ĝ has no loops. We compute the incidence
matrix Q̂ of Ĝ: Let qi be a ith row vector of the incidence matrix Q. We
note that the first row vector q̂1 of Q̂ is of the form q̂1 = q1 + qm. This
shows that the incidence matrix Q̂ is an (m − 1) × n matrix consisting
of the row vectors q̂1, q2, . . . , qm−1. On the other hand, Q̃ consists of the
row vectors q2, . . . , qm−1. Since the sum of all row vectors of Q is zero:
q1 + q2 + · · · + qm = 0, we have q̂1 = q1 + qm = −(q2 + q3 + · · · + qm−1),
which means that the first row vector q̂1 of Q̂ is a linear combination of the
other row vectors q2, . . . , qm−1. Thus we have

KerZ(Q̃) = KerZ(Q̂) .
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Since the matrix Q̂ is the incidence matrix of the digraph Ĝ, it follows from
Proposition 5.29 that an elementary vector of Ker(Q̂) is a scalar multiple of
an incidence vector of the circuit of Ĝ. So the computation of the set of all
elementary binomials EA is reduced to the enumeration of circuits of Ĝ. It
is easy to see that the set of circuits of Ĝ yields the set of circuits and the
set of s-t paths of G. This completes the proof of the theorem.

Weismantel [27] shows that the universal Gröbner basis associated with
the minimum cost flow problem can be characterized by the set of all circuits
of the graph.

Applying Theorem 5.30, we determine the generators of the toric ideal
associated with the reduced incidence matrix Q̃ of the digraph G under some
assumptions for G. In order to get the desired result, we make the additional
assumption:

(A3) There exists at least one s-t directed path through an arbitrary edge
e ∈ E in the digraph G = (V,E).

Then we will prove the following proposition under the assumptions (A1),(A2)
and (A3).

Proposition 5.31 ([26]). Let G be a digraph which satisfies the assump-
tions (A1), (A2) and (A3). Then the integral lattice of KerZ(Q̃) is generated
by the incidence vectors of the s-t directed paths and the directed circuits
in the digraph G.

Proof. It follows from Theorem 5.30 that the integral lattice KerZ(Q̃) is
generated by the incidence vectors of the s-t paths and the circuits in a
digraph G. So it is enough to prove that all incidence vectors of s-t paths or
circuits of G are expressed as integral linear combinations of the incidence
vectors of s-t directed paths and directed circuits of G. We will prove that
the incidence vectors of arbitrary s-t paths are expressed as integral linear
combinations of the incidence vectors of s-t directed paths and directed
circuits. Let P = (e1, . . . , ek) be an arbitrary s-t path in the digraph G.
Let ei ∈ P be the first backward edge in the path P . We express the path
P as P = (P1, ei, P2) with the directed path P1 = (e1, · · · , ei−1) and the
path P2 = (ei+1, . . . , ek). By assumption (A3), there exists at least one s-t
directed path P ′ through the edge ei. We express the directed path P ′ as
P ′ = (P ′

1, ei,P ′
2) in terms of the directed paths P ′

1 and P ′
2. Noting that the

edge ei ∈ P and the edge ei ∈ P ′ have the opposite direction, we have a s-t
walk W = (P ′

1, P2) and a s-t directed walk W = (P1,P ′
2). We see that the

s-t walk W has less backward edges than the s-t path P does. Applying
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the same procedure as above to the s-t walk W , it is easy to verify that the
sum of the incidence vectors of the s-t path P and the s-t directed path P ′

is written as the sum of the incidence vectors of the s-t directed walks and
the s-t directed paths. In order to prove the assertion of the proposition for
the s-t paths, it is enough to prove the following lemma.

Lemma 5.32 ([26]). Let W be a directed walk. Then the incidence vector
of W can be written as the sum of the incidence vector of one directed path
and those of suitable directed circuits.

Proof. Let W = (e1, . . . , ek) be a directed walk and let ei ∈ W be the first
repeated edge: W = (e1, . . . , ei−1, ei, ei+1, . . . , e

′
i−1, ei, e

′
i+1, . . . , ek). Then

the incidence vector of the directed walk W is written as the sum of the
incidence vector of the directed walk W ′ = (e1, . . . , ei−1, ei, e

′
i+1, . . . , ek) and

that of the directed circuit C = (ei, ei+1, . . . , e
′
i−1). We see that the directed

walk W ′ has less repeated edge than the directed walk W does. Applying
the same procedure as above to the directed walk W ′, the incidence vector of
W can be written as the sum of the incidence vector of one directed trail and
those of the suitable directed circuits. It is easy to verify that the incidence
vector of the directed trail is expressed as the sum of the incidence vector
of one directed path and those of suitable directed circuits. This completes
our proof of the lemma.

Next we prove the assertion for the circuits. Let C = (e1, . . . , eℓ) be a
circuit in G and let ei ∈ C be one of the backward edge. By assumption
(A3), there exists at least one s-t directed path P through the edge ei. We
express the directed path P as P = (P1, ei,P2) with the directed paths
P1 and P2. We set C ′ = C \ {ei}. Since the edge ei ∈ C and the edge
ei ∈ P have the opposite direction, we see that W = (P1, C

′,P2), become
the s-t walk, which is not necessary directed. Then we can apply the similar
arguments in the first part of the proof of the proposition, we can express
the sum of the incidence vector of C and the incidence vector of P as the
sum of the incidence vectors of s-t directed paths and the incidence vectors
of directed circuits. We have completed the proof of the proposition.

By using Proposition 5.31 and Proposition 5.26, we can determine a set
of generators of I

eQ
as follows:

Theorem 5.33 ([26]). Let Q̃ be the reduced incidence matrix of a digraph
G which satisfies the assumptions (A1), (A2) and (A3), and let P and C be a
set of all incidence vectors of the s-t directed paths and a set of all incidence
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vectors of the directed circuits, respectively. Then we have

I
eQ

= 〈xp − 1,x‚ − 1 | p ∈ P, γ ∈ C〉 .

Proof. It follows from Proposition 5.31 that the integral lattice KerZ(Q̃) is
generated by the incidence vectors of the s-t directed paths and the incidence
vectors of the directed circuits in a digraph G. We consider the sum v of
all incidence vectors in P . Since we assume that there exist at least one s-t
directed path through an arbitrary edge ei in the digraph G, we see that all
entries of the vector v is more than 1. So we prove that the vector v satisfies
the assumption of Proposition 5.26. Hence we see that the toric ideal I

eQ
is

generated by binomials corresponding to all incidence vectors of s-t directed
paths and all incidence vectors of directed circuits.

In the maximum flow problem, we usually consider the network on the
digraph without directed circuits. In this case, we have the following corol-
lary:

Corollary 5.34 ([21, 26]). Let Q̃ be the reduced incidence matrix of a
digraph G without directed circuits. We also assume that the digraph G
satisfies the assumptions (A1), (A2) and (A3). Then we have

I
eQ

= 〈xp − 1 | p ∈ P〉

where P is a set of all incidence vectors of the s-t directed paths.

6 Eigenvalue Problem over Min-Plus Algebra

In this section, we focus on the eigenvalue problem of matrices with en-
tries in min-plus algebra. The eigenvalue of the min-plus algebra gives a
characterization of the network.

6.1 Min-Plus Algebra

6.1.1 Basic Notations and Definitions

Let R be the field of real numbers. We define the min-plus algebra Rmin by
Rmin = R ∪ {+∞}, with the binary operations ⊕ and ⊗ such as

a ⊕ b = min{a, b} , a ⊗ b = a + b .
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Both of them are associative and commutative such as

a ⊕ (b ⊕ c) = (a ⊕ b) ⊕ c , a ⊗ (b ⊗ c) = (a ⊗ b) ⊗ c ,
a ⊕ b = b ⊕ a , a ⊗ b = b ⊗ a .

for all a, b, c ∈ Rmin. The algebra Rmin has the identity ε = +∞ with respect
to ⊕ such as

a ⊕ ε = ε ⊕ a = min{a,+∞} = a ,

and the identity e = 0 with respect to ⊗ such as

a ⊗ e = e ⊗ a = a + 0 = a .

If x ̸= ε, there exists the unique inverse y (= −x) of x with respect to ⊗
such as

x ⊗ y = e .

The operation ⊗ is distributive with respect to ⊕ such as

x ⊗ (y ⊕ z) = (x ⊗ y) ⊕ (x ⊗ z) .

The identity ε = +∞ with respect to ⊕ is absorbing for ⊗ such as

x ⊗ ε = ε ⊗ x = x + ∞ = +∞ = ε .

The operation ⊕ is idempotent such as

x ⊕ x = min{x, x} = x .

Definition 6.1. For x ∈ Rmin and k ∈ N, the kth power of x is defined by

x⊗k = x ⊗ x ⊗ . . . ⊗ x︸ ︷︷ ︸
k times

.

In Rmin, the kth power of x reduces to the conventional multiplication x⊗k =
kx.

It is easy to verify that the min-plus power has the following properties
for x, y ∈ Rmin and m,n ∈ N:

(1) x⊗m ⊗ x⊗n = x⊗(m⊗n);

(2) (x⊗m)⊗n = x⊗(m⊗n);

(3) x⊗1 = x;

(4) x⊗m ⊗ y⊗m = (x ⊗ y)⊗m.
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6.1.2 Matrix Algebra over Min-Plus Algebra

For positive integers m,n ∈ N, we denote by Rm×n
min the set of all m × n

matrices with entries in Rmin. We define the several operations in Rm×n
min

analogous to those in the conventional matrix algebra as follows.

Definition 6.2.
(1) For A = (aij) ∈ Rm×n

min and B = (bij) ∈ Rm×n
min , we define their sum

A ⊕ B ∈ Rm×n
min by

[A ⊕ B]ij = aij ⊕ bij = min{aij , bij} .

(2) For A = (aij) ∈ Rm×k
min and B = (bij) ∈ Rk×n

min , we define their product
A ⊗ B ∈ Rm×n

min by

[A ⊗ B]ij =
k⊕

ℓ=1

(aiℓ ⊗ bℓj) = min
ℓ=1,2,...,k

{aiℓ + bℓj} .

(3) For A = (aij) ∈ Rm×n
min , we define the transpose tA ∈ Rn×m

min of A by

[tA]ij = aji .

(4) Define the matrix In ∈ Rn×n
min by

[In]ij =
{

e if i = j
ε if i ̸= j .

Then it can be seen that A ⊗ In = In ⊗ A = A for A ∈ Rn×n
min , which means

that I = In becomes the identity with respect to the matrix multiplication
in Rn×n

min .
(5) For A ∈ Rn×n

min and k ∈ N, we define the kth power of A by

A⊗k = A ⊗ A ⊗ . . . ⊗ A︸ ︷︷ ︸
k times

.

We set A⊗0 = I, for k = 0.
(6) For A = (aij) ∈ Rm×n

min and α ∈ Rmin, we define the scalar multiplication
α ⊗ A ∈ Rm×n

min by
[α ⊗ A]ij = α ⊗ aij .

The operation ⊕ is commutative in Rm×n
min , but not ⊗ is. The operation ⊗

is distributive with respect to the operation ⊕ in the matrix algebra Rm×n
min .

Also ⊕ is idempotent in Rm×n
min , that is, we have A ⊕ A = A.
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6.2 Networks and Min-Plus Algebra

6.2.1 Networks on Graphs

Let G = (V,E) be a digraph with n vertices and m edges. We assign a real
number w(e) to each edge e ∈ E; w(e) is called the weight of the edge e. In
this section, the pair N = (G, w) is called a network on the digraph G.

Definition 6.3. Let N = (G,w) be a network on the digraph G. We define
the weighted adjacency matrix B(G) = (bij) ∈ Rn×n of N by

bij =
{

w((vi, vj)) if (vi, vj) ∈ E
0 if (vi, vj) ̸∈ E

Definition 6.4. For the circuit C, let ℓ(C) be the length of C and let σ(C)
be the weight of C. Then we define the average weight of the circuit C by
σ(C)
ℓ(C)

.

Definition 6.5. Let N be a network on the digraph G = (V,E) with n
vertices. We denote by b∗ij (i, j = 1, . . . , n) the minimal value of weights of
all vi-vj paths in G. We set b∗ij = ∞, if there exists no vi-vj path. Define
the minimal weight matrix B∗(G) = B∗ ∈ Rn×n

min by B∗ = (b∗ij).

6.2.2 Adjacency Matrices with Values in Min-Plus Algebra

Let G = (V,E) be a digraph with n vertices and m edges, and let N = (G,w)
be a network on G. Moreover, let B(G) = (bij) be the weighted adjacency
matrix of the network N .

Definition 6.6. We define the weighted adjacency matrix B̃ = (̃bij) with
values in Rmin of the network N by

b̃ij =
{

bij if (vi, vj) ∈ E
+∞ if (vi, vj) ̸∈ E

Since the addition + in R means the operation ⊗ in Rmin, we have the
weight σ(P ) of the path P = (vi0 , ei1 , vi1 , . . . , eis , vis) in the digraph G as
follows:

σ(P ) =
s−1⊗
k=0

b̃ikik+1
.

For a matrix A ∈ Rn×n
min , we can define the network N = (G,w) on the

digraph G whose weighted adjacency matrix with values in Rmin coincides
with A. We denote such network by N (A) and call the network associated
with the matrix A ∈ Rn×n

min .
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Proposition 6.7 ([15, 30]). Given a matrix A ∈ Rn×n
min . Assume that the

network N (A) has no circuits of negative weight. Then the minimal weight
matrix A∗ of the network N (A) can be obtained by the following power sum
computation:

A∗ = I ⊕ A ⊕ A⊗2 ⊕ · · · .

6.3 Eigenvalue Problem over Min-Plus Algebra

In this section, we show that min-plus eigenvalues and eigenvectors admit a
graph theoretical interpretation. Throughout this section, we consider the
digraph G = (V,E) with the set of n vertices V = {1, 2, . . . , n} and m edges.
Then, an edge e ∈ E can be expressed as a pair e = (i, j), i, j ∈ V .

Definition 6.8. Given a matrix A ∈ Rn×n
min , we say that λ ∈ Rmin is a right

eigenvalue of A if there exists x ∈ Rn
min such that x ̸= t(ε, ε, . . . , ε) and

A ⊗ x = λ ⊗ x .

The vector x is called the right eigenvector of A belonging to the right
eigenvalue λ. Similarly, we say that λ′ ∈ Rmin is a left eigenvalue of A if
there exists y ∈ Rn

min such that y ̸= t(ε, ε, . . . , ε) and

tA ⊗ y = λ′ ⊗ y ( or ty ⊗ A = λ′ ⊗ ty) .

The vector y is called the left eigenvector of A belonging to the left eigenvalue
λ′.

We allow a right eigenvalue and a left eigenvalue to have the value ε.
First, we characterize matrices A having the right or the left eigenvalue ε.
A matrix A ∈ Rn×n

min is said to have ε-columns if it has at least one columm
whose all entries are ε. Similarly, if a matrix A has at least one row whose
all entries are ε then it is said to have ε-rows.

Proposition 6.9. The identity ε of ⊕ is a right eigenvalue of A if and only
if A has ε-columns. Similarly, ε is a left eigenvalue of A if and only if A has
ε-rows.

Proof. We prove the assertion for the right eigenvalues. Let x be a right
eigenvector of A belonging to the right eigenvalue λ = ε. From the definition,
the right eigenvector x has at least one entry xj ̸= ε. Then we will prove
that all entries of the jth column of A are equal to ε. Suppose that one
entry aij of the jth column of A satisfies aij ̸= ε for some i, then we have
aij ⊗xj ̸= ε. On the other hand, we have λ⊗xi = ε since λ = ε, which lead
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to the contradiction. Thus we have proved that the all entries of the jth

column of A are ε. This completes the proof of the if part. Next we prove
the only if part. We assume that all entries of jth column of A are ε. Then
it is easy to show that the vector x = t(x1, . . . , xj , . . . , xn) with xj = a ̸= ε
and xi = ε (i ̸= j) becomes a right eigenvector of A belonging to the right
eigenvalue ε. We have proved the only if part. If we note that the expression
ty⊗A = λ′⊗ ty is equivalent to the expression tA⊗y = λ′⊗y, we can easily
prove the assertion for the left eigenvalue λ′ from the assertion for the right
eigenvalues. Thus we have completed the proof of the proposition.

Next, we characterize matrices A ∈ Rn×n
min having the right eigenvalue

λ ̸= ε. We consider the case where matrices A do not have ε-columns.

Lemma 6.10. Assume that A ∈ Rn×n
min does not have ε-columns. Then the

network N (A) associated with the matrix A has at least one circuit.

Proof. The assumption is equivalent to the fact that any vertices in the
network N (A) become the head of at least one edge. That is, for any
v1 ∈ V , there exist at least one edge e1 with e1 = (v2, v1), v2 ∈ V . Applying
the same procedure, we can find a sequence of vertices, v1, . . . , vi, vi+1, . . .
such that ei = (vi+1, vi) ∈ E and in the sequence we find a circuit C since
the number of vertices is finite.

Definition 6.11. 　 Let λ(̸= ε) be an element of Rmin. We define a matrix
Aλ by [Aλ]ij = [A]ij − λ.

We assume that the matrix A ∈ Rn×n
min does not have ε-columns. Then it

follows from Lemma 6.10 that the network N (A) associated with the matrix
A has circuits. Let λ be the minimal value of the average weight of circuits
in N (A) and consider the network N (Aλ) associated with the matrix Aλ.
Since the network N (Aλ) does not have circuits with negative weights, we
can compute by Proposition 6.7 the minimal weight matrix A∗

λ by the power
sum : A∗

λ = I ⊕ Aλ ⊕ A⊗2
λ ⊕ · · · .

Theorem 6.12. Let A ∈ Rn×n
min be a matrix without ε-columns and let

λ ̸= ε be the minimal average weight of circuits in the network N (A). Let
C = ((v1, v2), (v2, v3), . . . , (vk, v1)) be the circuit in N (A) expressed as a
sequence of edges and having the minimal average weight λ.
Then the column vectors [A∗

λ]v1 , . . . , [A∗
λ]vk

of the minimal weight matrix
A∗

λ of the network N (Aλ) become the right eigenvectors of A belonging to
the right eigenvalue λ.
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Proof. We represent by ν one of the vertices in {v1, v2, . . . , vk}. Then it is
enough to prove the following equality:

A ⊗ [A∗
λ]ν = λ ⊗ [A∗

λ]ν (1)

First, we compute the left hand side of the equality (1). From the definition
of Aλ, we have A = λ⊗Aλ and if we use the natation: A+

λ = Aλ⊕A⊗2
λ ⊕· · · ,

we have

A ⊗ [A∗
λ]ν = λ ⊗ Aλ ⊗ [A∗

λ]ν
= λ ⊗ Aλ ⊗ [I ⊕ Aλ ⊕ A⊗2

λ ⊕ · · · ]ν
= λ ⊗ [Aλ ⊕ A⊗2

λ ⊕ · · · ]ν
= λ ⊗ [A+

λ ]ν

where I is the identity matrix in Rn×n
min . Thus the equality (1) is rewritten

as:
λ ⊗ [A+

λ ]ν = λ ⊗ [A∗
λ]ν .

So it is enough to prove [A+
λ ]ν = [A∗

λ]ν . The entries [A∗
λ]iν (i = 1, 2, . . . , n)

are given by:

[A∗
λ]iν =

{
ε ⊕ [A+

λ ]iν if i ̸= ν
e ⊕ [A+

λ ]iν if i = ν

So the identity for the i ̸= ν case is trivial. Consider the identity for i = ν
case. The entries [A+

λ ]νν indicate the minimal weight of ν-ν path in the
network N (Aλ). Since λ is the minimal average weight of the circuit C in
N (A) and ν is an arbitrary vertex in the circuit C, the minimal weight of
ν-ν path is equal to e. Thus we have proved [A+

λ ]ν = [A∗
λ]ν . This completes

the proof of the theorem.

Let A ∈ Rn×n
min be a matrix without ε-columns. Then we have proved

that A has an right eigenvalue λ ̸= ε which is the minimal average weight
of the circuits in the network N (A) associated with A. Next we will prove
that this right eigenvalue is the only right eigenvalue of the matrix A.

Proposition 6.13 ([25]). If the matrix A ∈ Rn×n
min has an right eigenvalue

λ ̸= ε, there exists a circuit in the network N (A) whose average weight is
equal to λ.

Proof. Let λ ̸= ε be the right eigenvalue of A. By the definition, a right
eigenvector x belonging to the right eigenvalue λ has at least one entry xv1 ̸=
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ε. Hence we have [A⊗x]v1 = λ⊗xv1 ̸= ε. Thus we can find a vertex v2 with
av1v2 ⊗ xv2 = λ⊗ xv1 . This implies that av1v2 ̸= ε, xv2 ̸= ε and (v1, v2) ∈ E.
By the same argument we can find v3 ∈ V with av2v3 ⊗ xv3 = λ ⊗ xv2 and
(v2, v3) ∈ E. Applying the same procedure, we find the sequence of vertices
v1, v2, . . . , vi, . . . such that (vi−1, vi) ∈ E. Since the number of vertices is
finite, we can find the subsequence (vh, vh+1, . . . , vh+k), in which the vertices
are pairwise distinct except vh = vh+k. Then the sequence of edges

C = ((vh, vh+1), (vh+1, vh+2), . . . (vh+k−1, vh))

express the circuit C. The circuit C has the length ℓ(C) = k and the weight
σ(C) =

⊗k−1
j=0 avh+jvh+j+1

, where vh = vh+k. By the construction of sequence
of vertices, we have

k−1⊗
j=0

(avh+jvh+j+1
⊗ xvh+j+1

) = λ⊗k ⊗
k−1⊗
j=0

xvh+j
.

Converting ⊗ to + in conventional algebra, we have

k−1∑
j=0

(avh+jvh+j+1
+ xvh+j+1

) = kλ +
k−1∑
j=0

xvh+j
.

Using the fact that
k−1∑
j=0

xvh+j+1
=

k−1∑
j=0

xvh+j
,

we obtain
k−1⊗
j=0

avh+jvh+j+1
= kλ,

which means that σ(C) = kλ. Therefore we have proved that the average
weight of the circuit C is

σ(C)
ℓ(C)

=
kλ

k
= λ

This completes the proof of the proposition.

Proposition 6.13 shows that an arbitrary right eigenvalue of a matrix A
comes from the average weight of circuits in N (A).

Theorem 6.14. Assume that A ∈ Rn×n
min does not have ε-columns. The

matrix A has the unique right eigenvalue λ which is equal to the minimal
average weight of circuits in N (A) associated with the matrix A.
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Proof. It follows from the assumption for A and Theorem 6.12 that A
has an eigenvalue λ which is not equal to ε. Let x = t(x1, . . . , xn) be
an eigenvector belonging to the eigenvalue λ. We see from Proposition
6.13 that the network N (A) contains at least one circuit. and let C =
((v1, v2), (v2, v3), . . . , (vk, v1)) be any one of circuits in N (A). Then we have

k⊗
j=1

avjvj+1 ⊗ xvj+1 ≥ λ⊗k ⊗
k⊗

j=1

xvj (vk+1 = v1)

Using the same argument as in the proof of Proposition 6.13, we have
σ(C)
ℓ(C)

≥ kλ

k
= λ .

This inequality holds for an arbitrary right eigenvalue λ ̸= ε of A and for
an arbitrary circuit C in N (A). So the right eigenvalue λ of A has to be
smaller or equal to the minimal average weight of the circuit in N (A). By
Proposition 6.13, any right eigenvalue comes from the average weight of a
circuit in N (A). Therefore the right eigenvalue λ ̸= ε of A is uniquely
determined and equal to the minimal average weight of the circuit in N (A).

Here, we are concerned only with the right eigenvalue. We show that
the unique right eigenvalue coincide with the unique left eigenvalue.

Corollary 6.15. Assume that the matrix A ∈ Rn×n
min does not have ε-

columns and ε-rows. Then the unique right eigenvalue of A is identical
with the unique left eigenvalue of A.

Proof. By the definition, λ′ is the left eigenvalue of A if and only if it is the
right eigenvalue of the transpose tA of A. Let G = (V,E) be the digraph
which defines the network N (A). We define the new digraph tG = (V, tE)
with the set of vertices V and the set of edges tE: The set of edges tE is
defined by (i, j) ∈ tE if and only if (j, i) ∈ E. Let w be the weight function
on E defined by the matrix A. We define the weight function w̄ on tE by
w̄((i, j)) = w((j, i)). Thus we can define the network (tG, w̄). It is easy
to verify the weighted adjacency matrix with values in Rmin of the network
(tG, w̄) coincides with the matrix tA. It follows from the definition that the
minimal average weight of circuits in the network (G,w) become the minimal
average weight of the network (tG, w̄) and vice versa. By the assumption
of the corollary A and tA have the unique eigenvalue which is the minimal
average weight of circuits in (G, w) or (tG, w̄) respectively. Then we see that
the unique eigenvalue of A and tA coincide. Thus we have completed the
proof of the corollary.
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7 Conclusion

In the present thesis, in order to interpret the max flow min cutset theorem
from the view point of LP duality, we adopt a special LP formulation of
the maximum flow problem. Computational experiment suggests that the
optimal solution to the LP dual problem of our formulation becomes binary
vector, giving the minimal cut and the minimal cutset. However, we cannot
make clear the reason why the optimal solution of the dual problem of
the maximum flow problem becomes the binary vector, although the dual
problem is the LP problem. This remains as a future subject of study.

In order to apply the Gröbner basis technique to the maximum flow
problem, we give another LP formulation of the maximum flow problem,
which is slightly different from the previous formulation. Based on this
formulation, we give the characterization of the universal Gröbner basis as-
sociated with the maximum flow problem in terms of circuits and paths of
the digraph (Theorem 5.30). Via this characterization, we have only to enu-
merate all circuits and s-t paths of a given graph in order to compute the
universal Gröbner basis associated with the maximum flow problem. How-
ever, we do not have the efficient algorithm for such enumeration. It seems
that the computational complexity of enumerating circuits and paths may
be rather large but probably smaller than that of Buchberger’s algorithm
in the computation of the Gröbner basis. We remain the verification of the
practical efficiency of our results for the future study. Even if we have a
good algorithm for enumerating of circuits and paths, our approach using
Conti-Traverso’s algorithm will not be practically useful because there ex-
ists excellent combinatorial algorithms such as the preflow-push algorithm.
Nevertheless, we think that our result has own mathematical importance.
Moreover if we can interpret various combinatorial algorithms in terms of
the universal Gröbner basis, we can find some significance of our result be-
yond the mathematical interest. Further, under a suitable assumption for
the digraph, we prove Theorem 5.33 which give the characterization of the
integer kernel of the reduced incidence matrix of a digraph as a consequence
of Theorem 5.30. In order to prove this Theorem 5.33, we had to prove
Lemma 5.32 asserting that the incidence vector of a the directed walk can
be written as the sum of the incidence vector of one directed path and those
of suitable directed circuits. We think that the result of Lemma 5.32 itself
is the interesting and have some importance in the theory of flow-network.

Finally, we characterize the eigenvalue and corresponding eigenvectors
of the matrices with entries in Min-Plus algebra in terms of the network on
the digraph associated with the matrix. We show that the minimal average
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weight of the circuit in the network become the min-plus eigenvalue. Also we
show that the corresponding eigenvectors appear as the column vectors of the
minimal weight matrix (the distance matrix) of the specified network which
is obtained from the network by subtracting the minimal average weight
from every edges of the graph. As mentioned above, enumerating circuits
and paths is the important problem in the combinatorial theory of graphs.
If we have an algorithm for computing the specified circuit with minimal
average weight in the network by solving Min-Plus eigenvalue problem, this
will become the first step to enumerate circuits of the digraph.
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[22] B. Sturmfels: Gröbner Bases and Convex Polytopes, American Mathe-
matical Society, Providence R.I., 1996.

[23] B. Sturmfels, R. Weismantel and G. Ziegler: Gröbner Bases of Lattices,
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