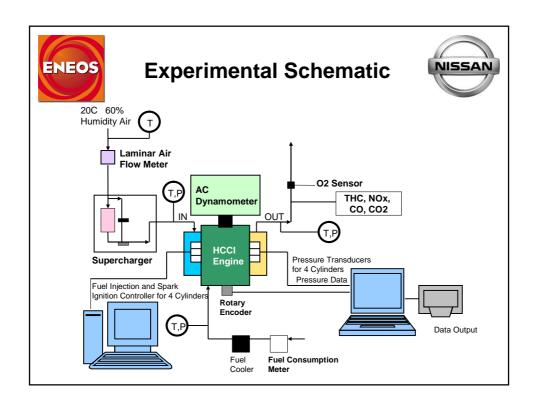
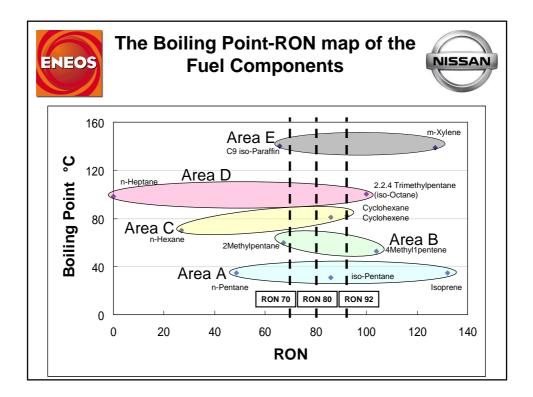
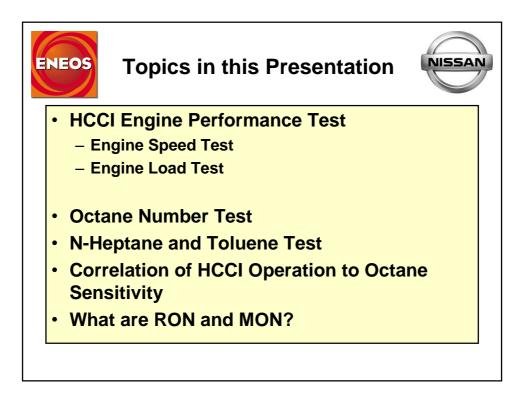
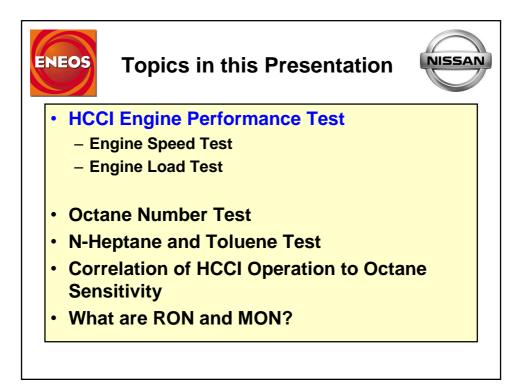

2004-01-0553

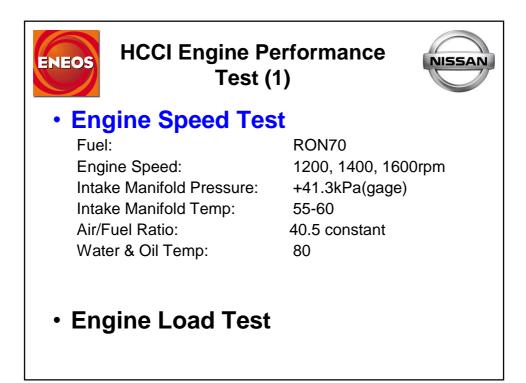

The Effect of Fuel Properties on Low and High Temperature Heat Release and Resulting Performance of an HCCI Engine

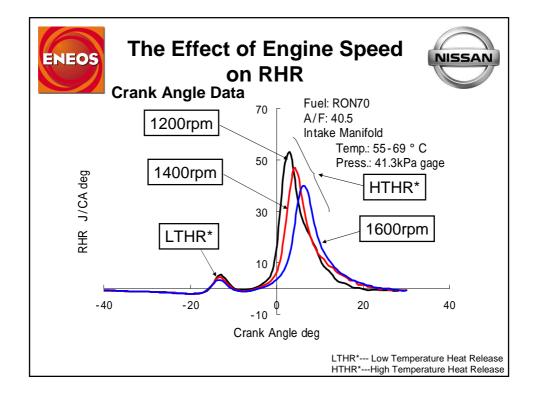

Gen Shibata and Koji Oyama Central Technical Research Laboratory Nippon Oil Corporation

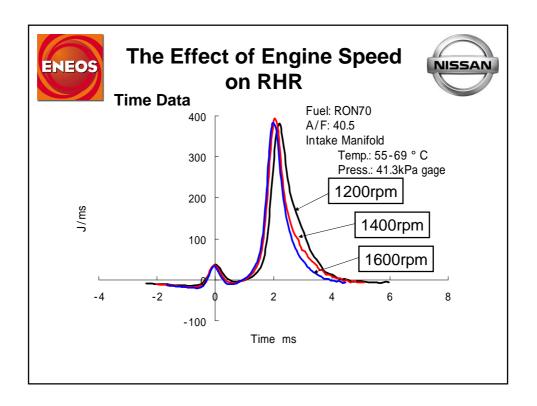
Tomonori Urushihara and Tsuyoshi Nakano Nissan Research Center Nissan Motor Co., Ltd

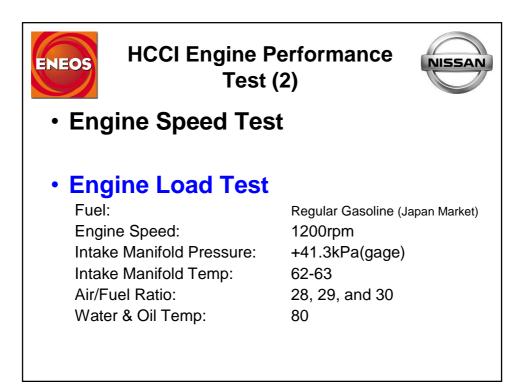


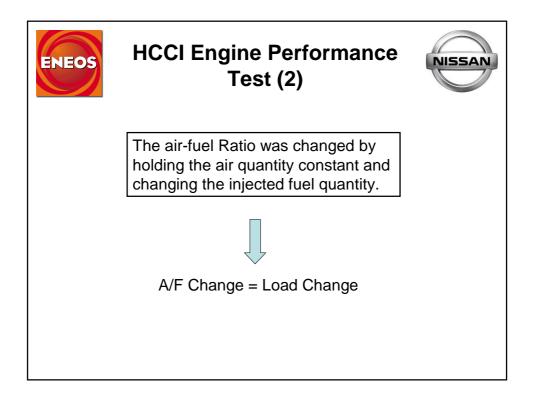


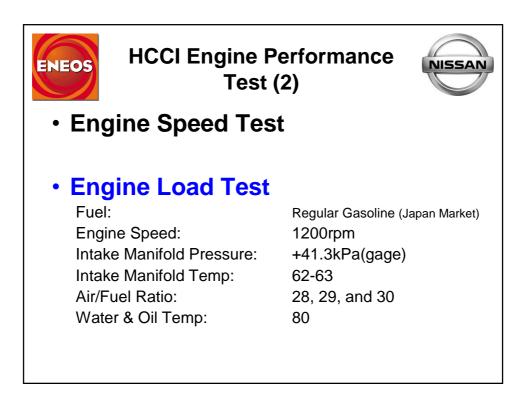

NEOS	Engine Sp	ecification	NISSAN
	Engine type	4 cylinder MPI	
	Compression ratio	15	
	Bore	86mm	
	Stroke	86mm	
	Displacement	1998cc	
	Exhaust valve open	53°CA BBDC	
	Exhaust valve close	7°CA ATDC	
	Intake valve open	1°CA ATDC	
	Intake valve close	19°CA ABDC	1

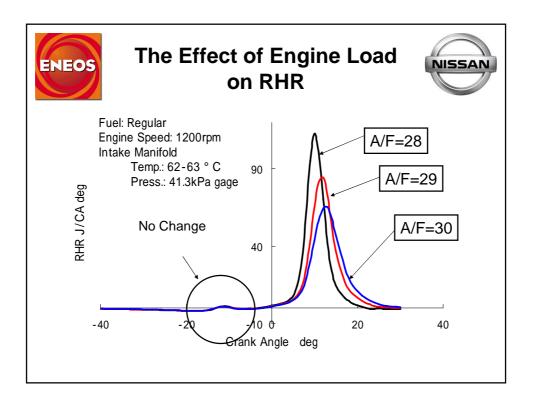


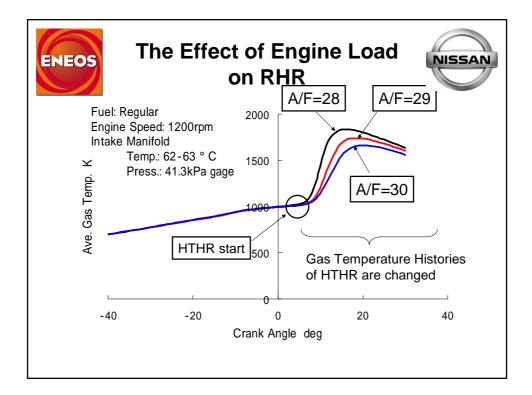

Des	crip	otion	of	Test	Fue	els
			RON70	RON80	RON92	Regular Gas
Octane Numb	er RON		70.0	80.0	92.0	90.0
Octane Numb	er MON		68.5	68.0	67.8	76.0
Cetane Numb	er		15.0	6.0	4.5	3.5
Density		g/cm3	0.6965	0.7076	0.724	0.7306
Reid Vapour I	Pressure	kPa	45.0	43.5	44.0	73.5
Distillation	°C	0%	42.0	45.5	44.0	29.0
		10%	59.0	61.5	60.5	45.5
		30%	68.0	69.5	69.0	62.0
		50%	80.5	81.5	81.5	83.5
		70%	97.5	98.5	99.0	112.5
		90%	129.0	129.0	128.5	139.0
		95%	134.0	133.5	133.0	150.5
		EP	143.0	138.5	141.5	171.5
Fuel Composi	tion	vol%		/		7
	iso-F	Pentane	11.5	0	0	-
Area A	n-P	entane	8.5	15.7	12.7	-
	Isc	prene	0	4.3	7.3	-
Area B	4Methy	/l1pentene	1.5	6.9	12.4	-
Area D	2Meth	ylpentane	18.5	13.1	7.6	-
	n-H	lexane	5.3	2.0	0	-
Area C	Cycle	ohexane	14.7	18.0	0	-
	Cycle	ohexene	0	0	20.0	-
Area D	n-H	eptane	6.0	4.0	1.6	-
Area D	2.2.4Trim	ethylpentane	14.0	16.0	18.4	-
	m-3	Xylene	1.4	4.7	7.9	-
Area E	C9 is	p-paraffin	18.6	15.3	12.1	-

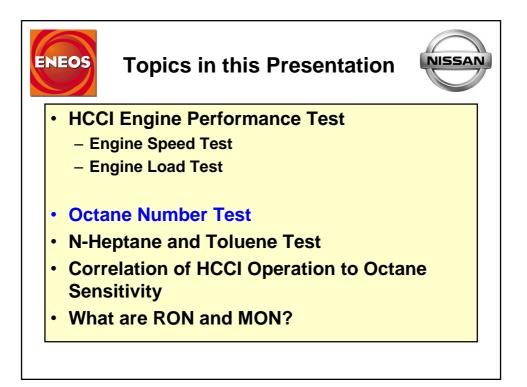


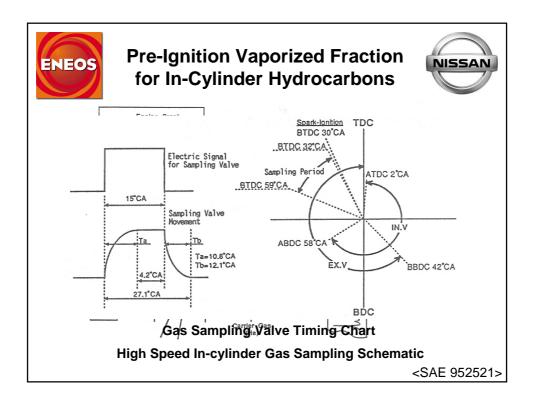


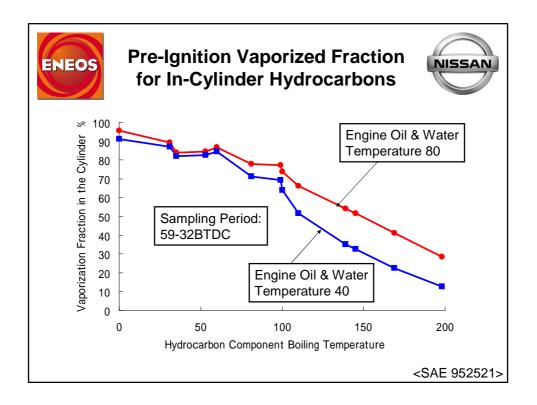


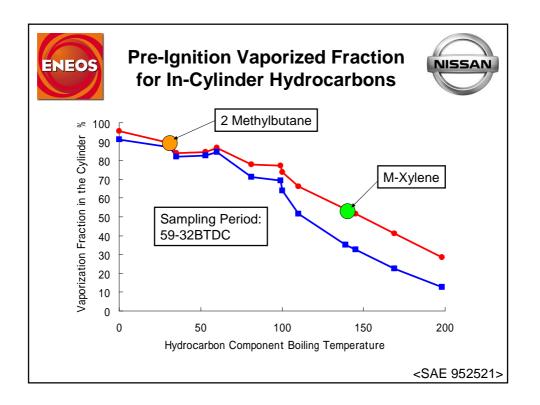


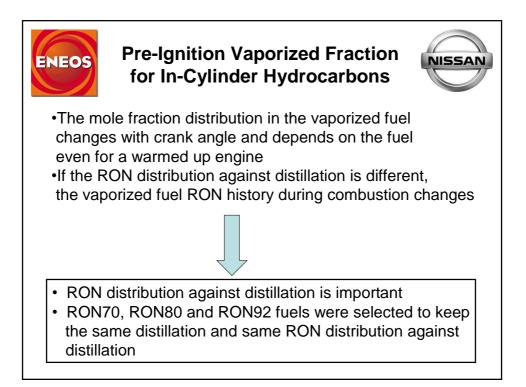


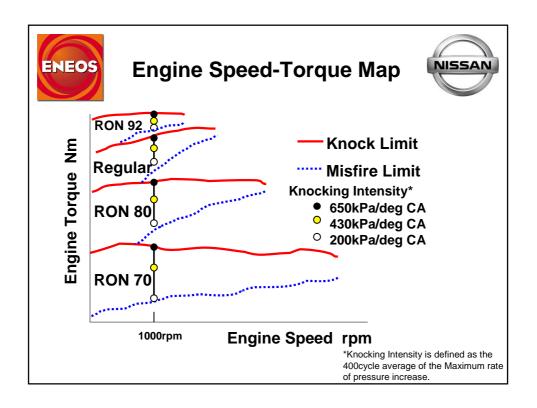




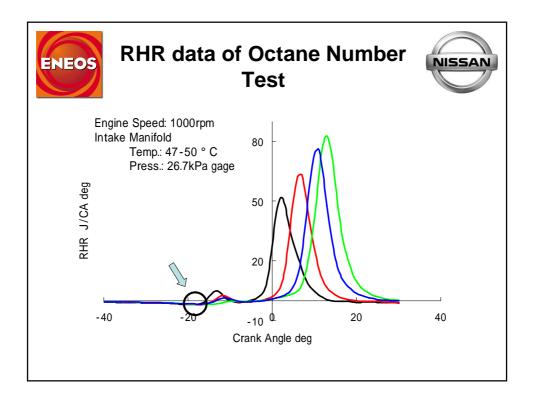


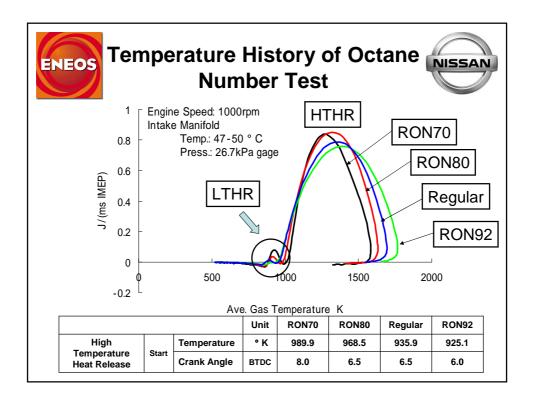




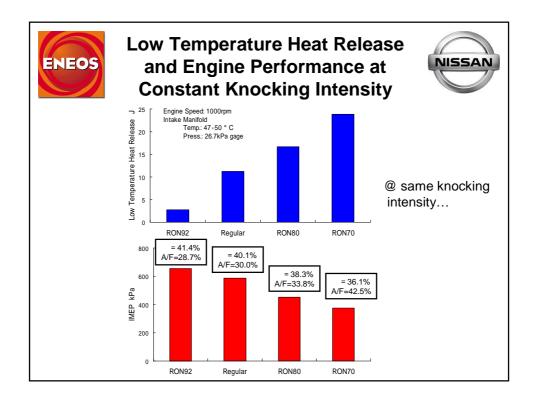


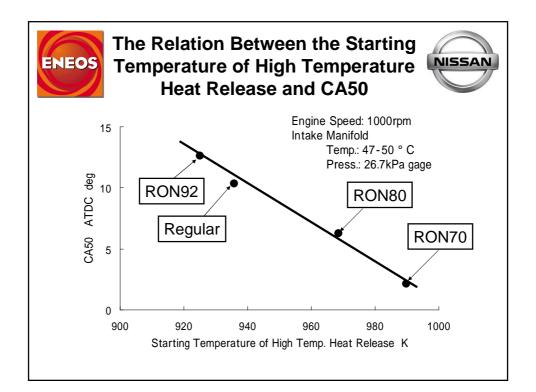




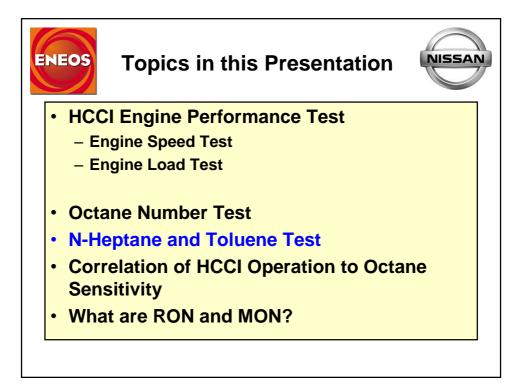


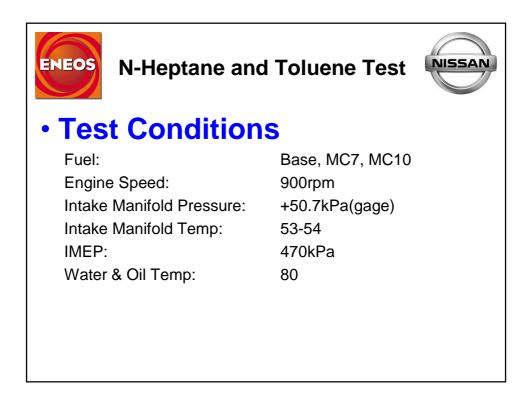


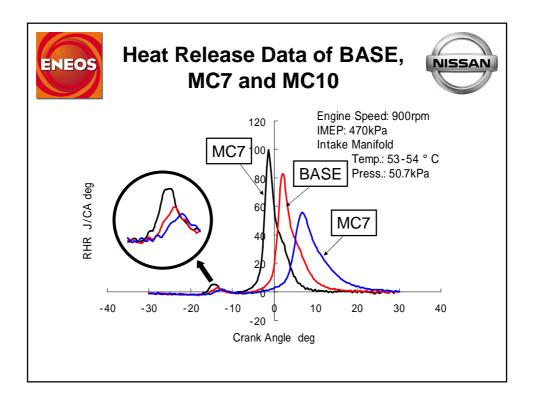

NEOS			Tes	st			NISS
			Unit	RON70	RON80	Regular	RON92
Low	Heat Value	J	23.8	16.7	11.2	2.8	
Temperature Heat Release	Star	Temperature	°к	859.3	855.9	832.3	853.7
	t	Crank Angle	BTDC	18.5	18.0	17.5	16.5
High		Heat Value	J	332.8	407.3	528.9	608.6
Temperature	Star t	Temperature	۰к	989.9	968.5	935.9	925.1
Heat Release		Crank Angle	BTDC	8.0	6.5	6.5	6.0
Crank Angle of 50%	% Burn	ed	ATDC	2.2	6.3	10.3	12.6
Intake Air Tempera	ature		۰c	47.0	47.1	50.2	47.8
IMEP			kPa	373.4	452.5	586.2	654.7
Thermal Efficiency	,		%	36.11	38.25	40.08	41.40
Air/Fuel Ratio				42.5	33.8	30	28.7


R	HR	data of	f Oc Tes		Numl	oer (NISSA
			Unit	RON70	RON80	Regular	RON92
Low	Heat Value	J	23.8	16.7	11.2	2.8	
Temperature	Star	Temperature	°К	859.3	855.9	832.3	853.7
	t	Crank Angle	BTDC	18.5	18.0	17.5	16.5
High		Heat Value	J	332.8	407.3	528.9	608.6
High Temperature	Star	Temperature	۰к	989.9	968.5	935.9	925.1
Heat Release	t	Crank Angle	BTDC	8.0	6.5	6.5	6.0
Crank Angle of 50%	% Burn	ed	ATDC	2.2	6.3	10.3	12.6
Intake Air Tempera	ature		۰c	47.0	47.1	50.2	47.8
IMEP			kPa	373.4	452.5	586.2	654.7
Thermal Efficiency	,		%	36.11	38.25	40.08	41.40
Air/Fuel Ratio				42.5	33.8	30	28.7

NEOS		data of	Tes				NISSA
			Unit	RON70	RON80	Regular	RON92
Low Heat Value			J	23.8	16.7	11.2	2.8
Temperature	Star	Temperature	°к	859.3	855.9	832.3	853.7
Heat Release	t	Crank Angle	BTDC	18.5	18.0	17.5	16.5
High		Heat Value	J	332.8	407.3	528.9	608.6
High Temperature	Star	Temperature	۰к	989.9	968.5	935.9	925.1
Heat Release	t	Crank Angle	BTDC	8.0	6.5	6.5	6.0
Crank Angle of 50%	% Burn	ed	ATDC	2.2	6.3	10.3	12.6
Intake Air Tempera	ature		۰c	47.0	47.1	50.2	47.8
IMEP			kPa	373.4	452.5	586.2	654.7
Thermal Efficiency	,		%	36.11	38.25	40.08	41.40
Air/Fuel Ratio				42.5	33.8	30	28.7







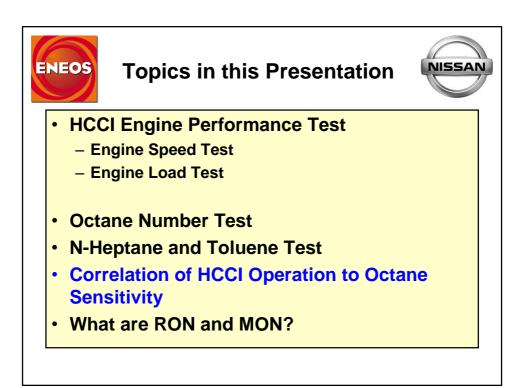
ENEOS		Relation Types an Perfor		ne	NISSAN
Fuel Type	Engine Torque	Air Fuel Ratio Range	Engine Speed Range	Anti-Knocking Performance	Thermal Efficiency
Large LTHR Fuel	Small	Lean Side	Lean Side Wide		Low
Small LTHR Fuel	Large	Rich Side	Rich Side Narrow		High
Large LTHF Small LTHF		v •		Speed, Low To Speed, High ⁻	

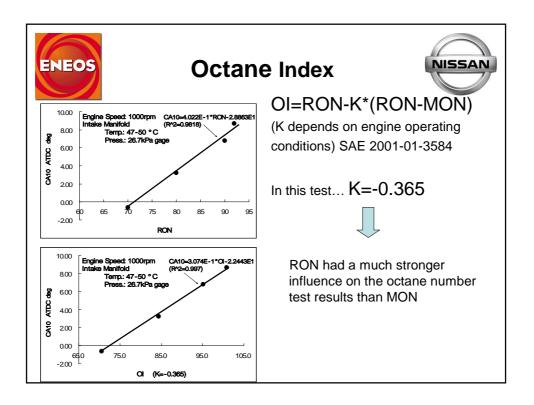
Descripti Fuels f		lepta	ne and		
		BASE	MC7	MC10	
Octane Number	RON	87.5	83.5	90	
	MON	68	64.5	66.5	
Density	g/cm3	0.7292	0.7264	0.7384	
Reid Vapour Pressure	kPa	38.0	36.5	36.0	
Lower Heating Value	J/g	43487	43556	43260	
Distillation °C	0%	51.5	51.5	52.0	
	10%	67.0	69.0	69.0	
	30%	73.5	75.5	76.0	
	50%	82.5	85.0	85.5	
	70%	96.5	97.0	98.5	
	90%	114.5	113.0	114.5	
	95%	128.5	127.0	125.5	
	EP	143.5	142.5	144.0	
Remarks		-	BASE+6.5% n-Heptane	BASE+6.5% Toluene	

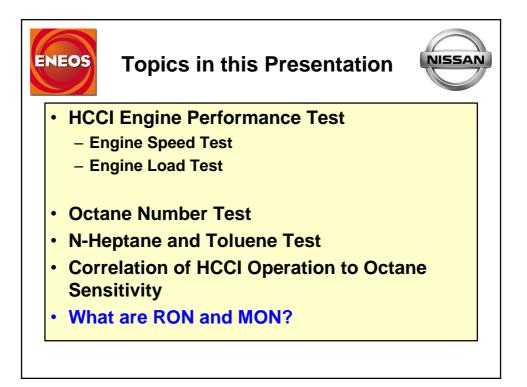
NEO5		and HT ane and				NISSA
			Unit	MC7	BASE	MC10
Low Temperature		Heat Value	J	23.0	14.5	13.1
Heat Release	Start	Crank Angle	BTDC	18.5	16.5	16.5
High Temperature Heat Release		Heat Value	J	416.0	442.6	462.8
	Start	Crank Angle	BTDC	9.5	8.5	7
Engine Torque		1	Nm	71.1	70.2	70.2
Engine Power			kW	6.7	6.6	6.6
Intake Air Temperatu	re		۰c	52.8	54.0	54.0
IMEP			kPa	468.4	473.6	470.0
Thermal Efficiency			%	39.97	38.48	37.03
Air/Fuel Ratio (Exhau	ist O2 S	ensor)		41.5	41.7	41.5

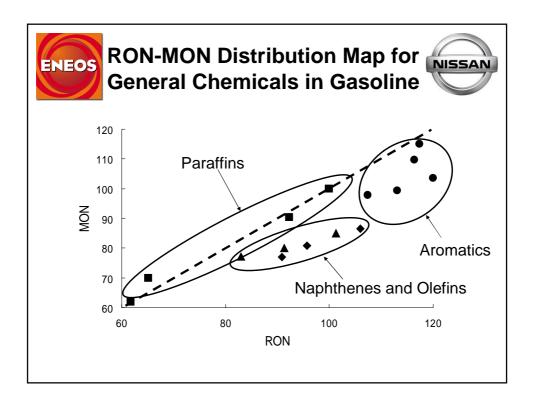
ENEOS	

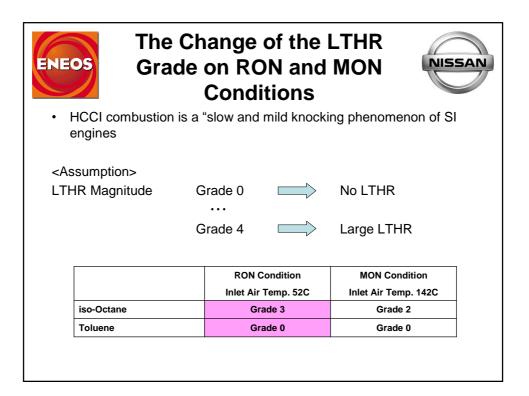
LTHR and HTHR Data of N-Heptane and Toluene Test

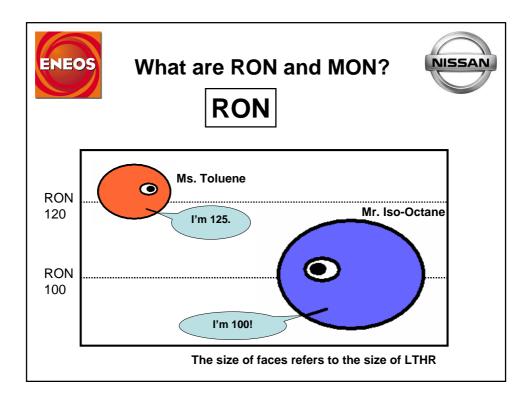

NISSAN

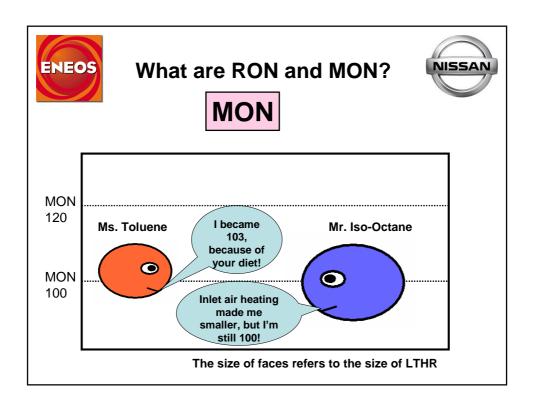

	epu	ane and	IOIU		COL	
			Unit	MC7	BASE	MC10
Low Temperature		Heat Value	J	23.0	14.5	13.1
Heat Release	Start	Crank Angle	BTDC	18.5	16.5	16.5
High Temperature Heat Release		Heat Value	J	416.0	442.6	462.8
	Start	Crank Angle	BTDC	9.5	8.5	7
Engine Torque	•		Nm	71.1	70.2	70.2
Engine Power			kW	6.7	6.6	6.6
Intake Air Temperatu	ire		۰C	52.8	54.0	54.0
IMEP			kPa	468.4	473.6	470.0
Thermal Efficiency			%	39.97	38.48	37.03
Air/Fuel Ratio (Exhau	ust O2 S	ensor)		41.5	41.7	41.5

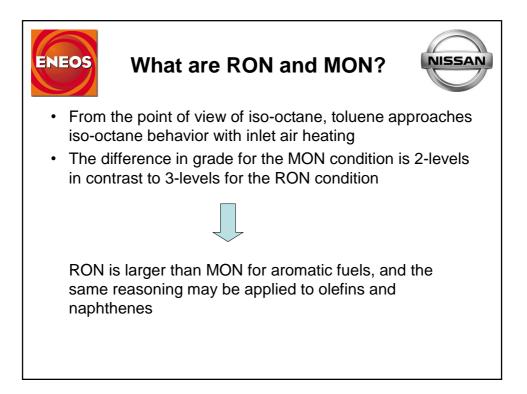

Chemistry changes the start crank angle of LTHR
The temperature range of LTHR is dependent on the chemical components


NEOS		and HT ane and				NISSAN
			Unit	MC7	BASE	MC10
Low Temperature	Low Temperature Heat Value			23.0	14.5	13.1
Heat Release	Start	Crank Angle	BTDC	18.5	16.5	16.5
High Temperature		Heat Value	J	416.0	442.6	462.8
Heat Release	Start	Crank Angle	BTDC	9.5	8.5	7
Engine Torque	Engine Torque			71.1	70.2	70.2
Engine Power			kW	6.7	6.6	6.6
Intake Air Temperatu	re		۰C	52.8	54.0	54.0
IMEP			kPa	468.4	473.6	470.0
Thermal Efficiency			%	39.97	38.48	37.03
Air/Fuel Ratio (Exhau	ist O2 S	ensor)		41.5	41.7	41.5
Heating Value of MC10 is a mixtu					e]	
	Tolue	ene does not e	exhibit L	THR		

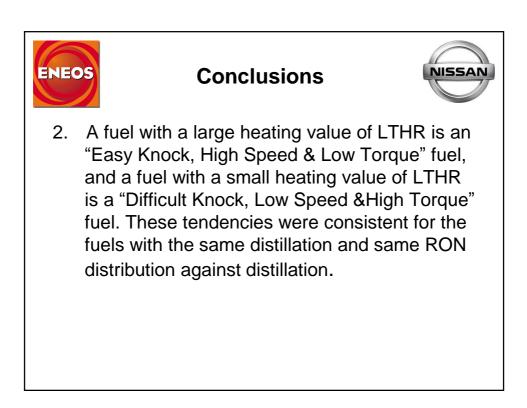

VEO5		and HT			_	NISSA
			Unit	MC7	BASE	MC10
Low Temperature		Heat Value	J	23.0	14.5	13.1
Heat Release	Start	Crank Angle	BTDC	18.5	16.5	16.5
High Temperature		Heat Value	J	416.0	442.6	462.8
Heat Release	Start	Crank Angle	BTDC	9.5	8.5	7
Engine Torque	1		Nm	71.1	70.2	70.2
Engine Power			kW	6.7	6.6	6.6
Intake Air Temperatu	ire		۰c	52.8	54.0	54.0
IMEP			kPa	468.4	473.6	470.0
Thermal Efficiency			%	39.97	38.48	37.03
Air/Fuel Ratio (Exhau	ust O2 S	ensor)		41.5	41.7	41.5

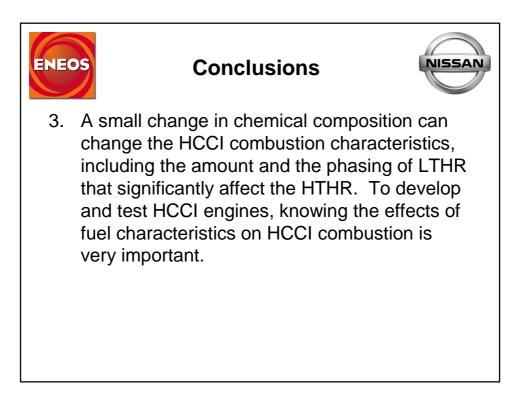


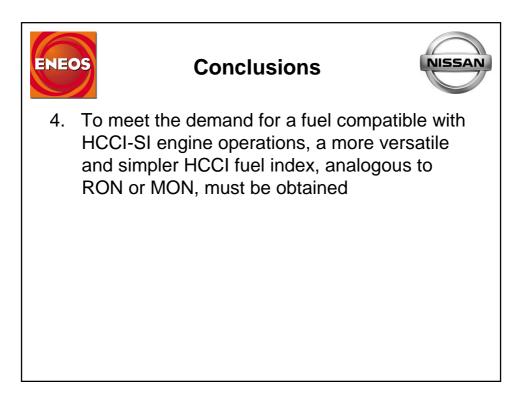




The Change of the LTHR Grade on RON and MON Conditions					
 HCCI combustion is a "slow and mild knocking phenomenon of SI engines 					
<as< td=""><td>sumption></td><td></td><td></td><td></td><td></td></as<>	sumption>				
LTHR Magnitude G		Grade 0	\square	No LTHR	
		•••			
		Grade 4		Large LTHR	
			Condition	MON Condition	7
	iso-Octane		Temp. 52C	Inlet Air Temp. 142C	
			ade 3	Grade 2	
	Toluene Grade 0		ade 0	Grade 0	






Conclusions

1. The reaction time period from LTHR start to HTHR finish is constant for a given fuel and independent of engine speed. As the engine speed increases, the period in crank angles is simply elongated. This effectively restricts the engine speed range where HCCI combustion is practical.

