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Development in DI HCCI (1995~ )

with high swirl, high EGR and 
retarded injection timing

MK (NISSAN)

UNIBUS (TOYOTA) 
with dividing fuel injection into 
two stages in order to enable rapid
combustion at low temperatures

with two side injectors in order
to avoid collision of the spray
with cylinder wall

PREDIC (New ACE)

Ref: SAE Paper 1999-01-3681
HiMICS (HINO) 

with multiple injection system
early stage inj., pilot inj., 
main inj., late stage inj.

Ref: SAE Paper 961163
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PREDIC (Ref : SAE Paper 961163)

PREmixed lean DIesel Combustion :
has an impingement spray system with two injectors
1. to grow the air/fuel mixture in the center of combustion chamber
2. to decrease the cylinder wall wetting of fuel

has a set of advanced injection timing
1. to promote the fuel and air mixing

provides low NOX and 
smoke emissions

Injection system of PREDIC

2. to achieve the lean diesel combustion

Emission characteristics of 
PREDIC
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MULDIC  (Ref : SAE Paper 980505)

MULtiple stage DIesel Combustion :

PREDIC achieved the simultaneous reduction of NOX and smoke emissions.  
However, this technique can apply only to low and medium load condition.  Therefore,
MULDIC was developed for NOX reduction at higher load condition.

Emission characteristics of 
MULDIC

adopted a multiple stage injection method

R.O.H.R. of MULDIC

can decrease NOX and smoke emissions even at 
high load condition

resulted in further
improvement in 
exhaust emissions 
with EGR

has trade-off 
correlation between
NOX emission and 
fuel consumption
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Heterogeneous Charge
Compression Ignition (1)

(Keio Univ.)

Experiment Calculation

(Ritsumeikan Univ.)

Heterogeneity of fuel distribution can achieve
more moderate heat release rate.

Heterogeneous charge has a possibility to
control the occurrence of main ignition.
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(Ref : SAE Paper 2004-01-1756, Engine Research Center in U of W)

Stratification of the charge was varied 1) by retarding  injection timing of DI.
2) by altering the ratio of DI fuel to the total fuel.

DI

Premixed
charge

Stratified charge shows potential as a viable enhancement for HCCI combustion at 
the lean limit.
At the rich limit, the stratification was limited by the high pressure-rise rate and high
CO and NOX emissions.

Heterogeneous Charge Compression Ignition (2)

600rpm, I=0.27 (rich limit)Fuel supply system

mass of direct injected fuelDI %=
total mass of fuel in the charge

600rpm, I=0.15 (lean limit)
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Borderless in Gasoline Eng. and Diesel Eng.
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Direct injection Port injection
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Direct injection Port injection

point of view of
high efficiency

Spark Ignition

Gasoline EngineGasoline Engine

HCCI combustion

point of view of 
low emission 

(NOX, PM)

Compression Ignition

Diesel EngineDiesel Engine

Direct injection

Mixture formation

Homogeneous
premixed gas

Heterogeneous
stratified mixture

Combustion mode

Heterogeneous
diffusion combustion

Homogeneous
premixed combustion

In recent gasoline engines & diesel engines…

・Mixture formation
・Combustion mode

No definite boundary

Borderless in Gasoline Eng. & Diesel Eng.
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Borderless in Gasoline Eng. & Diesel Eng.

Trends in Engine Research

Direct Injection

HCCI Conventional
Diesel Engine

Ef
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Emissions - PM, NOx

Conventional
Gasoline Engine

Gasoline or Diesel ?

Our Proposal on Fuel Design Approach
1. Mixing Fuel with Liquefied CO2

2. Mixing Fuel with High and Low Volatility Fuel

Water/Oil Emulsified Fuel
Oxygenated Fuel, etc.

Improvements of Fuels

3. Soot Free Combustion with Oxygenated fuels from kinetic analysis
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Proposal of Fuel Design Approach 
for Both Engines
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Use of Flash Boiling Spray

Control of Spray Evaporation Process through Two Phase Region
in Liquid – Vapor Equilibrium in Mixing Fuels

①Mixing Fuel of Liquefied CO2 and n-Tridecane(gas oil)
Æsimultaneous reduction both Soot and NOx

②Mixing Fuel of Gas or Gasoline Component and Gas oil
Component Æcontrol both evaporation and ignition

Future Study

① Fuel Conversion by Sono-Chemistry

②Conversion of Heavy Fuels or Solid Fuels into high quality
Lighter Liquid Fuels through Chemicasl-Thermodynamic

Fuel Design Approach Researches with Focusing 
Artificial Control of Spray Atomization and Evaporation 

Artificial control of Spray 
Evaporation Process
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Flash Boiling Injection Process

What is Flash Boiling Spray ?
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Spray Measurement of Flash Boiling Spray

Mie scattering image
from droplets

Spatial vapor concentration distribution
by two-wave length IR absorption method

n-Pentane Spray(Pv=56.5KPa) injected into 21KPa ambient pressure
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Analytical model of flash boiling spray in this study
Vapor formation process
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Atomization & Evaporation in Pressure atomizer
Æ Time & Spatial delay depending on Pinj , Ua , Ta

① Breakup delay of spray
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Atomization & Evaporation in Flash Boiling Spray
ÆNon Time & Spatial delay depending on Two Phase profile( 'Pbv('T))

bubble ligament

dropletsintact core

※ Evaporation due to Enthalpy balance    
of fuels without aerodynamic force

Bubble Nucleation rate

Evaporation rate = Bubble growth Rate
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Proposal on Fuel Design Approach Research

Spray and Combustion Science Laboratory, Doshisha University

(1) Physical Control = Capability of Time and Spatial Control on Fuel Vapor 
Distribution by Formation of Two Phase region in Mixing Fuel

Æ Formation of Flash Boiling Spray ÆImprovement of Spray Evaporation

(2) Chemical Control = Capability of Control on Combustion Process
Æ Emission Control – Soot & NOx

Simultaneous reduction of both Soot and NOx (CO2-gas oil mixing fuel)
Æ Ignition Control (Gasoline-gas oil mixing fuel)
Æ HC Control (Gasoline-gas oil mixing fuel)

(3) Improving Thermal Efficiency by Lower Injection Pressure
Æ High Spray Atomization and Evaporation Quality with Flashing Process

(4) Control the Fuel Transportation Properties in Mixing Fuels

(5) Effective liquefaction of gaseous and solid fuels
Æ Conversion of Heavy Fuels or Solid Fuels into high quality

Lighter Liquid Fuels through Chemical-Thermodynamics
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Proposal on Fuel Design Approach Research

Spray and Combustion Science Laboratory, Doshisha University

(1) Physical Control = Capability of Time and Spatial Control on Fuel Vapor 
Distribution by Formation of Two Phase region in Mixing Fuel

Æ Formation of Flash Boiling Spray ÆImprovement of Spray Evaporation

(2) Chemical Control = Capability of Control on Combustion Process
Æ Emission Control – Soot & NOx

Simultaneous reduction of both Soot and NOx (CO2-gas oil mixing fuel)
Æ Ignition Control (Gasoline-gas oil mixing fuel)
Æ HC Control (Gasoline-gas oil mixing fuel)

(3) Improving Thermal Efficiency by Lower Injection Pressure
Æ High Spray Atomization and Evaporation Quality with Flashing Process

(4) Control the Fuel Transportation Properties in Mixing Fuels

(5) Effective liquefaction of gaseous and solid fuels
Æ Conversion of Heavy Fuels or Solid Fuels into high quality

Lighter Liquid Fuels through Chemical-Thermodynamics
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Gas Fuel Gasoline Gas Oil Fuel OilCO2

Phase 2

Phase 1

Phase 1

Phase 2 Gasoline
Gaseous Fuel

Gas Oil
Fuel Oil

CO2 Gas Oil

High Volatility Fuel Low Volatility Fuel

Fuel Combination for Fuel Design
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Two Phase Region Formation in Multi-component
Fuel in Phase Change Process
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Chemical Thermodynamics and Two-Phase Region
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Estimation of Two-Phase Region
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State Principle

/r CP P P /r CT T T ,
Peng-Robinson
Equation of States

^ `
( )

( ) ( )
RT a TP

V b V V b b V b
 �

� � � �

Fugacity of Liquid & Gas

/( )G G
i i if y PI  � /( )L L

i i if X PI  �,

G L
i if f 

The prediction of Two-Phase Region



Doshisha University – Energy Conversion Research Center & Spray and Combustion Science Laboratory –

Doshisha University – Energy Conversion Research Center & Spray and Combustion Science Laboratory –

Distillation Analysis for Multi-component Fuel

Boiling point [K] 

Distillation Curve10-components Fuel
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0.04(a)n-butane 272.6
0.35(b)isopentane 301.0
0.12(c)2-methylpentane 333.4
0.06(d)cyclohexane 353.9
0.12(e)2,2,4-

trimethylpentane
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0.06(f)toluene 383.8
0.06(g)meta-xylene 412.3
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Time Dependence of Evaporation Analysis for
10-Components Fuel Single Drop
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Proposal on Fuel Design Approach Research

Spray and Combustion Science Laboratory, Doshisha University

(1) Physical Control = Capability of Time and Spatial Control on Fuel Vapor 
Distribution by Formation of Two Phase region in Mixing Fuel

Æ Formation of Flash Boiling Spray ÆImprovement of Spray Evaporation

(2) Chemical Control = Capability of Control on Combustion Process
Æ Emission Control – Soot & NOx

Simultaneous reduction of both Soot and NOx (CO2-gas oil mixing fuel)
Æ Ignition Control (Gasoline-gas oil mixing fuel)
Æ HC Control (Gasoline-gas oil mixing fuel)

(3) Improving Thermal Efficiency by Lower Injection Pressure
Æ High Spray Atomization and Evaporation Quality with Flashing Process

(4) Control the Fuel Transportation Properties in Mixing Fuels

(5) Effective liquefaction of gaseous and solid fuels
Æ Conversion of Heavy Fuels or Solid Fuels into high quality

Lighter Liquid Fuels through Chemical-Thermodynamics
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Ignition delay of mixing fuel of C5H12 with C13H28
and single component fuel (Experiments)
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Effect of octane number of low boiling point fuel 
on ignition delay for mixing fuel (Experiments)
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Ignition Delay of Mixing Fuel

of i-Octane & n-Tridecane (Experiments)
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Numerical Spray Dynamics at t=3.0ms for each   
Mixing Fuel Spray by KIVA-3 Calculation

(a) Shadowgraph image

(b) Droplet distribution

(c) Vapor distribution 
of n-pentane

(d) Vapor distribution 
of n-tridecane
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Vapor Mass of C5 & C13 Mixing Fuel for each  
Mixing Fraction by KIVA Analysis (t=3.0ms)
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Temporal Changes in Vapor Mass for C5 & C13

Mixing Fuel KIVA Analysis
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Comparison of Spray Structure 
–Vapor Spatial Distribution–

with Experiments and Numerical Results at t=3.0ms
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Multi-component Fuel Spray Behavior 
in Diesel Combustion Chamber

The chemical & physical properties
of n-paraffin Hydrocarbon

Carbon Number in Hydrocarbon

Gas Kerosene
Gas Oil

Fuel Oil

Cetane Number (Ignitability)

Octane Number

Gasoline
low

high

Molecular Weight

ViscositySaturated Temp.

Lower vapor forming rate

Lower boiling point fuel (gasoline)
higher evaporation
higher octane number = poor ignitability

Higher boiling point fuel (gas oil)
lower evaporation
higher cetane number = high ignitability

Lower b.p fuel

Higher b.p fuel
overlap region

Piston

Our Fuel Design
Concept Research

･ stratified fuel vapor distribution

･ ignition at the middle part of the spray
balance of physical and chemical

･ Disc shaped chamber is selected
reasonably through fuel physical
and chemical properties
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Proposal on Fuel Design Approach Research

Spray and Combustion Science Laboratory, Doshisha University

(1) Physical Control = Capability of Time and Spatial Control on Fuel Vapor 
Distribution by Formation of Two Phase region in Mixing Fuel

Æ Formation of Flash Boiling Spray ÆImprovement of Spray Evaporation

(2) Chemical Control = Capability of Control on Combustion Process
Æ Emission Control – Soot & NOx

Simultaneous reduction of both Soot and NOx (CO2-gas oil mixing fuel)
Æ Ignition Control (Gasoline-gas oil mixing fuel)
Æ HC Control (Gasoline-gas oil mixing fuel)

(3) Improving Thermal Efficiency by Lower Injection Pressure 
Æ High Spray Atomization and Evaporation Quality with Flashing Process

(4) Control the Fuel Transportation Properties in Mixing Fuels

(5) Effective liquefaction of gaseous and solid fuels
Æ Conversion of Heavy Fuels or Solid Fuels into high quality

Lighter Liquid Fuels through Chemical-Thermodynamics
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Proposal on Fuel Design Approach Research

Spray and Combustion Science Laboratory, Doshisha University

(1) Physical Control = Capability of Time and Spatial Control on Fuel Vapor 
Distribution by Formation of Two Phase region in Mixing Fuel

Æ Formation of Flash Boiling Spray ÆImprovement of Spray Evaporation

(2) Chemical Control = Capability of Control on Combustion Process
Æ Emission Control – Soot & NOx

Simultaneous reduction of both Soot and NOx (CO2-gas oil mixing fuel)
Æ Ignition Control (Gasoline-gas oil mixing fuel)
Æ HC Control (Gasoline-gas oil mixing fuel)

(3)  Improving Thermal Efficiency by Lower Injection Pressure
Æ High Spray Atomization and Evaporation Quality with Flashing Process

(4) Control the Fuel Transportation Properties in Mixing Fuels
Æ Optimization of specific heat, viscosity ,etc

(5) Effective liquefaction of gaseous and solid fuels
Æ Conversion of Heavy Fuels or Solid Fuels into high quality

Lighter Liquid Fuels through Chemical-Thermodynamics
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Proposal on Fuel Design Approach Research

Spray and Combustion Science Laboratory, Doshisha University

(1) Physical Control = Capability of Time and Spatial Control on Fuel Vapor 
Distribution by Formation of Two Phase region in Mixing Fuel

Æ Formation of Flash Boiling Spray ÆImprovement of Spray Evaporation

(2) Chemical Control = Capability of Control on Combustion Process
Æ Emission Control – Soot & NOx

Simultaneous reduction of both Soot and NOx (CO2-gas oil mixing fuel)
Æ Ignition Control (Gasoline-gas oil mixing fuel)
Æ HC Control (Gasoline-gas oil mixing fuel)

(3) Improving Thermal Efficiency by Lower Injection Pressure
Æ High Spray Atomization and Evaporation Quality with Flashing Process

(4) Control the Fuel Transportation Properties in Mixing Fuels

(5) Effective liquefaction of gaseous and solid fuels
Æ Conversion of Heavy Fuels or Solid Fuels into high quality

Lighter Liquid Fuels through Chemical-Thermodynamics
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(5) Effective liquefaction of gaseous and solid fuels

Æ Conversion of Heavy Fuels or Solid Fuels into high quality
Lighter Liquid Fuels through Chemical-Thermodynamics
with assisting by Sono-Chemistry Process

As a Future Study
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Author’s Fuel Design Approach Researches

①Mixing Fuel of Liquefied CO2 and n-Tridecane(gas oil)
Æsimultaneous reduction both Soot and NOx

②Mixing Fuel of Gas or Gasoline Component and Gas oil
Component Æto control both evaporation and ignition
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Combustion Experiments in CO2 & n-Tridecane Mixing Fuel

Experimental conditions

Equivalent crank speed 200 [rpm]
Water jacket temperature 353 [K]

Compression ratio 15

Injection nozzle dimension dn=0.18 [mm]
ln/dn=4.17

Injection pressure 16 [MPa]

Injection timing 5.0 ± 0.5
[deg.CA.BTDC]

Excess-air ratio 25
Ambient temperature at injection 750 [K]

Ambient pressure at injection 3.2 [MPa]
Initial cylinder pressure 0.1 [MPa]

Injection quantity
(n-tridecane + CO2)

10.0 + 0.0 [mg]XCO2=0.0
10.0 + 1.6 [mg]XCO2=0.4
10.0 + 3.6 [mg]XCO2=0.6
10.0 + 9.5 [mg]XCO2=0.8

P-T Diagram for Mixed Fuel in RCEM
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Scenario of Low Emission Diesel Combustion by Mixing    
Fuel Injection of Liquid CO2 & n-Tridecane (gas oil)

Low injection pressure
to improve efficiency

Improvement of spray atomization
&

Formation of vaporizing spray
to form lean & homogeneous
mixture

Control of combustion processes
to reduce both NO and soot

NO reduction
(1) Thermal dissociation of CO2

(2CO2⇒ 2CO+O2)
(2) Improvement of spray atomization

and vaporization due to CO2
separation and flashing

Soot reduction
(1) Soot formation
･avoid the fuel rich mixture

(2) Soot oxidation & reburning
･Dissociation of CO2 into CO and O
･Boudouard reaction C+CO2⇒ 2CO

Concept Low Emission Scenario
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Combustion Characteristics of CO2/C13 Mixing Fuel

Low pressure injection Improve the Thermal Efficiency

Flash boiling spray 
by CO2 component

Promotion of Spray Evaporation

Spray internal EGR Reduction of NOx

0

50

100

1.00 1.33 1.67 2.00 3.00 5.00 6.33 7.67 10.30

XCO2=0.0

XCO2=0.8

Time after injection [ms]

0

50

100
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Spray Evaporation Experiments in Mixing Fuel
of n-Pentane & n-Tridecane

RCEM Condition
Equivalent crank speed

Water jacket temperature

Ambient gas
Initial cylinder pressure
Ambient pressure*
Ambient temperature*
Ambient density*
Ambient viscosity*
Ambient specific heat*

Orifice diameter
Injection pressure
Injection velocity
Injection timing
Injection duration
Injection quantity
Excess-air ratio
Fuel temperature

Compression ratio

Injection Condition

Ambient Condition

* :  at TDC

N2 : 100 %200 r.p.m
15

353 K

0.20 mm
15 MPa
151 m/s

5.0 deg.BTDC
2.0 ms
10 mg

25
353K

0.1 MPa
3.4 MPa

750 K
15 kg/m3

32.9 PPa˙s
1117 J/kg˙K
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Spray Evaporation Experiments in Mixing Fuel
of n-Pentane & n-Tridecane

Mie-scattering and LIF Setup LIF Signal Excited at 266 nm

Band pass
filter 

RCEM

Dicroic mirror 

Cylindrical lens

Quartz glass

CCD camera

Injector

Nd:YAG Laser
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Spray Evaporation Experiments in Mixing Fuel
of n-Pentane & n-Tridecane

n-C5H12 :  boiling point  309.3 K

n-C13H28 :  boiling point  508.7 K
XC5H12 :  Mixing fraction of C5H12

Mixing Fuel and LIF Tracer Two-Phase Region in P-T diagram

XC5H12

VC5H12
Acetone
[vol.%]

Tetraline
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1.0
1.0

5

-

0.75
0.59

2.8

2.7

0.5
0.32

1.5

4.6

0.25
0.14

0.6

5.9

0.0
0.0

-

7

XC5H12 : Mole fraction of n-pentane
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Acetone  : C5H12 Tracer
Tetraline : C13H28 Tracer
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LIF & Mie scattering Images in Mixing Fuel
of C5H12 & C13H28
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Spatial Distribution of C5H12 & C13H28 Vapors
in Transient Mixing Spray by LIF
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Enlargement of Shadowgraph Images near Nozzle Tip
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Engine type Air-cooled 
4 stroke diesel engine

Bore - Stroke [mm] I 78 -62

Displacement [cc] 296

Combustion 
chamber shape Troidal type

Top clearance [mm] 0.6

Compression ratio 19.0

Rated power 6.7kW/3600rpm

Specification of Test Engine  for Mixing Fuel of C5 & C13
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Engine speed [rpm] 3600

Engine load [%] 0, 20, 40, 60

Operating condition

Injection condition

Injection pressure [MPa] 15MPa

Injection nozzle (n–I d) 4-I 0.21

Injection timing [deg.C.A.BTDC] 12

Test fuel
X C5H12=0.0 , 0.25

0.50 , 0.75n-C5H12 + n-C13H28 (C5/C13)

Experimental Conditions for Engine Test
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Engine speed [rpm] 3600

Engine load [%] 60

Operating condition

Injection condition

Injection pressure [MPa] 15MPa

Injection nozzle (n–I d) 4-I 0.21

Injection timing [deg.C.A.BTDC] 12.5

Test fuel

X LPG=0.8LPG + n-C13H28 (LPG/C13)

Experimental Conditions for Engine Test for Mixing Fuel of LPG
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Emissions and Engine Performance (LPG/C13)

With Flash Boiling

W/O Flash Boiling
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Finally,                                                        
We are intending to couple Fuel Design Process
- Two Phase Region Profile -
with Combustion Chamber Geometry Design 
considering Fuel Spray Evaporation Process

ÆArtificial Control to optimize the Fuel Spray
Evaporation Process for each Engine Chambers
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Optimization of Spray Evaporation Process and Chamber   
Geometry by adjusting Two Phase Profile of the Fuel

Formation of Shorter Spray

Spray should be penetrated to near the chamber wall where air mass is enough

HC and PM should be reduced by avoiding the spray and wall interaction

Optimization of Two Phase Region Profile
Selection of Mixing Fuels
Mixing Fraction

T

P

High B.P.Fuel

Low B.P.
Fuel

Formation of Longer Spray

Small Engines

Large Engines

Combustion

Combustion
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Jiro SENDA
Spray & Combustion Science Lab.

Doshisha University,  Kyoto JAPAN

Thank you for your kind attention

Int. Seminar on Engine System Combustion Process (2004.5.28)

Fuel Design Approach for 
Low Emission Spray Combustion


