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Outline:
¢ Overview of optical diagnostics (see also ERC webpage: )
¢ Spectral engine analysis in the ERC
¢ Hyperspectral: what and why?
+ Engine data: findings and future plans

Optical Diagnostics in Engines. Research Landscape

+ Optical diagnostics have played a key role in engine research for decades

+ More than 10 years ago: many new diagnostic development efforts (among
engine manufacturers, national laboratories, universities, small businesses, ...)

¢ In the last ~ 10 years:
- reduced development of new diagnostics
- emphasis on refining, applying proven diagnostics

« Today: many parties comfortable with standard diagnostics
- high speed visualization
- thermal emission / chemiluminescence spectroscopy
- particle imaging velocimetry
- laser Doppler anemometry
- phase Doppler particle anemometry
- Schlieren/shadowgraph imaging
- laser induced fluorescence

but there is less development effort




Comparison with Medical, Military Applications

+ Increased optical developments in medical, military applications

+ Example: at the May 2006 Conference on Lasers and Electro Optics (CLEO),
~ 20 new laser designs for medical applications were announced; at most 2
presenters even mentioned combustion as a possible application

+ Larger funding in these markets has been attracting many researchers away
from combustion

+ However, as we know, combustion / engine / mobility / energy research is an
important area

+ New optical diagnostics can continue to play a very important role

Diagnostics wish list: What would we like to measure?

+ Composition of the gas phase (N species)
¢ Gas temperature

+ Velocity (3 components)

+ Also: composition and morphology of the solid phase (soot), etc.

¢ Goal: measure the above for all times and all points in space

+ One application: compare with computational results, improve predictive
capabilities




All times and all pointsin spacein an engine

+ To resolve most phenomena of interest, we need
+ Spatial resolution ~ 30 um

« Time resolution ~ 10 ps

+ 30 um spatial resolution - 1012 data points in the engine
+ 1012 data points every 10 us - 1017 data points per second

+ Imagine we wish to measure just one value (temperature) with 8-bit precision at
this rate = 1018 hits/s: this is about 10x the cumulative data flow for the entire
planet!

+ Could transmit this data through the fibers shown here:
but it would be too much to process

Additional challenges

« That was only temperature, other parameters are desired

+ The engine produces work, not temperature signals. To extract one accurate
temperature at a single point, one could use coherent anti-Stokes Raman
spectroscopy (CARS), for example. However:

+ ~ 500 spectral data points are required to infer the one parameter of
interest, temperature

¢ The CARS setup is challenging.
+ The ‘point’ may be larger than 30 um.




Sprays. one example of even more challenges

+ In a spray one may desire 30 um - 300 nm, 10 us - 300 ns

o It is clear that we cannot achieve the true goals.

+ How should we proceed with optical diagnostics in engines?

The present

¢ Continue to make measurements of
interesting phenomena at integral length
scales

+ Combine diagnosticsto
+ Overcome limitations
«+ Provide a more complete picture of the process
«+ Tieresults directly to combustion phenomena




Combining Diagnostics to Overcome
Limitations
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Combining Diagnostics to Overcome
Limitations

Example record for one engine operating condition
(50-cycle average, temperature and mole fraction inferred from spectra)
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Combining Diagnostics to Overcome
Limitations
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Combining Diagnostics to Overcome
Limitations

Results
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The present

+ Continue to make measurements of
interesting phenomena at integral length
scales

+ Combine diagnosticsto

+ Overcome limitations
«+ Provide a more complete picture of the process
«+ Tieresults directly to combustion phenomena




The future

¢+ RESOLUTION
+ Spatial
+ Temporal
+ Spectral
+ Signal to noise ratio
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Spectral Engine Analysis

+ RESOLUTION
+ Spatial
+ Temporal
+ Spectral
+ Signal to noiseratio

+ Focus on spectra: different than most combustion diagnostics
« Spectra provide possibility of accurate, quantitative measurements

+ Combined spatial / spectral resolution is a key future goal (example: we have
designed a laser that scans 300-320 nm at arbitrary speeds for fluorescence
measurements)

Typica experimental schematic & results
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Are the temperatures accurate?
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Are the temperatures accurate?
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Plan for further shock tube tests

More shock tube experiments planned
for July 2006
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Plans for species measurements
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Introduction to Hyperspectral Sensing:
Generic Spectroscopy Arrangements
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Hyperspectral = ‘too many spectra’
Broad spectral coverage (> 200 cm-1):

« multiple species with a single source

« ability to monitor broad spectral features (heavy or high-pressure gases, supercritical
fluids, liquids, solids, etc.)

« reality checks (are you really measuring what you think you’re measuring?)

High-resolution (< 1 cmY):
+ higher SNR in gas spectroscopy
« discrimination of multiple species
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High-speed (> 1 spectrum every 50 ps):
« Immunity to ‘slow’ noise sources: vibration, beamsteering, etc.

+ Compatibility with transient experiments (explosions, shock tubes,
pulsed magnetic fields, video-rate OCT, etc.)
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Why hyperspectral ?
Broad spectral coverage (> 200 cm-1):

+ multiple species with a single source

0.14 4

0.12 4

0.10 4

0.08

0.06

absorbance

0.04

0.02

0.00 Ay T

—— 235 CAD aTDC
——-29 CAD aTDC
—— -5 CAD aTDC

T T T
<« water vapor

Il

J

l‘w 'l“‘ N

C— iso-octane ———8M8

lk
lr
HI

T T T
1650 1700

T T T
1750 1800

wavelength [nm]

1
1850

=z
o)
|_
<
=
[0 d
o
LL
<
L
[0 d
o
=

Why hyperspectral ?
Broad spectral coverage (> 200 cm-1):

« multiple species with a single source
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Why hyperspectral ?
Broad spectral coverage (> 200 cm-1):

+ multiple species with a single source

P + ability to monitor broad spectral features (heavy or high-pressure gases, supercritical
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Why hyperspectral ?
Broad spectral coverage (> 200 cm?):

« multiple species with a single source

« ability to monitor broad spectral features (heavy or high-pressure gases, supercritical
fluids, liquids, solids, etc.)
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Why hyperspectral ?
Broad spectral coverage (> 200 cm-1):

+ multiple species with a single source

+ ability to monitor broad spectral features (heavy or high-pressure gases, supercritical
fluids, liquids, solids, etc.)

« reality checks (are you really measuring what you think you’re measuring?)

High-resolution (< 1 cmY):
« higher SNR in gas spectroscopy
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High-speed (> 1 spectrum every 50 ps):
+ Immunity to ‘slow’ noise sources: vibration, beamsteering, etc.
+ Compatibility with transient experiments (explosions, shock tubes,
pulsed magnetic fields, video-rate OCT, etc.)
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Why hyperspectral ?
Broad spectral coverage (> 200 cm-1):

+ multiple species with a single source

+ ability to monitor broad spectral features (heavy or high-pressure gases, supercritical
fluids, liquids, solids, etc.)

« reality checks (are you really measuring what you think you’re measuring?)

High-resolution (< 1 cmY):
« higher SNR in gas spectroscopy
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High-speed (> 1 spectrum every 50 ps):
+ Immunity to ‘slow’ noise sources: vibration, beamsteering, etc.
+ Compatibility with transient experiments (explosions, shock tubes,
pulsed magnetic fields, video-rate OCT, etc.)
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Why hyperspectral ?
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Why hyperspectral ?
Broad spectral coverage (> 200 cm-1):

+ multiple species with a single source

+ ability to monitor broad spectral features (heavy or high-pressure gases, supercritical
fluids, liquids, solids, etc.)

« reality checks (are you really measuring what you think you’re measuring?)

High-resolution (< 1 cmY):
« higher SNR in gas spectroscopy
« discrimination of multiple species
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High-speed (> 1 spectrum every 50 ps):
+ Immunity to ‘slow’ noise sources: vibration, beamsteering, etc.

+ Compatibility with transient experiments (explosions, shock tubes,
pulsed magnetic fields, video-rate OCT, etc.)
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Reduced capabilities can suffice in some cases
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More species. extending beyond the 1 um range
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+ Many important combustion species could be measured
using methods similar to the ones presented here

+ Shorter and longer wavelength sources need to be
developed to take advantage of this technology

+ Extremely broadband light could potentially measure all of
the above species in one measurement.

Initial measurements in the 1800 nm range
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Initial measurements in the 1800 nm range
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Initial measurements in the 1800 nm range
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Summary

+ Optical diagnostics in engines: a long history

# There is still much room for growth in this field

+ Diagnostics will continue to be important to the engine community
+ Spectral engine analysis is an uncommon but promising direction

Appendix A: hyperspectral source designs




Hyperspectral photonics: current research landscape

18-km fiber
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drawbacks: 4, 6, 7, 9

These sources share the following
advantages:
1. Inexpensive, for lasers (<$25k)
2. Wavelength = a consistent f(time)

But all suffer from one or more of
the following drawbacks:

Moving parts

One scan direction superior to other
Unreliable at rapid sweep speeds
Wavelength sweeps generally too fast
Undesirable polarization effects
Unsuitable outside of telcom bands
Sweep rates constrained

Spectral resolution unstable

Spectral resolution = f(wavelength)
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Hyperspectral photonics: current research landscape

Yamashita et. al., CLEO 2006
(University of Tokyo)
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Hyperspectral photonics: current research landscape

== S, Huber et. al., CLEO 2006 | These sources share the following
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« Alternative to swept wavelength source: all colors always on, each
modulated at a unique frequency (‘Fourier source’)




Fourier laser: in principle, no drawbacks!

G Gl

¢ Hydrogen cyanide (HCN) used as test absorber: simple spectrum
near 1550 nm
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¢ Laser modes arranged so that the natural beating converts native optical g &
frequencies to measurable frequencies y
+ Called “CW comb Fourier transform spectroscopy” (CW cFTS)




Raw time trace from a Fourier laser
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Comparison of spectra
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.................. —

— ~. 30 original laser output

N OSA gwso
$
S 80
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programmable spectral filter

-8
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PC

# plan to shift this sensor to 1350 nm range, apply in engines by December 2006

+ based on this concept, we have also designed (proposals in review):
+ 1W source covering 300...320 nm for point measurements of [OH], [CH,O], T
by laser induced fluorescence
+ 100 mW source covering 300...2000 nm for hyperspectral transient
analysis by absorption spectroscopy




Appendix B: extras

Absorbance =
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Smoothing: Reduces noise
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Differentiate: Eliminates baseline
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Emission Spectroscopy Example: Gas Turbine
Combustor Test Rig

What is the best instrument
for simply monitoring the
spectrum of the emitted
light?

7 Wright-Patterson
T Air Force Base, OH

Commercial instruments for emission monitoring

OSA: (Agilent)

101 HITEMP
g ] Simulation
6 -
I

T T T
4 combustion products

6600 6800 7000 7200 7400

Power [pW/nm]

ON R O®ONOND

Optical frequency [cm'l]

Drawbacks associated with moving parts:

+ expensive (> 20k) ¢ slow (~ 1 sper spectrum) o rugged?




Commercial instruments for emission monitoring

OSA: (Agilent)

10] HITEMP
g Simulation

Lol

T T T
combustion products

Power [pW/nm]
-
o
L

oN MO ©
Lo
Lol

6600 6800 7000 7200 7400

Onptical frequency [cmrl]

Even without moving parts, still drawbacks:

# grating spectrometers: low resolution, low throughput, or large

An attractive emission spectrometer: SHS
(spatial heterodyne spectrometer)

Harlander et. al., Optics and Photonics News, Jan 2004

Grating . R SHS MnNe Spectrum
spatial interferogram w0
Incident 0, &2 Prisms ] l H
wave N = . 3 o
i =3/ 82-D Fourier transform 2
A - s
Input  ~ == i Vi - 30 3
<= 4 g
aperture ~-- i ! / L‘} Grating = e
v K s > S s sas
L = 2z z=z2=z2
Exttiry 2 20 S ~ goo
etk 2y 2 5 & Ror
wave 3T 2 N B bR
fronts ~ L = 8 8 g33
i N i
- FTS detector location ’
AL _ I
u ? 306 307 308 309 310 31

Wavelength (nm)
Imaging detector

+ grating-based FTS: no moving parts!

+ offer broad coverage, >> 306-311 nm,
maintaining spectral resolution << 1 cnmr!
+ Prof. Sanders’ opinion: about the best
option for high-resolution hyperspectral
analysis of ‘ordinary’ light

¢ now applying SHS in combustion




Generic Spectroscopy Arrangements

emission reflection/scattering
g‘detector MV\M'\C:;? %
test article \% Q? ;

light fluorescence

source

detector

+ the selected arrangements all offer
the possihility to engineer the light

source rather than (or in addition to) AL
the detector

Why engineer the light source?

(since you could just use a light bulb and a SHS detector)

1. Efficient at high-resolution
« Spectral resolution decoupled from collection etendue. Examples: in fluorescence,
collect > 1 Sr from a 1-mm emitter and still maintain < 1 GHz spectral resolution in an
excitation scan; likewise in absorption, beamsteering does not compromise spectral
resolution
2. Simple, rugged, compact, all-fiber...
« Hyperspectral lasers more readily multiplexed than hyperspectral detectors, e.g. for
multi-beam tomography, multi-channel sensors to cover ultra-broad spectral ranges
3. Compatible with simple detectors
+ Not paced by camera technology (limited readout rates, usually optimized for visible
range, etc.)
4. Can compl ement spectrometers

« Ultimately, may want to combine hyperspectral light sources and detectors
(e.g., for combined excitation-emission fluorescence spectroscopy)

5. Light can be ordered, thus eliminating thermal beating

+ For 5 ps-duration measurement at 1 cm™ resolution, noise p, = 1.3%




Generic Spectroscopy Arrangements

emission reflection/scattering
V- PN e d e Vi
%{' ~~~~ fdetector g %
test article " &
transmission
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light g detector quorescnce
source __ ;‘f Y. =
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-
R Branch; P Branch

Beer’sLaw:
STRIERY T, = (1)) = exp(k,L)
Wavelength [nm] kk — f(T,X,P)
Line of sight average

+ Goal: use absorption spectroscopy to quantify gas temperatures,

species mole fractions, and/or pressure, in engines




L aser engineering: wavelength-agile lasers

Raman-tunable supercontinuum + long fiber

1000
’_1|00 jbroadband
£ jsource +
= {long fiber LR
o104 3[spectral into human finger
e jresolution:| =
% 10 nm | ] full-band spectra of combustion H,0
' tom | Lt
3 V .1 nm ]
001 nm | J4_ ) !
0. 1 0001 nm| - T = 1540 K simulation

Pcontinuum |

i + atomic R p
vapor cell

T T T T T T T
1340 1360 1380 1400 1420 1440 1460

1k 10k 100k 1M 10M 100M wavelength [nm]
scan repetition rate [Hz]

¢ Many laser systems devel oped; resulting sensors allow continuous spectral
monitoring in dynamic environments




