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Optical diagnostics have played a key role in engine research for decades

More than 10 years ago: many new diagnostic development efforts (among 
engine manufacturers, national laboratories, universities, small businesses, …)

In the last ~ 10 years:

- reduced development of new diagnostics 

- emphasis on refining, applying proven diagnostics 

Today: many parties comfortable with standard diagnostics 
- high speed visualization
- thermal emission / chemiluminescence spectroscopy
- particle imaging velocimetry
- laser Doppler anemometry
- phase Doppler particle anemometry
- Schlieren/shadowgraph imaging
- laser induced fluorescence

but there is less development effort



Comparison with Medical, Military Applications
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Increased optical developments in medical, military applications

Example: at the May 2006 Conference on Lasers and Electro Optics (CLEO),     
~ 20 new laser designs for medical applications were announced; at most 2 
presenters even mentioned combustion as a possible application 

Larger funding in these markets has been attracting many researchers away 
from combustion

However, as we know, combustion / engine / mobility / energy research is an 
important area

New optical diagnostics can continue to play a very important role

Diagnostics wish list: What would we like to measure?
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Composition of the gas phase (N species)

Gas temperature

Velocity (3 components)

Also: composition and morphology of the solid phase (soot), etc.

Goal: measure the above for all times and all points in space

One application: compare with computational results, improve predictive 
capabilities



All times and all points in space in an engine
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To resolve most phenomena of interest, we need

Spatial resolution ~ 30 m

Time resolution ~ 10 s 

30 m spatial resolution 1012 data points in the engine

1012 data points every 10 s 1017 data points per second

Imagine we wish to measure just one value (temperature) with 8-bit precision at 
this rate 1018 bits/s:  this is about 10x the cumulative data flow for the entire 
planet!

Could transmit this data through the fibers shown here:

but it would be too much to process

Additional challenges
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That was only temperature, other parameters are desired

The engine produces work, not temperature signals.  To extract one accurate 
temperature at a single point, one could use coherent anti-Stokes Raman 
spectroscopy (CARS), for example.  However:

~ 500 spectral data points are required to infer the one parameter of 
interest, temperature

The CARS setup is challenging.

The ‘point’ may be larger than 30 m.



Sprays: one example of even more challenges
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In a spray one may desire 30 m 300 nm, 10 s 300 ns

It is clear that we cannot achieve the true goals.

How should we proceed with optical diagnostics in engines?

The present
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Continue to make measurements of 
interesting phenomena at integral length 
scales
Combine diagnostics to 

Overcome limitations
Provide a more complete picture of the process
Tie results directly to combustion phenomena



Combining Diagnostics to Overcome 
Limitations

Setup for temperature 
measurements

novel, custom laser, scans 
1330-1380 nm every  5 s

intake gases are well premixed

Combining Diagnostics to Overcome 
Limitations
Background for temperature 

measurements

HITEMP 
simulation

results:
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Combining Diagnostics to Overcome 
Limitations

Example record for one engine operating condition
(50-cycle average, temperature and mole fraction inferred from spectra)

Combining Diagnostics to Overcome 
Limitations

Setup for OH absorption 
measurements

Experiment performed under Prof. Jaal Ghandhi



Combining Diagnostics to Overcome 
Limitations

Expected absorption
signature
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Combining Diagnostics to Overcome 
Limitations

Raw data
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Combining Diagnostics to Overcome 
Limitations
Results

(UV spectrometer + 
wavelength-agile

laser for temperature)
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Continue to make measurements of 
interesting phenomena at integral length 
scales
Combine diagnostics to 

Overcome limitations
Provide a more complete picture of the process
Tie results directly to combustion phenomena



The future
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RESOLUTION
Spatial
Temporal
Spectral
Signal to noise ratio

Tradeoffs
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RESOLUTION
Spatial
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Spectral
Signal to noise ratio
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Spectral Engine Analysis

RESOLUTION
Spatial
Temporal
Spectral
Signal to noise ratio

Focus on spectra: different than most combustion diagnostics

Spectra provide possibility of accurate, quantitative measurements

Combined spatial / spectral resolution is a key future goal (example: we have 
designed a laser that scans 300-320 nm at arbitrary speeds for fluorescence 
measurements)

Typical experimental schematic & results
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Focus on spectra: different 
than many combustion 
diagnostics

Path-integrated, in-cylinder 
measurements

Provides species mole 
fractions and gas properties



Are the temperatures accurate?
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Progress using a patch to HITEMP
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Are the temperatures accurate?
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Additional experimental comparisons
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Blow-by, thermal boundary layers cause 
measured T to be higher than ideal gas T



Plan for further shock tube tests
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More shock tube experiments planned
for July 2006
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Plans for species measurements
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Focus on spectra: different 
than many combustion 
diagnostics

Path-integrated, in-cylinder 
measurements

Provides species mole 
fractions and gas properties



Introduction to Hyperspectral Sensing: 
Generic Spectroscopy Arrangements

Hyperspectral = ‘too many spectra’
Broad spectral coverage (> 200 cm-1):

High-resolution (< 1 cm-1):

High-speed (> 1 spectrum every 50 s):

multiple species with a single source 
ability to monitor broad spectral features (heavy or high-pressure gases, supercritical 

fluids, liquids, solids, etc.)
reality checks (are you really measuring what you think you’re measuring?)

higher SNR in gas spectroscopy 
discrimination of multiple species 

Immunity to ‘slow’ noise sources: vibration, beamsteering, etc. 
Compatibility with transient experiments (explosions, shock tubes, 

pulsed magnetic fields, video-rate OCT, etc.)
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Why hyperspectral?

multiple species with a single source 
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ability to monitor broad spectral features (heavy or high-pressure gases, supercritical 
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Why hyperspectral?
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Why hyperspectral?

High-resolution (< 1 cm-1):

High-speed (> 1 spectrum every 50 s):

multiple species with a single source 
ability to monitor broad spectral features (heavy or high-pressure gases, supercritical 

fluids, liquids, solids, etc.)
reality checks (are you really measuring what you think you’re measuring?)

higher SNR in gas spectroscopy 
discrimination of multiple species 

Immunity to ‘slow’ noise sources: vibration, beamsteering, etc. 
Compatibility with transient experiments (explosions, shock tubes, 

pulsed magnetic fields, video-rate OCT, etc.)

M
O

R
E

 IN
FO

R
M

AT
IO

N
H

IG
H

E
R

IN
FO

R
A

TE
Broad spectral coverage (> 200 cm-1):
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ability to monitor broad spectral features (heavy or high-pressure gases, supercritical 
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higher SNR in gas spectroscopy 
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Why hyperspectral?

High-resolution (< 1 cm-1):

High-speed (> 1 spectrum every 50 s):

multiple species with a single source 
ability to monitor broad spectral features (heavy or high-pressure gases, supercritical 

fluids, liquids, solids, etc.)
reality checks (are you really measuring what you think you’re measuring?)

higher SNR in gas spectroscopy 
discrimination of multiple species

Immunity to ‘slow’ noise sources: vibration, beamsteering, etc. 
Compatibility with transient experiments (explosions, shock tubes, 

pulsed magnetic fields, video-rate OCT, etc.)
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Why hyperspectral?

High-speed (> 1 spectrum every 50 s):
Immunity to ‘slow’ noise sources: vibration, beamsteering, etc. 
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Why hyperspectral?

High-resolution (< 1 cm-1):

High-speed (> 1 spectrum every 50 s):

multiple species with a single source 
ability to monitor broad spectral features (heavy or high-pressure gases, supercritical 

fluids, liquids, solids, etc.)
reality checks (are you really measuring what you think you’re measuring?)

higher SNR in gas spectroscopy 
discrimination of multiple species

Immunity to ‘slow’ noise sources: vibration, beamsteering, etc. 
Compatibility with transient experiments (explosions, shock tubes, 

pulsed magnetic fields, video-rate OCT, etc.)
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Reduced capabilities can suffice in some cases

-90 -60 -30 0 30 60

400

600

800

1000

1200

1400

1600

 

 

Te
m

pe
ra

tu
re

 [K
]

CAD [aTDC]

CO
2
 diluent (20%)

14 mg n-heptane/cycle

-90 -60 -30 0 30 60

400

600

800

1000

1200
1400

1600

1800
 

 

Te
m

pe
ra

tu
re

 [K
]

CAD [aTDC]

Argon diluent 50%
8 mg n-heptane/cycle
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transient
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behavior…

… full hyper-
spectral 
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are required.

but in a 
repeatable 
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cycle-by-cycle 
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resolution (but 
not high-speed) 
sensors may 
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Reduced capabilities can suffice in some cases

Results from a 
sensor with ~ 0.2 nm 
resolution

Results from a 
sensor with ~ 5 nm 
resolution:

‘Excellent’ temperature 
accuracy

Reduced hyperspectral:

Full hyperspectral:

T = 1540 K simulation

experimental
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Many important combustion species could be measured 
using methods similar to the ones presented here

Shorter and longer wavelength sources need to be 
developed to take advantage of this technology

Extremely broadband light could potentially measure all of 
the above species in one measurement.
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Initial measurements in the 1800 nm range
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Initial measurements in the 1800 nm range
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Summary
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Optical diagnostics in engines: a long history

There is still much room for growth in this field

Diagnostics will continue to be important to the engine community

Spectral engine analysis is an uncommon but promising direction

Appendix A: hyperspectral source designs
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Hyperspectral photonics: current research landscape

1. Moving parts
2. One scan direction superior to other
3. Unreliable at rapid sweep speeds
4. Wavelength sweeps generally too fast
5. Undesirable polarization effects
6. Unsuitable outside of telcom bands
7. Sweep rates constrained 
8. Spectral resolution unstable
9. Spectral resolution = f(wavelength)

These sources share the following 
advantages:

But all suffer from one or more of
the following drawbacks:

1. Inexpensive, for lasers (<$25k)
2. Wavelength = a consistent f(time)

18-km fiber
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Hyperspectral photonics: current research landscape

1. Moving parts
2. One scan direction superior to other
3. Unreliable at rapid sweep speeds
4. Wavelength sweeps generally too fast
5. Undesirable polarization effects
6. Unsuitable outside of telcom bands
7. Sweep rates constrained 
8. Spectral resolution unstable
9. Spectral resolution = f(wavelength)

These sources share the following 
advantages:

But all suffer from one or more of
the following drawbacks:

1. Inexpensive, for lasers (<$25k)
2. Wavelength = a consistent f(time)

18-km fiber
SOA

Synthesizer

Output

90%

10% Isolator

DCF
Amp

~250 MHz

PC

Yamashita et. al., CLEO 2006
(University of Tokyo)

50 s/div

20mV/div

Output temporal waveform (5 kHz)

drawbacks: 2, 3, 7, 9



Hyperspectral photonics: current research landscape

1. Moving parts
2. One scan direction superior to other
3. Unreliable at rapid sweep speeds
4. Wavelength sweeps generally too fast
5. Undesirable polarization effects
6. Unsuitable outside of telcom bands
7. Sweep rates constrained 
8. Spectral resolution unstable
9. Spectral resolution = f(wavelength)

These sources share the following 
advantages:

But all suffer from one or more of
the following drawbacks:

1. Inexpensive, for lasers (<$25k)
2. Wavelength = a consistent f(time)

Huber et. al., CLEO 2006

drawbacks: 1, 2, 5, 6, 7, 8

(Massachusetts
Institute of

Technology)

Fourier laser: in principle, no drawbacks!

Alternative to swept wavelength source: all colors always on, each 
modulated at a unique frequency (‘Fourier source’)



Fourier laser: in principle, no drawbacks!

Hydrogen cyanide (HCN) used as test absorber: simple spectrum 
near 1550 nm

Fourier laser: in principle, no drawbacks!

Laser modes arranged so that the natural beating converts native optical 
frequencies to measurable frequencies

Called “CW comb Fourier transform spectroscopy” (CW cFTS)



Raw time trace from a Fourier laser
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Comparison of spectra

Optical Spectrum Analyzer:

Measurement Time: 750 ms

Spectral Resolution: 0.06 nm

CW c FTS:

Measurement Time: 1 ms, 
will be reduced with 
improved source design

absorption features due to HCN

require broader spectral coverage ~ 50 nm for H2O measurements
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Spectral coverage increased using intra-cavity spectral filter

plan to shift this sensor to 1350 nm range, apply in engines by December 2006

based on this concept, we have also designed (proposals in review):

1W source covering 300…320 nm for point measurements of [OH], [CH2O], T 
by laser induced fluorescence

100 mW source covering 300…2000 nm for hyperspectral transient 
analysis by absorption spectroscopy

original laser output

controlled by intra-cavity
programmable spectral filter



Appendix B: extras
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Temperature Calculations from Spectra
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Emission Spectroscopy Example: Gas Turbine 
Combustor Test Rig

What is the best instrument
for simply monitoring the 
spectrum of the emitted
light?

Wright-Patterson
Air Force Base, OH

Commercial instruments for emission monitoring

FTIR: (Thermo Electron)

OSA: (Agilent)

expensive (> 20k)
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slow (~ 1 s per spectrum) rugged?

Drawbacks associated with moving parts:



Commercial instruments for emission monitoring

OSA: (Agilent)

grating spectrometers: low resolution, low throughput, or large
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Even without moving parts, still drawbacks:

An attractive emission spectrometer: SHS
(spatial heterodyne spectrometer)

Harlander et. al., Optics and Photonics News, Jan 2004 
spatial interferogram

grating-based FTS: no moving parts!
offer broad coverage, >> 306-311 nm, 

maintaining spectral resolution << 1 cm-1

Prof. Sanders’ opinion: about the best 
option for high-resolution hyperspectral
analysis of ‘ordinary’ light

now applying SHS in combustion

2-D Fourier transform



Generic Spectroscopy Arrangements

the selected arrangements all offer 
the possibility to engineer the light 
source rather than (or in addition to) 
the detector

Why engineer the light source?
(since you could just use a light bulb and a SHS detector)

1. Efficient at high-resolution

2. Simple, rugged, compact, all-fiber…

4. Can complement spectrometers

Spectral resolution decoupled from collection etendue.  Examples: in fluorescence, 
collect > 1 Sr from a 1-mm emitter and still maintain < 1 GHz spectral resolution in an 
excitation scan; likewise in absorption, beamsteering does not compromise spectral 
resolution

Hyperspectral lasers more readily multiplexed than hyperspectral detectors, e.g. for 
multi-beam tomography, multi-channel sensors to cover ultra-broad spectral ranges

Ultimately, may want to combine hyperspectral light sources and detectors 
(e.g., for combined excitation-emission fluorescence spectroscopy)

3. Compatible with simple detectors
Not paced by camera technology (limited readout rates, usually optimized for visible 

range, etc.)

5. Light can be ordered, thus eliminating thermal beating
For 5 s-duration measurement at 1 cm-1 resolution, noisepk-pk = 1.3%



Generic Spectroscopy Arrangements

2006-01-1366

Beer’s Law:
T = (I/Io) = exp(-k L)

k = f(T,X,P)
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Engine Measurements by Absorption Spectroscopy

Goal: use absorption spectroscopy to quantify gas temperatures, 

species mole fractions, and/or pressure, in engines



FDML
(MIT)

Laser engineering: wavelength-agile lasers

Many laser systems developed; resulting sensors allow continuous spectral 
monitoring in dynamic environments

T = 1540 K simulation

experimental
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video-rate imaging
into human finger 

R P

full-band spectra of combustion H2O
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