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Abstract

In this paper, we investigate investment in pollution control capital under uncertainty. We assume that a firm’s

output generates pollution as a by-product, which reduces the productivity of capital. The dynamics of pollution are

assumed to be governed by a stochastic differential equation. Thus, the firm must incur the cost of investing in

pollution control capital to reduce the pollutant. The firm also pays an environmental tax, which is proportional to its

emissions. We assume that the firm can invest as necessary. Hence, the firm’s problem is to choose its investment

timing under uncertainty. This problem is formulated as a singular stochastic control problem. We solve the firm’s

problem by using variational inequalities. The optimal investment strategy is characterized by a threshold for investing

in pollution control equipment. We also conduct comparative static analysis of the model’s parameters. We find that

an increase in the volatility of abatement capacity discourages investment in pollutant abatement, whereas an increase

in the environmental tax rate encourages such investment.
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1 Introduction

There has been an increase in the demand for energy as the global economy has grown.

According to the World
1

Bank, in 2010, global gross domestic product was USD 41,428

billion, 1.28 times greater than in 2000, when it was USD 32,334 billion (both in constant

2000 prices). World energy use in 2010 was 12,324 megatons, 1.26 times greater than in

2000, when it was 9,802 megatons (both in oil-equivalent megatons). A by-product of this

increase in energy use is more pollutants such as CO2, SO2, and NOx. These pollutants

generate air pollution in the form of climate change, acid rain, and photochemical smog as

external effects. These pollutants must be controlled appropriately Perman et al. (2003).

Pollutant abatement investment is needed to control pollutants. For example, coal-fired

power plants emit air pollutants. Many countries regulate these pollutant emissions ; for
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example, the U.S. has the Clean Air Act. Equipment to remove SO 2 and NOx has been

installed in coal-fired power plants, and old plants have been replaced by more-efficient power

plants. In this paper, we explore how a firm invests in relatively small pieces of equipment

such as pollutant removal equipment.

There is much research on pollutant abatement investment problems. For example, Pindyck

(2000) explores the conditions under which policymakers implement pollutant emissions

reduction policies under the uncertainty arising from general economic conditions. He shows

that the optimal pollutant reduction policy is characterized by a threshold. When the level of

economic uncertainty reaches this threshold, the policymaker implements the pollutant

reduction policy. Lin et al. (2007) also investigate a similar problem. These studies ignore

environmental taxes, which influence investment decisions. Farzin and Kort (2000) investigate

the amount firms invest in pollutant abatement capital when there is uncertainty about

pollution taxes. They investigate how changes to the pollution tax rate affect investment in

pollutant abatement capital. Zhao (2003) investigates how abatement cost uncertainties affect

firms’ abatement investment incentives, and finds that emissions trading helps maintain firms’

incentives to invest in pollutant abatement. Pindyck (2000) extends his model to incorporate

ecological uncertainty, which is represented by dynamics in the stock of pollution. Saltari and

Travaglini (2011) examine a green firm’s abatement capital investment problem under

ecological uncertainty. They show that there are two optimal abatement investment regimes :

one in which there is positive investment, and one in which there is none.

We investigate a firm’s pollutant abatement investment problem under uncertainty. As does

Farzin and Kort (2000), we assume that the firm is risk neutral and produces a single output

that it sells in a competitive market. The production process generates pollution emissions that

are proportional to output. The firm must pay a pollution tax per unit of emissions ; unlike

Farzin and Kort (2000), we assume that this tax rate is constant. Thus, the firm has an

incentive to invest in pollutant control equipment to maximize profit. Following Pham (2006),

we assume that the stock of pollutant abatement capacity is governed by a stochastic

differential equation. In addition, we consider the case in which the firm can invest in

abatement capital as necessary. This makes our analysis differ from previous research. The

investment problem that we model is classified as a partially irreversible investment problem

(see, for example, Abel and Eberly (1996), Guo and Pham (2005), Pham (2006), and Merhi

and Zervos (2007)). We formulate the firm’s problem as a singular stochastic control problem,

which we solve by using variational inequalities. The optimal investment strategy is

characterized by a threshold for investment in pollution control equipment. Having conducted
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comparative static analysis, we find that an increase in the volatility of abatement capacity

discourages pollutant abatement investment, whereas an increase in the environmental tax rate

encourages such investment.

The rest of the paper is organized as follows. In Section 2, we describe the setup of the

firm’s problem. In Section 3, we solve the firm’s problem. In Section 4, we present a

numerical analysis. Section 5 concludes the paper.

2 The Model

Suppose that a firm produces a single output by using a variable input L such as labor and

sells its output in a competitive market. The input price w＞0 and the output price p＞0 are

assumed to be constants. The firm’s production function F(Lt) has the form :

F (Lt)＝aLt
γ , (2. 1)

where a＞0 is a constant that reflects the level of production technology and γ∈(0,1) is the

output elasticity of the variable input. The production process generates pollution emissions E

proportional to output. Pollution emission E is given by :

Et＝η (Kt)F (Lt), (2. 2)

where η is the emission coefficient function of the stock of abatement capacity K. Following

Farzin and Kort (2000), we assume that η (K )＞0, η′(K )＜0, and η″(K )＞0. We specify η

as :

η (Kt)＝bKt
−λ , (2. 3)

where b＞0 is a constant conversion factor between output and pollutant emission and λ＞0

is the emission abatement elasticity of abatement capacity. The firm must pay a tax τ＞0 per

unit of emissions, which is assumed to be constant. The firm invests in abatement capacity to

reduce pollution emissions. Let It be cumulative purchases of abatement equipment up to time

t. The firm can purchase the abatement equipment at any time t at a constant price of c＞0.

The process of abatement investment is left-hand-limit-adapted, nonnegative, and

nondecreasing, with I0－＝0. Following Pham (2006), we assume that the firm’s abatement
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capacity evolves according to :

dKt＝－δ Ktdt＋σ KtdWt＋dIt, K0－＝k (＞0), (2. 4)

where δ∈(0,1) is the constant depreciation rate of abatement equipment and σ＞0 represents

the volatility of abatement capacity. Wt is a standard Brownian motion on a filtered probability

space (Ω, , ,{ t}t�0), where t is generated by Wt in ; that is, t＝σ (Ws, s �t).
�The firm’s operating profit π at time t is given by :

�π (Kt)＝pF (Lt)－wLt－τη (Kt)F (Lt). (2. 5)

We assume that the variable input can be adjusted instantaneously and at no cost. Hence, the

firm’s maximized instantaneous operating profit π (Kt) at time t is :

π (Kt)＝(p－τ bKt
−λ )α h , (2. 6)

where α :＝1/(1－γ ) (＞1) and h :＝α α (α－1)−α −1w1−α a−α (＞0). The firm’s expected

discounted profit J (k ; I ) is given by :

J (k ; I )＝
┌
│
└∫

∞

0
e−rtπ (Kt)dt－c∫∞

0
e−rtdIt

┐
│
┘

, (2. 7)

where r＞0 is the discount rate, I＝{It}t�0∈ denotes the investment strategy, and is the

set of all admissible investment strategies. In this context, it is assumed that :

┌
│
└∫

∞

0
e−rtπ (Kt)dt

┐
│
┘
＜∞ (2. 8)

and :

┌
│
└∫

∞

0
e−rtdIt

┐
│
┘
＜∞. (2. 9)

Therefore, the firm’s problem is to maximize its expected discounted profit over :

V (k)＝sup J (k ; I )＝J (k ; I*), (2. 10)
I∈
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where V is the value function and I* is the optimal investment strategy.

3 Variational Inequalities

From the formulation of the firm’s problem (2. 10), one would expect the firm, under its

optimal investment strategy, to invest in pollutant abatement capacity whenever the stock of

abatement capacity K falls below a threshold k. To verify this conjecture, we solve the firm’s

problem (2. 10) by using variational inequalities.

The variational inequalities of the agent’s problem (2. 10) are as follows :

Definition 3. 1 (Variational Inequalities). The following relations are called the variational

inequalities for the agent’s problem (2. 10) :

V (k)＋π (k)�0, (3. 1)

V′(k)�c, (3. 2)

[ V (k)＋π (k)][V′(k)－c]＝0, (3. 3)

where the operator is defined by :

:＝1
2

σ 2k2 d2

dk2－δk
d
dk
－r. (3. 4)

See, for example, Harrison and Taksar (1983) and Merhi and Zervos (2007) for derivation

of the variational inequalities. The variational inequalities can be summarized as follows :

max[ V (k)＋π (k), V′(k)－c]＝0. (3. 5)

Let H be the continuation region given by :

H :＝{k ; V′(k)＜c}. (3. 6)

Consider the well-known Skorohod Lemma, which is proven by, for example, Rogers and

Williams (2000, pp.117−118).
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Lemma 3. 1. For any k＞0, and given a boundary k＞0, there exists a unique adapted cadlag

process K *＝{K*t}t�0 and a nondecreasing process I* that satisfy the following Skorohod

problem :

dK*t＝－δ K*tdt＋σ K*tdWt＋dIt, K*0－＝k, t�0, (3. 7)

K*t∈[k, ∞) a.e., t�0, (3. 8)

∫t

0
1{K *

s＞k}dI*s＝0. (3. 9)

Furthermore, if k�k, then I* is continuous. If k＜k, then I*0＝k－k and K*0＝k.

The Skorohod Lemma implies that K* is a reflected diffusion at the boundary k and I* is

the local time of K* at k. Condition (3. 9) implies that I* increases only when K* reaches k.

Then, the continuation region H becomes :

H＝{k ; k＞k}. (3. 10)

Let φ∈C 2 be a function and let T＜∞ be a stopping time. From Ito’s formula for cadlag

semimartingales, we have :

e−rTφ (KT)＝φ (k)＋∫T

0
e−rT φ (Kt)dt＋∫T

0
e−rTσ Ktφ′(Kt)dWt

＋∫T

0
e−rTφ′(Kt)dI c

t＋
�

0�t �T
e−rT[φ (Kt)－φ (Kt−)]. (3. 11)

We can now prove that a solution to the variational inequalities is optimal. The following

theorem is the well-known verification theorem. In Appendix A, we prove the theorem by

following Pham (2006, Proposition 1. 3. 1) and Yang and Liu (2004, Theorem 1).

Theorem 3. 1. (I ) Let φ be a solution of the variational inequalities that satisfies the

following :

lim
t→∞

e−rtφ (Kt)＝0. (3. 12)
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Then, we obtain :

φ (k)�V (k), k＞0. (3. 13)

(II ) φ also satisfies the following :

φ (y)＋π (k)＝0, k＞k, (3. 14)

φ (k)＝c(k－k)＋d, k �k, (3. 15)

where d is constant. Then, there exists an optimal policy I *∈ such that :

φ (k)＝V (k). (3. 16)

That is, φ is the value function and I* is the corresponding optimal policy.

Proof. See Appendix A.

In what follows, for analytical simplicity, we assume that γ＝1/2. This yields α＝2. For

k＞k, the variational inequalities (3. 1)－(3. 3) lead to the following ordinary differential

equation :

1
2

σ 2k2φ″(k)－δkφ′(k)－rφ (k)＋π (k)＝0. (3. 17)

The general solution of the ordinary differential equation (3. 17) with π (k)＝0 is given by :

φ (k)＝A1k β 1＋A2k β 2, k＞k, (3. 18)

where A1 and A2 are constants to be determined. β 1 and β 2 are the solutions to the following

characteristic equation :

Γ(β ) :＝1
2

σ 2β (β－1)－δβ－r＝0. (3. 19)

These solutions are given by :
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β 1＝1
2
＋ δ

σ 2＋
┌
│
└(1

2
＋ δ

σ 2 )
2

＋2 r
σ 2

┐
│
┘

1
2＞1, β 2＝1

2
＋ δ

σ 2－
┌
│
└(1

2
＋ δ

σ 2 )
2

＋2 r
σ 2

┐
│
┘

1
2＜0. (3. 20)

To find a particular solution of (3. 17) we try a function of the form φ p(k)＝B1p 2h－2 B2

τ bpk−1h＋B3τ 2b 2k−2h. Given that φ p(k)＋π (k)＝0, we have :

B1＝1
r

, B2＝－ 1
ρ 1

, B3＝ 1
ρ 2

, (3. 21)

where ρ 1 :＝r－δλ －0.5 λ (λ＋1)σ 2 and ρ 2 :＝r－2 δλ－λ (2 λ＋1)σ 2. It follows from

assumption (2. 8) that ρ 1＞0 and ρ 2＞0. The general solution of (3. 17) is :

φ (k)＝A1k β 1＋A2k β 2＋p 2h
r
－2 pτbk−λ h

ρ 1
＋τ 2b 2k−2λ h

ρ 2
, k＞k. (3. 22)

Because there is no upper threshold and β 1＞0, we set A1＝0 to prevent the value function

from going to infinity. Then, the general solution to (3. 17) is :

φ (k)＝A2k β 2＋p 2h
r
－2 pτbk−λ h

ρ 1
＋τ 2b 2k−2λ h

ρ 2
, k＞k. (3. 23)

The second, third, and fourth terms on the right-hand side of (3. 23) represent the expected

present value of the firm’s profit when it does not invest in the abatement capital forever :

┌
│
└∫

∞

0
e−rtπ (Kt)dt

┐
│
┘
＝p 2h

r
－2 pτbk−λ h

ρ 1
＋τ 2b 2k−2λ h

ρ 2
. (3. 24)

It follows from the definition of the firm’s problem that the function φ satisfies the following

inequality :

φ (k)＞p 2h
r
－2 pτbk−λ h

ρ 1
＋τ 2b 2k−2λ h

ρ 2
. (3. 25)

This implies that A2＞0.

Let φ be redefined as the following candidate function of the value function :

ψ (k) :＝A2k β 2＋p 2h
r
－2 pτbk−λ h

ρ 1
＋τ 2b 2k−2λ h

ρ 2
, k＞k,

φ (k)＝
⎧
｜
⎨
｜
⎩ψ (k)－c(k－k), k �k. (3. 26)
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The two unknowns A2 and k are determined by the following simultaneous equations :

ψ′(k)＝c, (3. 27)

ψ″(k)＝0. (3. 28)

Equation (3. 27) is the smooth-pasting condition and (3. 28) is the super contact condition (see

Dumas (1991) for details). In the next section, we numerically solve these simultaneous

equations.

4 Numerical Analysis

In this section, we numerically calculate the threshold k and investigate the effects of changes

in the parameters on the threshold. The basic parameter values are : r＝0.1, a＝1, δ＝0.03, σ

＝0.08, γ＝0.5, λ＝1, w＝1, b＝0.5, c＝1, p＝1, and τ＝0.1. From these values, we obtain

A2＝2.52248 and k＝1.59834.

Figures 1−5 illustrate the comparative static effects on the threshold k. Figure 1 shows that

the continuation region H is increasing in the volatility of abatement capacity σ . This result

implies that the incentive to wait for new information about abatement capacity becomes

stronger as uncertainty about future abatement capacity increases. This result is consistent with

the standard results from real options analysis.

Figure 2 shows that the continuation region H is decreasing in the emission abatement

elasticity of abatement capacity λ. This result is contrary to expectations. Because the

emission coefficient function η is decreasing in λ when abatement capacity exceeds one (k＞

Figure 1 Comparative static effect of σ on the threshold.
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1), the pollutant emission function E is decreasing in λ. Our base case numerical result

implies that it is reasonable to assume that the initial level of abatement capacity level exceeds

one in our setting.

Figure 3 illustrates that the continuation region H is decreasing in the environmental tax

Figure 2 Comparative static effect of λ on the threshold.

Figure 3 Comparative static effect of τ on the threshold.

Figure 4 Comparative static effect of b on the threshold.
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rate τ . The firm pays more tax as the tax rate increases. Hence, the firm has an incentive to

invest in abatement capacity to avoid paying more tax, which reduces profits.

Figure 4 shows that the continuation region H is decreasing in the conversion factor b. The

higher b, the more the pollutant is emitted. Hence, the firm increases its investment in its

abatement capacity.

Figure 5 shows that the continuation region H is increasing in the price of abatement

equipment c. When the price of abatement equipment rises, the firm incurs more abatement

cost. Hence, the firm postpones its investment in abatement capacity.

These results provide useful insights into investment decisions under uncertainty.

5 Conclusion

In this paper, we examined the firm’s pollutant abatement investment problem under

uncertainty. We formulated the problem as a singular stochastic control problem and used

variational inequalities to solve it. We showed that the optimal investment strategy is

characterized by a threshold. That is, the firm invests in abatement capacity when its stock

falls below the threshold. In addition, we conducted comparative static analysis of the model’s

parameters. We found that an increase in the volatility of abatement capacity discourages

pollutant abatement investment, whereas an increase in the environmental tax rate encourages

such investment.

To conclude the paper, we suggest possible extensions to our model. It is worth exploring

the mechanism through which changes in the emission abatement elasticity of abatement

capacity affects the threshold. It is also necessary to examine the effect of output prices. This

could be achieved by using a stochastic differential equation to model the output price. Our

Figure 5 Comparative static effect of c on the threshold.
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framework could also be used to examine specific pollutants and/or pollutant reduction

projects. We leave these important topics to future research.

Appendix A.

Proof of theorem 3. 1. (I) For I∈ , let Tn＝inf{t�0 ; Kt�n}∧n, n∈ be the finite stopping time.

We apply (3. 10) between t＝0 and t＝Tn and take expectations. We obtain :

[e−rTnφ (KTn)]＝φ (k)＋
┌
│
└∫

Tn

0
e−rt φ (Kt)dt

┐
│
┘
＋
┌
│
└∫

Tn

0
e−rtφ′(Kt)dI c

t

┐
│
┘

＋
┌
│
└

�
0�t �Tn

e−rt[φ (Kt)－φ (Kt−)]
┐
│
┘

. (A. 1)

Because (3. 6) and Kt－Kt−＝Δ It, the mean-value theorem implies that :

φ (Kt)－φ (Kt−)＝φ (θ)Δ It�cΔ It, (A. 2)

where θ∈(Kt−, Kt). It follows from (3. 5) and (3. 6) that (A. 1) can be rewritten as :

[e−rTnφ (KTn)]�φ (k)－
┌
│
└∫

Tn

0
e−rtπ (Kt)dt

┐
│
┘
－
┌
│
└∫

Tn

0
e−rtcdI c

t

┐
│
┘
－
┌
│
└

�
0�t �Tn

e−rtcΔ It

┐
│
┘

. (A. 3)

It follows from I c
t＝It－Σ0�s�tΔ Is that :

[e−rTnφ (KTn)]�φ (k)－
┌
│
└∫

Tn

0
e−rtπ (Kt)dt＋∫Tn

0
e−rtcdIt

┐
│
┘

. (A. 4)

Taking limn→∞ and using (3. 14) and the dominated convergence theorem yields :

φ (k)�┌│
└∫

∞

0
e−rtπ (Kt)dt＋∫∞

0
e−rtcdIt

┐
│
┘
＝J (k ; I ). (A. 5)

From the arbitrariness of I, we have :

φ (k)�inf J (k ; I )＝V (k), (A. 6)
I∈

which completes the proof of (I).

(II) For k＞k, from Lemma 3. 1, I * is continuous for all k＞k and increases only when K *＝k. Then,

for I＝I * (A. 5) becomes the equality :

φ (k)＝
┌
│
└∫

∞

0
e−rtπ (Kt)dt＋∫∞

0
e−rtcdIt

┐
│
┘
＝J (k ; I *)＝V (k). (A. 7)
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For k �k, it follows from Lemma 3. 1 that :

V (k)＝c(k－k)＋V (k). (A. 8)

From (A. 7), we have φ (k)＝V (k). From the continuous property of φ (k), it follows that φ (k)＝d.

Thus, for all k �k we have :

V (k)＝c(k－k)＋φ (k)＝φ (k). (A. 9)

This completes the proof of (II).

References

Abel, A. B. and J. C. Eberly (1996), Optimal Investment with Costly Reversibility, Review of Economic Studies,

63, 581−593.

Dumas, B. (1991), Super Contact and Related Optimality Conditions, Journal of Economic Dynamics and

Control, 15, 675−685.

Farzin, Y. H. and P. M. Kort (2000), Pollution Abatement Investment When Environmental Regulation is

Uncertain, Journal of Public Economic Theory, 2, 183−212.

Guo, X. and H. Pham (2005), Optimal Partially Reversible Investment with Entry Decision and General

Production Function, Stochastic Processes and their Applications, 115, 705−736.

Harrison, J. M. and M. I. Taksar (1983), Instantaneous Control of Brownian Motion, Mathematics of Operations

Research, 8, 439−453.

Merhi, A. and M. Zervos (2007), A Model for Reversible Investment Capacity Expansion, SIAM Journal of

Control and Optimization, 46, 839−876.

Lin, T. T., C.-C. Ko and H.-N. Yeh (2007), Applying Real Options in Investment Decisions Relating to

Environmental Pollution, Energy Policy, 35, 2426−2432.

Perman, R., Y. Ma, J. McGilvray and M. Common (2003), Natural Resource and Environmental Economics 3rd

ed., Person Education, Harlow.

Pham, H. (2006), Explicit Solution to an Irreversible Investment Model with a Stochastic Production Capacity,

in : Kabanov, Y, R. Lipster and J. Stoyanov (eds.), From Stochastic Calculus to Mathematical Finance :

The Shiryaev Festschrift, 547−566, Springer-Verlag, Berlin.

Pindyck, R. S. (2000), Irreversibilities and the Timing of Environmental Policy, Resource and Energy

Economics, 22, 233−259.

Rogers, L. C. G. and D. Williams (2000), Diffusions, Markov Processes and Martingales : Volume 2 : Ito

Calculus, 2nd ed., Cambridge University Press, Cambridge, U.K.

Saltari, E. and G. Travaglini (2011), The Effects of Environmental Policies on the Abatement Investment

Decisions of a Green Firm, Resource and Energy Economics, 33, 666−685.

Yang, R-C. and K-H. Liu (2004), Optimal Singular Stochastic Problem on Harvesting System, Applied

Mathematics E-Notes, 4, 133−141.

Zhao, J. (2003), Irreversible Abatement Investment under Cost Uncertainties : Tradable Emission Permits and

Emission Charges, Journal of Public Economics, 87, 2765−2789.

Sequential Investment in Pollution Control Equipment under Uncertainty（Tsujimura） （ 279 ）２７９


