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     In this paper, a modified energy detection scheme using the pseudo bit error rate (BER) based signal-to-noise ratio (SNR) 

estimation is investigated. In the proposed scheme, the pseudo BER is used to estimate the SNR of the primary signal for the 

modified energy detection scheme at the secondary users. We have shown that with the assistance of the pseudo BER based SNR 

estimation, this modified energy detector outperforms traditional energy detector under the noise uncertainty in the run-time. In 

addition, the simulation results show that the proposed scheme can achieve the required detection performance and reliably alleviate 

the SNR wall effect as well. 
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Due to the increasing demands of the wireless 

devices and services, the traditional static spectrum 

allocation strategies are suffering inefficiencies in recent 

years. As the result, the Federal Communications 

Commission (FCC) sets about opening the TV bands and 

developing new policies intended for the unlicensed 

wireless devices to opportunistically access the vacant 

frequency bands 1). Cognitive radio (CR), which has 

been introduced in 2), has emerged as a potential 

technology for those unlicensed wireless devices to 

reform the existing spectrum utilization allocation in an 

opportunistic manner. Accordingly, the CR devices are 

enabled to dynamically access the unused spectral holes 

whereas they are required to immediately vacate the 

occupied spectrum bands once the primary users (PU) 

transmission is detected, which demands the continuous 

spectrum sensing of the utilization status at the CR 

devices 3). Intuitively, the spectrum sensing is definitely 

an essential and critical functionality that enables the CR 

devices to reutilize the idle spectrum bands without 

causing harmful interference to the incumbent wireless 

services.  

As both the effectively sensing of the spectral 

holes and reliably detecting of the weak primary signals 

of possibly different types are important for the spectrum 

sensing in the CR, numerous detection methods have 

been researched, which can be classified into three broad 

categories: the energy detection 4), the matched filtering 

detection 5) and the cyclostationary detection 6). Energy 

detector is recognized as the optimum detector if the 

prior knowledge of the primary signals is unknown at the 

CR receiver. On the other hand, for the primary signals 

of the known deterministic pattern (e.g., pilot, preamble, 

or training sequence), the optimal detector should be the 

matched filtering detection. However, perfect knowledge 

of the primary signals is required by the matched 

filtering, which would be impractical with the realistic 

limited cooperation between the PU and the CR users. 

The cyclostationary detection which exploits the built-in 

periodicity of the primary signals for more accurate 

detection, is mathematically intractable and requires the 

Monte-Carlo method to identify the optimal thresholds. 
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A more detailed survey of the spectrum sensing 

techniques for the CR users can be found in 5) and the 

references therein. 

In virtue of the hardware simplicities, the energy 

detection is considered not only the most common way 

but also the generic spectrum sensing methods as no 

prior knowledge is required at the CR detector. Previous 

studies on the energy-based detection have primarily 

focus on the detection performance in various static 

scenarios where the background noise is assumed to 

remain the same. However, the noise level varies with 

the time due to the temperature variations, the ambient 

interference, etc., which yields the noise uncertainty 7). 

Thus, the actual performance of the energy detection 

would deviate significantly from the theoretic analysis 

because of its sensitiveness to the noise uncertainty. This 

limitation of the sensitiveness to the noise uncertainty is 

a so-called signal-to-noise ratio (SNR) wall effect which 

is defined 8) as the minimum SNR value below which the 

desired performance could not be attained even with the 

arbitrarily long sensing period. The cross-correlation 

based energy detection (ED) 9) has been suggested to 

alleviate the SNR wall effect. Furthermore, Mariani 10) 

has even revealed that the intrinsic cause of the SNR 

wall is due to the insufficient estimation of the noise 

power and the maximum likelihood (ML) estimation is 

applied for the improvements. However, those previous 

studies mainly concentrated on the performance 

enhancements while the system complexities and the 

detection durations were traded for that. Since the idea 

shows that the noise power is changing all the time and 

the SNR wall is inevitable, it motivates our work in this 

paper. We proposed an SNR estimation method based on 

a pseudo bit error rate (BER) for the modified ED 

scheme and then studied the detection performance in a 

dynamic manner while the system simplicities and the 

sensing durations are both considered. 

The paper is organized as follows. In section 2, we 

describe the traditional energy detection for the CR 

devices and introduce the SNR wall problem. In section 

3, we develop the pseudo BER based SNR estimation for 

the modified ED scheme, which seeks to minimize the 

average detection error rate (DER) during the whole time. 

Simulation results and discussion are provided in section 

4. Finally, the paper is concluded in section 5. 

 

2.1 Signal model 

Consider the detection of the primary signals with 

a zero-mean additive white Gaussian noise (AWGN) at 

the CR users. A binary hypothesis testing is performed at 

the n-th time instant to identify the presence or the 

absence of the active PUs as  

       )()(:0 nwny =H                  (1) 

)()()(:1 nsnwny +=H             (2) 

where H0 stands for the absence of the primary signal 

s(n) at the given time instant n, i.e. the received signal 

y(n) contains only the noise w(n) ~ CN (0, 2), and H1 

represents the presence of the primary signal s(n) 

coexisting with the noise w(n) at the given time instant n. 

Here, 2 is the noise power. Here, we define the average 

SNR as 
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The detection performance is always evaluated in 

terms of two probabilities: the probability of the 

detection Pd and the probability of the false alarm Pf 

)|Pr( 1d Hλ>= YP                (4) 

 )|Pr( 0f Hλ>= YP                (5) 

Here, the Pd is the probability while detecting a primary 

signal under the hypothesis H1 and the Pf is the 

probability of the false alarm under the hypothesis H0. Y 

is a decision statistic and  is the corresponding test 

threshold for the each decision. For every spectrum 

sensing at the CR devices, the Pf should be kept as small 

as possible in order to prevent underutilization of the 

transmission opportunities while a large Pd is necessary 
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and implies a higher chance that the CR devices detect 

the presence of primary signals. 

The decision statistic for the traditional energy 

detector can be written as: 

=
=

N

n
nyY
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2)(                 (6) 

where N is the sensing length corresponds to the number 

of the observations. From the assumption above, the 

decision statistic Y follows the chi-square distribution 

with a degrees of freedom N in the case of H0 and the 

non-centralized chi-square distribution with a degrees of 

freedom N and a non centralized parameter  in the case 

of H1: 
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Observe from the Eqs. (4), (5) and (7), the 

decision threshold  and the sensing length N can be 

chosen by finding an optimal balance between the 

desired Pd and Pf. For simplicity, the inverse function of 

the Pd can be approximated to be the inverse Q-function 

if N is sufficiently large due to the central limit theorem 

(CLT). And the lower bound of the sensing length can be 

obtained to be Nmin=2[Q-1(Pf)-Q-1(Pd)]2 -2 by eliminating 

the optimal threshold 8). Q-1( ) is the inverse Q-function. 

We note that if the knowledge of the noise is known in 

advance, despite the arbitrarily low SNR , the desired 

performance can be obtained by appropriately choosing 

the optimal sensing length and the threshold. 

2.2 Problem Formulation 

However, it is known to all that the power of the 

background noise is non fixed value but an uncertain 

aggregation of various sources like the thermal noise, the 

leakage of signals from the other bands due to the 

receiver nonlinearity. Owing to that, the selection of the 

threshold, which would lead to a trade-off between the 

probabilities pair of Pd and Pf, could not be absolutely 

optimal.  

Let consider the noise power 2 distributed in an 

noise uncertainty interval [ n
2/ , n

2], where the n
2 is 

the nominal noise power and the  > 1 is the parameter 

indicating the uncertainty degree. Accordingly, the 

desired detection performance, expressed as the 

probabilities pair of (Pd
*, Pf

*), should be satisfied with 

all the 2 in the given uncertainty interval that 

      d
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The probabilities pair (Pd
*, Pf

*) relates to the desired 

detection performance intuitively.  

Accordingly, the uncertainty interval for the SNR 

 can be expressed as [ n/ , n] derived from the noise 

uncertainty interval and the n= P/ n
2 is the nominal 

SNR value corresponding to the nominal noise power 

n
2. 

By the approximation and the simplification, the 

lower bound of the sensing length is given as 8) 

2
n
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d
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f

1
min )]/1([)](Q)([Q2 −−− −−−= ρργPPN   (10) 

Clearly, as the n  ( -1/ ), the Nmin   and wall 

= -1/  has been called the SNR Wall in [8]. To be 

exact, the required performance could not be achieved 

under certain noise uncertainty even with the arbitrarily 

long sensing length under. In other words, the detection 

performance of the traditional ED is sensitive to the 

noise uncertainty, which makes it less robust, especially 

at low SNR regime. 

In order to alleviate the SNR wall effect, the noise 

uncertainty should be mitigated; alternatively, the SNR 

uncertainty should be mitigated. Our objective in this 

paper is to propose an SNR estimation method at a 

run-time based on the pseudo BER for a modified ED 

scheme, and investigate the adaption of the thresholds 

and sensing lengths dynamically, which could enhance 

the detection performance with certain constraints on the 

probability pair (Pd
*, Pf

*).  
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In the previous section, it has been established that 

the detection probability is the function of the SNR level, 

the sensing length N and the threshold . Inspired by the 

exclusive relationship between the Pd and the , in this 

section, we apply a pseudo BER based SNR estimation 

for the modified ED scheme. Within the scheme, we can 

estimate the SNR  frame by frame and then adapt the 

threshold  according to the estimated SNR, which might 

diminish the SNR uncertainty, alleviate the SNR wall 

effect and improve the sensing reliability as well.  

3.1 Frame structure 

Figure 1 shows the frame structure designed for 

the modified ED scheme using the pseudo BER based 

SNR estimation. First of all, each frame consists of one 

sensing slot and one decision slot, the same with the 

traditional frame structure. Follow the sensing slot at the 

start of each frame; the decision is made for the rest of 

the frame according the sensing slot. Differences from 

the existing frame structure are:  

 Under the n-th decision n
0

~
H : CR user starts the 

transmission during the n-th decision slot. 

 Under the n-th decision n
1

~
H : CR user divides the 

n-th decision slot into K sub-slots and repeats the 

sub-sensing within each sub-slot. 

 The i-th sub-sensing in the n-th decision slot: The 

output sequence at the i-th sub-slot is 1 for the 

sub-decision )(
~

1 inH  and 0 for the sub-decision

)(
~

0 inH  with each modified thresholds. 

where 0
~

H  and 1
~

H  denotes the decision assuming the 

absence and the presence of the active PU, respectively. 

3.2 Pseudo BER based SNR estimation 

As has been argued, the exact SNR value should 

be applied to compute the optimal threshold and sensing 

length for the desired detection performance. However, 

the SNR value varies and the detection performance is 

unlikely satisfying with the fixed threshold and sensing 

length. We consider an SNR estimation method based on 

the pseudo BER and expect to update the threshold and 

the sensing length frame by frame with the run-time 

estimation.  

The idea is derived from the exclusive relationship 

between the SNR and the error rate. It is intuitive to infer 

the instantaneous SNR from the error rate and eventually 

ease the SNR uncertainty. However, as a matter of fact, 

the true copy of the signal is unavailable at the receiver 

under the operating condition, not to mention the 

accurate error rate. The pseudo error rates 11) were firstly 

obtained with the modified thresholds and then 

extrapolated to determine the actual error rate. Further, 

the performance of the on-line pseudo error monitoring 

is detailed in 12) which shows that the intentionally 

degraded error rates overcome the short- comings of the 

long evaluation time and the interruption to the data 

traffic while monitoring the actual error rate. In this 

paper, we propose the SNR estimation method based on 

the pseudo BER by exploiting the error monitoring 

method as described in 13).  

In accordance with the frame structure in the Fig.1, 

the proposed SNR estimation method based on the 

pseudo BER is illustrated in Fig. 2. The sub-sensing is 

performed if and only if the primary signal has been 

detected at the beginning sensing slot of the current 

 

 
 

Fig. 2 Pseudo BER based SNR estimation scheme. 

 
Fig. 1 Frame structure of pseudo BER based SNR 

estimation for energy detection.  
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frame. In the Fig.2, each sub-slot includes two 

sub-sensing branches with two modified thresholds 

respectively, 1= (1- )  and 2= (1+ ) . Here, the  

represents the normal threshold for the previous sensing 

slot and the  is the parameter for some offset on the 

normal threshold. Correspondingly, each branch outputs 

a sequence in which a 1 is for the sub-decision )(
~

1 inH  

or a 0 for the sub-decision )(
~

0 inH  at the i-th sub-slot. 

After that, the exclusive OR (XOR) operations are 

executed on the decision sequences to count the 

disagreements for all the K sub-slots. Hence, the pseudo 

BER Ppseu is obtained. It can easily be shown that the 

Ppseu can be expressed mathematically by the 

probabilities of detection with different offset thresholds 

as 

)
~

Pr()
~

Pr( 21pseu
n
1

n
1 HH λλ >−>≤ YYP

    
 (11)

)
~

)1()1Pr(( n
1Hλαλα +<<−= Y  

It has been demonstrated in the references that the 

pseudo BER plotted against SNR yields a curve similar 

in shape to a BER vs. SNR curve but with larger value. 

The desired relationship between the Ppseu and the Pd can 

thus be defined as 

         )](ˆlog1[)(log dpseu γγ PMP −+=         (12) 

where the parameter M > 0 is the gain of the pseudo 

BER over the actual BER relate to the SNR value. The 

caret over the quantity indicates an estimation of the 

quantity.  

The general steps carried out for the pseudo BER 

based SNR estimation can be generalized as follows: 

while the decision n
1

~
H  is assumed at the sensing slot, 

start the sub-sensing at the decision slot; then take the 

XOR operations on the decision sequences and the 

pseudo BER Ppseu is thus obtained; estimate the 

probability of detection d̂P  from Eq. (12); find out the 

estimated γ̂  eventually from the inverse function of the 

Pd in virtue of the statistic characteristics or just simply 

search within a lookup table.  

3.3 Energy detection using SNR estimation 

     With the proposed scheme, the sub-sensing is 

carried out after the assertion of the active PU within the 

current frame and the pseudo BER based SNR 

estimation follows to update the estimated SNR for the 

subsequent detection frame by frame. Consider the 

actual dynamic scenarios with the noise uncertainty, in 

spite of the fluctuations, the SNR level would maintain 

during several frames.  

As mentioned before, both the probabilities Pd and 

Pf are essential to the spectrum reutilization of the CR. In 

order to evaluate the detection performance for the CR, 

we firstly define the detection error rate (DER) as 

)1()()](1[)( d1f1e PPPPP −∗+∗−= HHγ    (13) 

where P(H1) is the prior probability of an active PU 

relative to the spectrum utilization status practically. The 

optimization criterion for the detection performance can 

be expressed as 

  
*

dd
*

ff

e,

and..

)ˆ(min

PPPPts

P
N

≥≤

γ
λ       (14)  

where the Pd
* and the Pf

* are the desired probabilities.   

Based on the estimation γ̂ , given the desired pair of 

probabilities (Pd
*, Pf

*), we could always find the optimal 

sensing length N and the optimal threshold  for the 

subsequent frame according to Eq. (14), which would 

undoubtedly minimize the DER. Thus, the DER might 

be minimized with the approximated SNR level based on 

the proposed scheme and meanwhile the SNR wall effect 

could be alleviated for the reduction of the noise 

uncertainty.  

 

In this section, we evaluate the proposed pseudo 

BER based SNR estimation scheme for the modified ED 

scheme. Given the target probabilities Pd
* =0.9 and Pf

* 

=0.1, the initial sensing length and the threshold are 

assumed to be the optimal selection for the nominal n at 

the very beginning. 
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4.1 SNR wall 

We firstly confirm the SNR wall effect owing to 

the SNR uncertainty, viz. the noise uncertainty on the 

traditional ED scheme. Figure 3 indicates the SNR wall 

effect with three uncertainty degrees. Firstly, we note 

that, to achieve the required performance, the traditional 

ED should increase the sensing length as the nominal 

SNR level decreases. Secondly, given the uncertainty 

degree X=10log10  equals to 1 dB, 0.1 dB and 0.00 1 dB, 

the SNR walls locate around -3.3 dB, -13.4 dB and -33.4 

dB, respectively. Especially with the uncertainty degree 

1 dB, the necessary sensing length should approach to 

infinity as the nominal SNR is about -3.3dB, which is 

called as the SNR wall. We can also find that, with the 

less noise uncertainty, the SNR wall would be smaller 

and the traditional ED can be satisfying even within the 

lower SNR regime. On the contrary, the larger noise 

uncertainty is harmful for the traditional ED and 

alleviating the uncertainty should be necessary and 

helpful for the traditional ED. 

Without loss of generality, in the following 

simulations, the noise uncertainty degree we choose to 

be X=1dB and the SNR wall should be around -3.3 dB 

accordingly.   

4.2 Pseudo BER based SNR estimation 

     Figure 4 shows the performance of the pseudo 

BER based SNR estimation. For the given offset 

parameter  =0.2, the detection probability dP̂  could be 

well determined by the Ppseu with the Eqs. (12). The 

estimated γ̂  can thus be obtained by calculating the 

inverse function of the Pd. Figure 4 shows the 

relationship between the estimated γ̂  and the actual 

γ  with the lengths of pseudo sequence increasing from 

1000 to 100000. It is clear that the longer sequence 

realizes the better estimation performance. However, the 

pseudo sequence could not be very long as the 

estimation is executed during one frame and certainly 

time limited. We employ here the sequence length to be 

1000, which is both applicable and accurate enough. 

4.3 Detection error rate optimization 
 Eventually, we will give some simulation results 

for the scheme evaluation. The simulation parameters 

are: the prior probability of the active PU P(H1)=0.7, 
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and the offset parameter =0.2. Figure 5 shows the 

comparison of the proposed scheme and the traditional 

scheme in term of the receiver operating characteristic 

(ROC) curve. The detection performance of the 

modified ED has been intuitively improved with the 

proposed scheme over the traditional ED.  

Moreover, Fig. 6 compares the DERs between the 

proposed scheme and the traditional ED scheme. With 

the uncertainty degree X=1 dB, the sensing length N is 

adaptive for the proposed scheme ranging from 60 to 

140 whereas 500 for the traditional ED. Most of the 

DERs for the proposed scheme have been found below 

0.1, which is the preset target DER that can be 

calculated in advance. However, the traditional detector 

acts much worse with the same noise uncertainty as 

most of the DERs far exceed the target DER within the 

SNR uncertainty interval [-4.3 dB, -2.3 dB]. The 

comparison of the empirical CDFs is given in Fig.7. It 

shows that more than 80% simulation results of the 

proposed scheme are satisfied to be lower than target 

DER = 0.1 under the given noise uncertainty. Whereas 

almost half the simulation results of the traditional 

detector suffers from the poor performance (The DER is 

large than 0.1 because of the noise uncertainty). This 

means that the pseudo BER based SNR estimation has 

alleviated the SNR wall effect on the ED greatly and 

desirable performance can be achieved.  

 

In this paper we proposed a modified energy 

detection scheme using the pseudo BER based SNR 

estimation for the CR users with certain constraints on 

the probability of detection and the probability of false 

alarm. An optimization method for the threshold 

adaptation has been applied to combat with the SNR 

wall effect. The proposed scheme is evaluated and its 

effectiveness has been confirmed within the given noise 

uncertainty interval. In particular, as a straightforward 

transformation of the traditional scheme, the proposed 

scheme manages to achieve the required performance 

even within short sensing duration. 
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